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Abstract

As real-world knowledge is constantly evolv-
ing, ensuring the timeliness and accuracy of a
model’s knowledge is crucial. This has made
knowledge editing in large language models in-
creasingly important. However, existing knowl-
edge editing methods face several challenges,
including parameter localization coupling, im-
precise localization, and a lack of dynamic in-
teraction across layers. In this paper, we pro-
pose a novel knowledge editing method called
Knowledge Neuronal Ensemble (KNE). A
knowledge neuronal ensemble represents a
group of neurons encoding specific knowledge,
thus mitigating the issue of frequent parameter
modification caused by coupling in parameter
localization. The KNE method enhances the
precision and accuracy of parameter localiza-
tion by computing gradient attribution scores
for each parameter at each layer. During the
editing process, only the gradients and losses
associated with the knowledge neuronal ensem-
ble are computed, with error backpropagation
performed accordingly, ensuring dynamic in-
teraction and collaborative updates among pa-
rameters. Experimental results on three widely
used knowledge editing datasets show that the
KNE method significantly improves the accu-
racy of knowledge editing and achieves, or even
exceeds, the performance of the best baseline
methods in portability and locality metrics.

1 Introduction

Real-world knowledge is constantly evolving, and
the purpose of knowledge editing(Wang et al.,
2024a) in large language models is to modify
outdated or incorrect knowledge with new, accu-
rate knowledge while minimizing negative effects
on previously learned knowledge and capabilities.
Current update methods for large language mod-
els include fine-tuning(Han et al., 2024) and re-
trieval augmentation(Gao et al., 2024).Fine-tuning
requires high computational resources, is prone to

over-fitting, may negatively impact other knowl-
edge, and often leads to catastrophic forgetting.
Retrieval augmentation, on the other hand, strug-
gles with retrieval noise, making precise editing
difficult, and provides only short-term, temporary
changes, limiting its efficiency for large-scale up-
dates. Knowledge editing(Yao et al., 2023) seeks
to empower large language models to learn con-
tinuously and maintain accurate knowledge, much
like humans who read books and newspapers daily.

Existing knowledge editing methods generally
involve two main steps(Zhang et al., 2024): pa-
rameter localization and parameter editing. Pa-
rameter localization serves as the foundation for
understanding the internal working mechanisms
of the model and for performing effective param-
eter editing. However, current knowledge editing
methods face several challenges in both localiza-
tion and editing: (1) Knowledge Localization
Coupling:Knowledge localization is often coupled,
meaning a single neuron may correspond to mul-
tiple pieces of knowledge, leading to frequent pa-
rameter adjustments that may destabilize the model
or degrade the quality of specific knowledge ed-
its, ultimately compromising overall performance.
(2) Inaccurate Knowledge Localization:Current
localization techniques may be inaccurate, dimin-
ishing the specificity and efficiency of the editing
process. For instance, causal tracking methods may
reveal significant associations between certain lay-
ers and specific knowledge, even when those layers
are not directly edited. (3) Insufficient Layer-
wise Dynamic Interaction for Parameter Up-
date:Furthermore, when editing parameters from
shallow to deep layers, dynamic interaction and col-
laborative updates between layers are often lacking,
which can negatively impact the final model. There-
fore, optimizing the knowledge editing framework
is crucial for improving its effectiveness.

Inspired by knowledge neuron(Dai et al., 2022)
method, we introduce a novel knowledge editing



method:Knowledge Neuronal Ensemble (KNE).
A knowledge neuronal ensemble is a collection
of neurons that represents a set of related knowl-
edge, addressing the problem of frequent parame-
ter modification caused by knowledge localization
coupling. In this method, we calculate gradient at-
tribution scores for each parameter in each layer to
identify all parameters that significantly contribute
to representing specific knowledge, allowing for
more accurate and refined parameter localization.
During the editing process, gradients and losses
over the knowledge neuronal ensemble are com-
puted, and error backpropagation is applied, ensur-
ing dynamic interaction and collaborative updates
among the edited parameters. Experiments con-
ducted on three widely used knowledge editing
datasets demonstrate that KNE achieves superior
performance. Compared to five baseline methods,
KNE significantly improves the accuracy of knowl-
edge editing and matches or exceeds the best base-
line methods in portability and locality metrics,
with some datasets showing even better results.

Moreover, experiments indicate that editing the
knowledge neuronal ensemble corresponding to
the key layers of the feed-forward neural network
(FFN) yields results comparable to those from
previous methods that edited value layers, with
even better locality performance. This finding en-
riches existing assumptions about knowledge stor-
age (Gevaetal., 2021, 2022) locations and suggests
that different parameter locations can be edited
based on the specific editing goal to achieve opti-
mal results.

The contributions of this paper are as follows:

* Knowledge Neuronal Ensemble Method:
The concept of the "knowledge neuronal en-
semble" is introduced, solving the problem of
frequent parameter modification due to knowl-
edge localization coupling.

* More Precise and Accurate Knowledge Lo-
calization: Gradient attribution scores are
used to identify the parameters that have a sig-
nificant impact on expressing specific knowl-
edge, ensuring more accurate localization.

¢ Layer-wise Dynamic Interaction for Param-
eter Update: Gradients and losses over the
knowledge neuronal ensemble are used for
error backpropagation, facilitating dynamic
information transfer across layers for collabo-
rative parameter updates.

* Low Computational Cost and Efficient Lo-
calization: By optimizing the update strategy,
the number of parameters that need to be mod-
ified is reduced to around 1% of the model’s
total parameters, significantly reducing com-
putational cost and improving localization ef-
ficiency.

2 Related Work

Existing knowledge editing methods can be broadly
categorized into two types(Yao et al., 2023): those
that modify model parameters and those that do
not.

Among the non-parameter-modifying methods,
there are two paradigm. The first is knowledge edit-
ing based on retrieval augmentation, which treats
the new knowledge as external knowledge in the
retrieval-augmented model,i.e. SERAC(Mitchell
et al., 2022b), IKE(Zheng et al., 2023), Wang
et al.(Wang et al., 2024b), Shi et al.(Shi et al.,
2024), MemPrompt(Madaan et al., 2022), Murty et
al.(Murty et al., 2022).

The second involves adding extra trainable pa-
rameters, which are trained on the modified knowl-
edge dataset while the original model parameters re-
main unchanged,i.e. T-Patcher(Huang et al., 2023),
CaliNet(Dong et al., 2022), GRACE(Hartvigsen
et al., 2023), MELO(Yu et al., 2024). Both of them
leave the original model parameters unchanged,
leading to the model’s inability to deeply under-
stand or fully integrate the new knowledge.

Although parameter-modifying methods are
more challenging, they facilitate a deeper under-
standing of knowledge storage within the model’s
internal mechanisms. This enables the model to
better grasp the inherent nature of knowledge and
apply it flexibly, a focus of our research. Parameter-
modifying methods can also be classified into two
types: meta-learning-based methods and locate-
then-edit methods.

Meta-learning methods use hyper networks for
learning parameter updates for large language mod-
els (LLMs). The Knowledge Editor (KE)(Cao et al.,
2021)utilizes a hyper network (specifically a bidi-
rectional LSTM) to predict the weight updates for
each data point, thereby achieving constrained op-
timization in editing target knowledge without dis-
rupting other knowledge. However, this approach
faces limitations when editing LL.Ms. To overcome
this, Model Editing Networks with Gradient De-
composition (MEND)(Mitchell et al., 2022a)learns



to transform the fine-tuning gradients of language
models through low-rank decomposition, achiev-
ing better performance on LLMs. MALMEN(Tan
et al., 2024) formulates parameter shift aggrega-
tion as a least squares problem and updates model
parameters using the normal equation, allowing
for scalable editing of multiple facts with limited
memory.

The locate-then-edit approach first identifies the
parameters corresponding to specific knowledge
and modifies them by directly updating the tar-
get parameters. The Knowledge Neuron (KN)
method(Dai et al., 2022) introduces a knowledge at-
tribution technique to locate "knowledge neurons"
(key-value pairs in the FFN matrix) that embody the
knowledge, and subsequently updates these neu-
rons. ROME(Meng et al., 2022)employs causal
mediation analysis to locate the editing region. Un-
like modifying knowledge neurons in the FFN,
ROME adjusts the entire matrix, viewing model
editing as a least-squares problem with linear equal-
ity constraints, solving it using Lagrange multi-
pliers. However, both KN and ROME can only
edit one factual association at a time. To address
this, MEMIT(Meng et al., 2023)extends ROME,
enabling simultaneous editing of multiple cases.
Building on MEMIT, PMET(Li et al., 2024 )intro-
duces attention values for better performance.

3 Method

3.1 Preliminaries

As in Wang et al.(Wang et al., 2024a), the edit-
ing is performed on a relational fact that can be
represented as a knowledge triple (s, r, 0) where
s, r, and o are the subject, relation, and object of
the fact respectively. A single knowledge editing
task denoted by e is to modify the weights of the
model such that the original knowledge triple en-
coded in the model is changed to (s, r, 0*). Since
the context of this work is pre-trained LLMs, we
use z. = (s, ) to represent the prompt composed
of s and r, and substitute y, for o to represent the
answer. Thus, a LLM with parameter ¢ can be re-
garded as a mapping represented by f : x — ¥, and
a knowledge editing task e will yield f* : x — y*
with the parameter updated to ¢*. It is more com-
mon to perform multiple knowledge editing on a
set of edits £ = {ey,e,...}. Let Xg = Uecee
and Ve = Ugcgy.. We formalize the problem of
Knowledge Editing (KE) following the definition
in Wang et al.(Wang et al., 2024a).

Definition 1 The objective of knowledge editing
is to perform the following constrained optimiza-
tion:

n%i*nEeegExg_Xe’y*eyg,C(f*(x), y*)a
st fH(z) = f(=),

where L is the loss function which quantifies the
deviation between the LLM output f*(x) and y*
from the expected answer set V.

For methods of Locate-Then-Edit paradigm, lo-
cating neurons attributed to the specific knowledge
triple, i.e., Knowledge Attribution, is a prerequi-
site. We refine the problem statement of knowledge
editing in this case.

Definition 2 The objective of Locate-Then-Edit
knowledge editing is to perform the following con-
strained optimization:

ey
Ve e X \ XE.
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k

st 5, 61 (@) = f(2),
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Here, ¢, = L(fs,&) uses function L to locate
neurons attributed to edits £. Then, ¢, represents
the unedited weights.

Definition 3 (Knowledge Neurons, KNs).
Given a set of edits £ = {ej,...} where |£] > 1,
for a L layer neural network, suppose there are
m neurons( )in layer (l ) If £ can be attributed to k
! l

neurons w; ", . .., w;’ in layer [, such that the acti-

vation of these neurons significantly contributes to
£, then these neurons Ng) = {wj(.ll), e ,wj(»i)} are
referred to as the knowledge neurons for £ in layer
l.

Definition 4 (Knowledge Neuronal Ensemble,
KNE). The Knowledge Neuronal Ensemble of the
L layers neural network for £ is defined to be the
set of knowledge neurons in all layers, i.e., Ng =

1 l
(N Ny

3.2 Knowledge Neuronal Ensemble Method

To localize the Knowledge Neuronal Ensemble
corresponding to a set of knowledge, we use a
token-level gradient attribution method(Dai et al.,
2022) to calculate gradient attribution scores for
the relevant parameters. Based on these scores, we
select and construct the Knowledge Neuronal En-
semble. Afterward, we freeze the parameters in
other locations and dynamically update only the pa-
rameters in the Knowledge Neuronal Ensemble to
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Figure 1: The framework of KNE method.

achieve coordinated optimization.The framework
of the Knowledge Neuronal Ensemble is shown in
Figurel.

3.2.1 Token-level Gradient Attribution
Method

For a given input query x, and the correct answer

yi = {y1,92,...,y;}, where y; represents the cor-

rect answer composed of j tokens and y; represents

the j-th token, we define the model’s output proba-

bility as:

(1
Pyj*lx(wl(c ))

Here, x is the input query, y

= p(yflz,wl) = @) G

¥ is the correct answer,

w,(g) refers to the k-th neuron in the /-th layer, and
® ()

Wy, represents the parameter value at location wy, .

To extend the gradient attribution method to
large language models built on GPT-like architec-
tures, we accumulate the gradient attribution scores
computed for each token in the correct answer:

Attr(w,(cl)) = @,(f)

“4)

Where s is the number of tokens in the correct

answer, and @](91) is the original parameter value at
location w,gl).

Since calculating the continuous gradient inte-

gral is computationally expensive, we apply a Rie-



mann approximation as follows:

s m AW
Attr(w") = w Y OPyile (mw’f )
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Where m represents the number of discrete steps
used to approximate the continuous integral, reduc-
ing computational complexity.

3.2.2 Selection of the Knowledge Neuronal
Ensemble

We define Attr(wg)) as the gradient attribution
score of the k-th neuron in the [-th layer, and let
ds represent the output dimension of the [-th layer.
To construct the Knowledge Neuronal Ensemble
(KNE), we select the neurons with the top 1 — p%
largest gradient attribution scores. The threshold
t, is defined as follows:

ty = Quantilel,p({Attr(w,(f)) ]

(6)
k=1,2,...,dsy; 1=1,2,...,L}),

where Quantile;_, refers to the quantile function
that calculates the value corresponding to the top
p% of the gradient attribution scores.

Next, we define the Knowledge Neuronal En-
semble (KNE) as the set of neuron indices that
meet the following condition:

Ni = {0} | Attr(w) > t,,

(7
k=1,2,...,dy;l=1,2,... L}

In this way, the KNE includes all neuron indices
with gradient attribution scores greater than or
equal to the threshold ?,, representing the top
1 — p% of neurons ranked by gradient attribution
scores.

3.2.3 Editing the Knowledge Neuronal
Ensemble

To fully utilize the localized information from the
Knowledge Neuronal Ensemble (KNE), we pro-
pose a Knowledge Neuronal Ensemble Editing
method. Throughout the editing phase, gradients
and losses are calculated across the knowledge neu-
ronal ensemble. Subsequently, error backpropaga-
tion is employed to facilitate dynamic interaction
and coordinated updates among the parameters be-
ing refined. Based on the number of neurons n in
the Knowledge Neuronal Ensemble for each layer,
we dynamically allocate a Knowledge Neuronal
Ensemble parameter matrix:

Wipe € R0 (8)

Here, n represents the number of neurons in
the Knowledge Neuronal Ensemble for that layer,
while d; and ds represent the input and output di-
mensions of the weight matrix V.

Since Wy, and W have different dimensions,
we initialize a zero matrix AW with the same di-
mensions as W, to map the updated Wy, to the
corresponding positions of the Knowledge Neu-
ronal Ensemble. The formulation is as follows:

AW e R%xd 7 ¢ Rézxdi 9)

AW[Z, Mk’ne] = Wknea Mkne eN" (10)

Where My, represents the index positions of the
Knowledge Neuronal Ensemble within the weight
matrix W. The values of My, are natural numbers
less than do, and the length of My, corresponds
to the number of neurons n in the Knowledge Neu-
ronal Ensemble.
Finally, the weight matrix W is updated to obtain
W using the following formula:
W =W+ AW 11
=W+ Tn (1)
To control the extent of the parameter updates, we
multiply AW by a scaling factor -9, where « is a

vn
hyper parameter.

4 Experiments

4.1 Experimental Setting

In our study, we chose the Llama2-7B-chat and
gpt-j-6B models as the cornerstone for knowledge
editing tasks. These models were selected for their
widespread adoption and proven efficacy. To en-
sure a comprehensive evaluation, we employed di-
verse datasets that encapsulate a broad spectrum
of knowledge domains, namely the ZsRE, Wiki-
Datacounterfact, and WikiDatarecent datasets.
Our assessment criteria encompassed several key
metrics: Edit Success, which measures the accu-
racy of edits; Portability, indicating how well ed-
its transfer across different questions; Locality,
assessing the precision of edit localization; and
Fluency, evaluating the naturalness of the edited
text. We benchmarked our approach against estab-
lished baseline methods, comprising Fine-Tuning
(FT), Fine-Tuning with Linear probing (FT-L),
AdaLoRA, ROME, and MEMIT. For an in-depth
exploration of these comparisons and additional
methodological details, please refer to Appendix
A.



4.2 Experimental Results

We selected the widely used Llama2-7B-chat
model as the foundation for knowledge editing.
To validate the generalizability of our approach,
we utilized datasets that represent various forms
of knowledge, including ZsRE,WikiDatarecent
and WikiDatacounterfact. the experimental re-
sults summarized in Table 1.Experimental findings
across three extensively utilized knowledge editing
datasets demonstrate that the KNE methodology
markedly enhances the precision of knowledge edit-
ing, while also attaining—or even surpassing—the
levels of performance exhibited by the top base-
line methods in terms of portability and locality
metrics.

Furthermore, to evaluate the effectiveness of our
method across different models, we compared it
with the gpt-j-6B model. The Llama2-7B-chat
model demonstrated exceptional performance in
handling complex knowledge editing tasks due to
its larger parameter size and enhanced generative
capabilities. In contrast, the gpt-j-6B model is
favored for its lower computational resource re-
quirements and faster response times. By compar-
ing these two models, we gained deeper insights
into their respective strengths and limitations in
knowledge editing tasks.Experiments show that
the KNE method is also applicable to the gpt-j-
6B model.The results of these comparative experi-
ments are summarized in Table 2.

We evaluate several knowledge editing methods
on a range of language models and datasets, assess-
ing their performance across key metrics.

4.3 Exploring the Storage Location of
Knowledge in Large Language Models

Exploring the storage location of knowledge in
large language models has traditionally relied on
the assumption that factual knowledge is stored
in the key-value memory format within the fully
connected layers of the FFN module, as seen in
methods such as ROME, MEMIT and the knowl-
edge neuron approach.

However, we have identified several interesting
deviations from this assumption.To analyze the pre-
cise locations of knowledge within these models,
we employed a gradient attribution method to calcu-
late gradient attribution scores for each parameter
layer in both the Self-Attention and FFN modules.
Using these scores, we identified specific layers
and evaluated their post-editing performance, as il-

lustrated in Figure. 2. This analysis yielded several
notable conclusions:

* Edit Success and Portability: Editing within
the FFN module consistently led to supe-
rior Edit Success and Portability compared
to the Self-Attention module. Notably, the
value layer (mlp.down_proj) in the FFN mod-
ule exhibited the best overall performance.
However, high editing accuracy was observed
across various layers and modules, indicating
that effective edits are achieved throughout
the model.

* Locality and Fluency: For Locality and
Fluency, editing mapping layers—such as
mlp.gate_proj and mlp.up_proj in the
FFN module, along with self_attn.q_proj
in the Self-Attention module—demonstrated
significantly better performance than other
layers.

These findings suggest that while knowledge
is indeed stored in the FFN module, the specific
layers edited impact different performance aspects.
Moreover, mapping layers play a crucial role in
maintaining Locality and Fluency, indicating that
the storage and structure of knowledge are more
complex and distributed than initially assumed.

4.4 Similar Knowledge May Be Stored in
Similar Locations within the Model

Effective model editing does not require localizing
every knowledge element in the dataset. By local-
izing only 200 knowledge items—around 1/4 of
the total dataset—the model achieved high perfor-
mance. Remarkably, this partial localization strat-
egy outperformed full-dataset localization in both
Locality and overall performance. Furthermore,
metrics such as Edit Success, Fluency, and Porta-
bility showed minimal differences between using
the entire dataset and using just 1/4 for localization.

This finding significantly improves the feasibil-
ity of knowledge editing for practical applications
by reducing the computational demands of the lo-
calization process. In the KNE approach, calculat-
ing gradient attribution scores for each parameter
across all layers for every knowledge item is highly
resource-intensive, often making localization more
time-consuming than the editing itself. By stream-
lining this process and achieving a 75% reduction
in localization effort, the method accelerates over-



Table 1: Performance Comparison of Knowledge Editing Methods Across Different Datasets

Dataset Metric FT FT-L. AdaLoRA ROME MEMIT KNE
Edit Succ.  26.78 51.12 72.14 83.21 83.41 99.02

WikiData counterfact Portability  16.94 39.07 55.17 38.69 40.09 53.88
Locality 0.29 62.51 66.78 65.4 63.68 65.09

Fluency 483.71 544.80 553.85 578.84 568.58  591.25

Edit Succ.  36.88 54.65 69.86 96.57 83.07 97.75

7sRE Portability 8.72 45.02 52.95 52.20 51.43 58.02
Locality 0.31 71.12 72.21 27.14 25.46 76.85

Fluency 47129 474.18 532.82 570.47 559.72  571.93

Edit Succ.  31.24 71.18 65.61 85.08 85.32 99.48

WikiData recent Portability 1591 48.71 47.22 37.45 37.94 63.36
Locality 3.65 63.7 55.78 66.2 64.78 37.58

Fluency 428.67 549.35 537.51 574.28 566.66  581.49

Table 2: Performance Comparison of Knowledge Editing Methods Across Different Models

Dataset Model Edit Succ. Portability Locality Fluency

- Llama2-7b-chat  99.02 53.88 6509  591.25
WikiData counterfact opt-j-6b 99.35 49.14 5264 597.29
JRE Llama2-7b-chat 9775 58.02 7685  571.93
opt-j-6b 99.90 53.79 7860  549.87

- Llama2-7b-chat  99.48 63.36 3758 581.49
WikiData recent opt-j-6b 99.79 57.74 5347 58579

all workflow and enhances scalability for industrial
applications.

The experiment result of full dataset is shown in
Figure. 3 in Appendix.

The dataset, WikiDatacounterfact, derived
from WikiData, contains numerous data points with
inherent similarities, such as comparable classifica-
tion topics Gueta et al.(Gueta et al., 2023). These
similarities imply that related knowledge items are
often stored in close model regions. Thus, local-
izing a representative subset effectively supports
the editing process. Further experimentation is re-
quired to elucidate the underlying reasons for this
behavior.

4.5 Optimal Parameter Selection for
Knowledge Editing

To investigate the impact of parameter quantity on
knowledge editing performance, a controlled ex-
periment was conducted. Detail experiment result
is shown in Figure. 4 in Appendix.

Using more parameters significantly enhances
the "Edit Success" and "Portability” metrics, in-
dicating that precise modifications lead to better

overall performance and transferability across tasks.
Conversely, employing fewer parameters improves
the "Locality" metric, suggesting that it helps re-
tain the relevance of edited knowledge to its con-
text, resulting in more focused and localized edits.
The choice of parameter quantity thus influences
different aspects of model editing, necessitating a
balance based on specific requirements.

The results suggest a trade-off between these two
sets of metrics. To achieve optimal overall perfor-
mance, we must balance the number of parameters
used for editing. Thus, selecting an appropriate
number of parameters is crucial to achieving the
best overall editing performance.

4.6 Exploring the Capability of Batch Editing

Most current knowledge editing methods only han-
dle one or a few pieces of knowledge at a time,
limiting the efficiency and applicability of knowl-
edge editing. To evaluate whether our proposed
method extend to batch editing, we conducted a
controlled experiment, varying only the number of
knowledge pieces edited (i.e., the batch size). The
performance of our method under different batch
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Figure 2: Visualization of Knowledge Storage Deviations in Large Language Models

sizes is as shown in Figure. 5 in Appendix.

Our method demonstrates the ability to perform
batch knowledge editing effectively, with only mi-
nor trade-offs as batch size increases. While Edit
Success and Portability metrics experience some
decline with larger batch sizes, the performance
remains acceptable. In contrast, Locality and Flu-
ency improve with larger batch sizes, at least ini-
tially, showing that our method is well-suited for
batch editing tasks.

5 Conclusion

This paper introduces a novel knowledge editing
framework—the Knowledge Neurona’l Ensemble
(KNE) localization method—to address the lim-
itations of current knowledge editing techniques,
including localization accuracy, editing efficiency,
and inter-layer coordinated updates. By introduc-

ing the concept of the Knowledge Neuronal En-
semble, we not only expand our understanding
of knowledge storage locations but also achieve
more precise knowledge localization and batch up-
dates by aggregating multiple related knowledge
neurons. This method enhances inter-layer inter-
action through a dynamic gradient propagation
mechanism from shallow to deep layers, improving
the coherence and accuracy of edits while min-
imizing negative impacts on overall model per-
formance.Experimental results demonstrate that
the KNE localization method outperforms main-
stream knowledge editing techniques across mul-
tiple datasets, delivering higher accuracy and sta-
bility in knowledge editing. It also significantly
reduces computational overhead and improves lo-
calization efficiency.



Limitations

Although the proposed Knowledge Neural En-
semble (KNE) significantly improves knowledge
editing performances, several limitations remain
that warrant further exploration and optimization.

* Generality and Scalability: While the exper-
imental results in this paper demonstrate that
the KNE method performs well in terms of
accuracy and stability across multiple datasets
and task scenarios, its generality and scala-
bility have yet to be fully validated across
a broader range of model architectures and
more diverse tasks. Different types of large
language models, particularly those with spe-
cialized structures, may have different pat-
terns of knowledge storage and transmission.
Therefore, further research is needed to ex-
plore how this method performs in these mod-
els.

* Theoretical Explanation of Key Layer Edit-
ing: While this paper shows that modify-
ing the key layer in the FFN module yields
favorable results in terms of locality, this
finding still requires deeper theoretical anal-
ysis and explanation. Future studies should
further investigate the knowledge transmis-
sion mechanisms between different layers of
models to systematically understand and opti-
mize knowledge storage and editing processes,
thereby improving the theoretical robustness
of the method.
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A Detailed Experimental Settings

A.1 Baselines

We compare against the following baseline meth-
ods:

* Fine-Tuning (FT): We fine-tune the
’mlp.proj’ weights within layer 21, following
the re-implementation by Meng et al.(Meng
et al., 2023). We use the Adam optimizer
with early stopping to minimize negative
log probability. Default hyper parameters
are used, and unconstrained fine-tuning is
consistently applied across all experiments.

* Fine-Tuning with Linear probing (FT-L):
This method fine-tunes a pre-trained model by
adding and training a linear layer on top, while

keeping the original model weights frozen.
This linear layer adapts the model to new
tasks without altering the pre-trained represen-
tations. We utilize the Adam optimizer with
early stopping and default hyper parameters
for training.

¢ AdaLLoRA(Zhang et al., 2023): AdalL.oRA
efficiently tunes large pre-trained models by
applying small, rank-1 updates to the model
weights. This is particularly beneficial for
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large models as it significantly reduces the
number of updates compared to full fine-
tuning. We employ AdaLoRA on specific lay-
ers, using a variant of the Adam optimizer and
default hyper parameters.

* ROMEMeng et al., 2022): This method
treats the MLP module as a key-value store
and adds new knowledge via rank-one modifi-
cation of MLP weights. We utilize the origi-
nal code and weights (https://github.com/
EleutherAI/ROME) and retain default hyper
parameters.

* MEMIT(Meng et al., 2023): An exten-
sion of ROME, MEMIT incorporates mul-
tiple memories by modifying MLP weights
across several layers. We use the pub-
licly available code (https://github.com/
facebookresearch/memit) with default hy-
per parameters. For GPT-J, R values range
from 3 to 8, and covariance statistics are de-
rived from 100,000 Wikitext samples.

A.2 Models

We evaluate the following language models:

* Llama-2-7b-chat(Touvron et al., 2023; meta
llama, 2023): Meta’s 7-billion parameter chat-
tuned model, exhibiting strong performance
in dialogue benchmarks. It utilizes an opti-
mized transformer architecture trained with
supervised fine-tuning (SFT) and reinforce-
ment learning with human feedback (RLHF).

GPT-J-6B(Wang and Komatsuzaki, 2021;
Wang, 2021): A 6-billion parameter model
with 28 layers, a model dimension of 4096,
a feedforward dimension of 16384, and 16
heads (dimension 256). It uses RoPE on 64
dimensions per head and a 50257-token vo-
cabulary with BPE encoding.

A.3 Datasets

We utilize the following datasets(Wang et al.,
2023)(https://huggingface.co/datasets/
zjunlp/KnowEdit):

* ZsRE: A Question Answering (QA) dataset
using back-translation paraphrases to cre-
ate question equivalence sets. We use
the extended version (https://github.
com/yao8839836/zsre) and construct new
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locality sets following their methodol-
ogy. Training data is sourced from
the MEND project (https://github.com/
eric-mitchell/mend).

WikiDatacounterfact: This dataset focuses
on triplets involving prominent Wikidata enti-
ties to mitigate issues with tail entities. Train-
ing data consists of randomly sampled Wiki-
data triplets, and the dataset itself serves as
the test set.

WikiDatarecent: A dataset of triplets re-
cently added to Wikidata after July 2022, used
to evaluate the insertion of new facts into mod-
els trained on older data.

A4 Metrics

Knowledge editing affects predictions for inputs
semantically or contextually related to the edited
example. This sphere of influence is the editing
scope. A successful edit modifies the model within
the intended scope without affecting unrelated in-
puts:

ifx e I(xe,ye)
if . € O(xe,ye)

Ye

i ={ %

12)

where:
* fo.(z): Edited model’s prediction on input x.
* y.: Target output for edited example z..

o I(e,ye): Intended scope (inputs related to
the edit).

* O(Ze, ye): Out-of-scope inputs (unrelated to
the edit).

We evaluate edits using the following metrics:

¢ Edit Success (ES): Measures the model’s ac-
curacy on the edited fact and similar inputs
(paraphrases) . For factual datasets, we use:

ES =Y W{argmax,fo(ylze) = v}}
(zk,y5)
13)
where zy, is the updated knowledge, y; is the
target output, and fy is the edited model.

Portability (PORT): Assesses the edit’s
impact on related knowledge, including
alias/synonym substitution, compositional-
ity/reasoning, and logical generalization.
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e Locality (LOC): Measures unintended
changes to unrelated knowledge, considering
both in-distribution and out-of-distribution
locality:

LOC = Exk,ysz(xk)“é{fW(y’xk) = f@(y‘xk)}

(14)
where O(z},) represents unrelated knowledge,
fo 1s the original model, and fy is the edited
model.

* Fluency (FLUE): Assesses the edited model’s
generative capacity using the weighted aver-
age of bi-gram and tri-gram entropies. Lower
values indicate higher repetitiveness.

These results confirm that the Knowledge Neu-
ronal Ensemble (KNE) method provides excel-
lent and stable editing performance across different
datasets. It consistently delivers the best results
in terms of editing accuracy, while maintaining
high portability and locality metrics. In some cases,
it even outperforms previous methods in specific
datasets.

(Note: The results of the comparative knowledge
editing methods were sourced from the repository:
EasyEdit GitHub.)

B Figures used in experimental discussion
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