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Abstract

As real-world knowledge is constantly evolv-001
ing, ensuring the timeliness and accuracy of a002
model’s knowledge is crucial. This has made003
knowledge editing in large language models in-004
creasingly important. However, existing knowl-005
edge editing methods face several challenges,006
including parameter localization coupling, im-007
precise localization, and a lack of dynamic in-008
teraction across layers. In this paper, we pro-009
pose a novel knowledge editing method called010
Knowledge Neuronal Ensemble (KNE). A011
knowledge neuronal ensemble represents a012
group of neurons encoding specific knowledge,013
thus mitigating the issue of frequent parameter014
modification caused by coupling in parameter015
localization. The KNE method enhances the016
precision and accuracy of parameter localiza-017
tion by computing gradient attribution scores018
for each parameter at each layer. During the019
editing process, only the gradients and losses020
associated with the knowledge neuronal ensem-021
ble are computed, with error backpropagation022
performed accordingly, ensuring dynamic in-023
teraction and collaborative updates among pa-024
rameters. Experimental results on three widely025
used knowledge editing datasets show that the026
KNE method significantly improves the accu-027
racy of knowledge editing and achieves, or even028
exceeds, the performance of the best baseline029
methods in portability and locality metrics.030

1 Introduction031

Real-world knowledge is constantly evolving, and032

the purpose of knowledge editing(Wang et al.,033

2024a) in large language models is to modify034

outdated or incorrect knowledge with new, accu-035

rate knowledge while minimizing negative effects036

on previously learned knowledge and capabilities.037

Current update methods for large language mod-038

els include fine-tuning(Han et al., 2024) and re-039

trieval augmentation(Gao et al., 2024).Fine-tuning040

requires high computational resources, is prone to041

over-fitting, may negatively impact other knowl- 042

edge, and often leads to catastrophic forgetting. 043

Retrieval augmentation, on the other hand, strug- 044

gles with retrieval noise, making precise editing 045

difficult, and provides only short-term, temporary 046

changes, limiting its efficiency for large-scale up- 047

dates. Knowledge editing(Yao et al., 2023) seeks 048

to empower large language models to learn con- 049

tinuously and maintain accurate knowledge, much 050

like humans who read books and newspapers daily. 051

Existing knowledge editing methods generally 052

involve two main steps(Zhang et al., 2024): pa- 053

rameter localization and parameter editing. Pa- 054

rameter localization serves as the foundation for 055

understanding the internal working mechanisms 056

of the model and for performing effective param- 057

eter editing. However, current knowledge editing 058

methods face several challenges in both localiza- 059

tion and editing: (1) Knowledge Localization 060

Coupling:Knowledge localization is often coupled, 061

meaning a single neuron may correspond to mul- 062

tiple pieces of knowledge, leading to frequent pa- 063

rameter adjustments that may destabilize the model 064

or degrade the quality of specific knowledge ed- 065

its, ultimately compromising overall performance. 066

(2) Inaccurate Knowledge Localization:Current 067

localization techniques may be inaccurate, dimin- 068

ishing the specificity and efficiency of the editing 069

process. For instance, causal tracking methods may 070

reveal significant associations between certain lay- 071

ers and specific knowledge, even when those layers 072

are not directly edited. (3) Insufficient Layer- 073

wise Dynamic Interaction for Parameter Up- 074

date:Furthermore, when editing parameters from 075

shallow to deep layers, dynamic interaction and col- 076

laborative updates between layers are often lacking, 077

which can negatively impact the final model. There- 078

fore, optimizing the knowledge editing framework 079

is crucial for improving its effectiveness. 080

Inspired by knowledge neuron(Dai et al., 2022) 081

method, we introduce a novel knowledge editing 082
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method:Knowledge Neuronal Ensemble (KNE).083

A knowledge neuronal ensemble is a collection084

of neurons that represents a set of related knowl-085

edge, addressing the problem of frequent parame-086

ter modification caused by knowledge localization087

coupling. In this method, we calculate gradient at-088

tribution scores for each parameter in each layer to089

identify all parameters that significantly contribute090

to representing specific knowledge, allowing for091

more accurate and refined parameter localization.092

During the editing process, gradients and losses093

over the knowledge neuronal ensemble are com-094

puted, and error backpropagation is applied, ensur-095

ing dynamic interaction and collaborative updates096

among the edited parameters. Experiments con-097

ducted on three widely used knowledge editing098

datasets demonstrate that KNE achieves superior099

performance. Compared to five baseline methods,100

KNE significantly improves the accuracy of knowl-101

edge editing and matches or exceeds the best base-102

line methods in portability and locality metrics,103

with some datasets showing even better results.104

Moreover, experiments indicate that editing the105

knowledge neuronal ensemble corresponding to106

the key layers of the feed-forward neural network107

(FFN) yields results comparable to those from108

previous methods that edited value layers, with109

even better locality performance. This finding en-110

riches existing assumptions about knowledge stor-111

age (Geva et al., 2021, 2022) locations and suggests112

that different parameter locations can be edited113

based on the specific editing goal to achieve opti-114

mal results.115

The contributions of this paper are as follows:116

• Knowledge Neuronal Ensemble Method:117

The concept of the "knowledge neuronal en-118

semble" is introduced, solving the problem of119

frequent parameter modification due to knowl-120

edge localization coupling.121

• More Precise and Accurate Knowledge Lo-122

calization: Gradient attribution scores are123

used to identify the parameters that have a sig-124

nificant impact on expressing specific knowl-125

edge, ensuring more accurate localization.126

• Layer-wise Dynamic Interaction for Param-127

eter Update: Gradients and losses over the128

knowledge neuronal ensemble are used for129

error backpropagation, facilitating dynamic130

information transfer across layers for collabo-131

rative parameter updates.132

• Low Computational Cost and Efficient Lo- 133

calization: By optimizing the update strategy, 134

the number of parameters that need to be mod- 135

ified is reduced to around 1% of the model’s 136

total parameters, significantly reducing com- 137

putational cost and improving localization ef- 138

ficiency. 139

2 Related Work 140

Existing knowledge editing methods can be broadly 141

categorized into two types(Yao et al., 2023): those 142

that modify model parameters and those that do 143

not. 144

Among the non-parameter-modifying methods, 145

there are two paradigm. The first is knowledge edit- 146

ing based on retrieval augmentation, which treats 147

the new knowledge as external knowledge in the 148

retrieval-augmented model,i.e.SERAC(Mitchell 149

et al., 2022b), IKE(Zheng et al., 2023), Wang 150

et al.(Wang et al., 2024b), Shi et al.(Shi et al., 151

2024), MemPrompt(Madaan et al., 2022), Murty et 152

al.(Murty et al., 2022). 153

The second involves adding extra trainable pa- 154

rameters, which are trained on the modified knowl- 155

edge dataset while the original model parameters re- 156

main unchanged,i.e.T-Patcher(Huang et al., 2023), 157

CaliNet(Dong et al., 2022), GRACE(Hartvigsen 158

et al., 2023), MELO(Yu et al., 2024). Both of them 159

leave the original model parameters unchanged, 160

leading to the model’s inability to deeply under- 161

stand or fully integrate the new knowledge. 162

Although parameter-modifying methods are 163

more challenging, they facilitate a deeper under- 164

standing of knowledge storage within the model’s 165

internal mechanisms. This enables the model to 166

better grasp the inherent nature of knowledge and 167

apply it flexibly, a focus of our research. Parameter- 168

modifying methods can also be classified into two 169

types: meta-learning-based methods and locate- 170

then-edit methods. 171

Meta-learning methods use hyper networks for 172

learning parameter updates for large language mod- 173

els (LLMs). The Knowledge Editor (KE)(Cao et al., 174

2021)utilizes a hyper network (specifically a bidi- 175

rectional LSTM) to predict the weight updates for 176

each data point, thereby achieving constrained op- 177

timization in editing target knowledge without dis- 178

rupting other knowledge. However, this approach 179

faces limitations when editing LLMs. To overcome 180

this, Model Editing Networks with Gradient De- 181

composition (MEND)(Mitchell et al., 2022a)learns 182
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to transform the fine-tuning gradients of language183

models through low-rank decomposition, achiev-184

ing better performance on LLMs. MALMEN(Tan185

et al., 2024) formulates parameter shift aggrega-186

tion as a least squares problem and updates model187

parameters using the normal equation, allowing188

for scalable editing of multiple facts with limited189

memory.190

The locate-then-edit approach first identifies the191

parameters corresponding to specific knowledge192

and modifies them by directly updating the tar-193

get parameters. The Knowledge Neuron (KN)194

method(Dai et al., 2022) introduces a knowledge at-195

tribution technique to locate "knowledge neurons"196

(key-value pairs in the FFN matrix) that embody the197

knowledge, and subsequently updates these neu-198

rons. ROME(Meng et al., 2022)employs causal199

mediation analysis to locate the editing region. Un-200

like modifying knowledge neurons in the FFN,201

ROME adjusts the entire matrix, viewing model202

editing as a least-squares problem with linear equal-203

ity constraints, solving it using Lagrange multi-204

pliers. However, both KN and ROME can only205

edit one factual association at a time. To address206

this, MEMIT(Meng et al., 2023)extends ROME,207

enabling simultaneous editing of multiple cases.208

Building on MEMIT, PMET(Li et al., 2024)intro-209

duces attention values for better performance.210

3 Method211

3.1 Preliminaries212

As in Wang et al.(Wang et al., 2024a), the edit-213

ing is performed on a relational fact that can be214

represented as a knowledge triple (s, r, o) where215

s, r, and o are the subject, relation, and object of216

the fact respectively. A single knowledge editing217

task denoted by e is to modify the weights of the218

model such that the original knowledge triple en-219

coded in the model is changed to (s, r, o∗). Since220

the context of this work is pre-trained LLMs, we221

use xe = (s, r) to represent the prompt composed222

of s and r, and substitute ye for o to represent the223

answer. Thus, a LLM with parameter ϕ can be re-224

garded as a mapping represented by f : x → y, and225

a knowledge editing task e will yield f∗ : x → y∗226

with the parameter updated to ϕ∗. It is more com-227

mon to perform multiple knowledge editing on a228

set of edits E = {e1, e2, . . .}. Let XE = ∪e∈Exe229

and YE = ∪e∈Eye. We formalize the problem of230

Knowledge Editing (KE) following the definition231

in Wang et al.(Wang et al., 2024a).232

Definition 1 The objective of knowledge editing 233

is to perform the following constrained optimiza- 234

tion: 235

min
ϕ∗

Ee∈EEx∈Xe,y∗∈Y∗
e
L(f∗(x), y∗),

s.t. f∗(x) = f(x), ∀x ∈ X \ XE .
(1) 236

where L is the loss function which quantifies the 237

deviation between the LLM output f∗(x) and y∗ 238

from the expected answer set Y∗
e . 239

For methods of Locate-Then-Edit paradigm, lo- 240

cating neurons attributed to the specific knowledge 241

triple, i.e., Knowledge Attribution, is a prerequi- 242

site. We refine the problem statement of knowledge 243

editing in this case. 244

Definition 2 The objective of Locate-Then-Edit 245

knowledge editing is to perform the following con- 246

strained optimization: 247

min
ϕ∗
k

Ee∈EEx∈Xe,y∗∈Y∗
e
L
(
f∗
ϕ̄k,ϕ

∗
k
(x), y∗

)
,

s.t. f∗
ϕ̄k,ϕ

∗
k
(x) = f(x), ∀x ∈ X \ XE ,

where ϕk = L(fϕ, E), ϕ̄k = ϕ \ ϕk.

(2) 248

Here, ϕk = L(fϕ, E) uses function L to locate 249

neurons attributed to edits E . Then, ϕ̄k represents 250

the unedited weights. 251

Definition 3 (Knowledge Neurons, KNs). 252

Given a set of edits E = {e1, . . .} where |E| ≥ 1, 253

for a L layer neural network, suppose there are 254

m neurons in layer l. If E can be attributed to k 255

neurons w(l)
j1
, . . . , w

(l)
jk

in layer l, such that the acti- 256

vation of these neurons significantly contributes to 257

E , then these neurons N(l)
E = {w(l)

j1
, . . . , w

(l)
jk
} are 258

referred to as the knowledge neurons for E in layer 259

l. 260

Definition 4 (Knowledge Neuronal Ensemble, 261

KNE). The Knowledge Neuronal Ensemble of the 262

L layers neural network for E is defined to be the 263

set of knowledge neurons in all layers, i.e., NE = 264

{N(1)
E , . . . ,N

(l)
E }. 265

3.2 Knowledge Neuronal Ensemble Method 266

To localize the Knowledge Neuronal Ensemble 267

corresponding to a set of knowledge, we use a 268

token-level gradient attribution method(Dai et al., 269

2022) to calculate gradient attribution scores for 270

the relevant parameters. Based on these scores, we 271

select and construct the Knowledge Neuronal En- 272

semble. Afterward, we freeze the parameters in 273

other locations and dynamically update only the pa- 274

rameters in the Knowledge Neuronal Ensemble to 275
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Figure 1: The framework of KNE method.

achieve coordinated optimization.The framework276

of the Knowledge Neuronal Ensemble is shown in277

Figure1.278

3.2.1 Token-level Gradient Attribution279

Method280

For a given input query x, and the correct answer281

y∗j = {y1, y2, . . . , yj}, where y∗j represents the cor-282

rect answer composed of j tokens and yj represents283

the j-th token, we define the model’s output proba-284

bility as:285

Py∗j |x(ŵ
(l)
k ) = p(y∗j |x,w

(l)
k = ŵ

(l)
k ) (3)286

Here, x is the input query, y∗j is the correct answer,287

w
(l)
k refers to the k-th neuron in the l-th layer, and288

ŵ
(l)
k represents the parameter value at location w

(l)
k .289

To extend the gradient attribution method to 290

large language models built on GPT-like architec- 291

tures, we accumulate the gradient attribution scores 292

computed for each token in the correct answer: 293

Attr(w
(l)
k ) = w

(l)
k

s∑
j=1

∫ 1

α=0

∂Py∗j |x(αw
(l)
k )

∂w
(l)
k

dα

(4) 294

Where s is the number of tokens in the correct 295

answer, and w
(l)
k is the original parameter value at 296

location w
(l)
k . 297

Since calculating the continuous gradient inte- 298

gral is computationally expensive, we apply a Rie- 299
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mann approximation as follows:300

Ãttr(w
(l)
k ) =

w
(l)
k

m

s∑
j=1

m∑
i=1

∂Py∗j |x

(
i
mw

(l)
k

)
∂w

(l)
k

(5)301

Where m represents the number of discrete steps302

used to approximate the continuous integral, reduc-303

ing computational complexity.304

3.2.2 Selection of the Knowledge Neuronal305

Ensemble306

We define Attr(w
(l)
k ) as the gradient attribution307

score of the k-th neuron in the l-th layer, and let308

d2 represent the output dimension of the l-th layer.309

To construct the Knowledge Neuronal Ensemble310

(KNE), we select the neurons with the top 1− p%311

largest gradient attribution scores. The threshold312

tp is defined as follows:313

tp = Quantile1−p({Attr(w
(l)
k ) |

k = 1, 2, . . . , d2; l = 1, 2, . . . , L}),
(6)314

where Quantile1−p refers to the quantile function315

that calculates the value corresponding to the top316

p% of the gradient attribution scores.317

Next, we define the Knowledge Neuronal En-318

semble (KNE) as the set of neuron indices that319

meet the following condition:320

N∗
E = {{k(l)} | Attr(w(l)

k ) ≥ tp,

k = 1, 2, . . . , d2; l = 1, 2, . . . , L}.
(7)321

In this way, the KNE includes all neuron indices322

with gradient attribution scores greater than or323

equal to the threshold tp, representing the top324

1− p% of neurons ranked by gradient attribution325

scores.326

3.2.3 Editing the Knowledge Neuronal327

Ensemble328

To fully utilize the localized information from the329

Knowledge Neuronal Ensemble (KNE), we pro-330

pose a Knowledge Neuronal Ensemble Editing331

method. Throughout the editing phase, gradients332

and losses are calculated across the knowledge neu-333

ronal ensemble. Subsequently, error backpropaga-334

tion is employed to facilitate dynamic interaction335

and coordinated updates among the parameters be-336

ing refined. Based on the number of neurons n in337

the Knowledge Neuronal Ensemble for each layer,338

we dynamically allocate a Knowledge Neuronal339

Ensemble parameter matrix:340

Wkne ∈ Rn×d1 (8)341

Here, n represents the number of neurons in 342

the Knowledge Neuronal Ensemble for that layer, 343

while d1 and d2 represent the input and output di- 344

mensions of the weight matrix W . 345

Since Wkne and W have different dimensions, 346

we initialize a zero matrix ∆W with the same di- 347

mensions as W , to map the updated Wkne to the 348

corresponding positions of the Knowledge Neu- 349

ronal Ensemble. The formulation is as follows: 350

∆W ∈ Rd2×d1 ,W ∈ Rd2×d1 (9) 351

352
∆W [:,Mkne] = Wkne,Mkne ∈ Nn (10) 353

Where Mkne represents the index positions of the 354

Knowledge Neuronal Ensemble within the weight 355

matrix W . The values of Mkne are natural numbers 356

less than d2, and the length of Mkne corresponds 357

to the number of neurons n in the Knowledge Neu- 358

ronal Ensemble. 359

Finally, the weight matrix W is updated to obtain 360

Ŵ using the following formula: 361

Ŵ = W +
α√
n
∆W (11) 362

To control the extent of the parameter updates, we 363

multiply ∆W by a scaling factor α√
n

, where α is a 364

hyper parameter. 365

4 Experiments 366

4.1 Experimental Setting 367

In our study, we chose the Llama2-7B-chat and 368

gpt-j-6B models as the cornerstone for knowledge 369

editing tasks. These models were selected for their 370

widespread adoption and proven efficacy. To en- 371

sure a comprehensive evaluation, we employed di- 372

verse datasets that encapsulate a broad spectrum 373

of knowledge domains, namely the ZsRE, Wiki- 374

Datacounterfact, and WikiDatarecent datasets. 375

Our assessment criteria encompassed several key 376

metrics: Edit Success, which measures the accu- 377

racy of edits; Portability, indicating how well ed- 378

its transfer across different questions; Locality, 379

assessing the precision of edit localization; and 380

Fluency, evaluating the naturalness of the edited 381

text. We benchmarked our approach against estab- 382

lished baseline methods, comprising Fine-Tuning 383

(FT), Fine-Tuning with Linear probing (FT-L), 384

AdaLoRA, ROME, and MEMIT. For an in-depth 385

exploration of these comparisons and additional 386

methodological details, please refer to Appendix 387

A. 388
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4.2 Experimental Results389

We selected the widely used Llama2-7B-chat390

model as the foundation for knowledge editing.391

To validate the generalizability of our approach,392

we utilized datasets that represent various forms393

of knowledge, including ZsRE,WikiDatarecent394

and WikiDatacounterfact. the experimental re-395

sults summarized in Table 1.Experimental findings396

across three extensively utilized knowledge editing397

datasets demonstrate that the KNE methodology398

markedly enhances the precision of knowledge edit-399

ing, while also attaining—or even surpassing—the400

levels of performance exhibited by the top base-401

line methods in terms of portability and locality402

metrics.403

Furthermore, to evaluate the effectiveness of our404

method across different models, we compared it405

with the gpt-j-6B model. The Llama2-7B-chat406

model demonstrated exceptional performance in407

handling complex knowledge editing tasks due to408

its larger parameter size and enhanced generative409

capabilities. In contrast, the gpt-j-6B model is410

favored for its lower computational resource re-411

quirements and faster response times. By compar-412

ing these two models, we gained deeper insights413

into their respective strengths and limitations in414

knowledge editing tasks.Experiments show that415

the KNE method is also applicable to the gpt-j-416

6B model.The results of these comparative experi-417

ments are summarized in Table 2.418

We evaluate several knowledge editing methods419

on a range of language models and datasets, assess-420

ing their performance across key metrics.421

4.3 Exploring the Storage Location of422

Knowledge in Large Language Models423

Exploring the storage location of knowledge in424

large language models has traditionally relied on425

the assumption that factual knowledge is stored426

in the key-value memory format within the fully427

connected layers of the FFN module, as seen in428

methods such as ROME, MEMIT and the knowl-429

edge neuron approach.430

However, we have identified several interesting431

deviations from this assumption.To analyze the pre-432

cise locations of knowledge within these models,433

we employed a gradient attribution method to calcu-434

late gradient attribution scores for each parameter435

layer in both the Self-Attention and FFN modules.436

Using these scores, we identified specific layers437

and evaluated their post-editing performance, as il-438

lustrated in Figure. 2. This analysis yielded several 439

notable conclusions: 440

• Edit Success and Portability: Editing within 441

the FFN module consistently led to supe- 442

rior Edit Success and Portability compared 443

to the Self-Attention module. Notably, the 444

value layer (mlp.down_proj) in the FFN mod- 445

ule exhibited the best overall performance. 446

However, high editing accuracy was observed 447

across various layers and modules, indicating 448

that effective edits are achieved throughout 449

the model. 450

• Locality and Fluency: For Locality and 451

Fluency, editing mapping layers—such as 452

mlp.gate_proj and mlp.up_proj in the 453

FFN module, along with self_attn.q_proj 454

in the Self-Attention module—demonstrated 455

significantly better performance than other 456

layers. 457

These findings suggest that while knowledge 458

is indeed stored in the FFN module, the specific 459

layers edited impact different performance aspects. 460

Moreover, mapping layers play a crucial role in 461

maintaining Locality and Fluency, indicating that 462

the storage and structure of knowledge are more 463

complex and distributed than initially assumed. 464

4.4 Similar Knowledge May Be Stored in 465

Similar Locations within the Model 466

Effective model editing does not require localizing 467

every knowledge element in the dataset. By local- 468

izing only 200 knowledge items—around 1/4 of 469

the total dataset—the model achieved high perfor- 470

mance. Remarkably, this partial localization strat- 471

egy outperformed full-dataset localization in both 472

Locality and overall performance. Furthermore, 473

metrics such as Edit Success, Fluency, and Porta- 474

bility showed minimal differences between using 475

the entire dataset and using just 1/4 for localization. 476

This finding significantly improves the feasibil- 477

ity of knowledge editing for practical applications 478

by reducing the computational demands of the lo- 479

calization process. In the KNE approach, calculat- 480

ing gradient attribution scores for each parameter 481

across all layers for every knowledge item is highly 482

resource-intensive, often making localization more 483

time-consuming than the editing itself. By stream- 484

lining this process and achieving a 75% reduction 485

in localization effort, the method accelerates over- 486
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Table 1: Performance Comparison of Knowledge Editing Methods Across Different Datasets

Dataset Metric FT FT-L AdaLoRA ROME MEMIT KNE

WikiData counterfact

Edit Succ. 26.78 51.12 72.14 83.21 83.41 99.02
Portability 16.94 39.07 55.17 38.69 40.09 53.88
Locality 0.29 62.51 66.78 65.4 63.68 65.09
Fluency 483.71 544.80 553.85 578.84 568.58 591.25

ZsRE

Edit Succ. 36.88 54.65 69.86 96.57 83.07 97.75
Portability 8.72 45.02 52.95 52.20 51.43 58.02
Locality 0.31 71.12 72.21 27.14 25.46 76.85
Fluency 471.29 474.18 532.82 570.47 559.72 571.93

WikiData recent

Edit Succ. 31.24 71.18 65.61 85.08 85.32 99.48
Portability 15.91 48.71 47.22 37.45 37.94 63.36
Locality 3.65 63.7 55.78 66.2 64.78 37.58
Fluency 428.67 549.35 537.51 574.28 566.66 581.49

Table 2: Performance Comparison of Knowledge Editing Methods Across Different Models

Dataset Model Edit Succ. Portability Locality Fluency

WikiData counterfact Llama2-7b-chat 99.02 53.88 65.09 591.25
gpt-j-6b 99.35 49.14 52.64 597.29

ZsRE Llama2-7b-chat 97.75 58.02 76.85 571.93
gpt-j-6b 99.90 53.79 78.60 549.87

WikiData recent Llama2-7b-chat 99.48 63.36 37.58 581.49
gpt-j-6b 99.79 57.74 53.47 585.79

all workflow and enhances scalability for industrial487

applications.488

The experiment result of full dataset is shown in489

Figure. 3 in Appendix.490

The dataset, WikiDatacounterfact, derived491

from WikiData, contains numerous data points with492

inherent similarities, such as comparable classifica-493

tion topics Gueta et al.(Gueta et al., 2023). These494

similarities imply that related knowledge items are495

often stored in close model regions. Thus, local-496

izing a representative subset effectively supports497

the editing process. Further experimentation is re-498

quired to elucidate the underlying reasons for this499

behavior.500

4.5 Optimal Parameter Selection for501

Knowledge Editing502

To investigate the impact of parameter quantity on503

knowledge editing performance, a controlled ex-504

periment was conducted. Detail experiment result505

is shown in Figure. 4 in Appendix.506

Using more parameters significantly enhances507

the "Edit Success" and "Portability" metrics, in-508

dicating that precise modifications lead to better509

overall performance and transferability across tasks. 510

Conversely, employing fewer parameters improves 511

the "Locality" metric, suggesting that it helps re- 512

tain the relevance of edited knowledge to its con- 513

text, resulting in more focused and localized edits. 514

The choice of parameter quantity thus influences 515

different aspects of model editing, necessitating a 516

balance based on specific requirements. 517

The results suggest a trade-off between these two 518

sets of metrics. To achieve optimal overall perfor- 519

mance, we must balance the number of parameters 520

used for editing. Thus, selecting an appropriate 521

number of parameters is crucial to achieving the 522

best overall editing performance. 523

4.6 Exploring the Capability of Batch Editing 524

Most current knowledge editing methods only han- 525

dle one or a few pieces of knowledge at a time, 526

limiting the efficiency and applicability of knowl- 527

edge editing. To evaluate whether our proposed 528

method extend to batch editing, we conducted a 529

controlled experiment, varying only the number of 530

knowledge pieces edited (i.e., the batch size). The 531

performance of our method under different batch 532
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(a) (b)

(c) (d)

Figure 2: Visualization of Knowledge Storage Deviations in Large Language Models

sizes is as shown in Figure. 5 in Appendix.533

Our method demonstrates the ability to perform534

batch knowledge editing effectively, with only mi-535

nor trade-offs as batch size increases. While Edit536

Success and Portability metrics experience some537

decline with larger batch sizes, the performance538

remains acceptable. In contrast, Locality and Flu-539

ency improve with larger batch sizes, at least ini-540

tially, showing that our method is well-suited for541

batch editing tasks.542

5 Conclusion543

This paper introduces a novel knowledge editing544

framework—the Knowledge Neurona’l Ensemble545

(KNE) localization method—to address the lim-546

itations of current knowledge editing techniques,547

including localization accuracy, editing efficiency,548

and inter-layer coordinated updates. By introduc-549

ing the concept of the Knowledge Neuronal En- 550

semble, we not only expand our understanding 551

of knowledge storage locations but also achieve 552

more precise knowledge localization and batch up- 553

dates by aggregating multiple related knowledge 554

neurons. This method enhances inter-layer inter- 555

action through a dynamic gradient propagation 556

mechanism from shallow to deep layers, improving 557

the coherence and accuracy of edits while min- 558

imizing negative impacts on overall model per- 559

formance.Experimental results demonstrate that 560

the KNE localization method outperforms main- 561

stream knowledge editing techniques across mul- 562

tiple datasets, delivering higher accuracy and sta- 563

bility in knowledge editing. It also significantly 564

reduces computational overhead and improves lo- 565

calization efficiency. 566
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Limitations567

Although the proposed Knowledge Neural En-568

semble (KNE) significantly improves knowledge569

editing performances, several limitations remain570

that warrant further exploration and optimization.571

• Generality and Scalability: While the exper-572

imental results in this paper demonstrate that573

the KNE method performs well in terms of574

accuracy and stability across multiple datasets575

and task scenarios, its generality and scala-576

bility have yet to be fully validated across577

a broader range of model architectures and578

more diverse tasks. Different types of large579

language models, particularly those with spe-580

cialized structures, may have different pat-581

terns of knowledge storage and transmission.582

Therefore, further research is needed to ex-583

plore how this method performs in these mod-584

els.585

• Theoretical Explanation of Key Layer Edit-586

ing: While this paper shows that modify-587

ing the key layer in the FFN module yields588

favorable results in terms of locality, this589

finding still requires deeper theoretical anal-590

ysis and explanation. Future studies should591

further investigate the knowledge transmis-592

sion mechanisms between different layers of593

models to systematically understand and opti-594

mize knowledge storage and editing processes,595

thereby improving the theoretical robustness596

of the method.597
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A Detailed Experimental Settings816

A.1 Baselines817

We compare against the following baseline meth-818

ods:819

• Fine-Tuning (FT): We fine-tune the820

’mlp.proj’ weights within layer 21, following821

the re-implementation by Meng et al.(Meng822

et al., 2023). We use the Adam optimizer823

with early stopping to minimize negative824

log probability. Default hyper parameters825

are used, and unconstrained fine-tuning is826

consistently applied across all experiments.827

• Fine-Tuning with Linear probing (FT-L):828

This method fine-tunes a pre-trained model by829

adding and training a linear layer on top, while830

keeping the original model weights frozen.831

This linear layer adapts the model to new832

tasks without altering the pre-trained represen-833

tations. We utilize the Adam optimizer with834

early stopping and default hyper parameters835

for training.836

• AdaLoRA(Zhang et al., 2023): AdaLoRA837

efficiently tunes large pre-trained models by838

applying small, rank-1 updates to the model839

weights. This is particularly beneficial for840

large models as it significantly reduces the 841

number of updates compared to full fine- 842

tuning. We employ AdaLoRA on specific lay- 843

ers, using a variant of the Adam optimizer and 844

default hyper parameters. 845

• ROME(Meng et al., 2022): This method 846

treats the MLP module as a key-value store 847

and adds new knowledge via rank-one modifi- 848

cation of MLP weights. We utilize the origi- 849

nal code and weights (https://github.com/ 850

EleutherAI/ROME) and retain default hyper 851

parameters. 852

• MEMIT(Meng et al., 2023): An exten- 853

sion of ROME, MEMIT incorporates mul- 854

tiple memories by modifying MLP weights 855

across several layers. We use the pub- 856

licly available code (https://github.com/ 857

facebookresearch/memit) with default hy- 858

per parameters. For GPT-J, R values range 859

from 3 to 8, and covariance statistics are de- 860

rived from 100,000 Wikitext samples. 861

A.2 Models 862

We evaluate the following language models: 863

• Llama-2-7b-chat(Touvron et al., 2023; meta 864

llama, 2023): Meta’s 7-billion parameter chat- 865

tuned model, exhibiting strong performance 866

in dialogue benchmarks. It utilizes an opti- 867

mized transformer architecture trained with 868

supervised fine-tuning (SFT) and reinforce- 869

ment learning with human feedback (RLHF). 870

• GPT-J-6B(Wang and Komatsuzaki, 2021; 871

Wang, 2021): A 6-billion parameter model 872

with 28 layers, a model dimension of 4096, 873

a feedforward dimension of 16384, and 16 874

heads (dimension 256). It uses RoPE on 64 875

dimensions per head and a 50257-token vo- 876

cabulary with BPE encoding. 877

A.3 Datasets 878

We utilize the following datasets(Wang et al., 879

2023)(https://huggingface.co/datasets/ 880

zjunlp/KnowEdit): 881

• ZsRE: A Question Answering (QA) dataset 882

using back-translation paraphrases to cre- 883

ate question equivalence sets. We use 884

the extended version (https://github. 885

com/yao8839836/zsre) and construct new 886
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locality sets following their methodol-887

ogy. Training data is sourced from888

the MEND project (https://github.com/889

eric-mitchell/mend).890

• WikiDatacounterfact: This dataset focuses891

on triplets involving prominent Wikidata enti-892

ties to mitigate issues with tail entities. Train-893

ing data consists of randomly sampled Wiki-894

data triplets, and the dataset itself serves as895

the test set.896

• WikiDatarecent: A dataset of triplets re-897

cently added to Wikidata after July 2022, used898

to evaluate the insertion of new facts into mod-899

els trained on older data.900

A.4 Metrics901

Knowledge editing affects predictions for inputs902

semantically or contextually related to the edited903

example. This sphere of influence is the editing904

scope. A successful edit modifies the model within905

the intended scope without affecting unrelated in-906

puts:907

fθe(x) =

{
ye if x ∈ I(xe, ye)
fθ(x) if x ∈ O(xe, ye)

(12)908

where:909

• fθe(x): Edited model’s prediction on input x.910

• ye: Target output for edited example xe.911

• I(xe, ye): Intended scope (inputs related to912

the edit).913

• O(xe, ye): Out-of-scope inputs (unrelated to914

the edit).915

We evaluate edits using the following metrics:916

• Edit Success (ES): Measures the model’s ac-917

curacy on the edited fact and similar inputs918

(paraphrases) . For factual datasets, we use:919

ES =
∑

(xk,y
∗
k)

⊮{argmaxyfθ′(y|xk) = y∗k}

(13)920

where xk is the updated knowledge, y∗k is the921

target output, and fθ′ is the edited model.922

• Portability (PORT): Assesses the edit’s923

impact on related knowledge, including924

alias/synonym substitution, compositional-925

ity/reasoning, and logical generalization.926

• Locality (LOC): Measures unintended 927

changes to unrelated knowledge, considering 928

both in-distribution and out-of-distribution 929

locality: 930

LOC = Exk,y
∗
k∼O(xk)⊮{fθ′(y|xk) = fθ(y|xk)}

(14) 931

where O(xk) represents unrelated knowledge, 932

fθ is the original model, and fθ′ is the edited 933

model. 934

• Fluency (FLUE): Assesses the edited model’s 935

generative capacity using the weighted aver- 936

age of bi-gram and tri-gram entropies. Lower 937

values indicate higher repetitiveness. 938

These results confirm that the Knowledge Neu- 939

ronal Ensemble (KNE) method provides excel- 940

lent and stable editing performance across different 941

datasets. It consistently delivers the best results 942

in terms of editing accuracy, while maintaining 943

high portability and locality metrics. In some cases, 944

it even outperforms previous methods in specific 945

datasets. 946

(Note: The results of the comparative knowledge 947

editing methods were sourced from the repository: 948

EasyEdit GitHub.) 949

B Figures used in experimental discussion 950
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(a) (b)

(c) (d)

Figure 3: Effects of Localized Knowledge versus Full Dataset Localization

(a) (b)

(c) (d)

Figure 4: Performance Metrics Across Varying Parameter Settings for Knowledge Editing
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(a) (b)

(c) (d)

Figure 5: Performance Metrics Across Different Batch Sizes
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