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Abstract— Scene coordinate regression is a visual localization
method that directly regresses the 3D scene coordinate for a
set of pixels. Although existing works have demonstrated the
feasibility to learn 3D scene coordinates from RGB images
with ground truth poses, their effectiveness is limited by the
availability of training data, particularly due to the absence of
3D information. To address this limitation, we introduce a novel
three-stage approach for SCR model learning from 2D data.
Our method begins by employing 3D Gaussian Splatting for
generating a dense reconstruction of the scene. Subsequently,
the SCR model is initialized with pseudo scene coordinates
derived from the reconstruction. Finally, the model is refined
using a sparse set of real images to mitigate the domain gap
between pseudo scene coordinates and real scene coordinates.
Our approach is validated through comprehensive experiments,
resulting in performance improvements on the DL3DV-10K and
7 Scenes datasets.

I. INTRODUCTION

RGB-based scene coordinate regression (SCR) for camera
pose estimation aims to learn the coordinates of a scene from
a collection of 2D camera views within a 3D space [1], [2].
These learned coordinates are then employed to calculate
the camera pose when presented with a novel camera view.
In real-world scenarios, as the dense ground truth of 3D
coordinates is not easy to obtain, previous studies have
resorted to the strategy of projecting the estimated 3D
coordinates back onto the 2D image plane and evaluating
the reprojection error [1], [2]. Nonetheless, this reliance
on reprojection errors as the sole optimization criterion
may result in suboptimal SCR performance since the 3D
coordinates are implicitly learned from multi-view images.
While certain investigations [3] have endeavored to refine
sparse scene coordinates obtained through structure-from-
motion (SfM) techniques [4], [5], they may be inadequate
for methodologies necessitating densely populated scene
coordinates for precise camera pose prediction. As a result,
the development of a strategy to enhance the availability
of dense scene coordinate data emerges as a pivotal and
indispensable requirement.

Recent advancements in 3D Gaussian splatting (3DGS) [6]
present a compelling solution to address the challenges
mentioned above. This technique can encode and expand
sparse point clouds into informative splats, and enables
dense reconstruction of the scene with high fidelity. More
specifically, these derived splats are explicitly encoded in
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Fig. 1. An illustration of the images from the DL3DV-10K and 7
Scenes datasets, along with the pseudo scene coordinates derived from the
constructed 3DGS model.

the 3D space, and therefore offer more comprehensive and
detailed 3D coordinate information. Compared to the sparse
point clouds from SfM, the use of 3DGS in SCR unlocks new
possibilities for utilizing the data they contain to improve and
refine scene coordinate estimation and provides a promising
opportunity to enhance the training process of SCR.

In light of the above potential, in this work, we develop
a new training framework for Scene Coordinate Regression
(SCR) that leverages the properties of 3D Gaussian Splatting
(3DGS) and introduce the concept of pseudo scene coor-
dinates (pSCs), which are explicit 3D coordinates inferred
from the constructed 3DGS model, as depicted in Fig. 1.
The framework is structured into three stages: (1) the 3DGS
learning stage for deriving pSCs, (2) the scene coordinate
initialization stage, and (3) the scene coordinate fine-tuning
stage. Specifically, in the first stage, the 2D camera views
are utilized to train a 3DGS model. Based on this model,
the 3D coordinates of the derived Gaussian splats, which
are dense in the 3D space, are utilized to derive pSCs.
In the second stage, these pSCs generated by the 3DGS
model are leveraged to train the SCR model at a scene-
specific level during the scene coordinate initialization stage.
In the scene coordinate fine-tuning stage, the trained model
from the second stage is further fine-tuned with the real
training sequence using the ground truth 2D camera poses.
The design of these three stages enhances the SCR model’s
generalizability and enables the estimation of high-quality
scene coordinates with greater accuracy. To validate the
proposed framework, we evaluate our methodology on both
outdoor and indoor datasets, including DL3DV-10K [7] and
7 Scenes [8], for evaluating the performance of our SCR
approach. The experimental results validate that the proposed
methodology can indeed provide benefits, and leads to more
effective learning and better data efficiency when only lim-



ited 2D camera views are available. It also delivers promising
performance in estimated translational and rotational errors.

II. PRELIMINARY

A. Scene Coordinate Regression (SCR)

SCR is a visual localization method that establishes
correspondences between 2D pixels on an image and 3D
coordinates in a scene by directly regressing the 3D scene
coordinate for each pixel. The primary learning objective is
to learn a mapping function f(·) such that Y = f(I), where
Y represents the 3D scene coordinates, and I is the input
image. After obtaining Y , the camera pose can be estimated
using the Perspective-n-Point (PnP) algorithm, expressed as:

h = gPnP (CI),with C = {(pi, yi)|pi ∈ I, yi ∈ Y}, (1)

where h denotes the estimated camera pose, gPnP (·) rep-
resents the PnP algorithm augmented with RANSAC, C is
the set of all 2D-3D correspondences, and CI denotes the
subset of inlier correspondences. Inlier correspondences are
those that are consistent with the estimated camera pose, in
contrast to outliers, which fail to align accurately with the
estimated pose. Recovering dense 3D information from 2D
images is a highly challenging task. In early works [9], [10],
the depth information was necessary to recover ground truth
scene coordinates for training. DSAC++ [1] first demon-
strated the feasibility of learning 3D scene coordinates solely
from a series of RGB images annotated with ground truth
poses for a given scene. This was achieved through implicit
triangulation, constrained by multi-view geometry, and a
carefully designed initialization process. Subsequent research
endeavors [2], [11] simplified the procedure and improved
both performance and robustness. Nevertheless, these meth-
ods still require a substantial number of camera views to
effectively reconstruct the 3D information implicitly.

B. 3D Gaussian Splatting (3DGS)

3DGS is a real-time rendering method which explicitly
models a 3D scene as a collection of anisotropic 3D Gaus-
sians. In this context, a Gaussian splat (or simply a splat)
represents a volumetric space data point characterized by
a Gaussian function. Each Gaussian G(x) encapsulates 3D
information such as 3D coordinate and orientation, scale,
opacity, and color information. A splat is defined by a mean
µ ∈ R3 and a covariance matrix Σ, formulated as follows:

G(x) = exp

(
−1

2
(x− µ)T Σ−1(x− µ)

)
. (2)

The initial Gaussians are formed by SfM points, and the
properties of these Gaussians are updated through gradients.
They may be cloned or split at specified intervals if the
accumulated gradients exceed a threshold. During the op-
timization process, the Gaussians are rendered onto a 2D
image plane, where a tile-based rasterizer is employed to
enhance rendering efficiency, expressed as follows:

C(v) =
∑
i∈N

ciαi

i−1∏
j=1

(1− αj), (3)

where ci is the color attributed to the i-th Gaussian splat,
N denotes the set of Gaussian splats within a tile, and C(v)
represents the rendered color at pixel v of the 2D camera
plane. The term αi is derived from the product oi ·Gi

2D(v),
where oi indicates the opacity of the i-th Gaussian splat, and
Gi

2D(·) is the function which describes the projection of that
Gaussian splat onto the 2D camera plane.

III. METHODOLOGY

A. Overview of the Framework

Fig. 2 illustrates an overview of the proposed SCR frame-
work, which adopts a comprehensive approach by integrating
3DGS to enhance visual re-localization. This framework
encompasses three stages, as described in Section I. Begin-
ning with a collection of multi-view 2D RGB images, the
framework employs SfM to generate a set of SfM points,
which serve as the initial elements for training the 3DGS
model, as described in Section II-B. The trained 3DGS model
aims to use Gaussian splats as 3D pSCs for initiating the
SCR model’s training process. These images are processed
by a scene-agnostic feature extractor [11], which works in
tandem with a scene-specific regression head. The feature
extractor is responsible for interpreting the general attributes
of the scene, while the regression head customizes this in-
terpretation to the specifics of the scene under consideration
and generates scene coordinates. A key breakthrough of this
framework is its endeavor to extend beyond the limitations of
the originally provided 2D camera view data to densify the
original set of 3D scene coordinates extracted by SfM. This
process involves using the data to infer 3D insights through
3DGS and then leverage the extensive collection of Gaussian
splats that bear rich 3D geometric details to enhance the SCR
learning. By adopting 3DGS and SCR models together, our
framework enhances the use of limited 2D camera view data
more effectively and efficiently than methodologies that rely
solely on the original 2D images. Please note that further
discussion and evaluation on our framework’s data efficiency
are provided in Section IV.

B. Pseudo Scene Coordinate (pSC) Generation

Pseudo scene coordinates (pSCs) generated from 3DGS
present an innovative direction for initializing the training
stage of an SCR model. The adoption of these pseudo coor-
dinates aims to exploit their rich, spatially-dense information
to bridge the gap between the sparsity of 2D camera view
data and the continuous nature of physical environments.
The rationale behind employing pSCs from 3DGS is based
on their capacity to capture the spatial relationships present
within a scene. Such spatial details, including the depth and
density information provided by 3DGS, can equip an SCR
model with a more profound comprehension of the scene’s
3D geometry. This aspect becomes essential especially in
scenarios where depth information is unavailable or 2D
camera views are sparse.

To derive pSCs for a specific pixel v on the camera plane,
a mapping is established to identify all splat indices that
contribute to rendering C(v). This process considers the
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Fig. 2. An overview of the proposed framework, which encompasses three main stages.

Fig. 3. A image of deriving the pSC from the means of a set of Gaussians.

influence of each Gaussian splat by taking into account
their respective opacity values αi. The pSC for v is then
determined as a weighted sum of each Gaussian splat’s
contributions, which can be formulated as follows:

pSC(v) =
∑
i∈N

µi · αi

i−1∏
j=1

(1− αj), (4)

where N denotes all splats contribute to render C(v),
pSC(v) represents the weighted pseudo scene coordinate for
pixel v, and µi denotes the mean 3D coordinate of the i-
th splat, as depicted in Fig. 3. This approach is pivotal for
synthesizing scene coordinates not explicitly present in the
original 2D dataset, which enhances the 3D coordinate space
information for SCR model training.

C. Scene Coordinate Regression Training Schedule

In order to leverage the pSCs, we design a two-stage
training procedure for our SCR methodology, which in-
cludes: (a) a scene coordinate initialization stage (denoted as
SCinit) and (b) a scene coordinate fine-tuning stage (denoted
as SCfinetune). During the SCinit stage, the SCR model is
trained with the aid of pSCs. This is intended to enhance the
model’s capacity for comprehensive scene representation. At
the SCfinetune stage, the trained model from the SCinit stage is
further fine-tuned with the real training sequence using the
ground truth camera poses. The SCinit stage is beneficial,

since it allows the model to efficiently learn scene-specific
features in detail. However, the SCfinetune stage remains
essential to address the domain gap between pseudo scene
coordinates and real scene coordinates. More specifically,
in this work, we train the SCR model firstly with SCinit
followed by SCfinetune, with 16 epochs for each stage. For
the SCinit stage, we optimize a composite loss function that
includes: (a) a L2 loss derived from the l2-norm of the
difference between camera coordinates converted from the
estimated scene coordinates and the pSCs, and (b) a robust
reprojection loss Lreproj introduced in ACE [11]. The training
loss employed for SCinit can be formulated as follows:

Linit =
∑
i∈I

`reproj(pi, yi,h
∗) +

∥∥h∗−1pSC(pi)− h∗−1yi

∥∥2
2

(5)

`reproj(pi, yi,h
∗) =

{∥∥pi −Kh∗−1yi

∥∥ if yi ∈ V
‖yi − ŷi‖ otherwise.

, (6)

where K is the camera intrinsic, h∗ is the ground truth cam-
era pose, V is the set of valid scene coordinate predictions
that are between 10cm and 1,000m in front of the image
plane and have a reprojection error below 1,000 pixels, and
for invalid predictions, a dummy scene coordinate ŷi is used,
which is 10m in front of the camera calculated from the
ground truth camera pose. For the SCfinetune stage, the model
is fine-tuned with only the reprojection loss, formulated as:

Lfinetune =
∑
i∈I

`reproj(pi, yi,h
∗). (7)

IV. EXPERIMENTAL RESULTS

A. Experimental Setups

We evaluate our methodology on both outdoor and indoor
datasets, including the DL3DV-10K [7] and 7 Scenes [8]
datasets. From DL3DV-10K, which offers a continuous se-
quence for each scene, we selected 11 sample scenes. To
examine our method, we conduct experiments with a limited
amount of training data. For DL3DV-10K, we sample the



TABLE I
COMPARISON OF PERFORMANCE FOR THE SCINIT STAGE USING

DIFFERENT METHODS FOR GENERATING PSCS.

Pseudo Scene Coordinate DL3DV-10K 7 Scenes
(deg) (cm) (%) (deg) (cm) (%)

None (ACE) [11] 0.15 14.29 36.55% 1.13 3.66 72.39%
Sparse (SfM) 0.15 14.00 36.81% 1.15 3.63 72.46%
Dense (3DGS) 0.13 11.87 44.87% 1.11 3.41 74.71%

ACE Ours
DL3DK-10V: 5f00

ACE Ours
7 Scenes: Stairs

Median Error: 8.8cm / 0.1deg Median Error: 7.9cm / 0.1deg Median Error: 8.3cm / 2.0deg Median Error: 5.7cm / 1.6deg

Fig. 4. The comparison of predicted scene coordinates and camera
poses on DL3DV-10K. From the clear point clouds, it is evident that our
method learns scene coordinates with greater accuracy, resulting in superior
performance on camera pose estimation.

training data every ten frames, and construct a dataset with
only 10% of the original training set size, while the rest data
are used for testing. As for 7 Scenes, we sample the training
data every fifty frames from the training sequences, while
the test data remain unchanged.

B. Effectiveness of Pseudo Scene Coordinates

In this section, we aim to validate the efficacy of the
pre-training stage utilizing pseudo scene coordinates (pSCs)
for the SCR model. This experiment focuses on the median
errors and accuracy of the pSCs generated by various meth-
ods during the initial training phase. We begin by utilizing
a subset of the training data (10% of the DL3DV dataset
and 2% of the 7scene dataset) to construct sparse point
clouds using COLMAP [4], [5], an SfM approach. These
sparse point clouds, derived from limited camera views, serve
as the foundation for training our 3DGS model, which is
used to compute pSCs for training our SCR model. Table I
presents the evaluation results. In all experimental setups,
the SCR model undergoes the SCfinetune stage that is without
the inclusion of the camera coordinate loss derived from
pSCs. Three configurations are evaluated: (a) not using pSCs
(i.e., the original ACE baseline), (b) employing sparse pSCs
obtained directly derived from point clouds constructed with
COLMAP, and (c) generating dense pSCs using 3DGS. The
results of this analysis are presented in Table I. It demon-
strates the precision of pseudo scene coordinate generation
and the impact of using dense versus sparse scene coordi-
nates. This assessment highlights the potential of integrating
high-quality and dense pSCs to enhance model performance
in the SCR task.

C. Qualitative Results

1) Visualization of Camera Pose: Fig. 4 illustrate pre-
dicted scene coordinates with point clouds and camera poses
on DL3DV-10K datasets. It is clear that point clouds of our

Images Derived from 3DGS Predicted by ACE Predicted by Ours

Fig. 5. An illustration of the images from the DL3DV-10K dataset, along
with the pSCs derived from the constructed 3DGS model and the scene
coordinates predicted by ACE and our methodology.

method have less sparse areas, this implies that our method
provide a more consistent scene coordinate, sequentially
resulting in more precise camera pose estimation.

2) Comparison of Predicted Scene Coordinates: To eval-
uate the effectiveness of incorporating pSCs in training the
SCR model, we visualize the scene coordinates predicted
by the SCR models. As depicted in Fig. 5, it can be
observed that our model predicts scene coordinates with
clearer boundaries. The predicted scene coordinates for the
same objects exhibit a higher degree of similarity, and the
predictions contain reduced noise compared to the baseline.

V. CONCLUSIONS

We proposes a novel three-stage approach to address
the challenge of limited training data for scene coordinate
regression (SCR) models used in visual localization. By
leveraging 3D Gaussian splatting to generate a dense scene
reconstruction from 2D data, the method can derive pseudo
scene coordinates to initialize the SCR model. The model is
then refined using a sparse set of real images to bridge the
domain gap between pseudo scene coordinates and real scene
coordinates. Comprehensive experiments on the DL3DV-10K
and 7 Scenes datasets demonstrate that this approach can
effectively learn a SCR model which rely solely on limited
real training data. The proposed technique provides an effec-
tive way to train accurate SCR models for visual localization
tasks even when only 2D data is available, overcoming a key
limitation of previous methods. Overall, this work highlights
the potential of combining learning-based techniques with
3D reconstruction to tackle challenging problems in visual
localization with limited training images.
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