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ABSTRACT

Research on multi-modal contrastive learning strategies for audio and text has
rapidly gained interest. Contrastively trained Audio-Language Models (ALMs),
such as CLAP, which establish a unified representation across audio and language
modalities, have enhanced the efficacy in various subsequent tasks by providing
good text aligned audio encoders and vice versa. These improvements are evi-
dent in areas like zero-shot audio classification and audio retrieval, among others.
However, the ability of these models to understand natural language and temporal
relations is still a largely unexplored and open field for research. In this paper,
we propose to equip the multi-modal ALMs with temporal understanding without
loosing their inherent prior capabilities of audio-language tasks with a temporal
instillation method TeminAL. We implement a two-stage training scheme Temi-
nAL A & B, where the model first learns to differentiate between multiple sounds
in TeminAL A, followed by a phase that instills a sense of time, thereby enhanc-
ing its temporal understanding in TeminAL B. This approach results in an average
performance gain of 5.28% in temporal understanding on the benchmark ESC-50
dataset, while the model remains competitive in zero-shot retrieval and classifi-
cation tasks on the AudioCap/Clotho datasets. We also note the lack of proper
evaluation techniques for contrastive ALMs and propose a strategy for evaluating
ALMs in zero-shot settings. The general-purpose Zero-Shot Temporal Evaluation
(ZSTE) strategy , is used to evaluate various prior models. ZSTE demonstrates
a general strategy to evaluate all ZS contrastive models. The model trained with
TeminAL successfully outperforms current models on most downstream tasks.

1 INTRODUCTION

Audio, text, and images are among the most prevalent forms of information data. Developing models
with multi-modal capabilities is well recognized as a path forward toward artificial general intelli-
gence (Fei et al., [2022; Huang et al.l |2021)). In the field of multi-modal learning, contrastive learn-
ing has emerged as an effective strategy for training models on extensive, less-structured internet-
sourced data (Radford et al.}2021; [Liang et al., 2022; Tian et al., [2020). Contrastive learning-based
models have demonstrated exceptional adaptability across a range of related tasks, such as image
classification (Chen et al.|[2020; He et al.,|2020a), natural language processing (Gao et al.,|2021) and
speech processing (Ravanelli et al., 2020), making them a crucial area of research in multi-modal
machine learning. One notable early model in this domain is CLIP, developed by |[Radford et al.
(2021). CLIP learns the relationship between text and images, aligning them in a common latent
domain. It stands out as a groundbreaking vision-language model, enabling tasks such as generating
images from text (Rombach et al.|[2022) and formulating image captions (Mokady et al.,[2021).

Similar work on contrastive learning has been extended to other multi-modal domains, such as video-
language (Xu et al.,[2021} |Fang et al., 2021} Zhao et al., 2022; [Luo et al., 2022; |Cheng et al., 2023;
Ge et al.|[2022) and audio-language models (Elizalde et al.,[2023; [Huang et al., 2022} |Guzhov et al.,
2022} Wu et al., [2023b}; Deshmukh et al., 2023} [Wu et al.,[2023a). Contrastive models generally ex-
cel in relating different modalities through their learned embedding and performing similarity-based
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Figure 1: The overview of TeminAL where we are post—training orginal CLAP encoders f. and f,
with our TeminAL method to get f and f! after application of the two-stage training. We only train
a subset of the total weights (f! , and f% ) in both our training stages. Mathematical formualtion of
the functions are elaborated in section [3.3|and section @

retrieval tasks. These multi-context encoders integrate well with other downstream models, such as
retrieval and open-ended generation models (Ramesh et al.l 2021} |Li et al., |2022; |Yuan et al., |2021}
Singh et al.,|[2022)). However, previous authors have shown the limitations of audio-language models
in truly understanding natural language while learning the relationship between texts and audio (Wu
et al., 2023a; |Ghosh et al., [2023). Critical applications like medical procedures, assembly instruc-
tions, commercial user applications, cooking instructions, and language learning may suffer from
mistaken outputs in either text or audio settings. Wu et al.| (2023a) highlights a critical limitation
in current audio-language models (ALMs): a bias towards retrieving nouns and verbs, often at the
expense of understanding the complete sentence context. They illustrate this by training an ALM on
captions stripped of all but nouns and verbs, achieving performance comparable to or even surpass-
ing models trained on full, non-shuffled captions. This finding questions the prevailing assumption
that ALMs require holistic sentence comprehension for high performance, revealing gaps in their
compositional reasoning capabilities. Furthermore, studies such as {Thrush et al.[(2022), Ma et al.
(2023), and |Yuksekgonul et al.|(2022)) have demonstrated that models like CLIP struggle with lan-
guage reasoning despite access to extensive training datasets. These limitations arise because con-
trastive pre-training primarily emphasizes retrieval tasks, enabling strong benchmark performance
without a deep understanding of sentence composition. In response to these challenges, Ghosh et al.
(2023)) critique existing audio-retrieval benchmarks, arguing that the perceived success of ALMs
often lacks true compositional understanding. They introduce CompA-CLAP, an ALM designed
with novel contrastive training techniques to improve both language comprehension and attribution
capabilities in multiple training steps but with the same global objective of making the model di-
rectly adapt to temporality. Although the model perform well on various downstream tasks, these
approaches do not adequately address a fundamental prerequisite for compositional reasoning in au-
dio tasks: the ability to distinguish multiple sound events before attempting to establish relationships
between them. Our work emphasizes this overlooked step, proposing a framework where the model
first learns to recognize the existence of multiple sound events as a foundation for higher-level rea-
soning. Similarly [Yuan et al.| (2024); Wu et al.| (2023a) trains a contrastive learning model without
requiring to address the need of multiple sounds distinction which defeats the purpose of increasing
the interpretability of the models.

In contrast, our approach achieves this advancements within a limited computational budget, train-
ing around 10% of the total trainable parameters of the base model (here CLAP) and utilizing a
single dataset (ESC-50). Unlike prior works, such as those by (Ghosh et al) [2023 [Yuan et al.
2024 ‘Wu et al., 2023a), which rely on more expansive datasets and substantial computational re-
sources. Our focus is on developing a methodology that can effectively instill a sense of time in the
model within acceptable computational constraints, rather than on generalizing over large, diverse
datasets. Our approach detailed in section[3|and illustrated in fig. [T} modifies the contrastive training
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paradigm by introducing a multi-stage hierarchical training process. In the first stage, the model is
trained to recognize and differentiate multiple sound events. In the subsequent stage, it learns the
temporal relationships between these events, addressing limitations of prior contrastive models that
focus solely on text-audio pair similarities without incorporating temporal language dynamics. The
training objective is based on previous works of |Oord et al.| (2018) on the formulation of InfoNCE
loss and |Bagad et al.| (2023)) who explored temporal instillation in video-language models, however
we take the research forward and implement a structured, multi-step post-training process tailored
to complex temporal tasks in the audio-language domain. Our objective Comparative analysis in
section [5] demonstrates the necessity and efficacy of this approach, showing that our two-stage pro-
cess outperforms single-stage methods in enabling ALMs to comprehend audio-language modality
relationships. This work establishes a significant advancement in ALMs by addressing foundational
gaps in sound event distinction and temporal reasoning which has been overlooked in the past.

We further critique current zero-shot evaluation methods, which predominantly rely on basic
similarity-based retrieval accuracies or employ large language models (LLMs) as evaluators, both
of which have shown inherent biases and limitations (Gao et al., [2024; Jones & Steinhardtl 2023}
Stureborg et al., [2024; Wang et al., 2023)). Although previous models have been evaluated for their
robustness over time (Shocher et al., [2018} |Bau et al., 2019; Kundu et al., 2020; Huang et al., [2020;
Sun et al., 20205 Liu et al., 2021)), these assessments fail to test the models’ general language and
temporal understanding comprehensively. To bridge this gap, we propose a sequential zero-shot
evaluation method that poses increasingly complex tasks, aiming to create a general-purpose evalu-
ation framework (details discussed in algorithm 2).

Main contributions. Here are the key contributions of our work, which, to the best of our knowl-
edge, are novel and not present in current state-of-the-art models:

* Our analysis indicates that current contrastive ALMs face challenges in accurately captur-
ing temporal relationships between audio and text, as shown in table[3] highlighting an area
for potential improvement in existing models.

* We propose a two step post—training within limited compute budget scheme TeminAL:
Temporal Instillation in Audio-Language Models for multi-modal ALM models. The
method aimed towards developing temporally aware contrastive audio and text encoders
which can be employed in various close and open ended generation models as described in

section[3.4]

* We propose a scheme ZSTE: Zero Shot Temporal Evaluation of Zero-Shot evaluation for
contrastive models. The sequentially complicated evaluation strategy can be extended to
any zero-shot model as described in section .2

2 BACKGROUND AND RELATED WORK

2.1 FOUNDATION MODELS AND MULTI-MODAL TEXT-AUDIO LEARNING

The expansion of Pretrained Foundation Models (PFMs) now includes auditory (Baevski et al.,
2020), visual (Dosovitskiy et al.|[2020), text-image (Ramesh et al 2021 |[Radford et al., [2021)), and
multi-modal data (Lu et al 2019} |Akbari et al., [2021), driving multi-modal integration. Recent
work uses audio-visual contrasts for sound localization (Chen et al., 2021} 'Wu et al., [2022a)), cross-
modal retrieval (Suris et al.l [2022), and zero-shot classification (Wu et al.l [2022b; |Guzhov et al.,
2022). Audio-text models are gaining traction, including those in the DCASE competition for audio
retrieval with language (Xie et al., [2022), and PFMs have been applied in music tagging (Manco
et al.,[2022), environmental sound identification (Zhao et al.,2021; Lou et al., 2022} Mei et al., 2022}
Koepke et al.}|2022), and zero-shot tasks (Zhao et al.|2021;|Lou et al., 2022; Mei et al.,[2022;|Koepke
et al.,|2022; |Elizalde et al.,[2023)). Open-ended models (Kong et al.| 2024;|Chu et al.|[2023} Liu et al.}
2024; |Deshmukh et al.l 2023) enable QA capabilities, but our focus is on contrastive learning for
audio encoders. The trend is towards integrating language into auditory systems, with applications in
text-to-audio (Ghosal et al.| 2023} |Liu et al., 2023a; |[Huang et al., 2023)), music generation from text
(Agostinelli et al.| 2023)), and sound source separation (Liu et al., 2023b). Frameworks like CLAP
and Compa (Elizalde et al., 2023}, |Ghosh et al.| [2023) unify auditory-linguistic domains, offering
strong zero-shot performance in multimodal tasks.
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2.2  SELF-SUPERVISED LEARNING AND POST-TRAINING

Self-Supervised Learning (SSL) has revolutionized machine learning, especially in NLP and com-
puter vision (He et al.l [2020b}, Bao et al.l |2021). SSL involves training models to predict parts of
their input using other parts, leveraging the data’s inherent structure for supervision. A prominent
SSL method, Contrastive Learning, learns representations by contrasting positive and negative ex-
amples, effectively distinguishing similar and dissimilar data samples (Radford et al.| 2021} Liang
et al., [2022; [Tian et al.l |2020; |Chen et al.l 2020; He et al.| [2020a)). This approach has significantly
advanced representation learning, achieving state-of-the-art results across various domains (Chen
et al., 2020; [He et al., [2020a)).

Post-training introduces an additional self-supervised phase to existing models using a limited set
of data before downstream task evaluation, reducing the costs of initial large-scale training (Luo
et al., 2022} Xue et al., [2022)). [Luo et al.| (2022) employs static mean-pooling, whereas [Xue et al.
(2022) aligns image captions with video subtitles. In this unsupervised setting, post-training usually
fine-tunes few parameters, maintaining the core strengths of the parent model.

2.3  ZERO-SHOT INFERENCE: LIMITATIONS OF CLASSICAL ZERO-SHOT RETRIEVAL

Zero-shot inference enables models to recognize unseen classes without relying on labeled data
from each target class, unlike traditional supervised learning (Xian et al.,[2018};|Wang et al., 2020Db).
While zero-shot learning facilitates generalization to unseen classes, conventional audio-retrieval
benchmarks often lack compositional complexity, typically involving single acoustic events without
proper word order (Radford et al.| 2021; Baevski et al., [2020; |Gemmeke et al., 2017). In traditional
audio classification, models are trained on specific classes like musical genres or environmental
sounds, but zero-shot audio classification requires identifying audio samples from previously un-
seen classes. For example, a model trained on animal and vehicle sounds should also classify new
categories like “machinery” or “insects” (Wang et al.l 2020a). As illustrated in fig.[8] zero-shot clas-
sification involves encoding audio and text prompts through respective encoders and using cosine
similarity to predict classes (Harwath & Glass,[2015} Kim & Pardo, 2018)). Zero-shot audio retrieval
extends this concept by finding relevant audio clips from unseen classes based on queries, such as
retrieving “birdsong” or “ocean waves” when trained only on spoken words and ambient sounds
(Fonseca et al., 2021). As shown in fig.[9] the process involves encoding prompts and audio clips,
with cosine similarity determining the most relevant match (Chang & Yang] 2019). This approach
leverages class information to understand semantic relationships.

3 METHODOLOGY

3.1 PRELIMINARIES

Introduction to Fundamentals. Consider set
— A as the domain of audio recordings and C
0] as the set of corresponding textual transcripts

']I‘ = (contexts). For any two discrete and non-
overlapping audio clips {a;, a;} within A, let

R their relevant transcripts be {c;,c;} in C (We
use ‘c’ for transcripts to avoid confusion with

\ / 4 the time variable ‘¢’). We define an integrated

Time reversal ~ Time overlayed segment that respects the sequential order as

(@ij, cij), with a;; constructed by the opera-

Audio: 4@ g 4®q a; A a; tion [a; @ a;], which concatenates the two au-
Text : ¢ before ¢; ¢; after ¢; ¢; while ¢; dio clips as marked by the operator & which
shows the concatenation operation also shown

in fig. 2] Similarly for contexts, we first intro-
duce 7 = {m, 7,} to represent a sequential re-
lationship, where 7; can either be preceding or
succeeding as prompted by {before or after} and we define 7, for overlapping language prompt
{while}. Following which c¢;; is represented as [c; : 7¢; ¢;], merging the transcripts in a manner that
it reflects the temporal relation 7 = {7, 7, }. Later in section 3.2} we relate [a; & a;] with [a; & a;]

Figure 2: Temporal Augmentations
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using mathematical operators. It should be noted that the arrangement of a; and a; within a,;; may
vary depending on the value of 7;. The same is applicable for overlapping sounds (a;, a;), for which
the overlapping texts can be represented by [c; : 7,; ¢;], which essentially means “c; while c¢;” with
overlaid audios [a; A a;]. For simplicity, we will refer to the composite audio-text pair (a;;, ¢;;) as
(a, ), except where additional specificity is required.

3.2 DATA-PROCESSING: DESIGNING OUR TRAINING DATA.

The dataset for our post—training study was meticulously curated from publicly available audio-text
pairs, we specifically select the ESC-50 dataset for the current study. The dataset selection and pro-
cessing is descried in detail in appendix We introduce a temporal inversion operator ‘T’ and
temporal overlay operator ‘O’ to represent the transformation of audio and text training data to form
the temporally inverted samples and temporally overlapped samples as shown in equation [I] for the
temporal inversion and equation [2] for temporally overplayed samples. This function is designed to
operate on pairs of simultaneous audios (a;, a;) or transcription sequences (c;, ¢;) where sequences
in both these sets are initially non—overlapping. We show temporal addition/ concatenation of the
pair of audios by a; & a; and overlaying of the audio pair by a; A a;. Meanwhile temporal addi-
tion and overlaying of texts are shown as c;; 7¢; ¢; and c;; 7,; ¢; respectively and follows the same
convention as mentioned in section 3.1l

T(a) = T([a;; a5]) := [a; ® a;],  T(c) = T([eis ¢5]) = [ej5 725 ¢4 (1
O(a) = O([as; a5]) := [a; AN ai],  O(c) = O([ei; ¢5]) = [ej5 Tos €] 2)

It is essential to recognize that ‘T’ does not literally reverse time within the audio tracks, rather it
rearranges the sequence of events within the compiled segments. Our goal is to cultivate a model
capable of distinguishing an original audio-text pair (a, ¢) from both of its temporally inverted coun-
terpart (a,T(c)), and also (T(a),c); furthermore to contrast all of these from the overlaid text-
audio pair as (O(a), c) (which is the same as (a,O(c))). So a typical training batch would look
like B,, = {a,T(a),0(a)} for the audio and B;, = {c,T(c),0(c)} for the text. The details
for out data—preparation method is described in algorithm [3] As described earlier in section [T] we
have a hierarchical 2—stage training process TeminAL A followed by TeminAL B. The text—audio
dataset { B, ,, B:,; } is used to train TeminAL B. While the first pretraining TeminAL A, works on
learn single sounds and multiple sounds thus the input data in the batch doesn’t consists of time—
reversed data, it’s made up of B, , = {a;,a; ® a; Vi,j € {1, N} the audio and B;, = {c¢;,¢; B ¢;
Vi, j € {1, N} for the text.

3.3 PRELIMINARIES OF POST-TRAINING WITH SSL

The input texts and audios are first transformed into machine-level embeddings. Let the processed
embedding for audio be x, where z, € RF*T, with F representing frequency components (e.g.,
Mel frequency bins) and 7" indicating the number of temporal segments. The corresponding textual
data is denoted as x. for a given sample. For a batch of N text-audio pairs, the audio and corre-
sponding text are represented as {X,, X.}; = {azgf),:z:gl)} fori = 1,...,N. For simplicity, we
denote the entire collection of N pairs as { X,, X.}. Each audio segment and its corresponding text
description are processed through separate encoders: f,(.) for audio and f.(.) for text. For a batch
of size N, we have:

2 = fo@() eRY, 20 = f(al?) eRY, i=1,...,N

where z((li) and zy) represent the audio and text encodings, respectively. To evaluate the similarity

between embeddings sz) and zg), we calculate their similarity matrix as C' = = - (zcz;r ). Here,
T is a scaling constant that adjusts the logarithmic scale after applying softmax, as detailed in part
D. The similarity matrix C' is RV*¥", with N compatible pairs along the diagonal and N? — N
non-compatible pairs elsewhere. The overall objective function is defined as £ = 0.5 - (€¢¢,+(C) +
Landio(C)).where liex (C') and Lyygio (C') are computed separately for the text and audio embeddings,

o= 28 /)

SN etz =)

using cross-entropy loss. Specifically, fiex (C) = —% Zf\il log . This promotes
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joint optimization of the audio and text encoders along with their respective transformations, as
described in later sections.
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Figure 3: The overview of TeminAL B where we are post—training orginal CLAP encoders f. and
fa with our TeminAL method to get f¢ and f¢. The functions as described in section while the
objective formulation for training (f., f,) to achieve (f¢, fI) has been described in section The
“Temporal contrastive loss” for TeminAL B has been elaborated in fig.

3.4 OBIECTIVE FUNCTION FOR TEMINAL: WHAT ADDITION WE PROPOSE ON CLASSICAL
CONTRASTIVE LEARNING

We propose a multi-stage training approach, outlined in fig. |1} with two stages: TeminAL A and
TeminAL B. In TeminAL A, the model is trained to distinguish between single and multiple sounds,
while in TeminAL B, the model learns to differentiate temporally distinct sounds along with their
corresponding text labels. Both stages use contrastive learning with a modified infoNCE loss func-
tion (Oord et al.| 2018]), detailed further in this section and appendix @ the difference in training
being the training data and contrastive objective. We have already elaborated on the different train-
ing dataset and it’s formulation in section [3.2} while the detailed loss function for both stages has
been discussed in this section. Context (text) and audio encodings are processed through their re-
spective encoders, producing embeddings C, and A, as shown in fig.[3] These embeddings are used
to form a (batch x batch) matrix to identify positive and negative pairs (see Figures [)). Similar-
ity scores are calculated from these embeddings and used to compute the modified infoNCE loss
function, as described latter in the section. Logits derived from similarity scores are transformed
using a Softmax function to generate probabilities (equation [ and equation [5)), which are evaluated
with cross-entropy against true labels. The loss function is computed as the sum of text loss (L.)
and audio loss (L), which sum up to form Lg = L., + (L, ) which stands for the TeminAL
B loss. The text loss L., optimizes the selection of texts from n possible options generated by
C. (equation [3), while audio loss L, does the same for the audio embeddings (equation [7). This
dual-component loss ensures balanced training of both context (C,) and audio (A.) encoders. The
overall methodology is schematically depicted in Figure 3]

Unlike traditional contrastive loss functions that primarily reinforce true positives, our approach
modifies the infoNCE loss to make encoders more sensitive to time-reversed and overlapping sam-
ples, as shown in equation [4] and equation[5] For temporal alignment, we use an adapted version
of the InfoNCE loss function in both TeminAL A and B to distinguish the temporal sequence of
audio-text pairs. For a time-aligned audio-text pair (a, ¢), following section we design a loss
function that maintains chronological order within the pair, differing only in the loss components.
The training batch for TeminAL A is defined as B., = {B.,, B.,} for texts (single and dual stitched
audio) and B, , = {B,., B,,} for audio, following the conventions in section For TeminAL B,
the batches are B., = {B.,, B.,, B, } for texts and B,, = {By,, Ba,, B, } for audio (forward,
reversed, and time-overlaid); In general we represent batches of audio—text data by symbol B. These
batches are processed through encoders, converting them into audio and text embeddings that are
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used in subsequent stages of training. For the layout of the batches of data kindly refer to fig.[5] Fur-
thermore, our encoders are not trained from scratch; we extend our framework using a pre-existing
audio-language model comprising an audio encoder f., and a text encoder f,, shown in fig.|3|from
CLAP by |Elizalde et al.|(2023)). These pre-trained encoders are post-trained to enhance temporal ac-
curacy while maintaining baseline retrieval performance, as demonstrated in table|l} Due to limited
dataset size, selective refinement of specific layers within © = {6, ¢} is performed, as schematically
shown in fig.[T]and detailed in appendix [B.3]

Ley = Y (TNCE(24, 2) + TNCE(z4, 21(c)) + TNCE(24, 20(c))) 3)
(a,)€Bcp

To complete our model construct, in the following section we have explained the details of the loss
function mathematically in equations equation [3}-equation[9] Kindly note that, the hyperparameters
introcuded are discussed in the following section @ Earlier, we had seen the discussion on text
and audio losses (L. and L,), we now define them mathematically in the following equations. Here,
TNCE stands for Temporal Noise Contrastive Estimation, a variant of the NCE loss.

eXp(za : Zc)

TNCE(zg4, 2z.) = —1
(7, 2) o8 Zc’EBCf exp(zq - 2er) + C + C

“4)

exp(2a - Zo(c))
Zc’eBcO eXp(za . z@(c’)) + Cce

TNCE(zq, 20(c)) = —log (5)

In equation ] C°* and C® is an accumulation of negatives fashioned via time-reversal and
time—overlay respectively in equation E], and is expressed as: C° = ag, exp(zq - 21(c)) +
O, ZC’EBCT\{C} GXP(Za'zT(c')) and C° = aso(exp(za'ZQ((:)))+ata ZC’EBC\{O} eXP(Za'z@)(c'))-
While C° from equation[3]is expressed as:

C = exp(za ' zc) =+ Z exp(za ' Zc’) +as, exp(za : z’H‘(c)) +a, Z exp(za . Z’]I‘(c’))
c/EBcf\{c} c¢’€B., \{c}

(6)

The loss function is constructed in such a way that it penalises the miss-classifications among the
audio—text pairs. The loss formulations gives a handle on penalising the time-reversed samples and
time—overlayed samples with the hyper—parameters a5, and o, we present a detailed analysis on
effects of these hyper—parameters later in section [3.5] The total loss Lp for TeminAL B can then
be written with L., and L., which follows the same formulation as L.,. Detailed formulation
for L., and L,, have been provided in the supplementary section. The net loss for TeminAL B is
expressed as Lg = L., + 8(L,, ), where L, , is as follows:

Lq, = Z (TNCE(zc, za) + TNCE(27(¢), 2a) + TNCE(20(c) Za)) (7)
(a,c)EBaB

After discussing the loss formulation of TeminAL B, we have similar formulation for TeminAL A.
With necessary changes in the configuration of data within the batch (B,, and B.,) as it’s men-
tioned in the previous paragraph, kindly refer to fig. [§ for the layout of the batch. The mathematical
formulation of the contrastive loss function is described as follows and schematically shown in fig.

Lo, = >~ (TNCE(z,, za,) + TNCE(2c,, 2a,)) ®)
(T(a),T(c))E€B. ,

Lo, = > (TNCE(2,. , Zc,) + TNCE(24,, zc,)) 9)

(0(a),0(c))€Ba 4

The loss function construction and mathematical derivation of Ly = L, + 84(L,, ) for TeminAL
A is also detailed in appendix [B.3]
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Figure 4: The schematic showing Temporal Contrastive Loss for TeminAL B. On the vertical axis
we have the audio embeddings with batches of data corresponding to By, = {Ba,, Ba,, Ba, } and
text embedding batches of data corresponding to B., = {B.,, B, , Bc, } on the horizontal axis.

3.5 DETAILS ON HYPER-PARAMETERS OF THE LOSS FORMULATION

The loss function formulation introduces hyper-parameters that affect the temporal sensitivity of the
encoders. The choice of {aj,, a.,, as,, ., } and {84, 8}, which can be either O or 1, significantly
impacts the model’s behavior. For example, setting o, = 1 increases sensitivity to time-reversed
sound samples by adding the term v, exp(z, - zr(c)) to the expression Cy,. denominator of equa-
tion[6] This adjustment forces the encoders to ensure the sum of terms equals unity, which reduces
the encoding values of non-similar pairs, enhancing sensitivity to time-reversed samples and guiding
the encoders to assign lower values to dissimilar batch samples.

These coefficients also help adapt the model to different datasets. In fig. |4} these parameters ex-
tend the contrastive loss function over time: the top three sub-squares represent TNCE(z,, z.),
the middle sub-squares represent TNCE(za,zT(C)), and the last three sub-squares represent
TNCE(z4, 20(c)). The top-left quadrant shows contrastive loss on stitched pairs, with positive
(green) and negative (red) diagonal terms crucial for temporal understanding.

The key role of /3 is to increase the number of training samples, while the « coefficients enhance
sensitivity to time-reversal and overlapping sounds. When o = 0, sensitivity is nullified, but higher
values compel the encoders to refine recognition of temporal variations by minimizing the denom-
inator. Without these hyper-parameters, the loss converges similarly, but encoders learn different
relationships. Their inclusion ensures distinct sample treatment, enhancing temporal sensitivity.

4 EXPERIMENTS

4.1 BASE MODEL

We employ a pre—trained CLAP model [Elizalde et al. (2023) using transformer-based encoders:
HTSAT Chen et al.|(2022) for audio and BERT Devlin et al.|(2018)) for text, each with a projection
layer. We focuses on the final layers and projection layers of both encoders for our training. While
our TeminAL training approach is model-agnostic, we start with the CLAP model as a foundation.



Under review as a conference paper at ICLR 2025

4.2 ZSTE AND DOWNSTREAM TASKS

We construct comprehensive evaluation of our proposed method in order to satisfy our objectives
of temporal instillation. ZSTE (Zero Shot Temporal Evaluation) is our evaluation framework for
assessing contrastive models in zero-shot tasks. The implementation is discussed in algorithm[2]and
algorithm[3] ZSTE begins with basic classification on unseen classes in Task 1 (fig.[I0), progressing
to complex scenarios involving overlapping audio features and novel composite text classes in Task
2. The subtasks 2A and 2B involve the model being able to distinguish both classes and at-least
one class respectively, model which correctly understands both sounds performs well on subtask
A. The subtask 2C and 2D are similar tasks as 2A and 2B but on overlapping sounds rather than
concatenated sounds. Thus given the overlapping text-audio pair, we need compute the accuracy
of the model to detect both the audio classes in 2C and at-least one of the classes in 2D (fig. [TT).
Models which are able to distinguish multiple overlapping sounds, perform better in 2C.

ZSTE Task 3 evaluates temporal comprehension by testing sequences of interchanged acoustic
events, building on the configuration from Task 2 but now using temporal texts (fig. [I2). A model
capable of understanding temporal relationships in text will excel in this task. Task 4 (fig. [I3) as-
sesses the model’s ability to maintain focus amid irrelevant class labels, which act as noise to the
actual audio embeddings. Task 5 (fig.[T4) examines the model’s generalization to out-of-distribution
prompts, reflecting real-world complexities. Each of these three tasks includes subtasks A and B:
Subtask A requires detecting all audio classes, while Subtask B involves identifying at least one
class. These tasks test the model’s grasp of temporality and general language attribution. Models
with a robust understanding of both temporality and language generalisability will perform better.

This comprehensive approach ensures robust evaluation of the model’s zero-shot learning capabil-
ities. The primary aim is to foster model improvement rather than solely benchmark performance.
Further details on ZSTE is shown in appendix

5 RESULTS

In this section, we present the experimental results to support the claims outlined in our objectives
and discuss our key findings. The results are organized around several downstream tasks, beginning
with audio and text retrieval and progressing to an in-depth evaluation of the models’ temporal be-
havior and finally comparing various SOTA contrastive ALM models for temporal understanding.
Firstly we compare the retrieval performance of closed-ended and open-ended models on benchmark
AudioCap and Clotho dataset, as summarized in Tables E] and Our model, T-CLAP, demonstrates
superior performance across retrieval tasks, surpassing most existing models in both closed-ended
and open-ended categories. Notably, it achieves competetive state-of-the-art results for both text-
to-audio (T-A) and audio-to-text (A-T) retrieval tasks. These results underscore the effectiveness
of our contrastive training strategy, employed both during the pre-training phase of CLAP and the
subsequent fine-tuning phase using TeminAL. Our approach effectively preserves the contrastive
knowledge acquired during pre-training, ensuring strong retrieval performance. However, as men-
tioned previously in section [T} the retrieval metrics alone do not fully encapsulate the temporal
understanding capabilities of our model. To address this limitation, we conduct a rigorous Zero-
Shot Temporal Evaluation (ZSTE), which offers deeper insights into the temporal reasoning ability
of T-CLAP. The method of evaluation is further elaborated in appendix [B.4}

Firstly we try and study the model’s behaviour through the hyperparameter variations, the role of
each hypermeter is detailed in section [3.3] The results from Table [2] convey important information
on how the model captures temporal behaviour in general (across the ZSTE tasks) through our mod-
ification of the overall objective function through parametric variations and the impact of including
a multistage training objective. As mentioned in section [4.2]in Task 1, the model must excel in the
initial pre-training task, and results indicate that our training strategies prevent catastrophic forget-
ting, although increasing temporality in the objective function we observe decrease in performance
in this task we still remain well above across different tasks. Simillarly, task 2 tests multi-sound
understanding, where the two-stage TeminAL AB training significantly improves sound distinction
capabilities. Task 3 focuses on temporal reasoning, demonstrating that specific loss coefficients en-
hance the model’s ability to capture temporal relationships. Task 4 and 5 evaluates complex and
general text prompts, showing that our model outperforms the original CLAP in correctly mapping
stitched audio to appropriate text although much room for improvement is there for future models.
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Model T-A Retrieval A-T Retrieval

R@1 R@5 R@10 R@1 R@5 R@10
MMT 36.1/6.7 72.0/21.6 845/332 396/70 76.8/227 86.7/34.6
ML-ACT 339/144 69.7/36.6 82.6/499 394/162 72.0/37.6 83.9/50.2
CLAP 346/1677 702/41.1 82.0/54.1 419/20.0 73.1/449 84.6/58.7

CLAP-LAION  36.2/17.2 703/429 825/554 450/242 76.7/51.1 88.0/66.9
CompA-CLAP 36.1/16.8 78.6/43.5 90.2/56.1 47.8/23.9 83.5/50.7 90.2/67.6
T-CLAP(ours) 35.1/17.0 71.2/422 82.1/547 49.2/23.1 85.1/522 87.8/66.4

Table 1: Comparison of models on text-to-audio (T-A) and audio-to-text (A-T) retrieval tasks. Per-
formance of Text-to-Audio and Audio-to-Text retrieval on AudioCap/Clotho dataset. The values for
other models have been taken from previous publications (Ghosh et al.| 2023} |[Elizalde et al.| [2023)).

Loss—coefficients ZSTE
, Task1 Task 2 Task 3 Task 4 Task 5
g, Qe Qs Qc, d
A A B C D A B A B A B

0 0 0 0 1 7877 10.11 77.60 846 78.01 32.67 31.57 3.50 1.12  26.01 1.10

1 0 1 0 1 77.67 11.02 8320 871 81.21 4850 1820 3628 7.10 27.07 12.7
Q‘f' 0 1 0 1 1 76.54 10.11 8344 798 83.01 49.11 18.74 4038 832 28.01 15.2
= 1 1 1 1 1 76.14 1220 83.61 1144 83.2 513 2283 41.10 9.18 31.21 15.8

0 0 0 0 1 7734 3845 80.90 49.87 79.67 3422 33.12 3450 32.15 27.34 2.01
a1 0 1 0 1 7676 39.23 86.34 50.65 83.78 52.12 4245 3945 38.67 2845 14.23
<|C 0 1 0 1 1 7529 4345 85.89 59.56 84.56 50.78 2433 5278 4145 29.78 16.89
=1 1 1 1 1 7511 46.78 86.12 62.34 8545 54.56 56.78 46.23 44.89 3245 18.34

Table 2: Hyper-parameter analysis for loss coefficients {a, 8} = { as,,qc,, as,,ac, 5 }. Each Task
is defined according to appendix kindly refer this section for details on each task. Here T-B
and T-AB refers to models trained with only TeminAL B and TeminAL A + B respectively.

Our findings show that setting a,, = 0 benefits ZS-tasks with fewer confusing classes, like Task 1,
while o, = 1 improves performance in tasks with more complex classes (Tasks 4, and 5). Models
trained with a;, = 0 lack overlaid classes in the denominator, impacting how negatives are penal-
ized. Table 2]illustrates our model’s adaptability across ZSTE tasks, with key improvements noted
when using combined TeminAL A and B training. Adjusting o, and «., makes the model more
sensitive to time-reversed samples, enhancing performance in time-sensitive tasks. The T-CLAP
model sometimes struggles with sound distinction due to training focused on temporal understand-
ing, not sound separation, affecting sensitivity and overall accuracy. However, hierarchical training
with both TeminAL A and B significantly improves sound distinction and general language under-
standing tasks. This result grounds the importance of our multi-stage training method in order to
learn the temporal behavior of multiple sound as described in section

Tasks Subtasks ML-ACT CLAP CLAP-LAION CompA-CLAP T-CLAP
TeminAL B TeminaAL AB
1 A 76.12 81.22 82.5 83.0 76.14 75.11
2 A 7.2 9.59 10.1 18.4 32.20 46.78
2 B 78.1 81.00 81.3 91.6 83.61 87.12
2 C 6.5 9.39 10.0 21.3 314 62.34
2 D 71.7 80 80.4 90.8 83.2 85.45
3 A 28.01 33.27 34.93 54.5 51.3 54.56
3 B 27.5 34.29 34.6 49.87 22.83 56.78
4 A 2.2 2.4 7.56 48.71 41.1 46.23
4 B 2.0 1.98 5.45 38.74 9.18 44.89
5 A 3.0 26 26.4 36.81 31 32.45
5 B 2.5 0 0.7 18.2 15.8 18.34

Table 3: Showing the comparison of various contrastive learning models on our ZSTE tasks. The
details on each task is discussed in section [Z;Z]and further detailed in appendix EI}
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We next evaluate and compare the performance of various models on temporal understanding
through the ZSTE tasks. As shown in Table |3} T-CLAP outperforms most state-of-the-art mod-
els across a majority of tasks. Notably, T-CLAP excels in tasks 2A and 2C, as mentioned previously
section4.2] these two substasks invovle the model to distinguish multiple sounds and detecting both
the sounds. While remaining competitive in Task 1A we observe, demonstrating that our temporal
instillation approach effectively instills the model with a sense of time without significantly degrad-
ing its performance on the original pre-training tasks. Furthermore, results of Tasks 2B and 2C,
which require the model to associate multiple sounds with at least one correct class, show better
performance with larger models due to their capacity to handle complex associations. Following
the results of Task 3, we observe T-CLAP performs competitively with other models, despite those
models being specifically trained on audio-text pairs. Interestingly, these competing models achieve
strong results on Task 3 without performing as well in tasks requiring the differentiation of mul-
tiple audio sounds, such as Tasks 2B and 2C. However, all models, including T-CLAP, encounter
challenges in general language understanding tasks, such as Tasks 4 and 5. This suggests that lever-
aging a more robust pre-trained language encoder along with diversifying the dataset could further
enhance overall performance.

6 CONCLUSION

This research introduces the Temporal Instillation in Audio-Language Models, a post-training tech-
nique that enhances temporal and language understanding in Audio-Language Models (ALMs). Our
approach employs sequential inversion and temporal augmentations, effectively improving sequen-
tial discernment in ALMs. The hierarchical training strategy proves crucial, as seen in the perfor-
mance comparison between TeminAL B and TeminAL AB, highlighting the need for structured
training in complex tasks like time instillation. Our findings also demonstrate that modifying the
infoNCE loss improves model sensitivity, as shown in our parametric study (table [2). Zero Shot
Temporal Evaluation (ZSTE) results (section [5) confirm T-CLAP’s strength in zero-shot classifi-
cation and retrieval tasks, offering new evaluation insights for contrastive learning models. While
T-CLAP shows a slight decrease in traditional audio classification accuracy, it consistently outper-
forms baseline models in scenarios involving temporal relationships, demonstrating enhanced se-
quential information processing. This study opens new research directions, particularly in refining
contrastive loss for broader task optimization, paving the way for ALMs that excel in both retrieval
and complex temporal-linguistic tasks.
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A APPENDIX

B SUPPLEMENTARY SECTION

B.1 PROOF OF PROPOSITIONS
B.1.1 PROPOSITION 1 :

Contrastive models, when used for audio-text matching, do not comprehend the semantic relation-
ship between the audio and text, but rather operate by matching similar audios to similar texts based
on superficial features.

Let foudio : A — R% and fiepy : T — R? be the functions mapping audio A and text T into a
d-dimensional embedding space, respectively. The similarity score between an audio sample a and
a text sample ¢ is given by s(a,t) = foudio(@) * frext(t).

1. Contrastive models can yield high similarity scores for pairs of audio and text samples that
share similar superficial features but lack semantic congruence.

2. Contrastive models, as defined, cannot inherently discern semantic relationships between
audio and text but rely on the co-occurrence of similar features in their respective embed-
dings.

Assume a pair of audio samples a1, as and text samples t1,t2 such that a; and t1, as and ¢, are
semantically congruent but share similar superficial features with a, and ¢; respectively.

According to the model, s(aq,t;1) and s(as,t2) should be high. However, due to the shared
superficial features, s(a1,t2) and s(ag,t1) may also be high, indicating a false positive match.

This contradiction shows that the model’s high similarity score does not necessarily correspond to a
true semantic match, supporting the hypothesis.

B.2 DATASET SELECTION AND CREATION

For dataset selection and creation process we chose ESC-50 dataset. Due to its high audio quality,
adequate pre—processing, suitable length and number of samples, and its inherent robustness. Im-
portantly, we excluded datasets generated through crowd—sourcing to reduce labeling inaccuracies.
ESC-50’s assortment of 50 classes encompasses a variety of real-world sounds from natural, animal,
and human sources, making it versatile for different applications and particularly effective for zero-
shot classification tasks, which require identifying items from previously unseen categories. From
the ESC-50 dataset we get 50 pairs of Audio, Label data, these pairs are then processed according
to algorithm 2 to make a training dataset. We select two distinct sounds from the possible 50 sounds
giving us a total of 2450 pairs (a;,a;) and (¢;,t;) of sounds. For each pair we have 3 possible
configurations using keywords ‘before’ , ‘after’ and 'while’ as suggested in section[3.I] Thus our
total dataset thus becomes 7350 data pairs. For teminAL A, we only use 2450 pairs of data while
selecting either one of the audio and text from this pair. The prompt used for concatenating the texts
are ‘single sound of ¢;” and ‘combined sound of ¢; and ¢;’.

Our Sequential Inversion Approach challenges traditional contrastive learning methods, which typ-
ically align audio segments with matching text while contrasting them against unrelated pairs. This
practice, akin to a bag-of-words model, often fails to capture sequential nuances as it emphasizes dis-
tinguishing features over temporal understanding. To foster a deeper comprehension of sequences,
we introduced a novel technique for generating negative samples that share thematic elements, com-
pelling the model to focus on the order of events. This method, depicted in fig. [2] utilizes two types
of temporal augmentations “before” and “while” to enhance the model’s ability to discern sequential
information. The transformation aims to capture the dynamic interplay between the two arguments,
allowing the model to discern the original audio-transcript pair (a, ¢) from its transformed versions
(a,0(c)) and (O(a), ¢). It is applicable to concatenated audio or transcription pairs, effectuating a
temporal reordering of the components.
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Algorithm 1 Dataset Preparation and Sequential Inversion for Contrastive Learning

1: Input: Acoustic Events Dataset P — {(Audio);, (Label); };
2: Qutput: Refined Dataset for Contrastive Learning with Sequentially Inverted and Overlaid
Pairs;
Initialization:
Initialize ESC-50 dataset based on selection criteria;
Organize dataset into classes representing various sounds;
Initialize lists for positive and negative samples: Apos, Aneg, Tpos: Tnegs
for each class C in the dataset do
for each audio-text pair (a, ¢); in class C; do

9: Determine if pair (a, ¢); meets quality standards;
10: if yes then
11: Append a; to Apys and ¢; to Thos;
12: end if
13: end for

14: end for
15: Sequential Inversion and Overlay Process:
16: for each (a,c); in Apos and Ty, do

17: Generate negative samples using inversion function T;
18: Apply T(a) = [a; ® a;] and T(c) = [¢;; 7¢; ¢;] for ‘before’ and “after’ scenarios;
19: Apply overlay function O for overlapping samples: O(a) = [a; Aa;] and O(c) = [¢}; To; ¢i);
20: Append resulting samples to A,cq and Tr,cq;
21: end for
22: Template-Based Caption Generation:
23: for each positive sample cj, in T},,5 do
24: T}0s-append(convertToCaption(cy,));
25: end for
26: for each negative sample c,, in T},., do
27: T},¢q-append(convertToCaption(cy,));
28: end for
29: return Ayos, Anegs Tpos, Tnegs

AN A S

B.3 MATHEMATICAL DERIVATIONS:

In this section, we derive the loss functions used in our model, specifically focusing on the Tem-
poral Noise Contrastive Estimation (TNCE) technique. TNCE is a variant of the Noise Contrastive
Estimation (NCE) loss, adapted for temporal learning tasks. This method helps in effectively dis-
tinguishing between positive and negative samples over time. (Kindly note that we have used ‘¢’ as
text in the Mathematical derivation instead of ‘c’ as we have shown in the main paper, all the other
component remains the same. For example here we have shown batch of texts B; = {B;,, By, , By, }
instead of B, = {B,, B.,, B, }).

For the loss function L,., we define it as follows:

Lip = > (TNCE(zq, %) + TNCE(21(s), 24)) + TNCE(20(1)s 2a)) (10)
(a,t)eB

Here, TNCE(z,, 2¢), TNCE(zr(;), 24)) and TNCE(2q(), z4)) represent the temporal consistent,
temporally reversed and temporally overlap components of the TNCE loss, respectively. The func-
tion TNCE is calculated by the formula:

exp(zq - 2t)

TNCE(z,, = —1
(Z Zt) 0og Zt’eBtf exp(za . zt/) + Ctr 4 C'to

(1)

Similarly, the overlap component T NC'E,, is given by:
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Figure 5: Schematic explanation of the terms in loss function for TeminAL B. Here we show a
term (row) in the summation of L;, which is TNCE,(z,, z;) The other two terms TNCE;(z,, z;)
and TNCE;(z,, z:) of this loss function can be calculated in the similar way and will belong to
the green and pink blocks of the above schematic. Here, By, , By, and By, are the batches of texts
corresponding to time consistent, reversed and overlaid samples which compose the whole batch of
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Figure 6: Schematic explanation of the terms in loss function for TeminAL A. Here we show a term
(row) in the summation of L;, which is TNCE;(z,,, z¢,) The other term TNCE;(z,,, z:,) of this
loss function can be calculated in the similar way and will belong to the green block of the above
schematic. Here, B;, and B, are the batches of texts corresponding to single and concatenated
(double) samples which compose the whole batch of text following the same convention as shown
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eXp(za : zt)
>ven,, €xXP(za - 2p) + Cte

TNCE(z,, z;) := —log (12)

In these equations: B represents the batch of user-item pairs (a,t), where a is a user and ¢ is a
temporal context. z, and z; denote the latent representations of the user and the temporal context,
respectively. By, and By, are subsets of the batch B that serve as temporal and overlap negatives,

respectively. The constants C'r, Cte, and C*c are designed to account for additional temporal and
contextual information, enhancing the robustness of the loss function against trivial solutions. The
term C*" accounts for the influence of time-reversed negatives and is defined as:

Ot = s, exp(zu . Zl'[(t)) + a., Z exp(zu . Zn(t/)) (13)
t’€ By, \{t}

where: II(¢) denotes the time-reversed representation of the context ¢. The coefficients a, and v,
modulate the contribution of individual and cumulative time-reversed negatives, respectively. The
term C'° captures the effect of overlapping contexts, defined as:

C" = a,, (exp(2q - 2¢) + exp(2za - 2n(r))) + O, Z exp(zq - Z1(t)) (14)
t’€Bi\{o}
Here: o, and «., control the impact of single and multiple overlapping contexts.

Finally, C'*c integrates both temporal and contextual negative sampling:

Cle = exp(za : zt) + Z exp(za : zt')
veB (1)

+ | asexp(za-zne) +ae Y exp(2a- 2m()) (15)
t'eBy, \{t}

This term combines the effect of immediate and cumulative context influences, with parameters o
and o, providing tunable weights.

For the loss function L, ,, which deals with another set of temporal dynamics, we follow a similar
structure. The formulation and constants remain analogous, ensuring consistency across different
temporal modeling aspects.

L, = Z (TNCE(zq, z¢) + TNCE(21(1), 24)) + TNCE(20(t), 24)) (16)
(a,t)eB

Here, TNCE stands for Temporal Noise Contrastive Estimation, a variant of the NCE loss tailored
for temporal learning, and is calculated as:

exp(zq * 2¢)
Zf/eB,,f exp(z, - zp ) + Ctr + Cto

TNCE(z,, zt) = — log (17

explza - 21)
Zt’eBto exp(zq - 2¢/) + Cte

TNCE(zq(1), 24)) = — log (18)

In this expression, B represents the batch of (a,t) pairs, and B; is the set of text samples within
the batch that serve as temporal negatives. C? is an accumulation of negatives fashioned via time-
reversal, and is expressed as:
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Figure 7: The schematic showing Temporal Contrastive Loss for TeminAL A. On the vertical
axis we have the audio embeddings with batches of data corresponding to B,, = {B,,,Ba,}
and text embedding batches of data corresponding to B., = {B.,, B.,} on the horizontal axis.
Here, {B,., Ba,} corresponds to batch of single audio and double audio respectively and similarly
{B.,,Be,} corresponds to batch of single text and double text respectively.

Ctr = as, exp(zq - zl'l(t)) + g, Z exp(z, - zﬂ(t/)) (19)
t'€By, \{t}
C' = ay, (exp(zq - 2¢) + exp(zq - z1y))) + e, Z exp(2a - Zn(r)) 20)
t'€B\{o}

Cle = | exp(zq - 2¢) + Z exp(zq - 2zv) | +
t’GBtf\{t}

A eXp(za : ZH(t)) + o Z eXp(za : Zl'[(t’)) (21)
t'€B:, \{t}

Now we move on towards deriving the mathematical formulations for TeminAL A. Following from
our initial discussion from section@ For the loss function L, ,, we define it as follows:

LtA = Z (TNCE(ZtS s Zas) + TNCE(th7 zad,)) (22)
(T(u),T(t))eB

Here, TNCE(z;,, z4,) and TNCE(z;,, z,,) represent the temporal and overlap components of the
TNCE loss, respectively. z;_, z,, represents the text and audio samples of single samples in the
batch. And z;,, z,, represents the text and audio samples of the double or concatenated batch. The
function TNCE is calculated by the formula:
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exp(za, - 2t,)

TNCE(z,,,2:,) = —lo 23
(%a. 21.) & Zt/eBts exp(za, - z¢) + Cta (23)

Where C? the contribution of the concatenated samples to the above loss function.
Cl = Asame eXp(zad ) zH(t)) + adiff Z eXP(zad ’ zH(tﬁi)) (24)

t'€By, \{t}
The terms asqme in the above represent the concatenated samples which have one of the sounds
similar to z,_ , while cg; sy is the co—efficient used for all the concatenated samples (z,,) which

don’t have any sound similar to z,_. Next up we have similar formulation for the other half of the
TeminAL A loss function which is shown below.

Lo, = Y,  (TNCE(z,,z,) + TNCE(za,, 21,)) (25)
(0(a),0(t)EB

Finally the overall loss function for TeminAL A is composed of L;, and L,, shown as follows.
Note, We keep all our hyper—parameters set as unity for the training of TeminAL A.

La= L, +Ba(Lay) (26)

The rest of the formulation follows the same derivation scheme as what we have detailed for Temi-
nAL B in the above paragraphs.

B.4 ZERO SHOT DOWNSTREAM TASK AND DETAILS:

1. The sound of dog ' III IIIIIIIII' ’lém
2. The sound of cat ; = 2 .|||.||||,||.|,. x =
g g
3. The sound of rain & ) E
4. The sound of thunder 3 'III'“II'"'l" :*;Ep -
< Al 5
TL | T2 [ T3 | T4
AL | A2 | A3 A4
R
= g, Cosine similar « The sound of Cosine similarity
A —— 2 g A, T) i rain” @ry=—2T
- T AN+ Al T
Highest Similarity = Retrieved Audio
Highest Similarity = Dy
Correct Class : Cat st bl <52
Figure 8: Zero Shot Audio Classification Figure 9: Zero Shot Audio Retrieval

Table 4: Performance comparison on audio classification task on different datasets. For ESC-50 and
US8K we have used the prompt “The sound of a {class}” over all the 50 and 10 classes respectively.
For ESC-50 the other text prompts are from the validation set of the model.

Method ESC-50 US8K
Wav2CLIP 414 404
AudioClip 69.4 65.3
CLAP 82.6 73.2
CLAP-LAION-audio-630K 88.0 75.8
CompA-CLAP 89.1 85.7
T-CLAP (ours) 75.1 72.2
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Figure 10: Configuration of task 1
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Figure 12: Configuration of task 3
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Algorithm 2 ZSTE: Zero Shot Temporal Evaluation; evaluating Zero-Shot Temporal Classification
Capabilities for General-purpose contrastive training multi-modal models. Implementation of ZSTE
in our study is detailed in appendix also refer appendix [B.4.T|for detail on parameters.

1: Input: Dataset D, Contrastive Learning-based Model M
Output: Model evaluation scores for zero-shot tasks S
Initialization:
Load dataset D and the contrastive learning-based model M
Task 1: Basic Zero-Shot Evaluation
Evaluate model’s zero-shot capabilities on basic classification tasks 77
Measure accuracy by correct label identification for unseen classes refer algorithm[3} Acc, =
ﬁ 2icu (i = ui)
8:  Record baseline zero-shot performance Acc
9: Task 2: Zero-Shot with Overlapping Features
10:  Test model’s ability to discern overlapping or composite features 7
11:  Measure accuracy based on correct label predictions for unseen composite instances refer
algorithm Accy = ﬁ >jec L5 =y;)
12:  Record and analyze performance degradation or improvement Sy
13: Task 3: Temporal Relationship Comprehension
14:  Present model with unseen sequences Q to assess temporal relationship understanding 73
15:  Measure accuracy in identifying the correct order of events refer algorithm 3} Accy =
ﬁ > keo 1(0k = or)
16:  Evaluate against known sequences to determine zero-shot temporal comprehension Ss
17: Task 4: Resistance to Irrelevant Features
18:  Challenge model with unseen data AV that includes irrelevant features 7
19:  Determine model’s ability to ignore noise and focus on relevant zero-shot features: Accy =
Wll Yoien L =w)
20:  Assess confusion metrics and resilience to irrelevant data Sy
21: Task 5: Generalization to Novel Scenarios
22:  Evaluate model’s generalization to completely novel zero-shot scenarios 7
23:  Measure model’s performance on tasks with new contexts or relationships refer algorithm 3}
ACC5 = ﬁ ZmeX 1(g'm = ym)
24:  Test for understanding of complex temporal sequences and novel feature combinations S5
25: Conclusion:
26:  Compile and compare evaluation scores across all tasks S = {S;, Sz, S3, 84, S5}
27:  Determine model’s strengths and weaknesses in zero-shot learning
28:  Provide insights into model’s potential real-world applicability
29: return Compiled evaluation scores S, insights, and potential applications

AR AN

e Task 1 : In our initial experiment, we aimed to evaluate T-CLAP’s performance on a
straightforward classification task devoid of a temporal dimension. Our goal was to de-
termine if T-CLAP exhibited any improvement or loss of capabilities compared to CLAP
in this domain. We conducted this experiment by presenting the model with 50 distinct
prompts in the format “The sound of [class label]”, with each prompt corresponding to a
class in the ESC dataset. We then measured accuracy by assessing how often the model
correctly identified the label associated with a given audio input (refer to Figure [I0).

* Task 2 : Subsequently, we explored whether T-CLAP demonstrated enhanced abilities in
discerning two distinct sounds within a given audio clip with one of the sounds being from
the validation set. The task configuration paralleled that of Task 1, with the key difference
being that the accuracy assessment was conducted on audio clips featuring either concate-
nated or overlapping sounds (refer to Figure[IT). We measured two accuracy metrics: one
based on the model correctly identifying the two highest probabilities corresponding to the
correct labels and another based on the model selecting at least one correct class.

» Task 3 : In contrast to the preceding task, which disregarded temporality, this new exper-
iment focuses on assessing T-CLAP’s capability to accurately discern classes with their
respective temporal relationships. For this task, we presented the model with three prompts
following the same format as those encountered during training: “[class label 1] before
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[class label 2], “[class label 2] before [class label 1]”, and “[class label 1] while [class la-
bel 2]” (see Figure[12) while picking the 2 classes similar to Task 2. By exposing the model
to an audio featuring one of these three temporal combinations, we gauged its accuracy in
correctly identifying the corresponding temporal relationship within each prompt.

» Task 4 : This task represents a more challenging iteration of Task 3. Here, our objec-
tive is to challenge the model by introducing prompts that include additional class labels
not present in the audio (Figure [I3), aiming to create confusion for the model during the
evaluation process.

» Task 5 : In our final task, we aimed to push the model’s boundaries by presenting it with a

temporal prompt it had not encountered during training, assessing its ability to generalize to
novel temporal inputs. Our hypothesis was rooted in the nature of the text encoder, T5; if T-
CLAP had truly grasped the temporal nuances embedded in “before” and “while” prompts,
it should demonstrate an understanding of temporality across various prompt formats. For
testing its comprehension of the “before” temporal aspect, we provided the model with four
prompts structured as follows: “In this concatenated sound” followed by*‘The first sound is
[class label 1], “The second sound is [class label 1], “The first sound is [class label 2]”
and “The second sound is [class label 2]” (refer to Figure . In each instance, there were
two correct prompts, and we evaluated the model based on its ability to correctly identify
the combination of two prompts out of the six possible options. The model received a score
of 1 if it correctly identified both prompts and 0.5 if it identified only one.
Regarding the “while” temporality, we presented the model with 50 diverse prompts of
the form “Simultaneous sound of [class label 1] and [class label 2].” The model’s task
was to select the two correct prompts, considering the two correct classes in both possible
orderings. The same reward function was applied, scoring the model based on its accuracy
in identifying both correct prompts or one, as appropriate.

B.4.1 PARAMETER LIST FOR ALGORITHM 3

D : Dataset used for evaluation, M : Contrastive learning-based model being evaluated, S : Model
evaluation scores for zero-shot tasks, 77 : Basic classification tasks for zero-shot evaluation, U/ :
Set of unseen classes in basic classification tasks, Accy : Accuracy for basic zero-shot classification
tasks, y; : Predicted label for the i-th unseen class, y; : True label for the i-th unseen class, C : Set of
unseen composite instances in overlapping features tasks, Accy : Accuracy for zero-shot tasks with
overlapping features, §/; : Predicted label for the j-th composite instance, y; : True label for the j-th
composite instance, Sy : Performance evaluation for overlapping features tasks, Q : Set of unseen
sequences in temporal relationship comprehension tasks, Accs : Accuracy for zero-shot temporal
relationship comprehension tasks, o5 : Predicted order for the k-th sequence, oy, : True order for
the k-th sequence, S3 : Performance evaluation for temporal relationship comprehension tasks, A
: Set of unseen data including irrelevant features, Accy : Accuracy for tasks involving irrelevant
features, g; : Predicted label for the [-th instance in irrelevant features task, y; : True label for
the [-th instance in irrelevant features task, S, : Performance evaluation for resistance to irrelevant
features, 75 : Tasks for evaluating generalization to novel scenarios, X" : Set of instances in novel
scenarios, Accs : Accuracy for generalization to novel zero-shot scenarios, ¢,, : Predicted label for
the m-th instance in novel scenarios, y,, : True label for the m-th instance in novel scenarios, S5 :
Performance evaluation for generalization to novel scenarios

B.5 TRAINING DETAILS

The model is trained on NVIDIA-RTX 4060 for 14hrs (including both TeminAL A and B). A total
number of around 17.9 million parameters have been trained as detailed in table[5] The details of the
dataset for the post-training is described in appendix [B.2| while details of the training of the original
CLAP model Elizalde et al.|(2023)) is shown in table @ A total of 2450 audio—text pairs were used
for TeminAL A and a total of 7350 audio-text pairs were used for the training of TeminAL B with
a train—test split of 0.7. The batch size was selected as 256 after iterating on the size of 128, 256
and 512 as larger batches needed more iterations for convergence. Although we acknowledge that
contrastive learning models generalises well for larger batch sizes as mentioned by Radford et al.
(2021). The learning rate was chosen to be 10~%. Interestingly we found that the model trained only
with TeminAL B converged but didn’t do well on the learning as shown in fig. [I5]due to the inability
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Figure 15: Model’s performance of test dataset.

of the model to distinguish multiple sounds as explained in the section section [3.4] Thus the model
warranted a hierarchical training with both TeminAL A and TeminAL B.

Table 5: Comparison of Text and Audio Parameters

Parameter Type Text Audio
# Trainable Parameters 9,515,520 8,423,951
% of Total Parameters 8.54% 9.91%

Table 6: Original model’s (CLAP |[Elizalde et al.|(2023))) training dataset statistics

Dataset Pairs Unique audios  Unique captions
FSD50k 36,796 36,796 36,796
ClothoV2 29,646 5,929 29,646
AudioCaps 44,292 44,292 44,292
MACS 17,276 3,930 17,276
Total 128,010 90,947 128,010

B.6 BASELINE MODELS

In evaluating retrieval tasks, specifically text-to-audio and audio-to-text, we assess CompA-CLAP
alongside six other baseline models. MMT Oncescu et al.|(2021) revolutionized the task of audio re-
trieval by introducing the use of free-form natural language queries, suggesting this method is more
natural and versatile compared to traditional techniques reliant on text annotations. The research
also highlights the advantages of pre-training on a variety of audio tasks. ML-ACT |Mei et al.| (2022)
investigates the effects of distinct metric learning objectives on audio-text retrieval tasks, identifying
the NT-Xent loss as a particularly effective method that consistently performs well across various
datasets and training conditions, surpassing commonly-used triplet-based losses. Metric learning
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objectives are crucial for training cross-modal retrieval systems, as they organize data into an em-
bedding space where similar items cluster together and dissimilar ones are separated. CLAP Elizalde
et al.| (2023) presents a new framework for retrieving audio utilizing a contrastive learning objec-
tive along with dual audio encoders to bridge the gap between language and audio content. Lastly,
CLAP-LAION Wu et al.|(2023b)) offers a methodology for contrastive language-audio pre-training,
aiming to forge robust audio representations by marrying audio data with corresponding natural lan-
guage descriptions. Their model considers various audio and text encoders and enhances the model
architecture with feature fusion strategies and keyword-to-caption augmentation.

Model T-A Retrieval A-T Retrieval
R@l1 R@5 R@10 R@] R@5 R@10
Pengi 36.2/94 76.0/26.1 86.8/36.7 16.9/7.0 72871227 84.5/34.6

Qwen-Audio 39.1/162 789/458 87.1/572 38.0/16.1 73.2/233 85.0/35.1
Audio Flamingo 41.9/18.0 80.2/46.3 93.9/58.0 389/17.01 789/44.0 85.7/55.8
CLAP 346/16.7 70.2/41.1 82.0/54.1 419/200 73.1/449 84.6/58.7
T-CLAP(ours) 35.1/17.0 71.2/422 82.1/547 49.2/23.1 85.1/52.2 §87.8/66.4

Table 7: Comparison of models with open-ended generation models on Text-Audio and Audio-Text
retrieval performance on the AudioCap/Clotho dataset. The results for previous models have been
taken from (Deshmukh et al.| 2023} |[Elizalde et al., [2023). For retrieval in open-ended generation
models, we use a consistent prompt style as mentioned in (Deshmukh et al., [2023)).

B.7 EVALUATION METRICS

Our evaluation metrics are task specific, but in general they follow a similar strategy. The primary
objective of the model appears to be to determine how well it can match audio clips with their
corresponding textual descriptions. Here’s a breakdown of key elements in the code and how they
can be translated into a mathematical formulation for the evaluation section:

Algorithm 3 General calculation for accuracy in ZSTE tasks

1: Evaluation procedure

2:  Step 1: Audio Encoding

3: Encode audio inputs using the Audio Encoder A to get audio embeddings .A;

4 Ensure the embeddings are normalized to have a unit norm to maintain consistency in
comparisons

5:  Step 2: Similarity Calculation

6: Compute similarity scores between audio embeddings .A; and text embeddings 7; using a
suitable similarity metric (e.g., cosine similarity)

7: Generate a similarity matrix S where S;; represents the similarity between the i-th audio

embedding and the j-th text embedding
8:  Step 3: Probability Calculation

9: Apply the softmax function to the similarity scores to obtain probabilities p;; for each class
Sii
11:  Step 4: Classification and Accuracy Measurement
12: Determine the predicted class by selecting the class with the highest probability for each
audio input
13: §; = argmax; p;;
14: Measure accuracy by comparing predicted labels g; with ground truth labels y;: Acc; =

1 ~
T 2aieu 10 = i)
15: return Evaluation scores Accy, insights, and potential improvements
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Algorithm 4 Audio-Text Matching Evaluation with CLAP Model

Initialize CLAP model with pre-trained weights
Load dataset D = {(a;,t;)}iv,
Split dataset into training, validation, and test sets
Prepare DatalLoader for batch processing
Load wordsList from file
Set prompt as ‘this is a sound of
Create target texts y = [prompt + z for 2 in words_list]
function ONEHOTENCODE(text, wordsList)

Initialize a zero vector one HotVector € {0, 1}wordsList

for each word € wordsList do

if text starts with word then
Set one HotV ector|index of word] — 1
break
end if

end for

return oneH otV ector
: end function
. for each batch € testLoader do
Extract audio and text samples from batch
Compute audio embeddings fyugio(a;)
One-hot encode the text samples
for each ¢; in text samples do

oneHotVector <— OneHotEncode(t;, wordsList)
24: Compute text embeddings fiex(oneHotVector)
25: end for
26: Compute similarity scores s( faudio(@:), fiext(OneHotEncode(t;, wordsList)))
27: Apply softmax to get P(t;|a;)
28: Record predicted and true labels
29: end for
30: Compute accuracy:

31:  Accuracy = & SN (7 = t;)
32:  where {; = arg max;er s(a;, t) and I is used as the indicator function.
33: return accuracy
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