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Abstract

Neural Combinatorial Optimization (NCO) has emerged as a promising learning-
based paradigm for addressing Vehicle Routing Problems (VRPs) by minimizing
the need for extensive manual engineering. While existing NCO methods, trained
on small-scale instances (e.g., 100 nodes), have demonstrated considerable success
on problems of similar scale, their performance significantly degrades when ap-
plied to large-scale scenarios. This degradation arises from the distributional shift
between training and testing data, rendering policies learned on small instances
ineffective for larger problems. To overcome this limitation, we introduce a novel
learning framework driven by Large Language Models (LLMs). This framework
learns a projection between the training and testing distributions, which is then
deployed to enhance the scalability of the NCO model. Notably, unlike prevailing
techniques that necessitate joint training with the neural network, our approach
operates exclusively during the inference phase, obviating the need for model
retraining. Extensive experiments demonstrate that our method enables a back-
bone model (trained on 100-node instances) to achieve superior performance on
large-scale Traveling Salesman Problems (TSPs) and Capacitated Vehicle Routing
Problems (CVRPs) with up to 100K nodes from diverse distributions. The source

code can be found in [https://github.com/CIAM-Group/T TPL}

1 Introduction

The vehicle routing problem (VRP) is prevalent in critical domains such as transportation [1],
logistics [2]], and supply chain management [3|]. However, due to the NP-hard nature, solving a VRP
can be complex and time-consuming [4]. While traditional exact and heuristic methods can yield
optimal or near-optimal solutions, their high computational cost and dependence on domain expertise
consequently diminish their feasibility for real-world deployment.

In recent years, neural combinatorial optimization (NCO) has emerged as a promising approach for
solving VRP [5]]. It utilizes neural networks to learn problem-solving strategies directly from the
VRP instances, minimizing the need for algorithms designed by experts. Once trained, these neural
networks can efficiently generate solutions for new instances at a low computational cost. Therefore,
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NCO methods demonstrate potential advantages in tackling limitations of traditional methods and
exhibit promising performance in solving small-scale VRPs [6-H9].

However, due to the different distributions between small and large-scale instances, the effectiveness
of existing approaches degrades substantially when it comes to large-scale problems (e.g., problems
with more than 1K nodes), thereby severely limiting their practical capability. To address the
scalability issue, some attempts have been devoted to training NCO models on larger VRP instances
(i.e., instances with 500 nodes) [10, [L11]. However, the existing supervised learning (SL) and
reinforcement learning (RL) both show their shortcomings when training on large-scale VRP instances.
SL lacks sufficient labels (e.g., high-quality solutions) while RL suffers from extremely sparse
rewards.

Consequently, current methods focus on training a model on small-scale instances and generalizing
to large-scale scenarios via decomposition or local policy [[12H135]]. The decomposition-based method
first simplifies large-scale problems to a series of subproblems. Subsequently, a solver trained on
the small-scale instances can be utilized to construct a partial solution of the subproblems [[16H18]].
However, the scope of the decomposition often requires manual tuning, and even decomposing the
problem could change its property, and thus damage the optimality of the solving algorithm. Another
effort is local policy-based methods [[14}[15]. It first reduces the search space to a small candidate
subgraph at each construction step, typically based on the Euclidean distance to the last visited node.
The next node is decided by the original policy or a local policy.

However, the distribution of selected subgraphs often differs from training instances, which signifi-
cantly impairs the model’s scalability. Current methods employ a projection technique to effectively
transform these varied input distributions into a uniform distribution encountered during training
[L5,1131]19]. Nevertheless, existing strategies require integration with the model training to ensure ef-
fectiveness during testing. Meanwhile, these manually designed strategies heavily rely on specialized
domain expertise, thereby limiting their adaptability.

To address this challenge, we propose a novel learning framework called Test-Time Projection
Learning (TTPL), driven by the Large Language Model (LLM), to design an efficient projection
strategy. In particular, we utilize the LLM to learn the correlation between the input subgraph
and training instances, thereby developing projection strategies that enhance model generalization.
Different from existing works, our approach can be directly applied in the inference phase, does not
need to train a model from scratch. Moreover, we propose a Multi-View Decision Fusion (MVDF)
module to improve model generalization. Specifically, we perform data augmentation on the subgraph
to generate multiple views. These views are subsequently processed by the model, with each view
yielding a distinct node selection probability. Finally, these probabilities are aggregated, and the node
with the highest resulting confidence score is selected.

Comprehensive experiments are conducted on both synthetic and real-world benchmarks for the
TSP and CVRP. The results demonstrate that our proposed distribution adapter enables the base
model, pre-trained on small-scale instances (e.g., 100 nodes), to achieve superior performance on
the majority of large-scale VRP test instances without requiring additional fine-tuning. Our ablation
study validates the effectiveness of the designed projection strategy.

2 Related Work

Existing NCO methods can be categorized into constructive [20-25]] and non-constructive [26-29]].
This paper mainly focuses on the constructive method; a detailed review of the non-constructive
method and other LLM-based methods can be found in the Appendix. [A]

2.1 Direct Generalization

This kind of method often trains neural networks on small-scale instances and generalizes them
to large-scale instances. It is mostly known as the construction-based methods that predict an
approximate solution in an autoregressive manner. Early studies demonstrate that neural models
trained with SL or RL can reach promising performance on small-scale instances [30H32]]. Moreover,
[6} 133]] propose to use the Transformer architecture [34] to design powerful attention-based models to
solve VRPs. Subsequently, various Transformer-based approaches have been developed with different
strengths [35-H41]]. Meanwhile, many studies focus on improving model performance on large-scale



VRPs [42]. In which [42]] and [18] train the model with SL on 100-node and exhibit generalization
ability to 1K nodes. Specifically, BQ [42] modifies the Markov Decision Process (MDP) to efficiently
leverage the symmetries of combinatorial optimization problems (COPs). LEHD [18]] develops a light
encoder and heavy decoder structure to reach the same result. Nevertheless, the training distribution
of 100-node instances drastically differs from the large-scale instances; the trained model usually
performs poorly when tested on this large-scale scenario. Consequently, several attempts have trained
models on larger-scale instances with up to 500 nodes [43}[11} 38, [10] or even directly training on the
large-scale [44] (up to 100K-nodes). However, these approaches introduce prohibitive computational
costs due to the exponentially growing search space.

2.2 Decomposition-Based Generalization

Apart from directly generalizing the model trained on a small-scale dataset to the large-scale instances,
another line of research focuses on decomposing the large node graph into several small-scale
subproblems. This approach involves solving them separately with a particular solver and then
combining their solutions to form the solution of the large-scale problem [45H47, 12} 13} 48]]. In
particular, the problem decomposition and subproblem solving are often involved in different models.
The task of the subproblem solver can be constructing a complete solution of a small-scale VRP
or partial solutions of large-scale instances [[16H18]]. However, such decomposition introduces two
critical shortcomings. When solving other complicated VRPs (e.g., CVRP), such decomposition
becomes intractable and cannot be achieved by an individual strategy or model. Furthermore, when
the decomposed subproblem is not small enough, it may still require other generalization techniques
to solve.

2.3 Local Policy-Based Generalization

Another approach to solving large-scale VRPs is to reduce the search space to the K-Nearest-
Neighbors (KNN) from the last visited node. The final decision is guided by either the original
neural model with auxiliary distance information [49]] or a local policy [14]. In addition, [[15} 50, 42]]
directly select the candidate node from the neighborhood using NCO models. Although local policy
can efficiently reduce the search space for constructive NCO, the reduced subgraph often drastically
differs from the training instances, especially in large-scale or non-uniform instances. Consequently,
the NCO models fail to distinguish the promising node. To this end, [15} 13} [19] propose a projection
strategy to transform the extracted subgraph to a uniform distribution. While these strategies can
enhance generalization, their effectiveness typically requires integration into model training, thereby
imposing additional computational overhead and limiting their adaptability.

3 Preliminaries

VRP Definition The VRP is defined on a graph G = (V, E), where V' = {vg, vy, ..., v,, } represents
nodes (with vy as the depot in CVRP) and F denotes edges. Each non-depot node V\{vg} has
coordinates s; € R? and a demand d;, while vg has no demand. For the TSP, the objective is to find a
single tour that explicitly visits all nodes once, minimizing the total Euclidean distance. In CVRP,
vehicles with fixed capacity must deliver goods from the depot to customers, forming multiple routes
that start and end at vy. Each customer is visited once, and the cumulative demand per route cannot
exceed the vehicle capacity. Solutions for both problems aim to minimize the total length of the tour,
with feasibility requiring adherence to node visitation and capacity constraints.

AHD AHD aims to automatically discover high-performing heuristics h for a target task 7, such as
combinatorial optimization. Formally, given a task 7" with input space X7, AHD seeks to identify
an optimal heuristic h* from a heuristic space H by maximizing the expected performance over
instances € X

h* = argmaxE,x, fr(z, h), )

heH

where fr(x,h) quantifies the effectiveness of heuristic ~ on instance . The heuristic space H
encompasses all feasible strategies that adhere to the constraints of T". This approach aligns with
hyper-heuristic methodologies [51], which automate heuristic selection or generation without domain-
specific handcrafting.



LLM-Based AHD LLM-based AHD integrates LLMs into the evolutionary search for a high-
performance heuristic [52H55]]. This paradigm leverages LLMs to generate and refine heuristics
through natural language reasoning and code synthesis. Within an evolutionary computation frame-
work, LLMs simulate mutation and crossover operations by modifying or combining existing heuris-
tics. For example, given a parent heuristic, LLMs can introduce new algorithmic components, adjust
parameters, or merge features from multiple candidates, guided by linguistic prompts that encode
task-specific objectives and constraints. This iterative process balances the exploration of high-quality
candidates, enabling efficient traversal of the heuristic space H.

4 Distribution Projection in Large-Scale VRPs
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Figure 1: (a) Solution construction process for solving TSP5K instance, gray node, blue node, red
node, and grey line denote the unvisited nodes, KNN (£=100) of the current node, current node, and
constructed partial route, respectively. (b) Extracted KNN graph, RWD [56] indicates the distance
between the input graph and a uniformly distributed training instance. (c) Projected KNN graph. (d)
Training instance with 100 nodes.

When solving large-scale VRPs, current methods are facing challenges from the exponentially
growing search space. As shown in the Figure. |1|(a), existing works reduce the search space to the
KNN of the last visited node. Despite this reduction providing sufficient improvement, Figure. [I] (b)
demonstrates that the selected KNN subgraphs come with various distributions that drastically differ
from the training instance. Making it difficult for the model to predict the next promising node. Recent
studies provide several projection techniques to project the input subgraph to a uniform distribution
[15[13L[19]]. In this section, we systematically analyze the effectiveness of these projection methods
and observe that such a technique has a great impact on the model’s final performance.

Table 1: The effect of projection strategy on the gap in the LEHD model

TSP1K | TSP5K | TSP10K | TSP50K | TSP100K
Method Gap

Gap Gap Gap Gap
LEHD w/o proj | 4.45% | 12.80% | 17.42% | 48.00% | 121.42%
LEHD w/ proj 296% | 3.32% 3.77% 3.42% 3.24%

To validate the effectiveness of the projection, we employ the LEHD [18] as the base model, restricting
its search space to the KNN (k = 100) nodes from the last visited node. Then, we apply the projection
method used in INVIT [15] to map the subgraph. Subsequently, the LEHD is adopted to select one
promising node within the transformed subgraph. The experimental results are provided in Table
The experiment results exhibit that LEHD with the INVIiT projection method outperforms LEHD
without projection consistently on all scales in TSP.

These findings underscore the criticality of maintaining distribution consistency between the model’s
training data and its inference inputs for effective large-scale generalization. Projection techniques
serve as a primary mechanism to achieve this alignment by transforming varied input distributions
to the training set. Consequently, the development of more sophisticated and robust projections is
crucial for advancing model generalization capabilities.
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Figure 2: The pipeline of the TTPL framework. It comprises four components: initialization,
fitness evaluation, offspring generation, and population update. (a) Initialization: TTPL establishes
the initial population by generating individuals through prompting LLM with a predefined template.
Following the initialization, an iterative optimization procedure is employed to search for the optimal
individual. (b) Offspring generation: Offspring individuals are produced using several LLM-based
evolutionary prompt strategies. (c) Fitness evaluation: An NCO model assesses the performance
of these newly generated individuals. (d) Population update: The highest-performing individuals
are then selected to constitute the succeeding generation, and this iterative process repeats until the
specified termination criteria are satisfied.

S Methodology

5.1 Test-Time Projection Learning

Current methods typically train models on small-scale, uniformly distributed datasets. However,
these models often underperform on large-scale or real-world data due to the distributional shift
between training and test instances. To address this challenge, we propose Test-Time Projection
Learning (TTPL), an LLM-driven evolutionary framework that leverages LLM to generate an optimal
projection strategy. Specifically, it comprises two components: 1) a NCO-based strategy evaluator is
designed to measure the strategy generated by LLM; 2) an evolutionary projection strategy generator
employs diverse prompt strategies to guide the LLM in developing these strategies.

Method Framework The overall framework of TTPL is demonstrated in the Algorithm. [I] Its
inputs consist of the population size N, number of generations Ny, the NCO model fy, the LLM
used to evolve the strategy, and the evaluation data set D. TTPL follows the general framework
of EoH [52]]. Therefore, we first generate /N individuals using LLM with the prompts from EoH.
Here, individuals consist of a description in natural language and a code block that implements
the projection. These individuals are then evaluated by the NCO model fy to construct the initial
population . Moreover, we conduct [N, iterations to obtain an optimal projection strategy. In each
iteration, we prompt LLMs to design different individuals based on a set of selected parents. Once
the new population is generated, we select the first /V best individuals as the next generation. Finally,
it outputs the optimal strategy it found in previous iterations



Algorithm 1 a* = TTPL(N, Ny, fo, LLM, D)
1: Input:
2 Population size: N; Number of Generation: IN,;; NCO model: fp;
3: A given LLM; Evaluation dataset D
4: Output:
5:  Code for the best found projection strategy: a*
6
7
8

. Initialization:
cforj=1:Ndo
:  Initialize new individual a; of the target model using LLM
9:  Evaluate a; and obtain the fitness value fg(a;) with evaluation dataset D
10: end for
11:  Construct initial population Py = {a1,...,an}
12: fori =1: N, do
13: forj=1:Ndo

14: Generate new offspring using prompt strategies from [52]

15: Evaluate offspring and obtain their fitness value with evaluation dataset D
16:  end for

17: Construct offspring population O

18: Sort O in descending order based on their fitness value

19: Update P;_; with the first IV individuals in O

20: end for

21: Return: The best found projection strategy: a*;

Individual Evaluation To evaluate the LLM-designed strategies, we deploy them within the target
NCO model and calculate the objective value on the evaluation dataset D. Specifically, given a
current node v;, we first select k£ nearest neighbors to form the subgraph Gy.. Then, the strategy is
performed on Gy, to obtain the projected graph G . Moreover, we input the projected subgraph
to the given NCO model fy and select a node within G as the destination of the next step. By
repeating the above process, the final solution of a VRP instance is constructed step by step. Finally,
the solution length is recorded as the fitness value of the input strategy.

Individual Generation After initialization, N, iterations are conducted to evolve the population.
In each iteration, we first randomly select a set of parent individuals from the current population
based on the probability:

1/2m

Sl 1/
where 7; is the rank of their fitness. After that, the selected parents are used to generate offspring
through the four prompt strategies in [52]], which consist of two groups, namely, Exploration (E1, E2)
and Modification (M1, M2). The exploration prompt focuses on generating new individuals based on
several selected parent strategies, while the modification prompt aims to modify the selected strategy
for better performance. The details of four prompt strategies can be found in the Appendix.

prob; = 2

5.2 Multi-View Decision Fusion

Projection strategies transform the entire subgraph by a series of operations (e.g., rotation and
translation) to align complex input distributions with the uniformly distributed training data. However,
these graph-wise operations often struggle in normalizing local regions with density variations (i.e.,
strip-like node clusters in TSP), thereby impairing the model to distinguish promising nodes in local
regions.

To resolve this limitation, we propose Multi-View Decision Fusion (MVDF), applied to the projected
subgraphs. MVDF facilitates robust node identifications by generating multiple perspectives (views)
of the subgraph. The model evaluates each perspective, and the resulting selection probabilities are
aggregated. Ultimately, the perspective yielding the highest prediction score primarily guides the
final decision.

In particular, given a subgraph with coordinates X € R**2, we generate M augmented variants
through geometric transformations 7., (X) proposed in [6]]. Each augmented subgraph X,,, = 7,,,(X)



is solved by the NCO model to produce logits 1,,, € R¥. The final selection probability is derived by
aggregating logits across all augmentations:

M
p=c|Y In|, 3)
m=1

where o () denotes the softmax function. This ensemble strategy forces the model to learn
transformation-invariant features, effectively neutralizing local density deviations.

6 Experiment

Table 2: Comparison results on the synthetic TSP and CVRP dataset. *: Results are directly cited
from the original publications. N/A: results that exceed the time limitation (seven days). OOM:
results that exceed GPU memory limits.

TSPIK TSP5K TSP10K TSP50K TSP100K
Method Obj.(Gap) Time Obj.(Gap) Time Obj.(Gap) Time Obj.(Gap) Time Obj.(Gap) Time
LKH3 23.12 (0.00%) 1.7m | 50.97 (0.00%) 12m 71.78 (0.00%) 33m 159.93 (0.00%) 10h 225.99 (0.00%)  25h
Concorde 23.12 (0.00%) Im 50.95 (-0.05%) 31m 72.00 (0.15%) 1.4h N/A N/A N/A N/A
Random Insertion 26.11 (12.9%) <lIs 58.06 (13.9%) <lIs 81.82 (13.9%) <ls 182.65 (14.2%) 15.4s 258.13 (14.2%) 1.7m
DIFUSCO* 23.39 (1.17%) 11.5s e — | 73.62(2.58%) 3.0m —_— e —_— _—
H-TSP 24.66 (6.66%) 48s 55.16 (8.21%) 1.2m | 77.75(8.38%) 2.2m OOM OOM
GLOP 23.78 (2.85%) 10.2s | 53.15 (4.26%) 1.0m | 75.04 (4.39%) 1.9m 168.09 (5.10%) 1.5m | 237.61(5.14%) 3.9m
POMO aug * 8 32.51 (40.6%) 4.1s 87.72 (72.1%) 8.6m OOM OOM OOM
ELG aug * 8 25.738 (11.33%)  0.8s | 60.19 (18.08%) 21s OOM OOM OOM
LEHD RRC1,000 23.29(0.72%)  3.3m | 54.43 (6.79%) 8.6m | 80.90 (12.5%) 18.6m OOM OOM
BQbsl6 23.43 (1.37%) 13s 58.27 (10.7%) 24s OOM OOM OOM
SIGD bs16 23.36 (1.03%) 17.3s | 55.77(9.42%)  30.5m OOM OOM OOM
INVIT-3V greedy 24.66 (6.66%) 9.0s 54.49 (6.90%) 1.2m | 76.85(7.07%) 3.7m 171.42 (7.18%) 1.3h 242.26 (7.20%)  5.0h
LEHD greedy 23.84 (3.11%) 0.8s | 58.85(15.46%) 1.5m | 91.33(27.24%) 11.7m OOM OOM
BQ greedy 23.65 (2.30%) 09s | 5827 (14.31%) 22.5s | 89.73(25.02%) 1.0m OOM OOM
SIGD greedy 23.573 (1.96%) 1.2s | 57.19 (12.20%) 1.8m | 93.80 (30.68%) 15.5m OOM OOM
TTPL 23.73 (2.65%) 0.1s 52.63 (3.25%) 1.4s 74.39 (3.63%) 2.9s 165.19 (3.29%)  14.3s | 233.26 (3.22%) 28.9s
TTPL-MVDF 23.64 (2.26%) 0.5s 52.43 (2.86%) 3.2s 73.49 (2.39%) 7.2s 164.24 (2.69%)  32.1s | 231.78 (2.56%) 1.Im
TTPL-MVDF RRC1000 | 23.19 (0.28%) 3.6m | 51.50 (1.04%) 49m | 7259 (1.13%) 5.0m | 162.40 (1.55%) 5.4m  229.66 (1.63%) 59m
CVRPIK CVRP5K CVRP10K CVRP50K CVRP100K
Method Obj.(Gap) Time Obj.(Gap) Time Obj.(Gap) Time Obj.(Gap) Time Obj.(Gap) Time
HGS | 41.2(0.00%) 5m | 126.2(0.00%) 5m | 227.3(0.00) 5m | 1081.0 (0.00%) 4h | 2087.5(0.00%) 6.3h
GLOP-G (LKH-3) | 459(11.4%) Lls | 140.6(11.4%) 4.0s | 256.4(11.1%) 6.2s | OOM | OOM
POMO aug * 8 101 (145.15%) 4.6s | 632.9(401.51%) 1lm OOM OOM OOM
ELG aug * 8 46.4 (12.62%) 10.3s OOM OOM OOM OOM
LEHD RRC1,000 42.4 (2.91%) 3.4m 132.7 (5.15%) 10m 243.8 (7.28%) 51.6m OOM OOM
BQbsl6 43.1 (4.61%) 14s 136.4 (8.08%) 2.4m OOM OOM OOM
SIGD bs16 44.3 (7.54%) 22.5s 137.5 (9.15%) 27m | 2472(9.01%) 6.0m | 1255.5(16.30%) 39.3m OOM
INVIT-3V greedy 48.2 (16.99%) 11s 146.6 (16.16%)  1.4m | 262.1 (1531%) 4.3m 1331.1 (23.1%) 1.5h | 2683.4 (28.55%) 5.8h
LEHD greedy 44 (6.80%) 0.8s 138.2(9.51%) L4m | 256.3 (12.76%) 12m OOM OOM
BQ greedy 44.2 (7.28%) Is 139.9 (10.86%)  18.5s | 262.2 (15.35%) 2m OOM OOM
SIGD greedy 45.4 (10.39%) 4.5s 140.2 (11.31%) 9.1s | 252.5(11.34%) 489s | 1274.3 (18.02%) 10.2m OOM
TTPL 44.7 (8.60%) 0.1s 134.4 (6.44%) 0.5s 238.9 (5.11%) 3.8 11432 (5.72%)  19.4s | 22204 (6.33%) 41.3s
TTPL-MVDF 44.4 (7.79%) 0.5s 132.4 (4.88%) 2.5s 233.0 (2.54%) 7.7s 1110.9 (2.73%)  40.5s | 2163.5(3.60%) 1.3m
TTPL-MVDF RRC1000 425 (3.28%) 4.1m | 129.2 (2.37%) 40m | 229.6 (1.02%) 6.4m | 1105.6 2.25%) 7.0m = 2157.5(3.32%) 7.7m

Problem Setting We evaluate our method on TSP and CVRP instances. Following established
benchmarks [47, [18]], the test sets include 128 instances for TSP1K and 16 instances each for TSP5K,
10K, 50K, and 100K. For CVRP, we use 100 instances for CVRP1K and CVRP5K and 16 instances
each for CVRP10K, CVRP50K, and CVRP100K. CVRP capacities are 200 for CVRP1K and 300
for CVRP5K/10K/50K/100K. Optimal TSP solutions are calculated using LKH3 [57], while CVRP
solutions are derived using HGS [58]]. To further assess generalization, we follow [44] and evaluate on
real-world instances from TSPLIB [59] and CVRPLIB [60]], selecting symmetric EUC_2D instances
with over 1K nodes (33 TSP and 14 CVRP instances). This ensures alignment with both synthetic
benchmarks and practical scenarios.

Model Setting Our experiments adopt LEHD as the base model [18]], aligning with its original
architecture and hyperparameters. The embedding dimension is configured to 128, and the decoder
comprises 6 attention layers. Each multi-head attention layer uses 8 heads, while the feed-forward
layer dimension is set to 512. We configure the KNN to 100. All experiments are performed on a
single NVIDIA GeForce RTX 3090 GPU with 24GB of memory.

LLM-AHD Setting The evolutionary framework follows the approach proposed by EoH [52]. The
population size is set to 20, and the evolution process is run for 105 generations. The parent heuristic



is set to 2. The GPT-40-mini model serves as the LLM backbone. For TSP/CVRP 1K, 5K, and 10K,
we optimize one projection strategy for each scale, and generalize the strategy optimized on 10K to
TSP/CVRP 50K and 100K due to the computational burden. At the beginning of the optimization,
we input the projection strategy proposed in [[15]] as a seed to guide the heuristic design.

Baselines We compare TTPL with six categories of methods: Classical Solvers: Concorde [61]],
LKH3 [57]] and HGS [58]]; Insertion Heuristic: Random Insertion; Construction-based NCO
Methods: POMO [7], BQ [42], LEHD [18]], INVIT [15]] and SIGD [62]; Heatmap-based Methods:
DIFUSCO [28]; Decomposition-based Method: GLOP [13]], H-TSP [12]]; Local Construction-
based Method: ELG [14].

Metrics and Inference We evaluate the performance using the optimality gap and inference time.
The optimality gap quantifies the percentage difference between solutions generated by our method
and the ground truth obtained from LKH3 (TSP) or HGS (CVRP). Inference time, reported in seconds
(s), minutes (m), and hours (h), captures the computational efficiency of generating solutions across
varying problem scales. For TTPL, we report three types of results, those obtained by greedy trajectory
with a purely designed projection method, those obtained by greedy trajectory with our designed
projection and MVDF, and those obtained with projection, MVDF, and Random Re-Construction
(RRC) under 1000 iterations [[18]].

6.1 Experimental Results

Results on Synthetic Dataset Table 2| presents the comparative results, underscoring our method’s
superior performance and robust generalization capabilities across various problem scales. For
TSP instances, our method, when relying on purely greedy construction, outperforms other greedy
constructive methods on most problem scales, except TSP1K. However, by incorporating RRC
for 1000 iterations, our approach consistently delivers the best performance across all TSP scales.
Specifically, it reduces the optimality gap by 61.11%, 75.59%, 56.2%, 69.61%, and 68.29% for the
TSPIK, 5K, 10K, 50K, and 100K instances, respectively, when compared to the leading alternative
method. In the context of CVRP, our method, utilizing purely greedy sampling, secures the best
results on all scales, with the exception of CVRP1K. Furthermore, by integrating RRC, our method is
able to significantly surpass all other approaches across all evaluated CVRP scales. This translates to
optimality gap reductions of 53.98%, 85.99%, 86.20%, and 88.37% on CVRP5K, 10K, 50K, and
100K instances, respectively, relative to the strongest competing baseline methods.

Table 3: Result on TSPLIB and CVRPLIB. OOM: results that exceed GPU memory limits. 1: several
instances are not solvable due to exceeding GPU memory limits.

‘ TSPLIB ‘ CVRPLIB
Method | IK<n<5K | n>5K | All | Solved# | IK<n<7K | n>7K | All | Solved#
GLOP 5.02% 6.87% t 5.50% 31/33 15.34% 21.32% 17.90% 14/14
ELG augx8 11.34% OOM 11.34% 23/33 10.57% OOM 10.57% 6/14
BQbsl6 10.65% 30.58% 1 | 12.95% 26/33 13.92% OOM 13.92% 8/14
LEHD RRC1,000 4.00% 18.46% 1 7.37% 30/33 8.42% 21.53% 1 | 11.04% 10/14
SIGD greedy 12.37% 152.88% t | 48.63% 31/33 14.73% 49.49% | 29.63% 14/14
BQ greedy 11.64% 162.12% t | 64.65% 32/33 16.92% 52.27% | 32.07% 14/14
INVIT greedy 11.49% 10.00% 11.04% 33/33 15.87% 26.64% 20.49% 14/14
LEHD greedy 11.14% 39.34% t 17.72% 30/33 15.20% 32.80% t | 18.72% 10/14
TTPL 6.04% 4.57% 5.80% 33/33 11.89% 14.93% 13.19% 14/14
TTPL-MVDF 3.81% 4.05% 3.88% 33/33 10.41% 11.71% 10.97% 14/14
TTPL-MVDF RRC1000 1.04% 2.12% 1.37% 33/33 5.20% 10.56 % 7.50% 14/14

Results on Benchmark We further test our method on TSPLIB [59] and CVRPLIB [60]]. The
detailed results are demonstrated in the Table [3] When using greedy construction for inference,
LEHD purely with our designed projection can achieve a better result than other construction-based
methods on all groups of instances. Using the MVDF and RRC further strengthens our performance,
which yields a significant gap between the second-best methods.

6.2 Ablation Study



Table 4: Comparison between different projection strategies on the synthetic TSP dataset.

TSP5K
Obj.(Gap)  Time

TSP10K
Obj.(Gap)  Time

TSP50K
Obj.(Gap)  Time

TSP100K

TSPIK
Obj.(Gap)  Time

Obj.(Gap)  Time

wio MVDF | 23.7(2.65%) O.Is | 52.6 (3.25%) 14s | 744 (3.63%) 29s | 165.2(3.29%) 14.3s | 233.3(3.22%) 28.9s
POMOaug | 23.4(0.89%) 0.5s | 521(222%) 3.1s | 73.6(2.56%) 63s | 164.5(2.86%) 36.6s | 232.4(2.85%) 1.5m
TTPL-MVDF | 23.6 (2.26%) 05s | 52.4(2.86%) 3.2s | 735(2.39%) 7.2s | 164.2(2.69%) 32.1s | 231.8(2.56%) 1.Im

Effects of Designed Projection To validate the effectiveness of the LLM-designed projection
strategy, we design two variants of our method: 1) w/o proj: LEHD only uses KNN to reduce
the search space during inference. 2) seed proj: The projection strategy is replaced with the input
seed strategy in [[I5]. As exhibited in the Table. ] the projection strategy designed from the TTPL
framework consistently outperforms the two variants on all scales.

Table 5: Comparison between LEHD with MVDF, POMO aug, and without MVDF on synthetic TSP
dataset

TSP5K
Obj.(Gap)  Time

TSP10K
Obj.(Gap)  Time

TSP50K
Obj.(Gap)  Time

TSP100K

TSPIK
Obj.(Gap)  Time

Obj.(Gap)  Time

wioMVDF | 23.7(2.65%) O.Is | 52.6 (3.25%) 14s | 744 (3.63%) 29s | 165.2(3.29%) 14.3s | 233.3(3.22%) 28.9s
POMOaug | 23.4(0.89%) 0.5s | 52.1(222%) 3.1s | 73.6(2.56%) 63s | 164.5(2.86%) 36.6s | 232.4(2.85%) 1.5m
TTPL-MVDF | 23.6 (2.26%) 05s | 52.4(2.86%) 3.2s | 735(2.39%) 7.2s | 164.2(2.69%) 32.1s | 231.8(2.56%) 1.Im

Effects of MVDF To assess the efficacy of our proposed MVDF, we compare our complete method
against two configurations: 1) w/o MVDF: LEHD utilizes the designed projection but without MVDF
during inference; 2) POMO aug: test instances are first augmented using the POMO augmentation
[7]], and then solved with LEHD equipped with the designed projection. The complete results are
shown in Table[5] Our MVDF approach outperforms the w/o MVDF variant in 5 out of 5 cases and
the POMO aug variant in 3 out of 5 cases. Notably, MVDF demonstrates particular effectiveness
when solving large-scale instances.

6.3 Versatility study

Table 6: Results of TTPL-MVDF designed strategy performed on POMO on randomly generated test
instances

TSP1K TSP5K TSP10K TSP50K TSP100K
Obj. Time | Obj. Time | Obj. Time | Obj. Time | Obj. Time
POMOknn | 334 02s | 96.1 3.8s | 1534 7.5s | 3924 385s |597.8 1.3m
POMO seed | 30.0 0.2s | 73.8 4.0s | 103.0 79s | 2358 39.9s | 331.3 1.3m
POMO Ours 298 13s | 67.6 7.8s | 946 155s | 2121 13m 296.6 2.6m

Versatility on the Other Model The versatility of our proposed techniques is further investigated
by replacing the base model from LEHD with POMO, a well-known model trained by RL. We
compare POMO, which is equipped with our proposed projection and MVDF technique, against
POMO using KNN and the seed projection method. As shown in the Table [] our method on POMO
surpasses the compared approaches, indicating promising adaptability to different base models.

Versatility on Different Distributions The robustness of TTPL-MVDF is evaluated on cross-
distribution instances (cluster, explosion, and implosion) from [[15]. Compared against LEHD without
projection and LEHD with seed projection, TTPL-MVDF demonstrates a significant improvement
in the base model’s robustness. These findings (see Appendix [D.2] for full results) validate the
effectiveness of our proposed method in handling distributional shifts.

7 Conclusion, Limitation, and Future Work

In this work, we have presented an LLM-driven projection learning framework to improve model
generalization in large-scale vehicle routing problems (VRPs). The core idea is to utilize an LLM to
model the relationship between training and test data distribution, thereby informing the generation
of an optimized projection strategy. To further boost performance, we have developed Multi-View



Decision Fusion (MVDF), which presents the model with multiple views of the original problem
instance, enabling it to select the most confident one to guide node selection at each construction
step. Empirical evaluation on diverse synthetic and real-world TSP and CVRP benchmarks confirms
that our approach markedly enhances the zero-shot generalization capability of a base model (trained
solely on 100-node instances) to large-scale instances.

Limitation and Future Work While TTPL-MVDF shows superior performance on large-scale
instances, a limitation of TTPL-MVDF is the relatively slow convergence to optimal strategies within
its LLM optimization phase. In the future, we will investigate more efficient LLM optimization
operators for improved evolution speed.
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Justification: Yes, we clearly claim our contribution and scope in the abstract and intro-
duction. Our primary contribution is a powerful projection technique designed to enhance
model generalization for large-scale Vehicle Routing Problems (VRPs). This research is
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* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: This paper does not incorporate theoretical results; all results presented in this
paper are experimental.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We specify the details to reproduce our results in Section. [6] In particular, it
contains the model architecture, dataset description, parameter settings, and experimental
setups. All of them ensure our experiment results can be independently reproduced.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Justification: We will release our code and data once the paper is accepted.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We introduce all experimental details in Section. [6}
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: In neural combinatorial optimization, we usually adopt the optimality gap and
inference time as metrics to measure performance. Both of them are deterministic.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have introduced the hardware used to conduct our experiment in Section.
[6] Specifically, we ran our experiments on a single NVIDIA GeForce RTX 3090 GPU with
24GB of memory.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We follow the NeurIPS Code of Ethics in every respect during the research.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Yes, we claim the details of societal impacts in the Appendix[H] We believe
the proposed method has no potential risk of leading to negative impacts that we feel must
be highlighted.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper has no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the creators in the Reference and provide the license of the code in the
Appendix.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not introduce new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing and human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing and human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: We declare our usage of LLM in Section. [5] which involved in designing
projection strategies.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Related work

A.1 Review for Non-Constructive Method

Despite direct learning to construct a VRP solution, other methods work closely with search and
improvement methods [63H65]]. Early studies [66] utilize a graph convolutional network to generate
heatmaps indicating the probability of edges belonging to optimal solutions for TSP instances.
Subsequently, an approximate solution can be obtained via beam search [66], Monte Carlo tree
search [19], dynamic programming [67]], and guided local search [68]. While initially developed for
small-scale problems, recent studies extend heatmap-based methods to larger TSP instances [[19,|69]].
However, the adaptability of these methods can be limited by their reliance on carefully tuned search
strategies. Furthermore, the heatmap representation primarily focuses on edge probabilities, which
may restrict applicability to problems with complex constraints.

Another research direction involves learning-augmented algorithms, where neural networks enhance
traditional heuristic solvers. This includes accelerating solvers by learning operation selection
(63170, [71], guided improvement [72H74]], and problem decomposition [45,[75]. Many improvement-
based methods propose to iteratively refine feasible solutions [76, [77, [70]. Nonetheless, these
methods typically depend on well-designed heuristic operators or advanced solvers [78, 157] for
solving different problems.

A.2 Review for LLM-AHD Method

Recent advancements demonstrate the significant potential of Large Language Models (LLMs) in
automating the design of high-performing heuristics for complex computational problems. This
methodology typically involves maintaining a population of elite heuristic functions, which are
evaluated and ranked based on their fitness on a designated dataset. The LLM is then iteratively
prompted with high-performing functions from this population to generate potentially superior
heuristic candidates. EoH [52] and Funsearch [79] pioneer the application of LLM to design a
population-based evolutionary computation procedure. Building on this, ReEvo [80] incorporates
a reflection mechanism to augment the LLM’s reasoning capabilities during heuristic generation.
Addressing the challenge of premature convergence, HSEvo [81]] introduces diversity metrics and
a harmony search algorithm to enhance population diversity without degrading solution quality. In
a different approach, MCTS-AHD [53]] conceptualizes the task as a search problem, modeling the
heuristic design process as a Monte Carlo tree search to systematically explore the solution space.

B Detailed Methodology

In TSP instances, the input distribution can be interpreted as the coordinate distribution, and transform-
ing the coordinate to a uniform distribution can be seen as normalization. To ease the understanding,
we replace the projection with normalization when prompting the LLM. While the input of CVRP
instances has extra demand and capacity, changing these features can easily lead to unfeasible so-
lutions. Consequently, we limit the modification to input within custom node coordinates, and the
projection can be similarly interpreted as normalization.

B.1 Prompts of TTPL

Our LLM-driven prompt framework for projection evolution consists of four core strategies (E1,
E2, M1, M2) [52]], each structured around three components: task description, strategy-specific
instructions, parent projection, and template program. In the following, we detail their design
principles:

* E1 (Exploratory Generation): This prompt instructs an LLM to generate entirely new
projection strategies by contrasting two existing approaches, explicitly avoiding structural
similarities. It emphasizes divergence, requiring the LLM to innovate beyond the provided
examples.
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Prompt for E1

I have 2 existing algorithms with their codes as follows:
No. 1 algorithm and the corresponding code are:
{projection description }

{Code}

No. 2 algorithm and the corresponding code are:
{projection description }

{Code}

Please help me create a new algorithm that has a completely different form from the
given ones.

1. First, describe your new algorithm and main steps in one sentence. The description
must be within boxed {}.

2. Next, implement the following Python function:

{Template Projection}

J

* E2 (Backbone-Driven Innovation): Focused on identifying common design principles
across parent strategies, this prompt guides an LLM to extract shared computational patterns
(e.g., scaling mechanisms, coordinate transformations) and generate variants that preserve
these core ideas while introducing novel components.

Prompt for E2

I have 2 existing algorithms with their codes as follows:
No. 1 algorithm and the corresponding code are:
{Projection description}

{Code}

No. 2 algorithm and the corresponding code are:
{Projection description}

{Code}

Please help me create a new algorithm that has a completely different form from the
given ones, but can be motivated by them.

1. Firstly, identify the common backbone idea in the provided algorithms.

2. Secondly, based on the backbone idea, describe your new algorithm in one
sentence. The description must be within boxed {}.

3. Thirdly, implement the following Python function:

{ Template Projection}

J

* M1 (Structural Mutation): Targets architectural modifications by presenting a single

parent strategy and prompting an LLM to redesign its core operations (e.g., changing anchor
point for reference).
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Prompt for M1

I have one algorithm with its code as follows. Algorithm description:
{Projection description}

Code:

{Code}

Please assist me in creating a new algorithm that has a different form but can be a
modified version of the algorithm provided.

1. First, describe your new algorithm and main steps in one sentence. The description
must be within boxed {}.

2. Next, implement the following Python function:

{ Template Projection }

J

* M2 (Parametric Optimization): Specializes in parameter tuning for critical projection
variables (e.g., scaling factors, shift coefficients), directing an LLM to systematically adjust
numerical settings.

Prompt for M2

I have one algorithm with its code as follows. Algorithm description:
{Projection description}

Code:

{Code}

Please identify the main algorithm parameters and assist me in creating a new
algorithm that has different parameter settings for the score function provided.

1. First, describe your new algorithm and main steps in one sentence. The description
must be within boxed { }.

2. Next, implement the following Python function:

{Template Projection}

J

The prompt engineering for normalization evolution adopts a standardized template structure across
strategies. The template code for TSP and CVRP builds on the INViT framework [[15]].

Task Description for TSP

I need help designing an innovative coordinate projection strategy function implemented in
PyTorch to normalize a set of nodes’ coordinates, aiming to maximize the final negative gap.
The input is a tensor with shape (batch, num_nodes, 2) and the "all_coors’ must be a tensor
with the same shape as "coorl’.
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Template Program for TSP

def normalize(coorl: torch.Tensor) -> torch.Tensor:
nmnn

Args:
coorl: coordinates of nodes, shape: (batch, 1+k+1, 2)

Return:

all_coors: a tensor containing normalized coordinates, same shape as
coorl
Note:

first_node: coori[:,[0],:], left_node: coori[:,1:-1,:], last_node:
[:,[-1],:]

left_node is the topk close to the last_node
nmnn
batch_size = coorl.shape[0]
all_coors = coorl
graph = all_coors[:, 1:, :]
min_values = torch.reshape(torch.min(graph, 1).values, (batch_size, 1, 2)
)
all_coors = all_coors - min_values # translate
ratio_x = torch.reshape(
torch.max(graph[:, :, 0], 1).values - torch.min(graph[:, :, 0], 1).
values,
(-1, 1),
)
ratio_y = torch.reshape(
torch.max(graph[:, :, 1], 1).values - torch.min(graph[:, :, 1], 1).
values,
(-1, 1),
)
ratio = torch.max(torch.cat((ratio_x, ratio_y), 1), 1).values
ratio[ratio == 0] = 1
all_coors = all_coors / (torch.reshape(ratio, (batch_size, 1, 1)))
all_coors[ratio == 0, :, :] = (
all_coors[ratio == 0, :, :] + min_values[ratio == 0, :, :]
)
all_coors = torch.clip(all_coors, 0, 1)
return all_coors

\ J

Task Description for CVRP

I need to develop a coordinate normalization method for CVRP sequences that preserves
critical geometric relationships between nodes while enabling effective neural network
processing. The function should take depot/vehicle coordinates (coorl), customer node
(coor2), and final stop coordinates (coor3) as PyTorch tensors, maintaining their original
shapes. Key objectives are: 1) Establish spatial consistency across batches without distorting
relative positions, 2) Use the initial node as an anchor point for stable reference, 3) Prevent
information loss from hard clipping while controlling magnitude variance, and 4) Ensure
scale-invariant features that help the downstream model generalize across problem sizes. The
solution should particularly focus on maintaining directional relationships and proportional
distances rather than absolute positional constraints.
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Template Program for CVRP

def normalize(
coorl: torch.Tensor, coor2: torch.Tensor, coor3: torch.Tensor
) -> torch.Tensor:
nmnn
Args:
coorl: indicate the first node, shape: (batch, 1, 2)
coor2: coordinates of the rest of nodes, shape: (batch, 100, 2)
coor3: coordinate of the last node, shape: (batch, 1, 2)

Return:
coorl: normalized coordinate of the first node, shape: (batch, 1, 2)
coor2: normalized coordinates of the rest of nodes, shape: (batch,
left_num, 2)
coor3: normalized coordinate of the last node, shape: (batch, 1, 2)
lengths = [coorl.shape[1], coor2.shape[1], coor3.shape[1]]
all_coors = torch.cat((coorl, coor2, coor3), dim=1)
last_neighbors_xy = all_coors[:, 1:, :]
# shape: (batch, l+neighbor_k, 2)
xy_max = torch.max(last_neighbors_xy, dim=1, keepdim=True).values
xy_min = torch.min(last_neighbors_xy, dim=1, keepdim=True) .values
# shape: (batch, 1, 2)
ratio = torch.max((xy_max - xy_min), dim=-1, keepdim=True) .values
ratio[ratio == 0] = 1
# shape: (batch, 1, 1)
all_coors = torch.clip((all_coors - xy_min) / ratio.expand(-1, 1, 2), O,
1)
coorl, coor2, coor3 = torch.split(all_coors, lengths, dim=1)
return coorl, coor2, coor3

N\ J

B.2 EoH Algorithm

The EoH is a population-based framework for LLM-based AHD [52]. The algorithm optimizes
heuristics by iteratively applying LLM-guided mutation, crossover, and selection operations, enabling
the exploration of diverse heuristic designs.

EoH begins by initializing a population of N heuristics using LLM, where each heuristic is evaluated
on dataset D to compute its fitness value f. In each generation, five evolution strategies (E1, E2, M1,
M2, M3) are used to generate new heuristics. For each strategy, IV parent heuristics are sampled
from the current population using rank-based probabilities. LLMs then generate new heuristics by
mutating or combining features from the parents, guided by the evolution strategy. New candidates are
evaluated in D, and feasible ones are added to a candidate pool after removing duplicates. Finally, the
top IV heuristics of the expanded pool are selected to form the next generation. This process repeats
for N, generations, eventually returning the heuristic with the highest fitness. The pseudo-code for
the EoH is provided in the Algorithm 2]
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Algorithm 2 Evolution of heuristics for automatic heuristic design

1: Input:
2:  Population size IV, Max generations NN, Evaluation dataset D, Evaluation function f.
3: Output:
4:  The best found heuristic h*.
5: Step 0: Initialization
6: for j =1: N do
7:  Generate heuristic h; using initialization prompt.
8:  Evaluate h; on D to obtain fitness f(D, h;).
9: end for
10: Build initial population Py < {h1, ..., hn }.
11: Set O « PO-
12: Step 1: Generation of Heuristics
13: fori=1: N, do
14:  Rank P;_; by fitness — {71, ...,rn}.
15:  for S € {E1, E2, M1, M2, M3} do

16: forj=1: Ndo

17: Sample parents from P;_; via rank-based sampling.

18: Generate new heuristic h; based parents using evolution strategies S.

19: Evaluate h; on the evaluation dataset D and obtain the fitness value f3(D, h;).
20: if h; is feasible then

21: Add h; to candidate pool O

22: end if

23: end for

24:  end for

25:  Remove duplicates in O.

26:  Step 2: Population Management

27:  Sort O in descending order based on their fitness value.

28:  Update P; with the first N heuristics in O.

29: end for

30: return Heuristic A* with the highest fitness in the final population.
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C TTPL Designed Strategies

C.1 TSP Instances

In this section, we present representative projection strategies optimized by TTPL for TSP and CVRP
instances. For TSP, the input is the coordinates of the nodes in the KNN subgraph, and the output is
the corresponding transformed coordinates. For CVRP, the inputs consist of the coordinates of the
depot, the current node, and the coordinates of the nodes in the KNN subgraph, and the output is the
transformed coordinates of these nodes.

For TSP1K instances, TTPL evolves the following projection:
Code 1: Projection designed by TTPL on TSP1K

def normalize(coorl: torch.tensor) -> torch.tensor:

batch_size = coorl.shape[0]
all_coors = coorl
graph = all_coors[:, 1:, :]

# Translate to the maximum values
max_values = torch.reshape(torch.max(graph, dim=1).values, (batch_size, 1, 2))

all_coors = max_values - all_coors # translate

# Calculate ranges for normalization

ratio_x = torch.reshape(torch.max(graph[:, :, 0], dim=1).values - torch.min(
graph[:, :, 0], dim=1).values, (-1, 1))
ratio_y = torch.reshape(torch.max(graph[:, :, 1], dim=1).values - torch.min(
graph[:, :, 1], dim=1).values, (-1, 1))

# Find the maximum scale factor
ratio = torch.max(torch.cat((ratio_x, ratio_y), dim=1), dim=1).values
ratio[ratio == 0] = 1 # Avoid division by zero

# Normalize the coordinates

all_coors = all_coors / (torch.reshape(ratio, (batch_size, 1, 1)))
all_coors[ratio == 0, :, :] = all_coors[ratio == 0, :, :] + max_values[ratio ==
0, :, :1

# Clip to ensure values are within [0, 1]
all_coors = torch.clip(all_coors, 0, 1)

return all_coors

The corresponding mathematical formulation proceeds as follows. Given input coordinates S =
{s0, 81, ...,5sNn} where s; € R?, with s? and s? denoting the component of s;, the projection process
proceeds as follows:

M = max S:? max Sy .
j?
1<j<N 1<j<N 7

The next step is to establish the maximum coordinate values M = (M, M,,) as the reference point
for transformations, which can be formulated as:

S={G|5i=M-s, Vie{0,. .. N}

Then, mirrored coordinates are created by reflecting points about the reference point M, ensuring all
coordinates lie in the positive quadrant

Ty = max s; — min s,
1<j<N 1<j<N

ry = max sY — min sY.
1<j<N 7 1<i<N Y
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Moreover, the coordinate ranges are calculated along both axes to determine the scaling factor
_ [max(ry,ry) if max(ry,ry) >0,
|1 otherwise.

Such that, the maximum range is selected as the normalization factor, with special handling for
zero-range edge cases

=24 M, we{o,...,N}}.

r

Finally, coordinates are normalized to [0,1] relative to the reference point while preserving spatial
relationships, and final coordinates are ensured to reside within the unit square through clipping
operations, completing the projection

Setippea = {(min(max(37,0),1), min(max(3¢,0), 1)), Vi € {0,..., N}}.

For TSP5K instances, the evolved projection strategy is implemented as:

Code 2: Projection designed by TTPL on TSP5K

def normalize(coorl: torch.tensor) -> torch.tensor:

batch_size = coorl.shape[0]
all_coors = coorl
graph = all_coors[:, 1:, :]

# Translate by the minimum values in the graph
min_values = torch.reshape(torch.min(graph, 1).values, (batch_size, 1, 2))

all_coors = all_coors - min_values # translate

# Apply a non-linear transformation
all_coors = torch.tanh(all_coors)

# Calculate scaling ratios with a slight modification

ratio_x = torch.reshape(torch.max(graph[:, :, 0], 1).values - torch.min(graphl[:,
:, 0], 1).values, (-1, 1))
ratio_y = torch.reshape(torch.max(graph[:, :, 1], 1).values - torch.min(graphl[:,

:, 11, 1).values, (-1, 1))
ratio = torch.max(torch.cat((ratio_x, ratio_y), 1), 1).values

# Avoid division by zero
ratio[ratio == 0] =1

all_coors = all_coors / (torch.reshape(ratio, (batch_size, 1, 1)))

# Post-process coordinates to ensure they are clipped within [0, 1]
all_coors = torch.clip(all_coors, 0, 1)

return all_coors

The projection process follows these operations:

M = min s%, min s”
1<G<N 77 1<G<N Y
S={3]3%=s—-MVie{0,...,N}}

S = {(tanh(5%), tanh(s¥)), Vi € {0,...,N}}
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The hyperbolic tangent function is employed to compress coordinates into (-1,1) while preserving
spatial relationships. The detailed operations are listed as follows:

Ty = max s; — min s7,
1<<N 1<j<N

ry = max s — min sY,
1<<N 7 1<G<N

_ [max(ry,ry) if max(ry,ry,) >0,
1 otherwise,

§Z-:Si7Vie{0,...,N}},
T

S = {(min(max(s¥,0), 1), min(max(3Y,0),1)), Vi € {0,...,N}}.

For TSP10K instances, TTPL generates this projection:

Code 3: Projection designed by TTPL on TSP10K

def normalize(coorl):

batch_size = coorl.shape[0]
all_coors = coorl.clone()
graph = all_coors[:, 1:, :]

# Step 1: Calculate midpoints for translation

midpoints = (torch.max(graph, 1).values + torch.min(graph, 1).values) / 2
midpoints = torch.reshape(midpoints, (batch_size, 1, 2))

all_coors = all_coors - midpoints # translate

# Step 2: Calculate the new range after translation

range_x = torch.reshape(torch.max(graph[:, :, 0], 1).values - torch.min(graphl[:,
:, 0], 1).values, (-1, 1))
range_y = torch.reshape(torch.max(graph[:, :, 1], 1).values - torch.min(graphl[:,

:, 11, 1) .values, (-1, 1))
range_val = torch.max(torch.cat((range_x, range_y), 1), 1).values
range_val[range_val == 0] = 1 # Prevent division by zero

# Step 3: Scale coordinates
all_coors = all_coors / (torch.reshape(range_val, (batch_size, 1, 1 )))

# Step 4: Shift values to center in [0, 1]
all_coors = (all_coors + 0.5)

# Step 5: Clip the values to [0, 1]
all_coors = torch.clamp(all_coors, 0, 1)

return all_coors

It first calculates the centroid of the input coordinates using the average of extreme values:

max s¥ 4+ min s* max s/ + min sY

M= [ ==Y 7 1<<N T 1<<N T 1<G<N
2 ’ 2
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Then, the projection is mathematically written below:

S:{§Z|F§Z:Sl*M, V’LG{O,,N}},

Ty = max s; — min s7,
1<j<N 1<j<N

ry = max s’ — min_s?,
1<<N 7 1<<N

_ [max(ry,ry) if max(ry,ry,) >0,
1 otherwise,

§={@

S =25+(05,0.5),
§Clipped = {(min(max(s¥,0), 1), min(max(s?,0),1)), Vi € {0,...,N}}.

7

@::&,Vie{Q.H,N}},
T

C.2 CVRP Instances

For CVRP instances, TTPL develops specialized strategies to handle depot-customer relationships.
The CVRPI1K projection strategy is implemented via:

Code 4: Projection designed by TTPL on CVRP1K

def normalize(coorl: torch.Tensor, coor2: torch.Temnsor, coor3: torch.Tensor) ->
torch.Tensor:

lengths = [coorl.shape[1], coor2.shape[1], coor3.shape[1]]
all_coors = torch.cat((coorl, coor2, coor3), dim=1)

# Calculate the relative vectors
relative_vectors = all_coors - coorl

# Compute the magnitudes of the vectors
magnitudes = torch.norm(relative_vectors, dim=-1, keepdim=True)

# Avoid division by zero
magnitudes [magnitudes == 0] = 1

# Normalize the vectors to unit vectors
unit_vectors = relative_vectors / magnitudes

# Scale unit vectors by the normalized magnitudes
normalized_vectors = unit_vectors * (magnitudes / magnitudes.max(dim=1, keepdim=

True) .values)

# Combine normalized vectors with the anchor point
normalized_coors = coorl + normalized_vectors

coorl, coor2, coor3 = torch.split(normalized_coors, lengths, dim=1)

return coorl, coor2, coor3

The projection first integrates all coordinates into a unified set with depot s as the reference origin
V; = S; — S0, VZG{O,,N}

Secondly, position vectors are computed relative to the depot, establishing translation-invariant
representations

||'UH _ \/UfQ—l—U;yQ if\/UfQ“r’Uiyg >0,
il =
1

otherwise.
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Thirdly, vector magnitudes are computed with zero-division protection to ensure numerical stability

S Ui [[vill
; = .
[Joi | o<mja<XN||Uj||

Furthermore, magnitude scaling is performed relative to the maximum vector length

S; = 8o +v;.

Then, absolute coordinates are reconstructed while maintaining spatial relationships

~

Sr={5}, Sp={51,....5v1}, S ={sn}

Finally, given coordinate sets Sy = {so} (depot), Sy = {s1,...,sn—1}, and S; = {sny} where
s; € R?, the normalized coordinates S t, Sk, S are computed through:

SZSfUSkUSl2{50,81,...,SN}

For CVRP5K instances, the evolved projection strategy is implemented as:

Code 5: Projection designed by TTPL on CVRP5K

def normalize(coorl: torch.Temsor, coor2: torch.Tensor, coor3: torch.Tensor) ->
torch.Tensor:

lengths = [coorl.shape[l], coor2.shape[1], coor3.shape[1]]
all_coors = torch.cat((coorl, coor2, coor3), dim=1)

# Get anchor point (coorl)
anchor = coorl

# Translate coordinates based on the anchor
translated_coors = all_coors - anchor

# Calculate distances to the anchor point
distances = torch.norm(translated_coors, p=2, dim=-1, keepdim=True)

# Find the furthest distance for scaling
farthest_distance, _ = distances.max(dim=1, keepdim=True)
scaling_factor = torch.sqrt(farthest_distance)

scaling_factor[scaling factor == 0] = 1 # Prevent division by zero

# Normalize the coordinates using the scaling factor
normalized_coors = translated_coors / scaling_factor.expand_as(translated_coors)

# Combine back with the anchor
normalized_coors += anchor

# Split back to original coordinates
coorl, coor2, coor3 = torch.split(normalized_coors, lengths, dim=1)

return coorl, coor2, coor3

32




The projection steps are formalized by:

v; = 8 — So, ViE{O,...,N},

lvil| = /72 +vY2,

max |[lv;| if \/OgaSXNHUjH >0,

— <<
Umax = 0<jsN X
1 otherwise,
~ U4
U = )

Umax

S; = 8o + U,

S;p=1{5}, Se={51,....5xv1}, S ={3n}
S=SpUSLUS = {s0,51,...,5n}.

For CVRP10K instances, TTPL generates this projection:

Code 6: Projection designed by TTPL on CVRP10K

def normalize(coorl: torch.Tensor, coor2: torch.Tensor, coor3: torch.Tensor) ->
torch.Tensor:

lengths = [coorl.shape[1l], coor2.shape[1l], coor3.shape[1]]
all_coors = torch.cat((coorl, coor2, coor3), dim=1)

# Centering the coordinates around the first node
center = coorl.squeeze(l) # shape: (batch, 2)
relative_coors = all_coors - center.unsqueeze(l) # shape: (batch, 1 + k, 2)

# Calculate distances from the first node
distances = torch.norm(relative_coors, dim=-1, keepdim=True) # shape: (batch, 1
+ k, 1)

# Apply a non-linear transformation to the distances (e.g., exponential scaling)
transformed_distances = torch.exp(distances) - 1 # shape: (batch, 1 + k, 1)

# Scale transformed distances to [0, 1]
max_distance = torch.max(transformed_distances, dim=1, keepdim=True).va1ues

max_distance[max_distance == 0] = 1 # Prevent division by zero
normalized_distances = transformed_distances / max_distance # shape: (batch, 1
+ k, 1)

# Maintain direction by re-constructing relative coordinates
direction = relative_coors / (distances + le-6) # shape: (batch, 1 + k, 2)
normalized_coors = normalized_distances * direction # shape: (batch, 1 + k, 2)

all_coors = normalized_coors + center.unsqueeze(l) # Translate back to original
position

coorl, coor2, coor3 = torch.split(all_coors, lengths, dim=1)

return coorl, coor2, coor3
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The projection process follows these operations:

Vg

[[oil

Vg
Umax

Vg

~

Ch
5

S

= 8 — 50,

Vi € {0, .

2 y2
\/vi + v,

..,N},

= ellvill — 1,
max v; if max v; >0,
— J0<j<N 0<j<N
1 otherwise,
v;
- b
vmax
U; Vi
= ® ,
Umax _ ||vi]| + 1€6
= 59 + 05,
={s}, Sk={s1,-..,5n-1}

S=8rUS,US = {s0,51,...,8n}
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D Experiment Details

D.1 TSPLIB and CVRPLIB Results

We evaluate the proposed method in four benchmark scenarios: TSPLIB [59] and CVRPLib [60]
instances with comparisons in both greedy and post-search frameworks. We compare our method
against five baselines: INVIT [[15], SIGD [62], BQ [42]], LEHD [18] and GLOP [13]]. For TSPLIB,
all experiments are conducted on large-scale instances ranging from 1,000 to 85,900 nodes to assess
scalability and generalization.

As shown in the Table. [/} our method achieves a 3.88% average optimality gap across all 33 instances,
significantly reducing the optimality gap by 64.86%, 92.02%, 94.00%, and 78.10% compared with
INVIT, SIGD greedy, BQ greedy, and LEHD greedy.

Table 7: Optimality gaps of greedy-based NCO methods on TSPLib instances. "OOM" signifies
out-of-memory failures. Solved# and average gaps are summarized at the bottom.

Instance | Scale | INViT | SIGD greedy | BQ greedy | LEHD greedy | Ours
dsj1000 1,000 9.20% 7.82% 6.96% 8.31% 2.40%
pr1002 1,002 | 16.43% 2.95% 3.35% 4.44% 0.90 %
ul060 1,060 | 12.29% 7.60% 10.72% 10.00% 1.22%
vm1084 1,084 | 10.91% 3.38% 4.41% 5.42% 4.32%
pcb1173 1,173 8.67% 4.32% 5.61% 8.01% 2.25%
d1291 1,291 | 22.37% 4.50% 10.93% 14.13% 3.59%
11304 1,304 8.90% 3.18% 8.48% 8.14% 3.76%
r11323 1,323 | 17.02% 3.64 % 5.44% 9.26% 5.56%
nrw1379 1,379 5.25% 27.91% 18.96% 15.49% 1.00%
11400 1,400 | 18.30% 24.87% 16.73% 18.80% 7.91%
ul432 1,432 6.16% 2.79 % 4.65% 7.96% 2.81%
11577 1,577 | 12.63% 22.37% 19.95% 14.68% 4.97 %
d1655 1,655 | 12.81% 14.55% 12.53% 13.89% 5.57%
vm1748 1,748 | 16.27% 9.95% 7.711% 10.10% 2.37%
ul817 1,817 7.31% 7.29% 8.40% 10.32% 4.72%
11889 1,889 | 10.44% 7.30% 7.93% 7.49% 5.70%
d2103 2,103 | 16.79% 10.46% 16.48% 14.57% 5.78%
u2l152 2,152 | 10.38% 10.22% 11.56% 12.65% 4.01%
u2319 2,319 0.98% 3.73% 4.33% 4.18% 0.31%
pr2392 2,392 8.29% 8.88% 13.96% 12.33% 3.53%
pcb3038 3,038 6.85% 11.01% 17.33% 13.44% 3.55%
13795 3,795 | 18.75% 57.46% 30.97% 13.55% 9.29%
fnl4461 4,461 7.32% 28.33% 20.35% 19.05% 2.16%
15915 5,915 | 14.02% 44.31% 26.77% 24.17% 4.48 %
r15934 5,934 | 1291% 53.73% 33.19% 24.11% 4.26 %
pla7397 7,397 9.45% 90.16% 69.34% 40.94% 5.42%
rl11849 11,849 | 12.71% 105.26% 46.65% 38.04% 4.86 %
usal3509 | 13,509 | 13.44% 525.78% 676.67% 71.10% 4.55%
brd14051 | 14,051 | 9.31% 138.65% 145.41% 41.22% 3.98 %
dis5112 15,112 | 7.24% 145.56% 172.38% 35.82% 2.09%
d18512 18,512 | 6.62% 119.58% 126.51% OOM 1.97 %
pla33810 | 33,810 | 7.04% OOM 504.13% OOM 5.34%
pla85900 | 85,900 | 7.21% OOM OOM OOM 3.54%

Sloved# 33/33 31/33 32/33 30/33 33/33

Avg.gap 11.04% 48.63% 64.65% 17.72% 3.88%
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As shown in the Table[§] our method achieves a 1.37% average optimality gap across all 33 TSPLIB
instances under the post-search framework, reducing the gap by 88.03%, 89.43%, 81.41%, and
75.09% compared to SIGD bs16, BQ bs16, LEHD RRC1000, and GLOP, respectively.

Table 8: Optimality gaps of post-search-based NCO methods on TSPLIB instances.

Instance | Scale | SIGD bs16 | BQbsl6 | LEHD RRC1000 | GLOP | Ours RRC1000

dsjl000 | 1,000 | 9.27% 4.35% 2.45% 2.45% 0.63%
pr1002 1,002 | 2.25% 2.04% 1.08% 3.02% 0.14%
ul060 1,060 | 5.45% 5.82% 2.79% 2.40% 0.27%
vml084 | 1,084 | 6.68% 5.48% 1.47% 3.83% 0.24%
pcbl173 | 1,173 | 2.61% 4.45% 2.99% 5.92% 0.63%
d1291 1,291 6.85% 7.38% 2.88% 5.78% 1.16%
111304 1304 | 3.64% 6.30% 3.14% 8.02% 0.12%
111323 1323 | 2.24% 451% 1.16% 6.27% 0.51%
nrwl1379 | 1,379 | 17.82% | 13.23% 8.34% 3.34% 0.39%
11400 1,400 | 3375% | 37.48% 2.96% 2.15% 1.14%
ul432 1432 | 2.10% 4.25% 2.24% 3.40% 0.67%
1577 1,577 | 3327% | 18.32% 3.81% 5.85% 1.19%
d1655 1655 | 12.98% | 10.20% 5.09% 5.33% 2.36%
vm1748 | 1,748 | 4.59% 6.42% 3.36% 3.75% 0.39%
ul817 1817 | 591% 6.07% 4.83% 6.26% 2.61%
r11889 1,889 | 7.39% 7.24% 3.17% 7.06% 1.25%
d2103 2,103 | 12.66% | 15.46% 2.14% 9.58% 0.13%
u2152 2,152 | 7.11% 7.69% 6.22% 7.32% 1.77%
u2319 2,319 1.42% 3.17% 1.47% 1.29% 0.19%
pr2392 | 2392 | 5.68% 10.53% 5.63% 5.20% 0.76%
pcb3038 | 3,038 |  6.56% 11.51% 7.49% 5.28% 1.32%
13795 3,795 | 53.43% | 38.33% 6.85% 7.45% 5.05%
fl4461 | 4461 | 1922% | 14.68% 10.37% 4.47% 1.10%
115915 5915 OOM 19.58% 12.38% 10.35% 1.76%
115934 5,934 OOM 24.53% 11.94% 10.28% 1.99%
pla7397 | 7,397 OOM | 47.63% 1531% 5.94% 2.68%
111849 | 11,849 | OOM OOM 18.19% 8.69% 2.48%
usal3509 | 13,509 | OOM OOM 31.37% 5.32% 1.85%
brd14051 | 14,051 | OOM OOM 21.19% 4.73% 2.47%
dis112 | 15112 | OOM OOM 18.83% 4.67% 1.06%
diss12 | 18,512 | OOM OOM OOM 4.98% 1.15%
pla33810 | 33.810 | OOM OOM OOM OOM 3.37%
pla85900 | 85,900 | OOM OOM OOM OOM 2.43%

Sloved# 23/33 26/33 30/33 31/33 33/33

Avg.gap 1143% | 12.95% 7.37% 5.50% 1.37%
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For CVRPLIB, we evaluate both greedy and post-search frameworks on large-scale instances ranging
from 1,000 to 30,000 nodes. As shown in the Table. 0]and Table. our method achieves 10.97% and
7.34% average optimality gaps in the greedy and post-search frameworks, respectively, outperforming
all baselines in both settings.

Table 9: Optimality gaps of greedy-based NCO methods on CVRPLIB instances.

Instance | Scale | INViT | SIGD greedy | BQ greedy | LEHD greedy | Ours
X-n1001-k43 | 1,000 | 12.60% 8.02% 4.99% 7.57% 4.95%
Li_30 1,040 | 9.12% 9.81% 10.62% 12.54% 12.84%
Li_31 1,120 | 12.42% 12.88% 12.93% 4.95% 16.12%
Li_32 1,200 9.90% 13.61% 13.48% 7.68 % 11.30%
Leuvenl 3,000 | 13.71% 16.19% 18.53% 16.60% 5.69%
Leuven2 4,000 | 26.08% 25.64% 30.70% 34.85% 14.99 %
Antwerpl 6,000 | 15.40% 13.98% 16.48% 14.66% 5.76 %
Antwerp2 7,000 | 27.75% 17.72% 27.67% 22.77% 11.66 %
Ghentl 10,000 | 15.87% 24.22% 25.36% 27.23% 5.73%
Ghent2 11,000 | 30.78% 28.09% 54.04% 38.36% 15.56 %
Brussels1 15,000 | 18.09% 25.48% 35.70% OOM 6.80%
Brussels2 16,000 | 32.08% 38.32% 50.90% OOM 15.38%
Flanders1 20,000 | 23.41% 43.95% 37.51% OOM 7.35%
Flanders2 30,000 | 39.60% 136.89% 110.09% OOM 19.43 %
Sloved# 14/14 14/14 14/14 10/14 14/14
Avg.gap 20.49% 29.63% 32.07% 18.72% 10.97 %

Table 10: Optimality gaps of post-search-based NCO methods on CVRPLIB instances.

Instance Scale | SIGD bs16 | BQbs16 | LEHD RRC1000 | GLOP | Ours RRC1000
X-n1001-k43 | 1,000 5.68% 3.07% 2.92% 16.78% 3.52%
Li_30 1,040 9.04% 11.86% 3.28 % 11.10% 4.46%
Li_31 1,120 11.53% 8.18% 3.47% 17.06% 2.73%
Li_32 1,200 9.40% 7.43% 1.45% 9.44% 3.41%
Leuvenl 3,000 14.80% 15.39% 10.71% 14.95% 3.54%
Leuven2 4,000 22.82% 25.69% 21.22% 16.54% 10.61%
Antwerpl 6,000 11.66% 13.64% 8.91% 19.08% 4.44%
Antwerp2 7,000 16.27% 26.09% 15.42% 17.72% 8.91%
Ghentl 10,000 21.36% OOM 17.28% 18.28% 4.89%
Ghent2 11,000 27.71% OOM 25.77% 16.45% 13.39%
Brussels1 15,000 23.12% OOM OOM 26.17% 6.26 %
Brussels2 16,000 34.87% OOM OOM 17.56% 13.71%
Flanders1 20,000 40.92% OOM OOM 24.02% 6.90 %
Flanders2 30,000 129.81% OOM OOM 25.42% 18.18%
Sloved# 14/14 8/14 10/14 14/14 14/14
Avg.gap 27.07% 13.92% 11.04% 17.90% 7.50%
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D.2 Result in Cross-Distributions

To evaluate robustness against distribution shifts, we tested TTPL on TSP and CVRP instances under
three distinct spatial distributions (Clustered, Explosion, and Implosion)[[15] on scales from 1,000 to
100,000 nodes.

Table 11: Solution length and runtimes for TSP and CVRP instances under Clustered, Explosion, and
Implosion distributions.

| Clustered
Method ‘ TSP1K ‘ TSP5K ‘ TSP10K ‘ TSP50K TSP100K

w/oproj | 153 0.1s | 354 14s| 57.1 2.7s | 185.6 13.5s | 2774 27.6s
seedproj | 145 0.1s | 29.8 155 | 414 29s | 91.0 14.6s | 1249 29.6s
TTPL 144 0.5s | 29.6 32s| 413 64s | 905 339s | 1239 1.lm
| Explosion
TSPIK | TSP5K | TSPI0K TSP50K TSP100K

w/oproj | 17.5 0.1s | 39.0 13s| 55.6 2.6s | 193.6 13.5s | 269.5 27.6s
seed proj | 16.7 0.1s | 34.1 1.5s | 43.1 29s | 884 14.6s | 111.8 29.5s
TTPL 164 0.5s | 339 32s| 424 66s | 879 34.1s| 1109 1.1m
| Implosion
TSP1K ‘ TSP5K ‘ TSP10K TSP50K TSP100K

wloproj | 21.1 0.1s | 525 13s| 759 2.6s | 2120 13.5s | 428.1 27.5s

seed proj | 209 0.1s | 46.7 155 | 646 29s | 141.6 145s | 1984 294s
TTPL 20.7 05s | 467 32s| 642 6.6s | 140.6 33.8s | 1968 1.Im

| Clustered
Method ‘ CVRP-1K ‘ CVRP-5K CVRP-10K CVRP-50K CVRP-100K

w/oproj | 314 0.s | 874 1.7s | 112.6 3.2s | 433.6 16.5s | 831.9 36.0s
seed proj | 37.4 0.1s | 903 1.7s | 109.1 3.4s | 217.7 17.2s | 3737 40.7s
TTPL 31.1 05s | 80.7 3.8s| 93.8 7.6s |203.0 393s | 384.6 1.4m

| Explosion
CVRP-1K ‘ CVRP-5K CVRP-10K CVRP-50K CVRP-100K

w/oproj | 30.0 O.1s | 702 1.6s | 90.3 3.2s | 401.3 16.5s | 7449 359s
seedproj | 39.3 0.1s | 784 1.7s | 94.8 3.3s | 203.7 17.2s | 322.6 41.0s
TTPL 29.6 05s | 643 38s| 755 7.7s | 178.6 39.1s | 2944 1.4m

| Implosion

‘ CVRP-1K ‘ CVRP-5K ‘ CVRP-10K ‘ CVRP-50K ‘ CVRP-100K
w/oproj | 39.0 O0.1s | 102.6 1.6s | 131.1 3.2s | 402.4 16.5s | 808.7 35.9
seed proj | 51.5 0.1s | 1243 1.7s | 149.6 3.3s | 3252 17.2s | 549.7 41.7s
TTPL 386 05s | 982 3.8s | 1207 7.7s | 299.0 39.1s | 5423 1.4m

E Additional Experiment Analysis

E.1 Adaptability of TTPL

To further validate the effectiveness of TTPL framework, we utilize our proposed framework on
different base models. Specifically, we compare POMO [7]], LEHD [18], BQ [42], and SIGD
[62], four constructive models, with and without TTPL projection. The test instances are set to
TSP1K/5K/10K with the same settings as the previous. The results are shown in the Table. [T2]

E.2 TTPL Time Usage

To quantify the extra computational overhead introduced by the TTPL, we report the training time
used for TTPL to search for a projection strategy in Table

E.3 Results from Other LLMs
To investigate the robustness of TTPL to different LLMs, we test our framework with several state-of-

the-art LLMs, including Claude, Gemini, DeepSeek, and Qwen. The experimental results (Table@])
indicate that the choice of LLM does not significantly influence projection performance
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Table 12: Results of different base models with and w/o TTPL

TSP1K TSP5K TSP10K
Method Obj.(Gap) Obj.(Gap) Obj.(Gap)
POMO greedy | 33.18 (43.51%) | 94.04 (84.50%) | 150.64 (109.86%)
POMO-TTPL | 29.68 (28.37%) | 71.76 (40.79%) | 101.8 (41.82%)

SIGD greedy | 23.57(1.96%) | 57.19 (12.20%) | 93.80 (30.68%)
SIGD-TTPL 23.86 (3.20%) | 56.05(9.97%) | 80.44 (12.06%)

BQ greedy 23.65 (2.30%) | 58.27 (14.31%) | 89.73 (25.02%)

BQ-TTPL 23.58 (1.99%) | 56.47(10.79%) | 81.48 (13.51%)
LEHD greedy | 23.84 (3.11%) | 58.85(15.46%) | 91.33 (27.24%)
LEHD-TTPL | 23.73 (2.65%) | 52.63(3.25%) | 74.39 (3.63%)

Table 13: Time used for TTPL to learn projection strategies on different scales

TSPIK | TSP5K | TSP10K
Mehod time time time
TTPL \ 5.5h \ 9.6h \ 19.9h

Table 14: Result of TTPL using different LLMs

TSPI1K | TSP5K | TSP10K
Method Obj. Ob;. Ob;.
TTPL-Claude 23.80 | 52.79 74.48
TTPL-DeepSeck 23.67 | 5239 74.00
TTPL-Gemini 2376 | 53.71 76.42
TTPL-Qwen 2375 | 5273 74.25
TTPL-GPT-4o-mini | 23.73 | 52.63 74.39
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F Solution Visualization

F.1 Solution Visualizations of Cross-distribution TSP Instances
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(a) Optimal solution. (b) TTPL aug RRC1000 (gap: 1.11%).

¥

Figure 3: The solution visualizations of a TSP5K instance with uniform distribution.

(a) Optimal solution. (b) TTPL aug RRC1000 (gap: 1.10%).

Figure 4: The solution visualizations of a TSP5K instance with cluster distribution.
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(a) Optimal solution. (b) TTPL aug RRC1000 (gap: 0.94%).

Figure 5: The solution visualizations of a TSP5K instance with explosion distribution.

bl

(a) Optimal solution. (b) TTPL aug RRC1000 (gap: 1.56%).

Figure 6: The solution visualizations of a TSP5K instance with implosion distribution.
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F.2 Solution Visualizations of Large-scale TSPLIB Instances

SHE WE JO M | N et

(a) Instance r11304 (scale: 1304, gap: 0.12%.) (b) Instance d2103 (scale: 2103, gap: 0.13%.)

(c) Instance fnl4461 (scale: 4461, gap: 1.10%.) (d) Instance d15112 (scale: 15112, gap: 1.06%.)

Figure 7: The solution visualizations of TSPLIB[59] instances with different scales, the solutions are
all generated by TTPL aug RRC1000.
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G License

‘We list the license of the code and the dataset in the Table. [13]

Table 15: A summary of licenses

Resource | Type | Link | License

LKH3[57] Code http://webhotel4.ruc.dk/keld/research/LKH-3/ Available for academic research use
HGS[58] Code https://github.com/chkwon/PyHygese MIT License

Concorde[82] Code https://github.com/jvkersch/pyconcorde BSD 3-Clause License

POMOIT7] Code https://github.com/yd-kwon/POMO MIT License

LEHD[18] Code https://github.com/CIAM-Group/NCO_code/tree/main/ single_objective/LEHD | MIT License

BQI[42] Code https://github.com/naver/bg-nco CCBY-NC-SA 4.0

GLOP[13] Code https://github.com/henry-yeh/GLOP MIT License

H-TSP[12] Code https://github.com/Learning4Optimization-HUST/H-TSP MIT License

DIFUSCOI28] | Code https://github.com/Edward-Sun/DIFUSCO MIT License

INVIT[15] Code https://github.com/Kasumigaoka-Utaha/INViT Available for academic research use
ELG[14] Code https://github.com/gaocrr/ELG MIT License

SIGD[62 Code https://github.com/grimmlab/gumbeldore Available for academic research use
EoH[52) Code https://github.com/FeiLiu36/EoH MIT License

LLM4AD[83] | Code https://github.com/Optima-CityU/LLM4AD MIT License

TSPLIB[59 Dataset | http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/ Available for any non-commercial use
CVRPLib[60] | Dataset | http://vrp.galgos.inf.puc-rio.br/index.php/en/ Available for academic research use

H Broader Impacts

This work advances neural combinatorial optimization through the proposed TTPL framework and
MVED technique, critically enhancing solution efficiency for large-scale Vehicle Routing Problems
(VRPs). These developments are expected to inspire further investigations into novel neural methods
for complex, large-scale routing tasks. We foresee no negative societal impacts from this research.
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