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Abstract

We present a margin-based generalization theory explaining the “grokking” phe-
nomenon (Power et al., 2022), where the model generalizes long after overfitting
to arithmetic datasets. Specifically, we study two-layer quadratic networks on
mod-p arithmetic problems, and show that solutions with maximal margin nor-
malized by ℓ∞ norm generalize with Õ(p5/3) samples. To the best of our knowl-
edge, this is the first sample complexity bound strictly better than a trivial O(p2)
complexity for modular addition. Empirically, we find that GD on unregularized
ℓ − 2 or cross entropy loss tend to maximize the margin. In contrast, we show
that kernel-based models, such as networks that are well-approximated by their
neural tangent kernel, need Ω(p2) samples to achieve non-trivial ℓ2 loss. Our the-
ory suggests that grokking might be caused by overfitting in the kernel regime of
early training, followed by generalization as gradient descent eventually leaves the
kernel regime and maximizes the normalized margin.

1 Introduction

Power et al. (2022) demonstrated an intriguing phenomenon they called “grokking” when learning
transformers on small algorithmic tasks: neural networks can find a generalizing solution long after
they have overfit to the training dataset (with poor generalization). This observation has lead to a
stream of recent works aimed at uncovering the mechanisms that can lead a network to “grok,” and
properties of the final solutions, on various algorithmic tasks.

Liu et al. (2022a) attributed the delayed generalization to the difficulty in learning the representa-
tions required for generalization. Thilak et al. (2022) showed that grokking with Adam optimizer
and without any regularization only happens after a “slingshot” explosion in the training loss. Liu
et al. (2022b) argued that grokking is linked to the weight norm of the learned solution, and can be
reproduced on other non-algorithmic tasks through changing the scale of initialization. Barak et al.
(2022) theoretically showed that a similar mechanism exists when learning parities in an online fash-
ion. Nanda et al. (2023) reverse-engineered the final weights learned by the original Transformer.
Most relatedly to our work, Gromov (2023) shows that a two-layer quadratic network with plain
gradient descent on square loss can grok modular arithmetic, and gives an analytical expression for
network weights that can solve the task.1

1Although the presented solution does solve the modular arithmetic tasks, in our experience gradient descent
did not seem to find weights compatible with this construction, contrary to claims of Gromov (2023).
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Figure 1: From left to right, 1: Change of empirical NTK2 (∥Θ̂t − Θ̂0∥F ) is minimal until after
overfitting. 2: Normalized margin3 steadily improves over training and can be used as a continuous
progress measure for grokking. 3: Smaller scale of initialization mitigates grokking, suggesting
that Grokking might be caused by a transition from kernel to feature learning regime. 4: Empirical
evaluations support a sample complexity of Õ(p5/3) for GD trained with cross-entropy loss.4

Overall, however, a theoretical understanding of why grokking occurs has remained elusive. In this
work, we present theoretical analysis for a concrete setting where grokking can be explained through
a transition from kernel regime to the feature learning regime, caused by the margin-maximization
implicit bias of GD when trained on cross-entropy loss. We prove that when initialized in the kernel
regime, networks requires Ω(p2) samples to generalize (with respect to the square loss), which leads
them to overfit the training data with poor generalization. We further prove that when cross-entropy
loss is used, the margin-maximization implicit bias of gradient descent drives it to generalize with
Õ(p5/3) data points, making the transition from overfitting to generalizing possible. Empirical
investigations suggest that this might explain grokking the modular addition task in the setting of
two-layer NNs trained with cross-entropy loss.

2 Setup

We focus on the problem of modular addition f(n,m) = n+m mod p, where p is a fixed integer
and n,m ∈ Zp. The inputs are encoded as one-hot vectors of dimension p. We model the task
of determining f(n,m) as a multi-class classification problem, using one-hot labels. Following
Gromov (2023), we use a two-layer feed-forward network with quadratic activation and no biases:

f(W,V ;x) = V (Wx)⊙2, (1)

where x ∈ R2p is the concatenation of two one-hot variables corresponding to inputs n and m,
and a⊙2 denotes the entry-wise square of a vector a. The network has h hidden units; we use
θ = vec (W,V ) for the parameters of the network, where W ∈ Rh×2p and V ∈ Rp×h are the
weight matrices for the two layers of the network. Note that f(θ;x) is a 3-homogeneous function
with respect to its parameters: letting cθ = vec (cW, cV ), we have

∀c > 0; f(cθ, x) = c3f(θ;x) for all θ and x. (2)

In all experiments, we initialize the networks according to the scheme of He et al. (2015), and
minimize the cross-entropy loss using vanilla gradient descent (full-batch, no momentum, no weight
decay). We use D = (X ,Y) to denote the full set of possible data, where X ∈ Rp2×2p and
Y ∈ Rp2×p. We randomly partition D into Dtrain (on which we train) and Dtest (used for evaluation).

3 Generalization Bound

Lyu & Li (2020) proved that gradient descent on homogeneous models with the cross-entropy (or
similar) losses, in the absence of explicit regularization, maximizes the normalized margin. Specif-
ically, although ∥θ∥ → ∞, it holds that θ/∥θ∥2 converges to a solution of the following problem

4Θ̂t is the NTK on the training data, using the network at step t: Θ̂t ≜ ∇θf(θt;Xtrain)∇θf(θt;Xtrain)
⊤.

4Normalized margin is defined as qmin(θ)/ ∥θ∥22, please refer to Equation (4) for more details.
4With θ being the parameters distributed according to PyTorch’s default initialization, we consider initial-

izations of scale Cθ where C varies in the plot.
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Figure 2: Evolution of normalized margin while training the NN with cross-entropy loss: although
there’s a large gap between overfitting and generalizing, normalized margin continuously improves
and can be used as a progress measure towards generalization.

(when a solution exists):

min
1

2
∥θ∥22 s.t. qmin(θ) ≥ 1 (3)

where qmin gives the minimum prediction margin over all training points,

qmin(θ) ≜ min
(x,y)∈Dtrain

yf(θ;x). (4)

Motivated by this implicit bias of gradient descent, we present a generalization bound for a two-
layer network with quadratic activation with parameters close to the max-margin solution,5 based
on the PAC-Bayesian framework (McAllester, 2003). Our bound is based on Lemma 1 of Neyshabur
et al. (2018), which provides a margin-based high probability generalization bound for any predictor
based on the margin loss, which is like the standard zero-one loss but counts a prediction as correct
only if it does so with a margin at least γ:

Lγ (f(θ; ·),D) ≜ P(x,y)∈D

[
f(θ;x)[y] ≤ γ +max

j ̸=y
f(θ;x)[j]

]
.. (5)

Theorem 1 (Informal). Let f : R2p → Rp be a quadratic network as described in Section 2, with
h = O(p) hidden neurons. For any δ > 0, it holds with probability at least 1− δ over the choice of
training set Dtrain of size m that, for all θ satisfying ∥W∥∞ = O(1) and ∥V ∥∞ = O(1),

L0(f,D) ≤ Lp(f,Dtrain) + Õ

(√
p5/3

m

)
. (6)

The proof of Theorem 1 is deferred to Appendix C.

Theorem 1 implies that gradient descent with cross-entropy loss has a sample complexity of Õ(p5/3)
on the modular addition problem, confirming and explaining the previous observations in Power
et al. (2022); Gromov (2023); Nanda et al. (2023); Liu et al. (2022b) and many other works on
the minimum threshold for the fraction of data used to achieve generalization. In combination with
Theorem 4.2 from Lyu & Li (2020), this gaurantees that given enough training data, gradient descent
will eventually find a generalizing solution for the modular addition problem.

The assumption of constant L∞ norm for the weights of the NN may seem too restrictive initially.
In what follows, we presnt two cases where all the assumptions of Theorem 1 are satisfied.

First, consider using AdamW with a fixed weight decay to train the NN on the modular addition
task. In Figure 3 we empirically observe that for different values of p, AdamW tends to converge to
solutions whose L∞ norm is constant, and is proportional to the inverse of the weight decay used.

Second, in Appendix B, we further present a manual construction of weights for the two-layer net-
work that satisfies all the assumptions of Theorem 1, and achieves a normalized margin of Θ

(
1
p2

)
– notably, much higher than the normalized margin of previous constructions, such as the one pre-
sented by Gromov (2023). This suggests that the solution to max-margin problem for our setup,
equation 3, has a normalized margin of at least Ω

(
1
p2

)
.

5Appendix B presents a manual construction for which these assumptions are satisfied.
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Figure 3: Evolution of the NN’s weights in terms of L∞ norm, the L∞ normalized margin, loss
and accuracy when AdamW with a weight decay of 0.5 is used to train the network. The amount
of training data used for each experiment is 2p5/3, which leads to generalizartion as predicted by
Theorem 1.
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Figure 4: Evolution of the empirical NTK while training the NN with cross-entropy loss: although
NTK changes during the overfitting phase of training, the change in NTK after generalization is
orders of magnitude larger, implying a plausible transition from "kernel" to "rich" regime.

4 Why does grokking happen?

Theorem 1 establishes that, eventually, gradient descent will find a generalizing solution on this
problem. It alone, though, does not explain the main surprise of grokking: that this occurs quite
abruptly, long after overfitting to the dataset.

We will now argue that grokking might be caused by transitioning from the “kernel regime,” where
the neural network can be well-approximated by a kernel model, to the “feature-learning regime,”
where this is not true. With certain initialization schemes, gradient descent in wide networks follows
a kernel regime at least for some time (Jacot et al., 2018; Arora et al., 2019; Lee et al., 2019; Chizat
et al., 2019; Yang & Hu, 2021), but eventually the margin-maximization bias may lead to a departure
from the kernel regime.

We first define the first-order Taylor expansion as f̂i(θ;x) ≜ fi(θ0;x) + ⟨∇fi(θ0;x), θ − θ0⟩. For
simplicity, we focus on the case where the number of hidden neurons is sufficiently large and the
Neural Tangent Kernel K(x, x′) ≜ ⟨∇f0(θ0;x),∇f0(θ0;x

′)⟩ converges to a fixed limit K∞(x, x′),
for each pair of x and x′. We also assume that each parameter is initialized independently from a

4



symmetric distribution, except we use the “doubling trick”6 to ensure f(θ0;x) = 0. This ensures
the kernel satisfies the permutation invariant property (see Definition 13), which plays a crucial role
in our proof. Our proof can in principle be generalized to random finite-width neural networks in
the kernel regime using results from Appendix C of Li et al. (2020).

Theorem 2 (Informal version of Theorem 15). There exist constants C > 0, such that when the
width is sufficiently large and the number of samples is m ≤ Cp2, it holds that the expectation of
the best test ℓ2 loss GD in kernel regime can achieve, is at least half of the test loss of the trivial
solution, i.e., the all-0 predictor:

Ex1,...,xn
L(f̂θt) ≥

1

2
Ex1,...,xn

L(f̂θ0). (7)

Here L(f) denotes the population ℓ2 loss of function f : R2p → Rp, and θt is the GD iterate on
loss L(f̂θ). This lower bound holds for any learning rate schedule and step t.

Theorem 2 is proved in Appendix D. This result shows that any permutation-invariant kernel method
has a sample complexity of Ω(p2) on the modular addition task, when mesaured with ℓ2 loss. Arora
et al. (2019); Lee et al. (2019) show that when the scale of the initialization of a network is large
enough, gradient descent operates in a locally-linear fashion, such that at any stage of training, the
outputs of the network being trained are similar to that of a closed-form kernel regression problem
obtained with the eNTK of the network. Hence, assuming that the network is initialized near the
kernel regime, it needs Ω(p2) samples to generalize.

Figures 1 and 4 show that in practice, our network seems to be operating “close” to the kernel regime
until shortly before generalization occurs, when the NTK changes drastically.

To further evaluate our hypothesis, in Figure 1 we change the scale of initialization, and observe that
smaller initialization scales mitigate the gap between train and test accuracy throughout the training.

5 Discussion

Theorems 1 and 2, in combination with our various empirical results, suggest that grokking on
modular arithmetic problems (at least with quadratic networks) can be explained as the transition
from the kernel regime to margin maximization.

Overall, this further supports our hypothesis that grokking is a result of natural training dynamics
of the training algorithm used that is “influenced” by different explicit or implicit regularization, as
opposed to being a direct result of different regularizations involved in training.
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A Experimental Setup

In this section we briefly explain the setup used for our experimental evaluations. In all experiments,
we have used vanilla gradient descent with cross-entropy or squared loss, depending on the context
of the experiment, for 100,000 up to 500,000 steps. To accelerate the training wih cross-entropy
loss, we use the "normalized" GD trick, where the learning rate of each step is scaled by the inverse
of the norm of the gradient:

θt+1 = θt − λ
∇θℓ(θt)

∥∇θℓ(θt)∥2
(8)

where ℓ denotes the loss function and λ denotes the learning rate. The learning rate in the presented
experiments was set to 0.1 and was kept constant during the training.

We used the JAX framework to implement and run the experiments on V100 or A100 GPU ma-
chines. To enable the computation of the empirical NTKs with limited memory requirements, we
used Mohamadi et al. (2023)’s pseudo-NTK approximation.

B Construction

In this section, we present a construction of weights that interpolates the dataset. We begin by
constructing 8 matrices of size p× 2p denoted by W (i).

W
(1)
k,(n,m) =

(
cos
(

2πk
p n

)
+cos

(
2πk
p m

))
W

(2)
k,(n,m) =

(
cos
(

2πk
p n

)
− cos

(
2πk
p m

))
W

(3)
k,(n,m) =

(
sin
(

2πk
p n

)
+sin

(
2πk
p m

))
W

(4)
k,(n,m) =

(
sin
(

2πk
p n

)
− sin

(
2πk
p m

))
W

(5)
k,(n,m) =

(
sin
(

2πk
p n

)
+cos

(
2πk
p m

))
W

(6)
k,(n,m) =

(
sin
(

2πk
p n

)
− cos

(
2πk
p m

))
W

(7)
k,(n,m) =

(
cos
(

2πk
p n

)
+sin

(
2πk
p m

))
W

(8)
k,(n,m) =

(
− cos

(
2πk
p n

)
sin
(

2πk
p m

))

(9) Vq,k =



+cos
(

2πk
p q
)

− cos
(

2πk
p q
)

− cos
(

2πk
p q
)

+cos
(

2πk
p q
)

+sin
(

2πk
p q
)

− sin
(

2πk
p q
)

+sin
(

2πk
p q
)

− sin
(

2πk
p q
)



⊤

.

(10)

The construction of the first layer is to stack W (i) for i ∈ [1, 8] to construct W ∈ R8p×2p. The
weights of the second layer are given in Equation (10).

To show that this construction solves the modular addition problem analytically, we will analytically
perform the inference step for two arbitrary inputs n,m. We denote h(x) = (Wx)2 ∈ R8p as the
post-activations of the first layer, which is given by (after dropping x for simplicity)

h8k:8(k+1) =



cos
(

2πk
p n

)
+ cos

(
2πk
p m

)
cos
(

2πk
p n

)
− cos

(
2πk
p m

)
sin
(

2πk
p n

)
+ sin

(
2πk
p m

)
sin
(

2πk
p n

)
− sin

(
2πk
p m

)
sin
(

2πk
p n

)
+ cos

(
2πk
p m

)
sin
(

2πk
p n

)
− cos

(
2πk
p m

)
cos
(

2πk
p n

)
+ sin

(
2πk
p m

)
cos
(

2πk
p m

)
− sin

(
2πk
p n

)



2

. (11)
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Note that for each k, we have that

h8k − h8k+1 = cos

(
2πk

p
2n

)
+ cos

(
2πk

p
2m

)
+ 2 cos

(
2πk

p
(n+m)

)
(12)

and

h8k+2 − h8k+3 = cos

(
2πk

p
2n

)
+ cos

(
2πk

p
2m

)
− 2 cos

(
2πk

p
(n+m)

)
(13)

and

h8k+4 − h8k+5 = 4 sin

(
2πk

p
n

)
cos

(
2πk

p
m

)
(14)

and

h8k+6 − h8k+7 = 4 cos

(
2πk

p
n

)
sin

(
2πk

p
m

)
. (15)

Hence,

h8k − h8k+1 − h8k+2 + h8k+3 = 4 cos

(
2πk

p
(n+m)

)
(16)

and

h8k+4 − h8k+5 + h8k+6 − h8k+7 = 4 sin

(
2πk

p
(n+m)

)
. (17)

Using the fact that cos(a− b) = cos(a) cos(b)− sin(a) sin(b), we can see that

⟨Vq,:, h(x)⟩ = 4

p−1∑
k=0

cos

(
2πk

p
q

)
cos

(
2πk

p
(n+m)

)
− sin

(
2πk

p
q

)
sin

(
2πk

p
(n+m)

)

= 4

p−1∑
k=0

cos

(
2πk

p
(m+ n− q)

)
= 4p δ ((m+ n− q) mod p = 0)

(18)

where the last equality follows from Euler’s identity.
Remark 3. We need at most 4p hidden neurons to interpolate the modular addition task.

Observing the fact that cos(2π − a) = cos(a), we can see that

p−1∑
k=0

cos

(
2πk

p
(m+ n− q)

)
= 1 + 2

⌊p/2⌋∑
k=1

cos

(
2πk

p
(m+ n− q)

)
(19)

where we replaced cos
(

2π0
p (m+ n− q)

)
with 1. Based on Equation (19), we can cut out half

of the weights of the first and second layer, and only construct the frequencies up to ⌊p/2⌋, which
results in only needing 4p hidden neurons to construct the interpolating solution.

C Margin-Based Generalization Bound

We begin by providing some background and notation on sub-exponential random variables, which
will be later used in the proof of our margin-based generalization bound.

C.1 Background on sub-exponential variables

The following proofs rely heavily on concentration inequalities for sub-exponential random vari-
ables; we will first review some background on these quantities.

A real-valued random variable X with mean µ is called sub-exponential (see e.g. Wainwright, 2019)
if there are non-negative parameters (ν, α) such that

E[eλ(X−µ)] ≤ e
ν2λ2

2 for all |λ| < 1

α
. (20)
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Figure 5: Normalized margin for different values of p after training with ce loss for 500,000 steps
of normalized GD.

We use X ∼ SE(ν, α) to denote that X is a sub-exponential random variable with parameters
(ν, α), but note that this is not a particular distribution.

One famous sub-exponential random variable is the product of the absolute value of two stan-
dard normal distributions, zi ∼ N (0, 1), such that the two factors are either independent (X1 =
|z1||z2| ∼ SE(νp, αp) with mean 2/π) or the same (X2 = z2 ∼ SE(2, 4) with mean 1). We now
present a few lemmas regarding sub-exponential random variables that will come in handy in the
later subsections of the appendix.

Lemma 4. If a random variable X is sub-exponential with parameters (ν, α), then the random
variable sX where s ∈ R+ is also sub-exponential with parameters (sν, sα).

Proof. Consider X ∼ SE(ν, α) and X ′ = sX with E[X ′] = sE[X], then according to the defini-
tion of a sub-exponential random variable

E [exp (λ(X − µ))] ≤ exp(
ν2λ2

2
) for all |λ| < 1

α

=⇒ E
[
exp

(
λ

s
(sX − sµ)

)]
≤ exp(

ν2s2 λ2

s2

2
) for all |λ

s
| < 1

sα

λ′=λ
s====⇒ E [exp (λ′(X ′ − µ′))] ≤ exp(

ν2s
2
λ′2

2
) for all |λ′| < 1

sα

(21)

Defining α′ = sα and ν′ = sν we recover that X ′ ∼ SE(sν, sα).

Proposition 5. If the random variables Xi for i ∈ [1 − N ] for N ∈ N+ are all sub-exponential

with parameters (νi, αi) and independent, then
∑N

i=1 Xi ∈ SE(
√∑N

i=1 ν
2
i ,maxi αi), and

1
N

∑N
i=1 Xi ∼ SE

(
1√
N

√
1
N

∑N
i=1 ν

2
i ,

1
N maxi αi

)
.

Proof. This is a simplification of the discussion prior to equation 2.18 of Wainwright (2019).

Proposition 6. For a random variable X ∼ SE(ν, α), the following concentration inequality holds:

Pr (|X − µ| ≥ t) ≤ 2 exp

(
−min

(
t2

2ν2
,
t

2α

))
.

Proof. Direct from multiplying the result derived in Equation 2.18 of Wainwright (2019) by a scalar.

9



Corollary 7. For a random variable X ∼ SE(ν, α), the following inequality holds with probability
at least 1− δ:

|X − µ| < max

(
ν

√
2 log

2

δ
, 2α log

2

δ

)
.

A sub-Gaussian random variable, SG(ν), is one which satisfies equation 20 for all λ, i.e. it is the
limit of SE(ν, α) as α → 0.

Proposition 8 (Chernoff bound). If X is SG(ν), then with probability at least 1 − δ, |X − µ| ≤
ν
√
2 log 2

δ .

Proposition 9 (Hoeffding’s inequality). If X1, . . . , Xn are independent variables with means µi and

each SG(νi), then |
∑n

i=1 Xi −
∑n

i=1 µi| ≤
√
2 (
∑n

i=1 ν
2
i ) log

2
δ with probability at least 1− δ.

C.2 Generalization Bound

We are now ready to state the main theorem for proving an upper bound on the number of training
points needed to generalize.

Theorem 10. Let f : R2p → Rp be a two-layer network defined in Equation (1) with h = O(p)
hidden neurons and quadratic activation, parameterized by θ = vec (W,V ) where W ∈ Rh×2p and
V ∈ Rp×h. For any δ > 0, it holds with probability at least 1 − δ over the choice of training set
Dtrain of size m that, for all θ satisfying 1) ∥W∥∞ = O(1), 2) ∥V ∥∞ = O(1) and 3)

∑h
i Vqi = 0

for all q ∈ [p],

L0(f,D) ≤ Lp(f,Dtrain) + Õ

(√
p5/3

m

)
. (22)

Proof. We’ll start by obtaining high probability bounds over the output logits of the network after
perturbing each scalar weight with N (0, σ2) noise. Let x represent the two-hot vector corresponding
to inputs m and n and fq represnet the q’th output logit of the neural network f . W̃ and Ṽ denote
the perturbation noises. Moreover, assume CV = ∥V ∥∞ and CW = ∥W∥∞ are positive constants.

f̃q (W + W̃ , V + Ṽ ;x) =
(
Vq + Ṽq

)(
(W + W̃ )x

)⊙2

= fq (W,V ;x) + Vq

(
(W̃x)⊙2 + 2Wx⊙ W̃x

)
+ Ṽq

(
(W + W̃ )x

)⊙2

(23)

Starting with the first term, we can see that

Vq

(
W̃x

)⊙2

=

h∑
i=1

Vqi

(
W̃im + W̃in

)⊙2

= 2σ2
h∑

i=1

Vqi χi

∼
√
2σ2CV SE(2

√
h, 4)

(24)

where
(
W̃im + W̃in

)⊙2

is distributed as a chi-squared random variable denoted by χi (as the sec-

ond power of sum of two i.i.d Gaussian random variables each having a variance of σ2). χ2(1) is
a sub-exponential random variable with parameters SE(2, 4) with mean 1. Based on assumption
3, we can see that the sum has a zero mean . We can further apply Corollary 7 to show that with
probability at least 1− δ1 over randomness of perturbation∣∣∣∣Vq

(
W̃x

)⊙2
∣∣∣∣ ≤ σ2 max

(
4CV

√
h log

2

δ1
, 4
√
2 log

2

δ1

)
. (25)

For the second term, we can see that
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2Vq Wx⊙ W̃x = 2

h∑
i=1

Vqi(Wim +Win)(W̃im + W̃in) = 2
√
2σ

h∑
i=1

Vqi(Wim +Win)Ni (26)

where (W̃im+W̃in) is distributed as a Gaussian with N (0, 2) parameters and is replaced with
√
2Ni

where Ni ∼ N (0, 1). Once again, we can see that this sum has a zero mean. Applying Proposition 9
on this sum we can show that with probability at least 1− δ2 over randomness of perturbation∣∣∣2Vq Wx⊙ W̃x

∣∣∣ ≤ 2σCV CWC2

√
2h log

2

δ2
(27)

where C2 is a positive constant.

Accordingly, we can decompose the second term into three sums. For the first component, we can
see that

Ṽq (Wx)
2 ∼ N

(
0, σ2

∥∥∥(Wx)
2
∥∥∥2
2

)
. (28)

Applying the Proposition 8 on this Gaussian random variable, one can see that with probability at
least 1− δ3 over randomness of perturbation∣∣∣Ṽq (Wx)

2
∣∣∣ ≤ 4σ

√
h log

2

δ3
(29)

and for the second term in the decomposition we can see that

2Ṽq Wx⊙ W̃x = 2

h∑
i=1

Ṽqi(Wim +Win)(W̃im + W̃in) ∼ 2
√
2σ2

h∑
i=1

(Wim +Win)N (1)
i N (2)

i

(30)

where N (1)
i and N (2)

i are random variables distributed as N (0, 1). Note that the sum has a zero
mean, the product of two independent Gaussian distributions can be written as the sum of two chi-
squared distributions. Applying this technique and Corollary 7 we can see that with probability at
least 1− δ4 over randomness of perturbation∣∣∣2Ṽq Wx⊙ W̃x

∣∣∣ ≤ C3CWσ2 max

(√
h log

2

δ4
, log

2

δ4

)
(31)

where C3 is a positive constant. Finally, for the last term, we can show that,

Ṽq

(
W̃x

)2
=

h∑
i=1

Ṽqi

(
W̃im + W̃in

)2
∼

√
2σ3

h∑
i=1

Niχi (32)

where χi is a random variable distributed according to χ2(1) and Ni is a random variable distributed
according to N (0, 1). The sum has mean zero. To bound this sum, we can first treat the chi-squared
variables as bounded random variables with high probability, and pull them out of the sum. Then, we
can apply the Hoeffding’s inequality to bound the sum of Gaussians. Note that for each yi ∼ χ2(1),
we have that

Pr

[
|yi − 1| < C4 max

(√
2 log

2

δ
, log

2

δ

)]
≥ 1− δ (33)

where C4 is a positive constant. Applying a union bound on all yi for i ∈ [h] we have that

Pr

[
∀i ∈ [h]; |yi − 1| < C4 max

(√
2 log

2h

δ
, log

2h

δ

)]
≥ 1− δ. (34)
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Pulling this out of the sum, we can see that

Pr

[∣∣∣∣Ṽq

(
W̃
)2

x

∣∣∣∣ ≤ √
2C ′

4σ
3 log

2h

δ

h∑
i=1

N (0, 1)

]
≥ 1− δ (35)

where C ′
4 is a positive constant. Applying Proposition 9 to bound the sum of Gaussians, we can

show that

Pr

[∣∣∣∣Ṽq

(
W̃
)2

x

∣∣∣∣ ≤ √
2C ′

4σ
3 log

2h

δ

√
2h log

2

δ′

]
≥ 1− δ − δ′. (36)

Combining the two high probability events, we can conclude that with probability at least 1 − δ5
over perturbation noise ∣∣∣∣Ṽq

(
W̃x

)2∣∣∣∣ ≤ C ′′
4 σ

3
√
h

(
log

2h

δ5

)3/2

(37)

where C ′′
4 is a positive constant.

Applying a union bound on δ1, · · · , δ5, and then another union bound on each logit, we can show
that for each x,

max
q

∣∣∣f̃q(x)− fq(x)
∣∣∣ ≤ Õ

(
√
hσ3

(
log

2h

δ

)3/2
)

(38)

with probability at least 1− δ over the perturbation noise.

Since p is the margin of solution achieved with W,V , applying Lemma 1 from Neyshabur et al.
(2018) with σ2 = h

1
3 concludes the proof.

Proposition 11. Condition 3 from Theorem 10 which implies that ∀q,
∑h

i=1 Vqi = 0 is not neces-
sary.

Proof. Assume we have a network with weights θ = (W,V ) that satisfies all conditions of Theo-
rem 10 except ∀q,

∑h
i=1 Vqi = 0. We can construct a new network with weights θ′ = (W ′, V ′)

such that W ′ =

[
W
W

]
and V ′ = [V −V ]. This network has the same outputs as the original

one with parameters θ, while each row in V ′ has a zero sum. Hence, Theorem 10 shows that the
constructed network follows the provided genearlization bound, which subsequently shows that the
original network with parameters θ does so too, since the outputs of these two networks are exactly
identical.

D Kernel-Based Generalization Bound

In this section we present the formal version of Theorem 2 alongside a proof of it. Note that a kernel-
based predictor h on a training data {(xi, yi)}ni=1 can be expressed as h(x) =

∑n
i=1 λiK(xi, x)

where λi; i∈ [n] are constants. Assuming that the kernel’s feature maps are of dimension d, the pre-
dictions are linear combinations of d-dimensional feature maps. We first present a general proof that
every permutation invariant kernel requires Ω(p2) training points to outperform the null predictor in
terms of ℓ2 loss, and then show that this theorem applies to the distribution of empirical NTKs at
initialization.
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Notations: We use [p] to denote the set {1, . . . , p}. We use Sp to denote the permutation groups
over p elements and id is the identity mapping from [p] to [p]. For any nonempty set X , a symmetric
function K : X × X → R is called a positive semi-definite kernel (p.s.d) kernel on X if for any
n ∈ N, any x1, . . . , xn and λ1, . . . , λn ∈ R, it holds that

∑n
i=1

∑n
j=1 λiλjK(xi, xj) ≥ 0. For a

subspace V of Rn and vector x ∈ Rn, we define dist(x, V ) ≜ minv∈V ∥x− v∥2.
Lemma 12. For any subspace V of Rn and vector x ∈ Rn, let {vi}mi=1 be an orthonormal basis of
V , it holds that dist2(x, V ) = ∥x∥22 −

∑m
i=1 ⟨x, vi⟩

2.

The proof of Lemma 12 is straightforward and thus omitted.

For the ease of presentation, we will use the (i, j) and ei + ej+p interchangebly for i, j ∈ [p]. For
any c ∈ [p], we define the population ℓ2 loss on the cth logit of predictor h : [p]× [p] → R as

Lc(h) ≜ Ei,j∼[p]

(
h(i, j)− 1i+j≡c(mod p)

)2
. (39)

Definition 13 (Permutation Invariant Kernels). We say a p.s.d. kernel K on [p]× [p] is permutation
invariant iff for any permutation σ1, σ2 ∈ Sp, it holds that for all i, j, k, l ∈ [p],

K((i, j), (k, l)) = K((σ1(i), σ2(j)), (σ1(k), σ2(l))).

We denote each function K(xt, ·) : [p] × [p] → R as a matrix on Rp×p by vt(·). We also define
function hc

σ1,σ2
(i, j) ≜ 1σ1(i)+σ2(j)≡c (mod p). We can view a function mapping from [p] × [p] →

R as a vector on Rp×p and define inner products and dist on the function space, i.e., ⟨h, h′⟩ ≜∑
i,j∈[p] h(i, j)h

′(i, j) and ∥h∥22 ≜ ⟨h, h⟩.
Lemma 14. For any integers p, n ≥ 1, c ∈ [p], permutation groups σ1, σ2 ∈ Sp and permutation

invariant kernel K on [p]× [p], suppose xt = (it, jt)
i.i.d.∼ Unif([p]× [p]) for each t ∈ [n], it holds

that

Ex1,...,xn
inf

λ1,...,λn∈R

∥∥∥∥∥
n∑

t=1

λtK(xt, ·)− hc
id,id

∥∥∥∥∥
2

2

= Ex1,...,xn
inf

λ1,...,λn∈R

∥∥∥∥∥
n∑

t=1

λtK(xt, ·)− hc
σ1,σ2

∥∥∥∥∥
2

2
(40)

Proof of Lemma 14. Note that xi
i.i.d.∼ Unif([p], [p]), for any permutation σ ∈ [p], we have

σ(xi)
i.i.d.∼ Unif([p], [p]). Thus we have that

Ex1,...,xn
inf

λ1,...,λn∈R

∥∥∥∥∥
n∑

t=1

λtK(xt, ·)− hc
σ1,σ2

∥∥∥∥∥
2

2

=Ex1,...,xn inf
λ1,...,λn∈R

∥∥∥∥∥
n∑

t=1

λtK((σ−1
1 (it), σ

−1
2 (jt)), ·)− hc

σ1,σ2

∥∥∥∥∥
2

2

(41)

Applying the same argument again, we have that∥∥∥∥∥
n∑

t=1

λtK((σ−1
1 (it), σ

−1
2 (jt)), ·)− hc

σ1,σ2

∥∥∥∥∥
2

2

=
∑

i,j∈[p]

n∑
t=1

(
λtK((σ−1

1 (it), σ
−1
2 (jt)), (i, j))− hc

σ1,σ2
(i, j)

)2
=
∑

i,j∈[p]

n∑
t=1

(
λtK((σ−1

1 (it), σ
−1
2 (jt)), (σ

−1
1 (i), σ−1

2 (j)))− hc
σ1,σ2

(σ−1
1 (i), σ−1

2 (j))
)2

=
∑

i,j∈[p]

n∑
t=1

(
λtK((it, jt), (i, j))− hc

id,id(i, j)
)2

=

∥∥∥∥∥
n∑

t=1

λtK(xt, ·)− hc
id,id

∥∥∥∥∥
2

2

, (42)
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which completes the proof.

Theorem 15. For any integers p, n ≥ 1, c ∈ [p] and permutation invariant kernel K on [p] × [p],

suppose xt = (it, jt)
i.i.d.∼ Unif([p]× [p]) for each t ∈ [n], it holds that

Ex1,...,xn
inf

λ1,...,λn∈R
Lc

(
n∑

t=1

λtK(xt, ·)

)
≥ 1

p

(
1− 1

p
− n

p(p− 1)

)
(43)

In other words, if n ≤ (1 − Ω(1))p2, then expected population ℓ2 loss is at least Ω(1/p) for each
coordinate c ∈ [p], which is of the same magnitude of the trivial all-zero predictor.

Proof of Theorem 15. Note that infλ1,...,λn∈R Lc (
∑n

t=1 λtK(xt, ·)) = 1
p2 dist

2(V, hc
id,id), the target

inequality Equation (43) is equivalent to Equation (44).

Ex1,...,xn
dist2(V, hc

id,id) ≥ p− 1− n

p− 1
, (44)

where V = {
∑n

t=1 λtvt | λt ∈ R} is the subspace spanned by {vt}nt=1. By Lemma 14, it holds that

Ex1,...,xndist
2(V, hc

id,id) =Eσ1,σ2∼Unif(Sp)Ex1,...,xndist
2(V, hc

σ1,σ2
) (45)

=Ex1,...,xn
Eσ1,σ2∼Unif(Sp)dist

2(V, hc
σ1,σ2

). (46)

Now we claim that for any n-dimensional subspace V ⊂ Rp×p, it holds that

Eσ1,σ2∼Unif(Sp)dist
2(V, hc

σ1,σ2
) ≥ p− 1− n

p− 1
. (47)

If Equation (47) holds, then Equation (44) holds and we are done. Below we will prove Equa-
tion (47). We define V ′ = V + {λ01[p]×[p] | λ ∈ R} as a larger subspace containing V and the
constant function 1[p]×[p], where for any i, j ∈ [p], it holds that 1[p]×[p](i, j) = 1. By definition of
V ′, we have

Eσ1,σ2∼Unif(Sp)dist
2(V, hc

σ1,σ2
) ≥ Eσ1,σ2∼Unif(Sp)dist

2(V ′, hc
σ1,σ2

), (48)

where v′0 = 1
p1[p]×[p] and {v′t}nt=0 are a orthonormal basis of V ′. Clearly

〈
v′0, h

c
σ1,σ2

〉
= 1,∥∥∥hc

id,id

∥∥∥2
2
= p. Thus by Lemma 12, it holds that

Eσ1,σ2∼Unif(Sp)dist
2(V, hc

σ1,σ2
) (49)

=Eσ1,σ2∼Unif(Sp)(
∥∥hc

σ1,σ2

∥∥2
2
−

n∑
t=0

〈
v′t, h

c
σ1,σ2

〉2
)

=Eσ1,σ2∼Unif(Sp)(p− 1−
n∑

t=1

〈
v′t, h

c
σ1,σ2

〉2
)

≥p− 1− n · sup
∥v∥=1,⟨v,1[p]×[p]⟩=0

Eσ1,σ2∼Unif(Sp)

〈
v, hc

σ1,σ2

〉2
,

(50)

where the last step is because the subspace V ′ only depends on x1, . . . , xn but not σ1, σ2. Further
note that hc

σ1,σ2
(i, j) = 1 ⇐⇒ σ1(i) + σ2(j) ≡ c (mod p) ⇐⇒ j ≡ σ−1

2 (c − σ1(i)) and
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σ−1
2 ◦ (c− σ1) is also uniformly distributed in Sp for any c ∈ [p], we have that

Eσ1,σ2∼Unif(Sp)

〈
v, hc

σ1,σ2

〉2
=Eσ∼Unif(Sp)

∑
i∈[p]

v(i, σ(i))

2

=Eσ∼Unif(Sp)

∑
i∈[p]

v2(i, σ(i)) +
∑

i,j∈[p]
i ̸=j

v(i, σ(i))v(j, σ(j))

=
1

p

∑
i,j∈[p]

v(i, j)2 +
1

p(p− 1)

∑
i,j,k,l∈[p]
i̸=k,j ̸=l

v(i, j)v(k, l)

≤1

p

∑
i,j∈[p]

v2(i, j) +
1

p(p− 1)

 ∑
i,j∈[p]

v2(i, j) +

 ∑
i,j∈[p]

v(i, j)

2
 , (51)

where the last step is due to Lemma 16.

Therefore

sup
∥v∥=1,⟨v,1[p]×[p]⟩=0

Eσ1,σ2∼Unif(Sp)

〈
v, hc

σ1,σ2

〉2 ≤ 1

p− 1
, (52)

which completes the proof of Theorem 15.

Lemma 16. For any v ∈ Rp×p, we have that

∑
i∈[p]

∑
j∈[p]

vi,j

2

+
∑
j∈[p]

∑
i∈[p]

vi,j

2

+
∑

i,j,k,l∈[p]
i ̸=k,j ̸=l

vi,jvk,l =
∑

i,j∈[p]

v2i,j +

 ∑
i,j∈[p]

vi,j

2

. (53)

Proof of Lemma 16. Proof of this lemma is straightforward from applying the multinomial theorem.
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