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ABSTRACT

Multiphase fluid dynamics, such as falling droplets and rising bubbles, are critical
to many industrial applications. However, simulating these phenomena efficiently
is challenging due to the complexity of instabilities, wave patterns, and bub-
ble breakup. This paper investigates the potential of scientific machine learning
(SciML) to model these dynamics using neural operators and foundation models.
We apply sequence-to-sequence techniques on a comprehensive dataset generated
from 11,000 simulations, comprising 1 million time snapshots, produced with a
well-validated Lattice Boltzmann method (LBM) framework. The results demon-
strate the ability of machine learning models to capture transient dynamics and
intricate fluid interactions, paving the way for more accurate and computationally
efficient SciML-based solvers for multiphase applications.

1 INTRODUCTION

Flow behavior in multiphase flow is crucial for many industrial and chemical applications. In drug
delivery, two-phase flow can be used to create uniform drug-loaded microspheres or microcapsules.
These microcapsules can provide controlled and sustained release of drugs, improving therapeutic
outcomes (Hernot & Klibanov, 2008; Sattari et al., 2020). Two-phase flows are also essential for rapid
diagnostics and biochemical applications in lab-on-a-chip technologies (Haeberle & Zengerle, 2007;
Mark et al., 2010). Discrete phase bubbles in microchannels, generated via T-junctions (Thorsen et al.
(2001)), co-flowing systems (Cramer et al., 2004), or flow-focusing techniques (Anna et al., 2003),
have a high surface-to-volume ratio, enhancing reaction efficiency and sensitivity. The shearing
forces of the continuous phase precisely control bubble size and formation, which is crucial for device
performance. By thoroughly understanding gas-liquid or liquid-liquid interactions, engineers can
optimize mixing conditions (Schwesinger et al., 1996; Stroock et al., 2002; Tice et al., 2003) to
enhance reaction rates, improve product consistency, and reduce energy consumption.

Bubbles (lighter fluid volumes moving in a denser fluid medium) and droplets (heavier fluid volumes
moving in a lighter fluid medium) play an integral role in applications such as drug delivery and
lab-on-a-chip technologies. The dynamics of droplets and bubbles exhibit significant complexity,
primarily due to phenomena such as breakup, deformation, and surface tension. Firstly, the breakup
of droplets and bubbles is a highly nonlinear and complex process governed by factors such as
viscosity ratio, density ratio, and surface tension. For example, for high inertia flows, the fast
and irregular breakup results in smaller and widely-distributed droplets; at low Reynolds numbers,
laminar flow leads to a more even breakup and larger droplets (Eggers & Villermaux, 2008). Secondly,
droplets can be deformed by shear and pressure forces. Various studies have shown that the Capillary
number (Vananroye et al., 2008; Liu et al., 2022), Atwood number (Fakhari & Rahimian, 2010; Singh,
2020), and Reynolds number (Vontas et al., 2020; Xu et al., 2020; Seksinsky & Marshall, 2021) all
have a significant impact on droplet deformation.

To better understand multiphase phenomena (both droplets and bubbles), researchers often perform
a canonical simulation/experiment called the bubble rising case (Bhaga & Weber, 1981b; Hua &
Lou, 2007; Hysing et al., 2009; Amaya-Bower & Lee, 2010; Aland & Voigt, 2012; Yuan et al., 2017;
Khanwale et al., 2023), where a bubble is placed in a higher density fluid so that the bubble moves up
due to buoyancy. Conversely, using a droplet of higher density causes the droplet to fall down due
to gravity (Yang et al., 2021; Jalaal & Mehravaran, 2012). This canonical study is essential since it
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provides insights into bubble dynamics and shape evolution, which are critical factors for optimizing
industrial processes and improving numerical models in fluid dynamics research. Nonetheless,
capturing the bubble-rising or droplet-falling phenomenon is a multiscale problem with forces acting
at different scales, ranging from microscale molecular interactions to macroscale fluid dynamics.
Therefore, high-fidelity simulations are essential to accurately resolve these interactions, particularly
at the thin interfaces where precise capturing of surface tension and interfacial dynamics is critical.

Scientific Machine Learning (SciML) represents a powerful approach for addressing multiphase flow
problems. SciML leverages the inherent physics to develop models that can learn from complex
data and produce reliable predictions (Karniadakis et al., 2021; Hassan et al., 2023; M Silva et al.,
2024). A key ingredient to training and accessing SciML solvers is a comprehensive dataset, which
MPF-Bench is an example of such a benchmark dataset. It includes wave patterns, bubble and droplet
dynamics, and breakup.

There are several approaches to using machine learning to solve scientific problems, including
Physics-Informed Neural Networks (PINNs) (Raissi et al., 2019) and neural operators (Li et al.,
2021; Raonić et al., 2023; Lu et al., 2021). However, PINNs suffer from hard convergence and high
generalization error (Rathore et al., 2024). In this paper, we focus on using neural operators and
foundation models which use supervised learning. MPF-Bench has three major features:

• Scientific machine learning evaluations: We test our dataset on several neural operators and
foundation models using the sequence-to-sequence time series concatenation technique. Our dataset
serves as a good test for these models to evaluate their ability to learn multiscale physics data.

• Extensive amount of data: Our dataset includes 11,000 simulations in 2D and 3D with over 1
million time-series snapshots. This extensive volume of data allows for robust training of SciML
models, which will help in advancing the development of accurate and reliable SciML models for
multiphase flow dynamics.

• Multiphase simulations: We conduct simulations of rising bubbles and falling droplets, solving
the Navier-Stokes equations coupled with the Allen-Cahn equation. This approach captures
considerable physical phenomena, including breakup and deformation.

Our Contributions: We summarize our main contributions below:

• Six neural operators and foundation models trained on our data i.e., predicting concentration,
velocity, and pressure solution fields using previous time solutions as input to the models. To our
knowledge, no study has evaluated the performance of neural operators and foundation models on
multiphase flows.

• Our dataset features 11,000 simulations and over 1 million time-series snapshots, with variations
in density ratio, viscosity ratio, Reynolds number, and Bond number. This extensive dataset
encompasses many phenomena, ranging from subtle surface deformations in bubble oscillations
to full bubble breakups driven by surface tension and density ratio variations. The richness and
breadth of this dataset offer deep insights into the intricate dynamics of multiphase flows, making
it a valuable resource for advancing research in this field. We provide our dataset as a benchmark
for others interested in developing and evaluating SciML models. Additional details can also be
found in our website.

2 RELATED WORK

The Stanford Multiphase Flow Database (SMFD) used in (Chaari et al., 2018), the flow experiment
dataset (Al-Dogail & Gajbhiye, 2021), and the BubbleML dataset (Hassan et al., 2023) are resources
for understanding multiphase flow dynamics.

The SMFD features 5659 measurements across a range of gas and liquid properties, pipe characteris-
tics, and operational conditions. This dataset, derived from laboratory and field sources, supports
various pipe inclinations and flow patterns. SMFD covers different flow regimes, including stratified,
slug, and annular flows. However, it does not appear publicly available, so we cannot identify the
number of individual snapshots in this dataset.

The flow experiment dataset (Al-Dogail & Gajbhiye, 2021) focuses on the effects of density, viscosity,
and surface tension on two-phase flow regimes and pressure drops in horizontal pipes. The 2904
measurements from air-liquid system experiments provide insights into fluid properties’ influence on
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Table 1: Comparison of public Multiphase Flow Datasets

Name Samples Snapshots Scope Sources Ranges of material
properties

Flow
Experiment
Dataset

2904 2904

Horizontal
pipes, effects
of density,
viscosity,
surface tension

Controlled
lab environ-
ment

ρ: [1, 1.5] gm/cc,
µ: [1, 3.1] cP,
Surface tension =
[32, 70] mN/m

BubbleML 79 7641

pool boiling,
flow boiling,
and sub-cooled
boiling

2D and 3D
Numerical
simulations
based on
Flash-X

Re = 0.0042,
ρ∗ = 0.0083,
µ∗ = 1,
Pr = 8.4,
We = 1,
Fr = [1, 100]

MPF-Bench 11000 > 1
million

Droplet and
bubble
dynamics

2D and 3D
Simula-
tions using
LBM

ρ∗ : [10, 1000],
µ∗ : [1, 100],
Bo : [10, 500],
Re : [10, 1000]

flow regimes and pressure drops. This dataset’s development of flow regimes and pressure contour
maps enhances the understanding of fluid behavior in horizontal two-phase flows.

Additionally, the BubbleML dataset (Hassan et al., 2023) is a data collection focused on multiphysics
phase change phenomena generated through physics-driven simulations, providing ground truth
information for various boiling scenarios, including nucleate pool boiling, flow boiling, and sub-
cooled boiling. We summarize these and other databases alongside our dataset in Table 1.

3 MULTI-PHASE FLOW (MPF) BENCH

We present the MPF-Bench dataset, encompassing 5500 bubble rise and 5500 droplet flow simulations,
with each simulation containing 100 time-snapshots, making it, to our knowledge, two orders of
magnitude larger – in terms of number of time-snapshots – than any existing multiphase flow
dataset. This dataset features 2D and 3D transient simulations, capturing a spectrum of flow behaviors
influenced by surface tension and density/viscosity ratios. MPF-Bench includes scenarios from bubble
oscillations with minor surface deformations to complete bubble breakup, offering a comprehensive
resource for studying bubble rise and droplet fall dynamics.

3.1 PROBLEM DEFINITION: INITIAL AND BOUNDARY CONDITIONS, AND OUTPUTS

We consider 2D and 3D simulations of bubble rise and droplet fall simulations using the lattice
Boltzmann method. The domain sizes for 2D and 3D are [256, 512] and [128, 256, 128] lattice
units, respectively. For 2D simulations, the bubble is initially centered at (64, 64) and the droplet
is centered at (128, 384). In 3D, the bubble is centered at (64, 64, 64) while the droplet is centered
at (128, 384, 64). The initial diameter D0 for both problems is set to 128 lattice units in 2D and 64
lattice units in 3D. The boundary conditions are set to free-slip on the side walls and periodic at the top
and bottom as illustrated in Figure 1. This problem is driven mainly by the density and viscosity ratio
of the two phases in addition to the Reynolds and Bond numbers. The Reynolds number measures the
ratio of inertial forces to viscous forces, while the Bond number measures the ratio of gravitational
forces to surface tension forces. Below is the definition of these four dimensionless numbers:

ρ∗ =
ρh
ρl

, µ∗ =
µh

µl
, Reh =

√
gyρh(ρh − ρl)D3

µh
, Bo =

gy(ρh − ρl)D
2

σ
(1)

where h and l indices refer to the heavy and light fluids, respectively. We have selected random,
dimensionless numbers uniformly to ensure the entire defined range is covered. The outputs of the
simulations are the interface indicator (c), velocity components (u, v, w), pressure (p), and density
(ρ), which provide insights into the dynamics of multiphase flow and the interactions between the
phases.
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We selected a few representative cases from our dataset to illustrate the key physics of droplet and
bubble dynamics (see Table 2). As shown in Figure 2 and Figure 4, these cases highlight how
variations in Bond number, Reynolds number, and density ratio affect droplet deformation and
breakup patterns. Each case reveals distinct fluid behaviors, enhancing our understanding of the
complex, nonlinear dynamics. The streamlines around the bubble and droplet, depicted in Figure 3
and Figure 5, further illustrate how these physical parameters influence droplet breakup and stability
across 3D and 2D flows.”
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Figure 1: Boundary conditions for the simulation of a falling droplet. The left panel illustrates the 3D case,
while the right panel illustrates the 2D case.
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Figure 2: (a) Snapshot of a 3D rising bubble and (b) snapshot of a 3D falling droplet. The properties of the
fluids for each case are detailed in Table 2.

3.2 SIMULATION FRAMEWORK AND COMPUTE EFFORT

Our simulation framework employs a highly parallel, in-house Lattice Boltzmann code, utilizing
one of the most accurate two-phase models, the phase field model, to capture the complexities of
the interface. The code has been rigorously tested across various problems, with validation results
provided in Section A.3. For 2D simulations, we used a uniform lattice grid of 256 × 512, while
for 3D simulations, the domain was set to 128 × 256 × 128. We achieved high parallelization by
distributing the computation across 12 Nvidia A100-SXM4 80GB GPUs. The total computational
cost for 2D and 3D cases was approximately 4,000 GPU hours. We use the ParaView tool (Ayachit,
2015) to visualize and understand our dataset.
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(b) Falling Droplet (D1)

Figure 3: Streamlines of a 3D rising bubble (a) and a 3D falling droplet (b), with colors indicating the magnitude
of velocity. The properties of the fluids for each case are detailed in Table 2.
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Figure 4: (a) Snapshot of a 2D rising bubble and (b) snapshot of a 2D falling droplet. The properties of the
fluids for each case are detailed in Table 2.

3.3 METADATA

Input Fields: We have provisioned the following dimensionless quantities as inputs to our study as
defined in Section 3.1. These are the Density Ratio (ρ∗), Viscosity Ratio (µ∗), Bond Number (Bo),
and Reynolds Number (Re). Since these are scalar values, we feed them to the neural network by
creating a constant field with a dimension consistent with the number of samples, in this case, 10,000
in 2D and 1000 in 3D.

Output Fields: In analyzing multiphase flow problems, we are interested in solving the governing
PDEs to obtain solutions at every point in the domain’s interior for certain cardinal fields. For a
2D solution domain, these are: c - interface indicator, u - velocity in x direction, v - velocity in
y direction, p - pressure. Additionally, because this is a time-dependent problem, we have these
cardinal fields or a sequence of these fields distributed uniformly over time (100 time steps).
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Table 2: Material properties and nondimensional numbers of three bubble rise simulations (B1, B2, B3) and
three droplet fall simulations (D1, D2, D3). The table shows the density ratio, viscosity ratio, Reynolds number,
and Bond number of all six simulations.

case B1 B2 B3 D1 D2 D3
Density Ratio (ρ∗) 103 103 103 10 103 103

Viscosity Ratio (µ∗) 102 102 102 1 102 102

Re 5× 102 10 10 103 103 10

Bo 5× 102 10 5× 102 5× 102 5× 102 10

(a) Bubble rising (B1) (b) Bubble dropping (D1)

Figure 5: 2D bubble deformations with streamlines.
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(a) Bubble rising (B1) (b) Bubble dropping (D1)

Figure 5: 2D bubble deformations with streamlines.
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(b) Falling Droplet (D1)

Figure 5: Streamlines of a 2D rising bubble (a) and a 2D falling droplet (b), with colors indicating the magnitude
of velocity.

Resolution: We maintained the original resolution of our datasets, matching the Lattice Boltzmann
simulation domain. This ensures the complete physics is presented to the Neural Operator and
allows direct comparison with Lattice Boltzmann method simulations. Our datasets are published at
256× 512 resolution for 2D and 128× 256× 128 for 3D simulations.

Dataset Format: For both the bubble and droplet datasets, we have released a single file for each
sample. This decision was taken with the view to allow for maximum flexibility to the end user in
deciding what and how many time steps they want to use to train their models, as these time-dependent
problems often take the shape of sequence to sequence formulations. In 2D, the resulting .npz files
take the form:

[number of time steps][number of channels][resolution y][resolution x]

whereas in 3D, [resolution z] incorporated as an additional dimension for depth. In this study, we
have released a total of 11,000 samples spread across two families of datasets. Table 3 provides a
detailed formulaic description of the packaging of the input and output numpy tensors for both these
families:

Level of Difficulty: We provide Table 4 to help users select datasets based on varying difficulty levels.
The dataset includes key parameters like Reynolds number (Re), Density Ratio, Viscosity Ratio, and
Bond Number (Bo), with a difficulty classification to guide users. This classification reflects the
complexity of interface deformations, making it easier to choose suitable cases for model training
and evaluation.

3.4 EVALUATION METRICS AND TEST DATASET ANALYSIS

We assess the performance of the trained neural operators and foundation models using two primary
metrics: Mean Squared Error (MSE) and relative L2 error. Our models are trained on a random
selection of 1000 samples from the bubble dataset. To manage the transient nature of the data, we
employ sequence-to-sequence and sequence-to-field mappings, where the solution fields at various
time steps are concatenated and fed sequentially as input into the models. We skip every 4 timesteps
to have more dynamics in the dataset bringing down the total number of timesteps to 25. The models
are evaluated on six distinct test subsets (S1 through S6) as outlined below:
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Table 3: Formulaic description of the input and output tensors. 5000 - sample size for the dataset. 101 - number
of time steps in the simulation. x, y - The x, y dimension of a field. E.g., Y [0, 100, 1, :, :] indicates the pointwise
v velocity over the entire grid of size 256× 512 for the first sample at time step 100.

Dataset Dim. Input Tensor Output Tensor
Droplet 2 X[5000][ρ∗, µ∗, Bo,Re] Y [5000][101][c, u, v, p, ρ][y][x]

Bubble 2 X[5000][ρ∗, µ∗, Bo,Re] Y [5000][101][c, u, v, p, ρ][y][x]

Droplet 3 X[500][ρ∗, µ∗, Bo,Re] Y [500][51][c, u, v, w, p, ρ][z][y][x]

Bubble 3 X[500][ρ∗, µ∗, Bo,Re] Y [500][51][c, u, v, w, p, ρ][z][y][x]

Table 4: Dataset parameters with difficulty levels for selecting appropriate cases based on Reynolds number,
Density Ratio, Viscosity Ratio, and Bond Number.

Density Ratio Viscosity Ratio Bo Number Re Number Difficulty
High High High High Challenging
High High Low Low Easy
High High Low Low Moderate
High High Low High Moderate
High High High High Challenging
Low Low High High Challenging
Low Low Low Low Easy
Low Low High High Easy
Low Low Low High Moderate

• Sequence-to-field: We set up 3 different inputs for subsets S1, S2, and S3. We input the solution
at timestep t1, sequences t1 to t3, and sequences t1 to t5. The output solution for S1, S2, and S3
is the corresponding next time snapshot for each subset.

• Sequence-to-sequence: In this case, the output is not a single time snapshot but a sequence of
solutions. We input the solution over sequences t1 to t3, t1 to t5, and t1 to t8 respectively. The
output for S4, S5, and S6 is a sequence of three time snapshots corresponding to the next solutions
of each subset respectively.

4 EXPERIMENTS

Neural Operators represent a novel class of deep learning architectures specifically designed to learn
functional solutions to partial differential equations (PDEs). Unlike traditional methods that focus
on finding a specific solution for a fixed set of parameters, Neural Operators are capable of learning
generalized solutions to PDEs. While these frameworks have demonstrated notable success in
modeling single-phase fluid flow, there is limited research on their accuracy in capturing multi-phase
flows. Multi-phase flows present additional challenges due to phenomena like bubble or droplet
breakup, coalescence, and shape oscillations. In this context, we aim to evaluate the performance of
several Neural Operators and foundation models in learning these intricate fluid dynamics.

We report baseline results for training a suite of the most common neural PDE solvers. We studied
the following Neural Operators and Foundation Models, reporting results on the 2D bubble case: (a)
Fourier Neural Operator (FNO) (Li et al., 2021), (b) Convolutional Neural Operators (CNO) (Raonić
et al., 2023), (c) DeepONet (Lu et al., 2021), (d) UNet (Ronneberger et al., 2015), (e) scOT (Herde
et al., 2024), (f) Poseidon (Herde et al., 2024). For training, we adhered closely to the published
code examples. All the aforementioned models were trained on a single A100 80GB GPU using the
Adam optimizer with a learning rate of 10−3 and were run for 200 epochs. The validation loss for all
models converged and stabilized by 200 epochs.

Table 5 and Table 6 compare the Mean Squared Error (MSE) and relative L2 error for sequence-to-
field and sequence-to-sequence predictions across various models on the six bubble rise datasets
(S1-S6). These results highlight the performance differences between models in predicting the
solution fields for different data subsets (S1-S6). Notably, CNO generally outperforms the other
models in predicting the concentration field, demonstrating a clear advantage. Additionally, the
model’s ability to capture the solution fields improves as more time snapshots are incorporated into
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Table 5: Comparison of mean squared error MSE and relative L2 Error for Sequence-to-Field predictions using
UNet, DeepONet, FNO, CNO, scOT, and Poseidon on Bubble Datasets (S1-S3).

Model Channel S1 S2 S3
MSE L2 MSE L2 MSE L2

UNet

c 2.60 × 10−2 2.59 × 10−2 8.40 × 10−3 8.07 × 10−3 9.56 × 10−3 9.04 × 10−3

u 8.80 × 10−5 3.13 × 100 8.00 × 10−6 2.04 × 100 1.00 × 10−5 2.09 × 100

v 1.00 × 10−6 1.56 × 100 1.00 × 10−6 7.84 × 10−1 1.00 × 10−6 8.76 × 10−1

p 1.00 × 10−6 2.74 × 102 1.00 × 10−6 3.23 × 102 1.00 × 10−6 5.17 × 102

DeepONet

c 2.66 × 10−2 2.65 × 10−2 1.01 × 10−1 1.01 × 10−1 1.18 × 10−1 1.18 × 10−1

u 9.10 × 10−5 6.71 × 100 1.27 × 10−3 1.24 × 100 1.71 × 10−3 9.18 × 10−1

v 1.00 × 10−6 8.68 × 10−1 1.00 × 10−6 5.35 × 10−1 1.00 × 10−6 8.89 × 10−1

p 1.00 × 10−6 1.89 × 102 1.00 × 10−6 2.43 × 102 1.00 × 10−6 1.66 × 102

FNO

c 2.72 × 10−2 2.68 × 10−2 9.73 × 10−3 8.97 × 10−3 2.10 × 10−2 1.98 × 10−2

u 9.30 × 10−5 8.56 × 100 1.00 × 10−5 2.77 × 100 4.80 × 10−5 5.29 × 100

v 1.00 × 10−6 3.43 × 100 1.00 × 10−6 1.09 × 100 2.00 × 10−6 2.02 × 100

p 1.00 × 10−6 7.18 × 102 1.00 × 10−6 7.44 × 102 2.00 × 10−6 1.04 × 103

CNO

c 2.62 × 10−2 2.60 × 10−1 5.89 × 10−3 5.65 × 10−3 9.41 × 10−3 9.00 × 10−3

u 8.80 × 10−5 5.04 × 100 4.00 × 10−6 1.60 × 100 1.00 × 10−5 1.79 × 100

v 1.00 × 10−6 1.73 × 100 1.00 × 10−6 5.07 × 10−1 1.00 × 10−6 9.19 × 10−1

p 1.00 × 10−6 4.46 × 102 1.00 × 10−6 2.24 × 102 1.00 × 10−6 3.96 × 102

scOT

c 2.76 × 10−2 2.68 × 10−2 1.77 × 10−2 1.68 × 10−2 2.23 × 10−2 2.17 × 10−2

u 1.29 × 101 1.29 × 101 3.50 × 10−5 3.91 × 100 5.80 × 10−5 2.82 × 100

v 5.24 × 100 5.24 × 100 1.00 × 10−6 2.31 × 100 1.00 × 10−6 1.75 × 100

p 9.65 × 102 9.65 × 102 2.00 × 10−6 8.12 × 102 2.00 × 10−6 7.80 × 102

Poseidon

c 2.87 × 10−2 2.79 × 10−1 3.34 × 10−2 3.01 × 10−2 2.49 × 10−2 2.23 × 10−2

u 1.00 × 10−4 1.16 × 101 1.14 × 10−4 1.31 × 101 6.10 × 10−5 8.28 × 100

v 2.00 × 10−6 5.86 × 100 1.10 × 10−5 4.05 × 100 5.00 × 10−6 2.83 × 100

p 2.00 × 10−6 1.04 × 103 6.00 × 10−6 2.35 × 103 4.00 × 10−6 1.94 × 103

Table 6: Comparison of mean squared error MSE and relative L2 Error for Sequence-to-Sequence predictions
using UNet, DeepONet, FNO, CNO, scOT, and Poseidon on Bubble Datasets (S4-S6).

Model Channel S4 S5 S6
MSE L2 MSE L2 MSE L2

UNet

c 3.27 × 10−2 2.87 × 10−2 3.93 × 10−2 3.31 × 10−2 7.34 × 10−2 6.58 × 10−2

u 1.35 × 10−4 3.54 × 100 2.02 × 10−4 3.10 × 100 6.65 × 10−4 3.90 × 100

v 1.00 × 10−6 1.38 × 100 1.00 × 10−6 1.45 × 100 1.00 × 10−6 9.54 × 10−1

p 1.00 × 10−6 6.76 × 102 1.00 × 10−6 6.30 × 102 1.00 × 10−6 7.79 × 102

DeepONet

c 1.64 × 10−1 1.60 × 10−1 2.03 × 10−1 1.99 × 10−1 1.94 × 10−1 1.92 × 10−1

u 3.33 × 10−3 3.15 × 100 5.04 × 10−3 1.64 × 100 4.57 × 10−3 1.32 × 100

v 1.00 × 10−6 1.04 × 100 1.00 × 10−6 7.59 × 10−1 1.00 × 10−6 3.83 × 10−1

p 1.00 × 10−6 7.30 × 102 1.00 × 10−6 3.53 × 102 1.00 × 10−6 3.17 × 102

FNO

c 1.16 × 10−2 1.10 × 10−2 2.33 × 10−2 2.20 × 10−2 4.24 × 10−2 4.00 × 10−2

u 1.70 × 10−5 1.00 × 100 6.50 × 10−5 2.98 × 100 2.28 × 10−4 1.13 × 100

v 1.00 × 10−6 4.50 × 10−1 1.00 × 10−6 1.28 × 100 1.00 × 10−6 3.98 × 10−1

p 1.00 × 10−6 1.38 × 102 1.00 × 10−6 7.87 × 102 1.00 × 10−6 2.69 × 102

CNO

c 1.74 × 10−2 1.69 × 10−2 1.72 × 10−2 1.63 × 10−2 3.78 × 10−2 3.53 × 10−2

u 3.70 × 10−5 1.51 × 100 3.60 × 10−5 1.37 × 100 1.76 × 10−4 1.74 × 100

v 1.00 × 10−6 6.87 × 10−1 1.00 × 10−6 6.85 × 10−1 1.00 × 10−6 5.98 × 10−1

p 1.00 × 10−6 2.84 × 102 1.00 × 10−6 2.93 × 102 1.00 × 10−6 4.22 × 102

scOT

c 3.85 × 10−2 3.69 × 10−2 3.92 × 10−2 3.79 × 10−2 6.27 × 10−2 6.09 × 10−2

u 1.73 × 10−4 6.73 × 100 1.80 × 10−4 5.73 × 100 4.85 × 10−4 5.31 × 100

v 3.00 × 10−6 2.78 × 100 3.00 × 10−6 2.12 × 100 2.00 × 10−6 1.93 × 100

p 3.00 × 10−6 1.48 × 103 3.00 × 10−6 1.34 × 103 4.00 × 10−6 1.21 × 103

Poseidon

c 3.06 × 10−2 2.84 × 10−2 3.33 × 10−2 3.17 × 10−2 5.99 × 10−2 5.79 × 10−1

u 1.01 × 10−4 8.26 × 100 1.26 × 10−4 6.49 × 100 4.30 × 10−4 7.79 × 100

v 5.00 × 10−6 3.51 × 100 4.00 × 10−6 2.47 × 100 5.00 × 10−6 2.16 × 100

p 5.00 × 10−6 1.71 × 103 4.00 × 10−6 1.48 × 103 5.00 × 10−6 1.81 × 103

the model, highlighting the benefits of utilizing more temporal data in these predictions. Another
interesting observation is the fact that vision transformer Scot is marginally outperforming the pre-
trained version of Poseidon. This suggests that Poseidon being trained on single-phase phenomena
makes learning multiphase flow harder and less accurate.

Furthermore, Figure 6 and Figure 7 illustrate field predictions of the concentration field C using
UNet, CNO, DeepONet, and Poseidon for sequence-to-field and sequence-to-sequence scenarios,
respectively. These figures show that DeepONet performs poorly in both the sequence-to-field and
sequence-to-sequence scenarios. Also, UNet’s accuracy declines as the prediction horizon extends to
longer time sequences, as shown in Figure 7. This may be attributed to UNet’s architecture, which,
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Figure 6: The figure presents a comparison of sequence-to-field predictions for the concentration field C against
the ground truth. The predictions are generated by four models: UNet, Convolutional Neural Operator (CNO),
DeepONet, and Poseidon, across three data subsets (S1, S2, and S3). Each row corresponds to a different subset
(S1, S2, or S3), while each column displays the predictions made by the respective models.

unlike neural operators, is more adept at capturing local rather than global interface patterns. In
contrast, CNO consistently delivers the best performance in both sequence-to-field and sequence-to-
sequence predictions, reinforcing its capability in handling complex fluid dynamics over time. Also,
Figure 7 shows that CNO can capture small bubble formation after breakup more accurately than
other models.

5 CONCLUSIONS

In summary, we have introduced a comprehensive time series dataset comprising 10,000 simulations
in 2D and 1,000 simulations in 3D, focusing on bubble rise and droplet fall dynamics. This dataset
captures a wide range of two-phase flow phenomena, including simulations with density ratios as high
as 1,000, Reynolds numbers up to 1,000, and Bond numbers up to 500. Using a subsample of 1,000
samples from the bubble dataset, we successfully trained neural operators and foundation models,
demonstrating encouraging results. By feeding in more time snapshots to models, they can more
accurately predict the trajectory of bubble dynamics. Specifically, we found that CNO outperformed
other models in capturing fine-scale interfacial details. We also concluded that the foundation model
Poseidon pre-trained on single-phase phenomena might not be effective in learning multiphase flow,
which demonstrates the need to train foundation models on multiphase flow data.

Limitations: The dataset has the following constraints:

• Different orders of magnitude for solution fields: The dataset includes solution fields that span
different orders of magnitude. This is evident in the large disparity between the mean squared error
(MSE) and relative L2 errors for different solution fields.
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4Figure 7: The figure presents sequence-to-sequence predictions for the concentration field C compared to the
ground truth. Predictions are made by four models: UNet, Convolutional Neural Operator (CNO), DeepONet,
and Poseidon. Each row represents different time steps (t9, t10, and t11) from dataset S6, while each column
shows the predictions from the respective models.

• Limited 3D Simulations: Due to the substantial computational cost, only a small number of 3D
simulations were conducted, resulting in a more restricted set of 3D cases in the dataset.

• Model fitting with a limited number of time steps: GPU memory limitations constrained the
number of time steps that could be fitted on a single GPU. As a result, we had to use a limited
number of time snapshots. An alternative approach could involve using an auto-regressive model
to model the time series for each sample.

REPRODUCIBILITY STATEMENT

In this work, we introduce a dataset and provide detailed explanations of the methodology and
mathematical framework used for data generation in the Appendix Section A. To evaluate the dataset,
we applied various neural operators and foundation models, and the code for these models is available
in our GitHub repository. The repository includes detailed instructions for easy reproducibility of
our results. All experiments were conducted on Nvidia A100-SXM4 80GB. Please refer to the
repository’s README.md for complete instructions on replicating the model evaluations.
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APPENDIX

A DETAILS OF THE CFD SIMULATION FRAMEWORK

Our computational framework employs the CUDA platform to implement the algorithms neces-
sary for the Lattice Boltzmann Method (LBM). We achieve significant computational performance
enhancements by leveraging CUDA’s parallel processing capabilities. The primary performance
bottleneck in GPU architectures is often the data transfer between GPU memory and unified CPU
memory. To mitigate this, we minimize such data transfers, conducting them only when necessary
for convergence checks or final output retrieval.

We utilize a single one-dimensional array in conjunction with macro functions to handle the substantial
data volumes intrinsic to LBM simulations. This method optimizes memory usage and computational
efficiency on the GPU, ensuring that we fully exploit the GPU’s computational power and memory
bandwidth. This strategy allows for the high-performance execution of LBM algorithms, crucial for
large-scale simulations and complex fluid dynamics problems.

A.1 FORMULATION OF NAVIER STOKES AND ALLEN CAHN EQUATIONS

Several lattice Boltzmann models, such as the Cahn-Hilliard and Allen-Cahn models, utilize interface
tracking equations and are thus categorized as phase-field models (Penrose & Fife, 1990; Jacqmin,
1999). These models describe multiphase flows using a diffuse interface, with the Allen-Cahn
equation commonly employed for this purpose (Allen & Cahn, 1976). In some studies, this approach
is called the conservative phase-field LB model (Fakhari et al., 2019). The phase-field variable, ϕ,
which tracks the interface, ranges from 0 to 1, leading to the following expression for the phase-field
equation (Chiu & Lin, 2011):

∂ϕ

∂t
+∇. (ϕu) = ∇.

[
M(∇ϕ− 1− 4 (ϕ− ϕ0)

2

ξ
n̂)

]
, (2)

where t represents time, u is the velocity, M denotes a positive constant for the mobility parameter, ξ
is the interfacial thickness, and ϕ0 = ϕH+ϕL

2 . ϕH and ϕL represent the interface indicator values for
the heavy and light fluids, respectively, set to 1.0 for the heavy fluid and 0.0 for the light fluid. The
unit normal vector n̂ for the interface can be defined as:

n̂ =
∇ϕ

|∇ϕ| . (3)

Note, the interface location at x0 is initialized as Yan & Zu (2007):

ϕ (x) = ϕ0 ±
ϕH − ϕL

2
tanh(

|x− x0|
ξ/2

). (4)

According to the phase-field model, the following equations exist for incompressible multiphase
flows (Ding et al. (2007); Li et al. (2012)):

∂ρ

∂t
+∇ · (ρu) = 0, (5a)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ ·

(
µ
[
∇u+ (∇u)T

])
+ Fs + Fb. (5b)

In Equation 5a, ρ represents the density of fluids, p denotes the macroscopic pressure, Fb is the
body force, and Fs corresponds to the surface tension force. The equation for calculating the surface
tension force term is also expressed as Jamet et al. (2002):

Fs = µϕ∇ϕ, (6)
where

µϕ = 4βϕ (ϕ− 1) (ϕ− 1/2)− κ∇2ϕ, (7)
denotes the chemical potential equation utilized for binary fluids (JACQMIN, 2000). Equation 8
establishes a relation between the coefficients β and κ, interface thickness ξ, and surface tension σ,
as;

β = 12σ/ξ , κ = 3σξ/2. (8)
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A.2 LATTICE BOLTZMANN METHOD

Given that interfaces are typically of mesoscopic scale, the kinetic-based Lattice Boltzmann Method
(LBM) presents a more effective approach for simulating multiphase flows compared to the traditional
Navier-Stokes solvers (Sukop & Thorne, 2006; Huang et al., 2015). The Chapman-Enskog analysis
validates the consistency between the LBM and the Navier-Stokes equations (Krüger et al., 2017). In
this study, we investigate hydrodynamic properties such as velocity and pressure using the standard
form of the Lattice Boltzmann equation as outlined in Guo et al. (2002):

fa (x+ eaδt, t+ δt) = fa (x, t) + Ωa(x, t) + Fa(x, t), (9)
In this context, fa denotes the velocity-based hydrodynamic distribution function for incompressible
fluids, Ωa represents the collision operator, and Fa signifies the force term. This study employs
the two-dimensional nine-velocity (D2Q9) model for 2D simulations and the three-dimensional
nineteen-velocity (D3Q19) model for 3D simulations.

To define the interface between phases, we employed the following Lattice Boltzmann Equation
(LBE) to accurately determine the interface between fluid phases (Geier et al., 2015):

ga (x+ eaδt, t+ δt) = ga (x, t)−
ga (x, t)− ḡeqa (x, t)

τϕ + 1/2
+ Fϕ

a (x, t). (10)

Here, ga represents the distribution function for the phase-field, and τϕ denotes the dimensionless
phase-field relaxation time. The forcing term is calculated as follows:

Fϕ
a (x, t) = δt

[
1− 4(ϕ− ϕ0)

2
]

ξ
ωaea · ∇ϕ

|∇ϕ| . (11)

In Equation 11, ωa and ea denote the weight coefficient and the mesoscopic velocity set, respectively.
Here, ξ denotes the thickness of the interface. As illustrated in Figure 8, we carefully selected this
parameter to ensure adequate lattice nodes within the interface. This choice is critical for accurately
capturing the complex physics in the rapid change of material properties across the interface. The
appropriate selection of ξ ensures that the computational mesh can effectively represent the gradients
and variations within the interface, thus enhancing the overall stability and accuracy of the simulation.

Figure 8: Illustration of the interface region captured by the computational mesh. The magnified views show
the distribution of lattice nodes within the interface, ensuring precise resolution of interfacial dynamics and
transitions. The careful selection of the interface thickness parameter ξ ensures that the mesh adequately
represents the gradients and variations in the interface region.

A.3 VALIDATION

In this section, we validate our numerical model through benchmark tests covering a range of two-
phase flow phenomena. We include four distinct validation cases to comprehensively assess the
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accuracy and robustness of our approach: (1) the capillary wave problem, which evaluates the model’s
capability to handle surface tension-driven flows; (2) the bubble rising dynamics, which tests the
interaction between buoyancy and viscous forces; (3) the falling droplet dynamics, which examines
the breakup mechanisms of liquid droplets under gravity; and (4) the Rayleigh-Taylor instability,
which explores the interfacial instability between fluids of differing densities under gravitational
influence. Each subsection compares our simulation results and established experimental or numerical
data, demonstrating the model’s fidelity across various flow regimes.

A.3.1 CAPILLARY WAVE

To validate our Lattice Boltzmann Method (LBM) simulations of two-phase flow, we focus on the
dynamic behavior of capillary waves at the interface between two immiscible fluids. In our study,
a sinusoidal perturbation with a small amplitude η0 and wave number k is applied to the initially
quiescent interface. This setup provides a rigorous test for the LBM framework, as it has a well-
established analytical solution for cases with identical kinematic viscosities ν but differing densities
of the two fluids. The temporal evolution of the interface amplitude η(t) is utilized as a benchmark
for our simulations. The analytical expression for the decay of the wave amplitude, η(t), is given by
Prosperetti (1981):

η(t)

η0
=

4(1− 4γ)ν2k4

8(1− 4γ)ν2k4 + ω0
erfc(

√
νk2t) +

4∑
i=1

zi
Zi

ω2
0

z2i − νk2
e(z

2
i −νk2)t erfc(zi

√
νt) (12)

where ω0 =
√

σk3

ρH+ρL
is the angular frequency, γ = ρHρL

(ρH+ρL)2 and Zi =
∏

1≤j≤4
j ̸=i

(zj − zi). The

evaluation of the complementary error function erfc(zi) can be done by solving the following
algebraic equation:

z4 − 4γ
√
νk2z3 + 2(1− 6γ)νk2z2 + 4(1− 3γ)(νk2)3/2z + (1− 4γ)νk2 + ω2

0 = 0. (13)

Our validation involves analyzing the propagation of capillary waves, an inherently transient process
that tests the model’s ability to accurately capture key physical parameters such as density and
viscosity ratios, along with surface tension effects. By varying these parameters and the wavelength,
we compare the simulation results with predictions from linear theory. According to Figure 9, the
lighter fluid with density ρL overlays the heavier fluid with density ρH , with the initial interface
described by y = L + η0 cos(2πx), where η0 is the initial perturbation amplitude. The decay of
this wavy profile to a flat interface, driven by viscosity and surface tension, without external forces
like gravity, serves as a critical validation test for our LBM approach. The computational domain is

x

y

2

No-slip

Free-slip

No-slip

Initial Perturbation

Figure 9: Schematic diagram of the capillary wave problem setup.
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discretized into a grid of 256 by 512 lattice nodes. Free-slip boundary conditions are applied in the
direction of wave propagation, while no-slip conditions are imposed at the top and bottom boundaries.
The simulation parameters are set as follows: η0 = 0.02, σ = 10−4, ξ = 4, and Mϕ = 0.02. Since
the interface may not align exactly with the grid points, the values of η(t) are interpolated from ϕ
values using the following relationship:

η(t) = y − ϕ(xL0/2, y)

ϕ(xL0/2, y)− ϕ(xL0/2, y − 1)
, ϕ(xL0/2, y)ϕ(xL0/2, y − 1) < 0. (14)

The length (η) and time scales (t) are normalized by the initial amplitude a0 and the angular frequency
ω0, respectively, denoted as η∗ = η/η0 and t∗ = tω0.

It is worth noting that angular frequency is crucial for any wave system. It depends on surface tension,
viscosity, wave number, and density values. The equation is derived assuming that both fluids have
the same viscosity, set to ν = 0.005, 0.0005. Note that the wavelength magnitude matches the grid
size L0 = 256.
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Figure 10: Comparison of the normalized interface amplitude η∗ as a function of normalized time t∗ between
the current LBM simulation and the analytical solution by Prosperetti (1981). (a) corresponds to a viscosity of
ν = 0.0005, and (b) corresponds to a viscosity of ν = 0.005. The LBM results (blue circles) closely match the
analytical results (red line).

A.3.2 RISE OF A SINGLE BUBBLE IN QUIESCENT FLUID

The dynamics of a rising bubble have been extensively studied due to their significance in various
natural and industrial processes. When a bubble rises through a liquid, it is subjected to several
forces, including buoyancy, drag, and surface tension, which influences its shape, velocity, and
trajectory (Bhaga & Weber, 1981b; Amaya-Bower & Lee, 2010; Hua & Lou, 2007; Khanwale et al.,
2023). Our investigation focuses on the dynamics of a bubble rising within a rectangular channel.
The simulation begins with a circular bubble of diameter D = L0/5 placed at the coordinates
(L0/2, L0/2) within a domain with a length of L0 and a height of 4L0. Boundary conditions are set
such that the no-slip is applied at the top and bottom, while free-slip boundary conditions are used for
the lateral boundaries. The fluids experience a volumetric buoyancy force Fb = −(ρ− ρh)gyj, where
gy represents the gravitational acceleration in the y-direction. This study highlights four crucial
dimensionless parameters: the density ratio ρh/ρl, the viscosity ratio µh/µl, the gravity Reynolds
number, and the Eötvös (Bond) number.

The gravity Reynolds number is defined as:

Reh =

√
gyρh(ρh − ρl)D3

µh
(15)

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

The Eötvös (Bond) number is defined as:

Eo =
gy(ρh − ρl)D

2

σ
(16)

In many studies, the Morton number is also considered, defined as:

Mo =
gy(ρh − ρl)µ

4
h

σ3ρ2h
(17)

The dimensionless time is also defined by:

t∗ = t

√
gy
D

(18)

The reference velocity scale needed in the Péclet number can be chosen for gravity-driven flows as
U0 =

√
gyD. Four sets of simulations are conducted at Four different Eötvös and Morton numbers.

The density and viscosity ratios are fixed at 1000 and 100, respectively. The numerical parameters
are L0 = 512, Pe = 25 and Cn = 0.010, and the LBM simulation results are shown in Figure 11.

To evaluate the accuracy and reliability of the proposed LBM, a comparison is made between the
results obtained from the LBM approach and those from the experiments and FVM, as illustrated
in Figure 11. In the spherical regime, surface tension dominates, resulting in small bubbles that
maintain a nearly spherical shape due to the strong cohesive forces at the interface. As the bubble
size increases, the shape transitions to an ellipsoidal form. In this ellipsoidal regime, the inertial
forces become more significant, causing the bubble to deform. This deformation is influenced by
the surrounding liquid’s viscosity and the interface’s surface tension. The dynamics of this regime
can be described using correlations that account for the balance between inertial and surface tension
forces (Amaya-Bower & Lee, 2010). In the spherical cap regime, the bubbles are large enough that
inertia forces dominate, leading to further deformation into a cap shape. This regime is characterized
by a significant increase in terminal velocity, which is proportional to the size of the bubble (Bhaga &
Weber, 1981a). These patterns are consistent among all results.

A.3.3 FALLING DROPLET

The dynamics of a falling droplet under gravity is another fascinating two-phase flow phenomenon
that has been extensively studied in the literature (Yang et al., 2021; Jalaal & Mehravaran, 2012). In
this study, a liquid droplet with diameter D = L0/5 is initially placed at (L0/2, 6L0/2) within a
rectangular computational domain of length L0 and height 3L0. The same boundary conditions are
applied as in the bubble rising simulations: the no-slip boundary condition is applied at the top and
bottom, while free-slip boundary conditions are imposed at the lateral boundaries. The volumetric
buoyancy force Fb = −(ρ − ρl)gyj, where j is unit vector in y-direction and gy represents the
gravitational acceleration in the y-direction, acts on the fluids.

The dimensionless analysis identifies several key parameters that characterize the flow: the density
ratio ρh/ρl, the viscosity ratio µh/µl, the gravity Reynolds number, and the Eötvös (Bond) number.
The gravity Reynolds number is defined as:

Reh =

√
gyρh(ρh − ρl)D3

µh
(19)

Similarly, the Eötvös number, which represents the ratio of gravitational forces to surface tension
forces, is given by:

Eo =
gy(ρh − ρl)D

2

σ
(20)

Another important dimensionless group in the literature is the Morton number, which characterizes
the fluid properties affecting the bubble and droplet dynamics:
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Figure 11: Comparison of bubble shapes at constant rise velocity: Experimental results by Bhaga & Weber
(1981a), LBM results, and FVM results by Gumulya et al. (2016) for various Bond numbers (Bo) and Morton
numbers (Mo).

Mo =
gy(ρh − ρl)µ

4
h

σ3ρ2h
(21)

The Ohnesorge number (Oh) is a dimensionless number that characterizes the relative importance of
viscous forces compared to inertial and surface tension forces in a fluid. It is particularly relevant in
the study of droplet dynamics and is defined as:

Oh =
µh√
ρhσD

(22)

The simulation is conducted at a moderate density ratio to capture the breakup mechanisms of
the falling droplet, allowing for comparisons with the VOF model. The simulation considers an
Eötvös number: Eo = 288, with density and viscosity ratios fixed at 10 and 1, respectively, and
the Oh number set to 0.05. The numerical parameters are Pe = 5 and Cn = 0.010. As mentioned
in Section A.3.2, the reference velocity scale needed for the Péclet number can be chosen as
U0 =

√
gyD for gravity-driven flows. Also, dimensionless time can be defined by:

t∗ = t

√
gy
D

(23)

Our simulation results exhibit excellent agreement with the findings of Jalaal & Mehravaran (2012).
As shown in Figure 12, the comparison of the deformation of a liquid drop using both the Lattice
Boltzmann Method (LBM) in 2D and the Volume of Fluid (VOF) method in 3D demonstrates that
the evolution of the drop shapes over time is remarkably similar. For instance, at t∗ = 0.1647, both
methods capture the formation of a curved interface, and at t∗ = 0.3575, the drop breakup into
smaller droplets is observed in both approaches. This consistency across different numerical methods,
with parameters set at Eo = 288, Ohh = Ohl = 0.05, and ρ∗ = 10, validates the robustness and
accuracy of our LBM simulations in replicating complex two-phase flow phenomena.
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Overall, the dynamics of falling droplets involve complex interactions between buoyancy, inertia,
and surface tension forces, leading to various deformation and breakup patterns, such as forming
bags, ligaments, and secondary droplets. These phenomena are influenced significantly by the Eötvös
number, with higher values leading to more pronounced deformations and faster breakup processes
(Jalaal & Mehravaran, 2012).
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Figure 12: Comparison of the deformation of a liquid drop using the LBM and VOF methods: Current results
and those of Jalaal et al. (2012) (Jalaal & Mehravaran, 2012) for Eo = 288, Ohh = Ohl = 0.05, and
ρ∗ = 10.

A.3.4 RAYLEIGH-TAYLOR INSTABILITIES

The Rayleigh-Taylor instability (RTI) arises when a denser fluid is positioned above a less dense
fluid in the presence of a gravitational field, causing the interface between the two fluids to become
unstable. This phenomenon has been extensively studied due to its relevance in various natural and
engineering contexts (Khanwale et al., 2023; Ren et al., 2016; Zu & He, 2013).

We consider a computational domain of size [0, L0]× [0, 4L0] with L0 = 256 for our simulations.
The initial interface is defined as y0(x) = 2L0 + 0.1L0 cos(2πx/L0). Periodic boundary conditions
are applied on the left and right boundaries, while no-slip conditions are enforced at the top and
bottom boundaries. The dimensionless numbers characterizing the RTI include the Atwood number,
Reynolds number, Capillary number, and Peclet number:

At =
ρH − ρL
ρH + ρL

, (24)

Re =
ρHU0L0

µH
, (25)

where U0 =
√
gyL0,

Ca =
µHU0

σ
, (26)

Pe =
U0L0

M
. (27)

In our study, we used a density ratio ρ∗ = 3, viscosity ratio µ∗ = 1, Reynolds number Re = 128,
Atwood number At = 0.5, Peclet number Pe = 744, and interface width ξ = 5. The results are
compared with the findings from Ren et al. (2016) and Zu & He (2013) . The dimensionless time is
defined as t∗ = t/t0, where t0 =

√
L0/(gAt) .
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Snapshots of the interface evolution for the 2D Rayleigh-Taylor instability at different times are
shown in Figure 13. Initially, the interface undergoes a symmetrical penetration of the heavier fluid
into the lighter fluid, forming counter-rotating vortices. As time progresses, the heavier fluid rolls up
into mushroom-like shapes, and secondary vortices form at the tails of the roll-ups. Our simulations’
interface patterns and vortex structures are consistent with those reported in previous studies (Zu &
He, 2013; Ren et al., 2016).

(a) (b)

Figure 13: Evolution of the interface pattern of the 2D Rayleigh-Taylor instability for two scenarios: (a) ρ∗ = 3,
µ∗ = 1, Re = 128, At = 0.500, Pe = 744, ξ = 5; (b) ρ∗ = 1000, µ∗ = 100, Re = 3000, At = 0.998,
Pe = 200, Ca = 8.7, ξ = 5.
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Figure 14: (a) Schematic of the initial setup for the Rayleigh-Taylor instability simulation, showing the boundary
conditions and initial perturbation. (b) Comparison of the bubble front and spike tip positions over time for
the Rayleigh-Taylor instability case with parameters ρ∗ = 3, µ∗ = 1, Re = 128, At = 0.500, Pe = 744, and
ξ = 5. The current LBM results (solid line) are compared with the results of Ren et al. (2016) (red circles) and
Zu & He (2013) (blue triangles), showing excellent agreement in capturing the evolution of the instability.
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