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Abstract

Long-context inputs in large language mod-
els (LLMs) often suffer from the "lost in the
middle" problem, where critical information
becomes diluted or ignored due to excessive
length. Context compression offers a promis-
ing solution, however, current compression
methods still have notable limitations: hard
prompt methods often suffer from low compres-
sion ratios, while soft prompt methods tend to
lose critical task-relevant information and lack
adaptability. We propose ATACompressor, an
adaptive, task-aware context compressor that
combines the strengths of both paradigms. AT-
ACompressor (1) efficiently compresses con-
text into compact soft prompts, (2) selectively
preserves task-relevant information through a
trained encoder, and (3) dynamically adjusts
compression rates via an adaptive controller.
Experiments on QA benchmarks demonstrate
that ATACompressor achieves state-of-the-art
performance while maintaining high efficiency.

1 Introduction

Large language models (LLMs) demonstrate re-
markable performance across diverse tasks, such
as natural language understanding, text genera-
tion, and question answering (Chang et al., 2024;
Naveed et al., 2023; Min et al., 2023). How-
ever, their static nature poses significant challenges.
For example, they cannot independently update
or adapt to new information. To bridge this gap,
LLMs need external context to inject dynamic,
domain-specific knowledge (Parthasarathy et al.,
2024; Wang et al., 2023). This dependency high-
lights the critical importance of contextual infor-
mation. Without it, large models could be outdated
or misaligned with real-world data, compromising
both their accuracy and practical utility.
Techniques like retrieval-augmented generation
(RAG) address this challenge by retrieving rele-
vant information from external sources, enabling

the model to access up-to-date, task-specific data
(Huang and Huang, 2024; Fan et al., 2024). De-
spite the benefits of providing ample context, naive
RAG that appends raw document tokens to the
model input could create excessively long context
that overwhelms LLMs (Cuconasu et al., 2024),
making it difficult for them to identify critical in-
formation, especially information in the middle of
the context — a phenomenon commonly referred
to as the "lost in the middle" problem (Hsieh et al.,
2024; Liu et al., 2024a).

One way to address this challenge is by reduc-
ing the input length. A widely adopted approach
is compressing the lengthy context into a more
concise form, which eases the “lost in the middle”
effect and lowers inference cost and latency (Li
et al., 2024a). Existing long-context compression
techniques can be broadly categorized into hard-
prompt and soft-prompt methods. Hard prompt
methods, such as Selective-Context (Li et al., 2023)
and LongLLMLingua (Jiang et al., 2023), reduce
context size by identifying and removing irrele-
vant or low-value content. While these methods
effectively preserve task-relevant information, they
typically result in lower compression ratios. In con-
trast, soft prompt methods, such as AutoCompres-
sor (Chevalier et al., 2023), ICAE (Ge et al., 2023),
and 500Compressor (Li et al., 2024b), compress
text into a sequence of special tokens, achieving
higher compression and greater information den-
sity by representing hundreds of tokens with just
a few. However, these methods often suffer from
the loss of task-relevant content due to the absence
of task-specific information (e.g., questions) dur-
ing the compression process. Additionally, their
compression tokens number are fixed and cannot
be dynamically adjusted based on the requirements
of the task. These shortcomings prevent effective
compression based on task-specific needs.

To address these challenges, we propose the
Adaptive Task-Aware Compressor (ATACompres-
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Figure 1: Comparative schematic of three approaches, us-
ing selective compressor to represent the hard prompt and
500Compressor to represent the traditional soft prompt.

sor), which offers three key advantages: (1) Ef-
ficient Context Compression: ATACompressor
leverages soft prompt techniques to condense long
contexts into compact token representations, pre-
serving essential information and improving down-
stream task efficiency. (2) Effective Key Informa-
tion Preservation: ATACompressor trains a selec-
tive encoder to compress only task-relevant con-
tent, filtering out irrelevant information while max-
imizing the retention of critical information. This
task-aware compression strategy enhances down-
stream performance by focusing on the most impor-
tant content. (3) Adaptive Resource Allocation:
ATACompressor employs an adaptive allocation
controller that infers the length of relevant content
from internal states and dynamically adjusts the
compression rate accordingly. It allocates fewer
tokens to shorter relevant spans and more to longer
ones, ensuring adequate preservation of essential
information while optimizing resource utilization
across diverse tasks. Figure 1 illustrates the charac-
teristics of ATACompressor.

Our experiments on three public QA benchmarks
show that ATACompressor consistently achieves
state-of-the-art performance while maintaining
high efficiency. Additionally, we conduct a se-
ries of ablation studies and analysis experiments to
further investigate and understand the underlying
effectiveness of ATACompressor.

2 Related Work

2.1 Retrieval-augmented Generation

Retrieval-Augmented Generation (RAG) enhances
large language models by integrating external re-
trieval, improving content accuracy and factuality
(Gao et al., 2023; Zhao et al., 2024a; Huang and
Huang, 2024; Wang et al., 2023). It typically com-
bines a retrieval module with a language model

to generate responses based on retrieved data (Liu
et al., 2024b; Gao et al., 2023; Hu and Lu, 2024).
However, RAG struggles with long contexts due to
issues like the "lost in the middle" effect (Cuconasu
et al., 2024; Liu et al., 2024a; Hsieh et al., 2024),
where critical mid-sequence information is missed.
Processing long texts also increases computational
cost and latency, limiting real-time or resource-
constrained use (Zhao et al., 2024a; Agrawal et al.,
2024). Addressing these challenges is essential for
practical long-context applications.

2.2 Context Compression

A common approach to handling long contexts is
extending the LLM’s context window, typically via
larger pretraining windows (Nijkamp et al., 2023),
positional embedding interpolation (Peng et al.,
2023; Zhu et al., 2023; Ding et al., 2024), or at-
tention refinements (Chen et al., 2023). Though
effective, these methods often entail significant ar-
chitectural modifications.

Unlike context extension, context compression
shortens inputs without modifying LLM architec-
ture, enabling efficient long-context handling. It
consists of two types: hard and soft prompt meth-
ods. Hard methods like Selective-Context (Li et al.,
2023) and LongLLLMLingua (Jiang et al., 2023)
remove irrelevant tokens using external models or
perplexity-based scoring but yield low compres-
sion ratios due to token retention. Soft methods,
such as AutoCompressor (Chevalier et al., 2023),
ICAE (Ge et al., 2023), and 500Compressor (Li
et al., 2024b), compress contexts into dense vectors
via fine-tuning or autoencoders, achieving higher
ratios but often ignoring task relevance and lack-
ing dynamic adaptability. Recent query-guided
soft prompt methods like QGC (Cao et al., 2024),
xRAG (Cheng et al., 2024), FlexRag (Liu et al.,
2024b), and COCOM (Rau et al., 2024) improve
task awareness but depend heavily on external re-
trievers and suffer from complex architectures, re-
sulting in longer inference times and reliance on
retriever quality.

Our ATACompressor algorithm, built on soft-
prompt techniques, incorporates task information
during compression and leverages the compres-
sor’s intrinsic ability to selectively extract, retain
and compress the relevant portions of the context.
It also dynamically adjusts the compression rate
based on the task requirements. These features
make it well-suited for RAG and other downstream
tasks while delivering superior performance and



efficiency.

2.3 Probe for LLMs

Probing techniques are used to interpret and en-
hance LLM behavior by attaching lightweight mod-
els to analyze internal representations (Dong et al.,
2023; Ju et al., 2024; Ibanez-Lissen et al., 2024;
Zhao et al., 2024b; Wang et al., 2024b). Prior work
has used probes to uncover biases (Dong et al.,
2023), analyze contextual encoding across layers
(Ju et al., 2024), and study cross-lingual alignment
(Wang et al., 2024a). In our work, we probe en-
coder hidden states to estimate relevant context
length, enabling adaptive resource allocation.

3 Method

3.1 Problem Formulation

LLMs often take a task prompt () and a con-
text (C) as input to generate a target answer (A).
However, the typically large size of C leads to chal-
lenges such as the "lost in the middle" problem,
increased inference costs, longer latencies and po-
tential performance degradation. A widely adopted
way to address this challenge is context compres-
sion, the objective of ATACompressor can be for-
mulated as:

Jnin d[LLM(4 ] Q,C),LLM(4 | ¢(Q, C), Q)] 0

st 10(Q.C)| = k

Here, A represents the output of the LLM with
the compressed tokens ¢(Q, C'), k represents the
number of compressed tokens, and d(-, -) is a dis-
tance function, such as KL divergence, that mea-
sures the difference between two distributions.

3.2 Architecture

As shown in Figure 2, ATACompressor com-
prises a selective encoder (), an adaptive allo-
cation controller (AAC), and a target LLM (de-
coder). The process begins by segmenting the
context C' into chunks C1, Cs, . .., C, using a pre-
defined strategy. And then, the selective encoder
(v) processes the concatenated chunked context
Ced = {C1,C4,...,C,} along with the query
Q !, selectively compressing relevant information
into a compressed token sequence, whose length
k is determined by the AAC. The key-value (KV)

'In the following, we refer to all text inputs to the selective
encoder as "input text".

representations of these compressed tokens are sub-
sequently passed to the target LLM for downstream
task. It is important to note that the selective en-
coder () processes the input text and compresses
the relevant parts into tokens continuously, due
to the autoregressive nature of LLM. Figure 2 is
split into two steps to illustrate this process more
intuitively. As soon as the selective encoder ()
processes the last token of the input text, it contin-
ues generating the first compressed token without
interruption. At this point, the AAC also begins
processing in parallel. Since the AAC is very effi-
ciently due to its relatively lightweight structure, it
can predict the total number of compressed tokens
before the first compressed token is generated.

Compared to prior soft compression methods,
ATACompressor introduces two key innovations:
task-aware compression and dynamic token alloca-
tion, ensuring efficient resource utilization while
preserving essential information. These are real-
ized through two core components: the selective
encoder () and the adaptive allocation controller
(AAC), detailed in the following sections.

3.3 Selective Encoder

Traditional soft embedding methods compress the
entire context C' using an encoder, but often fail
to effectively identify and retain query-relevant in-
formation, potentially leading to the loss of crucial
content. To address this, we train a selective en-
coder (¢) designed to enhance the encoder’s ability
to sense and extract relevant information. The se-
lective encoder consists of a frozen LLM Oy m
with trainable LoRA parameters Oy ,ra, and se-
lectively compresses only the portions of the con-
text needed to answer the query (Q into a compact
set of tokens. This improves compression by pre-
serving relevant content and discarding irrelevant
information, thereby enhancing downstream task
performance.

Training the selective encoder ¢ is challenging
because the optimization objective adopted in stan-
dard soft-prompt compressors (Ge et al., 2023; Li
et al., 2024b) no longer applies. During pretraining,
conventional compressors reconstruct the entire in-
put, so the supervision signal—the input itself—is
complete and internally consistent. In ATACom-
pressor, however, ¢ preserves and compresses only
the context fragments needed to answer (; thus the
supervision signal is the relevant parts of the whole
context. This shift introduces granularity ambigu-
ity. In real-world datasets, annotations of relevant
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Figure 2: The inference workflow of ATACompressor. The illustration of the training workflow is provided in §A

context can vary in granularity (e.g., at the passage
or document level). Without proper preprocessing,
the inconsistent granularity of the annotated rele-
vant context during training can confuse ¢ about
how to process the context. For example, if some
gold-truths indicate relevance at the document level
while others are at the sentence level, o will strug-
gle with whether to group information coarsely or
finely. Conversely, enforcing a single fixed granu-
larity during training would limit its adaptability to
tasks with different granularity requirements. Con-
sequently, we must devise a mechanism that ex-
plicitly guides ¢ to perceive and compress relevant
information at the desired granularity.

To mitigate this, we deterministically chunk
the context C into uniform units C1, ..., C,, that
match the granularity of its gold labels 2, concate-
nate them into Cyq, and feed (Q, Cexq) to the se-
lective encoder ¢ in one pass. ¢ then isolates the
query-relevant subset C’Rel C Ccka and compresses
it into k tokens cy, ..., cg, with k determined by
the adaptive allocation controller (AAC). The strat-
egy lets ATACompressor handle mixed or user-
specified granularities. The formal process is de-
scribed as follows 3:

,Ck) )

0(Q,C) = ¢((Q, Caa)) = ¢(Cra) = (c1, ...
N———
k determined by AAC

(@3]

CA(Rel = {Ct17« . «7Ctm} g {Cl7 e 7Cn}a (3)
—_———

Ct ; relevant to Q

2At inference time the chunking granularity is determined
by user or task requirements.

3Some examples of the preprocessed inputs are provided
in §B

3.4 Adaptive Allocation Controller (AAC)

The adaptive allocation controller (AAC) is com-
posed of a probe () and a policy function (7). The
probe ({) captures the selective encoder’s hidden
states to estimate the length of relevant content.
This estimation directs the policy function (7)) to
dynamically adjust the compression rate, preserv-
ing relevant information and optimizing compu-
tational resource usage. The reason for selecting
the length of Crel a8 2 key signal for adjusting the
number of compressed tokens (k) is as follows:
The length of Crel represents length of the text
needed to complete the task. Prior studies (Ge et al.,
2023; Li et al., 2024b; Cao et al., 2024; Rau et al.,
2024) have demonstrated that the performance of
a soft-prompt compressor is primarily influenced
by the ratio between the text length and k. With
a fixed k, the performance of the compressor de-
clines rapidly as the text length increases. By es-
timating the length of Crel k can be dynamically
adjusted to task needs—allocating fewer tokens for
shorter and more for longer relevant spans. This
task-aware strategy ensures a more efficient and
effective compression.

The probe (¢) is a lightweight neural network
comprising an MLP and attention layers. It ana-
lyzes the hidden states from the selective encoder
(¢) to estimate the length of Crel, guiding dynamic
compression. Specifically, after ¢ processes the
input, ( takes its final-layer hidden states at the last
token and outputs the estimated length f/Rel, which
is then used by the policy function (1) to determine
the number of compressed tokens (k). The process



is formalized as:
LRel = C(Hy), k = n(Lge)) “)

Here, ((-) denotes the probe’s operation on the
encoder’s final hidden states H,, to estimate ﬁRel.
The policy function 7(-) then determines the num-
ber of compressed tokens k based on f/Rel. In our
approach, k is set by dividing Lrel by a policy ratio
r, capped by a maximum Kpqax:

R (L
k = U(LRel) = Imin ( 1:617 k}mdx> (5)

Notably, the selective encoder (¢) and AAC op-
erate independently, ensuring that the probe ()
structure or policy function () does not affect the
encoder’s ability. This independence allows flexi-
bility in designing the AAC, particularly the policy
function (7)), to suit task-specific needs. For in-
stance, the policy ratio r in our function can be
adjusted without retraining, unlike traditional soft
prompt methods that require retraining to change
the compressed tokens’ number (Ge et al., 2023;
Li et al., 2024b).

3.5 Workflow

ATACompressor operates in three stages: pretrain-
ing, finetuning, and inference. For detailed infor-
mation, please refer to the §A.

Pretraining. We jointly train the selective en-
coder ¢ and the probe (. Given a chunked con-
text Cekq and query @, ¢ produces compressed
key—value pairs KV that enable the frozen LLM
to reconstruct the task-relevant subsequence Cgel,
while ( predicts its token length Lger. Their objec-
tives combine into a single loss.

L:pretrain == Z logP(wj | KV, [BOS],whj,l) + AL,

Jj=1

L, (cross—entropy)
(1
where w); is the j-th token of Cge and L is a
Huber loss (Gokcesu and Gokcesu, 2021).

Finetuning. The selective encoder (y) is further
trained for downstream tasks. The target LLM
generates task-specific outputs based on the KV
of the compressed tokens. The loss function is
defined as:

Lp= _ZIOgP(aj | KV7Q1:ma0«1:j—l)7 (2)
j=1

where a; is the j-th gold answer token and ¢, i8
the query sequence.

Inference. During inference, all parameters are
frozen. As described in §3.2, the inference process
concludes with the compressed token KV pairs be-
ing passed to the target LLM to generate outputs in
two modes: regenerating Cre (triggered by [BOS])
and answering the query.

For regeneration:

ﬁ)i = arg mAaX P(?j)Z ’ KV, [BOS],ﬁ)l;Z‘_l; GLLM)
w;
(6)

For question answering:
aj = arg I%E_LXP(&j | KV, q1:m; @1:j-1; OLLM)
J
(N
4 Experiments

4.1 Settings
4.1.1 Datasets
The experiments are based on the three datasets *:
* HotpotQA (Yang et al., 2018): Multi-hop QA
dataset that demands combining information
from multiple documents. We use it to evalu-
ate compressors at the document level, where

answers are synthesized from relevant docu-
ments.

* MSMARCO (Nguyen et al., 2016): A high-
quality question answering dataset curated by
Microsoft. We use it to evaluate compressors
at the passage level, where answers are syn-
thesized from relevant passages.

* SQUAD (Rajpurkar et al., 2018): A dataset
where each question is paired with a passage,
and the answer is typically a span of text found
within that passage. We use it to evaluate com-
pressors at the sentence level, where answers
are synthesized from relevant sentences.

4.1.2 Baselines
We use three types of baselines.
1. No Compression

* Closed-Book The LLM directly answers ques-
tions without access to any external context.

* Original-Context The LLM answers ques-
tions with access to the full external context,
using the original uncompressed context with-
out any modifications.

2. Hard Prompt Compression

*Details of the dataset and examples of the preprocessed
inputs are provided in §B.



Table 1: The experimental results on three benchmark datasets include the following metrics: EM (Exact Match), F1 (F1
score), CR (Compression Ratio), and TP (Throughput in examples / second). Our ATACompressor algorithm shows significant
improvements in all metrics across all datasets compared to QGC and 500Compressor , with p < 0.001.

Methods HotpotQA MSMARCO SQUAD

F1 EM CR TP F1 EM CR TP F1 EM CR TP
Qwen-2-7B
Closed-book 30.61 10.35 - 564 1548 099 - 2.83 38.84 6.33 - 5.29
Original-Context 59.88  39.73 1.0x 124 4079 425 1.0x 041 6852 4875 1.0x 2.04
Selective-Context ~ 53.76  37.10 341x 124 3243 258 3.86x 0.66  59.67  40.49 4.64x 1.65
LongLLMLingua  64.63  40.08 4.37x 128 4352 491 5.64x 075 6489 48.10  5.08x 2.10
ICAE 6539 3971  2292x 361 4621 517 1432x 126 6126 4533  21.19x 296
500Compressor 67.46 42,18 2292x 351 4723 533 1432x 124 6468 4795 21.19x 295
QGC 7241 5154 13.75x  1.83 4985 6.15 1644x 079 66.79 4927 16.92x  1.49
ATACompressor 80.23 6549 2381x 3.63 5330 815 2532x 135 7052 5210 27.39x  3.07
LLaMA-2-7B
Closed-book 22.84 4.82 - 6.37 1094  0.70 - 347 3793 5.42 - 5.67
Original-Context 5371  36.20 1.0x 121 3872  4.09 1.0x 044  68.89 5038 1.0x 2.12
Selective-Context ~ 51.68  36.09 3.30x 122 3058 236 3.63x 0.61 5771 3937 4.55x 1.36
LongLLMLingua  62.82  37.27 3.95x 1.32 4298 344  458x 0.86 6540 4826 4.73x 1.72
AutoCompressor 59.66 3205 11.96x 296 3396 245 13.70x 126 60.52 4149 1421x 261
ICAE 62.10  37.72  2292x 377 3851 332 1432x 127 6428 4675 21.19x  3.02
500Compressor 6428  39.65 2292x 370 4030 340 1432x 123 69.61 50.60 21.19x  3.13
QGC 6821 4515 1432x 196 4422 522 1551x 081 6843 5045 1591x 177
ATACompressor 7844  62.65 24.15x 386 50.06 8.00 27.36x 129 71.67 53.00 27.18x 3.14

* Selective-Context (Li et al., 2023): It lever-
ages self-information computed by an external
language model to remove redundant words.

¢ LongLLLMLingua (Jiang et al., 2023): It uses
a language model to assess document impor-
tance via question-aware perplexity and ap-
plies a coarse-to-fine strategy to remove irrel-
evant tokens.

3. Soft Prompt Compression

¢ AutoCompressor (Chevalier et al., 2023): It
fine-tunes an LLM to iteratively compress
long contexts into summary vectors. We
use the released AutoCompressor-Llama-2-
7B-6K model® for experiments.

* ICAE (Ge et al., 2023): It adopts an autoen-
coder architecture to compress long contexts
into compact memory slots.

* 500Compressor (Li et al., 2024b): Similar
to ICAE, the key difference is that it uses the
KV representations of the compressed tokens
instead of the embeddings.

* QGC (Cao et al., 2024): It compresses query-
guided document representations into n-grams
based on word importance to the query.

Shttps://huggingface.co/princeton-nlp/AutoCompressor-
Llama-2-7b-6k

4.1.3 Main Evaluation Metrics

Following prior work (Cao et al., 2024; Li et al.,
2024b), we evaluate downstream QA tasks using
F1 score and Exact Match (EM). We also compute
the compression ratio (CR), the ratio of original
to compressed context length, and report inference
throughput (TP) on two A100-40G GPUs, includ-
ing compression and answer generation. In ad-
dition, Rouge-L-F is used in §5 to evaluate the
performance of the regeneration task.

4.1.4 Implementation Details

We utilized a 280k dataset (180k MSMARCO and
100k HotpotQA) from training sets for pretrain-
ing and finetuning. For evaluation, Sk examples
were randomly sampled from the test sets of MS-
MARCO, HotpotQA, and SQUAD. All reported re-
sults are averages over 5 random samplings unless
stated otherwise. For ATACompressor, following
§3.3, the datasets was segmented into <PA></PA>
chunks: each document (HotpotQA), passage (MS-
MARCO), or sentence (SQUAD) was treated as
a chunk. Other models used the same training
data. To facilitate comparison with baselines, the
maximum input length was set to 600 tokens (as
many baselines conduct their main experiments us-
ing input lengths around 500 tokens and resource
limitation), and only inputs below this limit were
retained during dataset construction. Experiments
were conducted using LLLaMA-2-7B and Qwen-2-



Table 2: The ablation study results on MSMARCO using
LLAMA-2-7B. Here, k represents the number of compressed
tokens or average.

Methods F1 EM CR(k) TP
ATAcompressor 50.06 8.00 27.36x (4.18) 1.29
w/o AAC 4752 734 19.06x (6.00) 1.29
w/o Selective 40.83 351 24.59x (4.65) 1.29

7B as backbones, with all models trained using
open-source code unless noted in §4.1.2. See §B
and §C for details on datasets and training.

4.2 Main Results

Table 1 shows the performance of various methods
across three benchmark datasets. ATACompressor
consistently outperforms all other methods in both
task performance (F1 and EM scores) and com-
pression efficiency, highlighting its effectiveness
and efficiency in long-context compression. A case
study of the compression results can be found in
§D. First of all, ATACompressor demonstrates sig-
nificant advantages over non-compression methods,
effectively alleviating the "lost in the middle" is-
sue by focusing on key information within lengthy
contexts. Furthermore, ATACompressor achieves
the greatest relative improvement on HotpotQA,
a dataset with the longest contexts and coarsest
granularity. The relatively larger amount of irrel-
evant text highlights the advantage of ATACom-
pressor’s selective compression, demonstrating its
strong ability to handle long-context scenarios with
the selective encoder. Results on MSMARCO and
SQUAD further demonstrate ATACompressor’s ca-
pability to selectively preserve task-relevant infor-
mation across varying context lengths. Meanwhile,
ATACompressor consistently achieves high com-
pression ratios across datasets, effectively com-
pressing long contexts while preserving informa-
tion quality. This is particularly obvious in datasets
with longer contexts, such as HotpotQA. Its strong
efficiency makes it well-suited for real-time or
large-scale applications. Moreover, its consistent
performance across different models highlights its
adaptability.

4.3 Ablation Study

As shown in Table 2, we conduct two types of
ablation studies:

(1) w/o Adaptive Allocation Controller (AAC):
This variant replaces the adaptive allocation con-
troller with a fixed number of compressed tokens.
As a result, both task performance and compres-
sion ratio drop. This highlights the importance of
AAC in preserving essential information and dy-
namically adjusting compression rates based on the
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Figure 3: Performance on pretraining (regeneration) and fine-
tuning (QA) tasks with varying numbers of compressed tokens
using the LLAMA-2-7B model on HotpotQA.
task. TP remains similar across settings, as AAC
and the selective encoder run in parallel (§3.2).

(2) wlo Selective: This variant removes selec-
tive compression, applying compression uniformly
to all context tokens. Without identifying task-
relevant content, AAC adjusts compression rates
based on total context length. This leads to clear
declines in both performance and compression ra-
tio, showing that without the selective encoder, the
model fails to prioritize critical information, reduc-
ing overall compression effectiveness.

5 Analysis

We conduct experiments to further evaluate AT-
ACompressor, using ICAE and 500Compres-
sor as main baselines for their strong perfor-
mance and generality. For ATACompressor and
ATACompressor-w/o-Selective, the average num-
ber of compressed tokens k is controlled by direct
adjusting the policy ratio r without training, while
for other methods, k is adjusted by training separate
models with different & values.

5.1 Impact of the Compressed Tokens’
Number

The analysis in Figure 3 on the impact of the num-
ber of compressed tokens k demonstrates ATA-
Compressor’s robustness. As k decreases, ATA-
Compressor shows a smaller performance drop
compared to other methods, highlighting its ability
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Figure 4: Performance on pretraining (regeneration) across
varying input text lengths using the Qwen-2-7B. k represents
the number of compressed tokens or average.

to handle varying compression levels with mini-
mal performance loss. While all methods expe-
rience some degradation as k reduces, ATACom-
pressor maintains relatively high task performance,
even under tighter compression. In contrast, ICAE
and 500Compressor exhibit sharp performance
drops due to the lack of mechanisms for preserv-
ing task-relevant information. Additionally, both
ATACompressor-w/o-AAC and ATACompressor-
w/o-Selective also see performance drops as k de-
creases, underscoring the combined importance of
the two key components. Together, these com-
ponents enable ATACompressor to maintain com-
petitive performance across different compression
limitations.

5.2 Performance Across Input Text Lengths

Figure 4 illustrates ATACompressor’s effectiveness
across varying input lengths. Its lower performance
on shorter texts stems from the policy yielding very
few compressed tokens in such cases. This can be
mitigated in practice by setting a minimum token
threshold. Overall, ATACompressor shows strong
robustness on longer texts, outperforming S00Com-
pressor and ICAE as input length increases. In
contrast, ATACompressor-w/o-AAC, ICAE, and
500Compressor use a fixed number of compressed
tokens, performing well on shorter texts but degrad-
ing rapidly with longer inputs. ATACompressor-
w/o-Selective shows a similar trend to ATACom-
pressor but lacks the selective mechanism, resulting
in significantly lower performance.

5.3 Performance of the Probe

Figure 5 shows that the adaptive allocation con-
troller achieves high prediction accuracy across all
datasets. Identifying whether a sentence is nec-
essary for answering a query is inherently harder
than judging document-level relevance, as sentence-
level decisions lack broader context. This explains
why HotpotQA, despite its longer inputs, yields

MSMARCO
SQUAD
300 HotpotQA
—y =X

250 y=x=30

Predicted Length

50 100 150 200 250 300 350
Gold Length

Figure 5: Comparison of gold (L re;) and predicted lengths
(L ret) across three datasets on Qwen-2-7B.

lower prediction error—its document-level granu-
larity provides richer context for identifying rele-
vant chunks. In contrast, SQUAD’s sentence-level
granularity increases uncertainty, leading to higher
error. These results highlight that higher granular-
ity enables the selective encoder to leverage global
context, improving relevance estimation and pre-
diction accuracy. The detailed performance of the
probe is shown in Table 6.

5.4 Computational Efficiency

Table 3: QA task efficiency evaluated on the HotpotQA using
the LLaMA2-7B model on two A100-40G GPUs. k represents
the number of compressed tokens or average.

Method k Inference Time (ms) GPU Mem. (GB)
Closed Book 156.99 18.79
Original-Context 826.45 21.58
Selective-Context 819.67 23.82
LongLLMLingua 757.58 33.56
Autocompressor 15.33 337.84 25.56
ICAE 8.00 265.11 23.97
500Compressor 8.00 270.28 24.32
QGC 12.80 510.20 35.44
ATACompressor- 8.00 254.18 24.30
w/o-AAC
ATACompressor- 791 255.10 28.42
w/o-Selective
ATACompressor 7.59 255.08 28.66
1.62 254.89 28.49

Table 3 compares the efficiency of different
methods for the QA task in terms of inference time
and GPU memory cost. It shows that ATACom-
pressor demonstrates excellent efficiency, with low
inference time and GPU memory usage. The per-
formance remains stable across a small range of
k. Compared to Orginal-Context method, ATA-
Compressor significantly reduces inference time.
Compared to QGC, which uses a soft prompt frame-
work for query-based compression, ATACompres-
sor achieves lower inference times and GPU mem-
ory usage, demonstrating its efficiency.



Limitations

Despite the promising results, our approach still
has several limitations:

Exploration in cross-model compression scenar-
ios. One recent study (Rau et al., 2024) proposes
adapting the traditional soft prompt method, ICAE
(Ge et al., 2023), to the RAG setting, where a small
model is used as the compressor and a larger LLM
serves as the target model. Our method is naturally
compatible with this setting, but we have not yet
explored its application in such architectures. We
leave this direction for future work.

Dependence on open-source models. Similar to
other soft prompt—based approaches, our method
relies on access to the internal representations and
parameters of LLMs. This reliance limits its ap-
plicability in black-box scenarios, where model
internals are not accessible or exposed.

Limited exploration of downstream applications.
Our current experiments focus on QA tasks, follow-
ing standard experimental paradigms adopted in
prior work. This choice facilitates fair and meaning-
ful comparisons with the baselines. However, this
focus also limits the exploration of our method’s
potential in broader application scenarios. Investi-
gating these directions in future work could further
demonstrate the robustness and versatility of our
approach.
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A Workflow Details

In this section, we provide detailed descriptions of
the workflow. Figure 6 illustrates the procedures
involved in the pre-training and fine-tuning stages,
as outlined in § 3.5.

A.1 Pretrain

During pretraining, we jointly optimize the selec-
tive encoder () and the probe ({). The selective
encoder () is trained to extract and effectively
compress the relevant portions of the context C
required to query (), while the probe () is trained
to accurately predict the relevant text length L el
The overall loss function for this stage combines
the encoder loss (L) and the probe loss (L), with
a weighting factor A to balance their contributions.
The total loss is defined as:

ﬁpretrain = E(p +A- 'CC (®)

Encoder Loss (£,) The encoder loss is for-
mulated using a cross-entropy objective to measure
the alignment between the predicted token distri-
bution and the gold-truth token distribution. C'g.;
is a context formed by concatenating chunks from
the context C' that are explicitly labeled as relevant
for addressing the task @), representing the anno-
tated gold truth of C Rel- We ensure that the chunk
granularity of C 'Rel 18 consistent with that of C'g,;.
During training, teacher forcing (Ge et al., 2023;
Li et al., 2024b) is used to guide the LLM in recon-
structing the gold-truth sequence by providing true
tokens as input, enhancing the model’s ability to
predict the correct sequence. The loss is defined as
follows:

Lo =—> log P(w; | KV, [BOS],wi.;-1; OLLM; OrLorA)

~ ©)
Where wj is the j-th token in the Cre;, and KV is
the key-value representations of the compressed to-
kens generated by the selective encoder (), passed
to the target LLM. The sequence starts with the
beginning-of-sequence token [BOS] as a signal for
pretraining, while ©p1y denotes the frozen pa-
rameters of the target LLM, and Oy ora the train-
able parameters of the LoRA adapter in the selec-
tive encoder. P(w; | -) represents the predicted
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probability distribution of the j-th token. The se-
quence ends when the model generates the end-of-
sequence token [EOS], implicitly included in the
token generation process.

Probe Loss (£;) The probe loss is calculated
using the huber loss (Gokcesu and Gokcesu, 2021),
which measures the error between the estimated
length L Ret and the gold-truth length L pe; (length
of CRrep), 0 is a hyperparameter:

L — %(éRel — Lger)? if [Lret — Lrer| <6,
< 0(|Lret — Lget| — g) otherwise
(10)

A.2 Finetune

During the finetuning, the selective encoder () is
further trained for downstream tasks. The target
LLM generates task-specific outputs based on the
key-value representations of the compressed tokens.
This process also employs teacher forcing. The loss
function during finetuning is defined as:

Lp == logP(a; | KV, qim, a1,-1; OLLM; OLoRA)

j=1

an

where a; denotes the j-th gold-truth answer to-
ken for the task, and ¢1.,,, is the query Q.

A.3 Inference

During inference, all components’ parameters are
frozen. As illustrated in §3.2, the concatenated
chunked context along with the query are com-
pressed by the selective encoder into a set of com-
pressed tokens. The number of compressed tokens
is determined by the adaptive allocation controller.
And then, the key and value representations of the
compressed tokens are passed to the target LLM
to generate outputs in two situations: the regener-
ation of C'ge; (triggered by the [BOS] token) and
the generation of answers based on the query. For
regeneration, the target LLM predicts each token
w; in the sequence using the probability distribu-
tion conditioned on the compressed representations
and previously generated tokens:

’UA)i = arg IIlAaX P(’UAjl | KV, [BOS],’[Z)LZ'_l; @LLM)
Wi

(12)

For generating answers, the target LLM pro-
duces each token a; in the task-specific output con-
ditioned on the compressed representations, the
input query qi.,,,, and previously generated answer
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tokens: * MSMARCO (Nguyen et al.,, 2016): MS-

MARCO (Question Answering v2.1) Tis a

high-quality question answering dataset cu-

(13) rated by Microsoft. In this study, we employ

the dataset to assess models at the passage

B Dataset Details level, where the LLM is tasked with synthe-

sizing information from relevant passages to
produce the correct answer.

a; = argrrgaxP(&j | KV, q1:m, @1:j—1; OLLM)
J

B.1 Dataset Information

The experiments are based on the three datasets:
« HotpotQA (Yang et al., 2018): HotpotQA® is * SQUAD (Rajpurkar et al., 2018): SQUAD? is
a multi-hop question answering dataset where a question-answering dataset where each ques-
the answer requires information from more tion is paired with a passage, and the answer
than one document. We use it to evaluate is typically a span of text found within that
models at the document level, where the LLM passage. We utilize SQUAD is structured to
needs to aggregate information from multiple assess models at the sentence level, demand-

docs to generate a correct answer. —_— ) )
https://huggingface.co/datasets/microsoft/ms_marco/viewer/v2.1

®https://hotpotqga.github.io/ 8https://huggingface.co/datasets/rajpurkar/squad_v2
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ing the LLM to aggregate information from
sentences to generate a correct answer.

B.2 Data Preprocessing

As described in §3.2, the context C is first seg-
mented into chunks C', Cs, .. ., C), using a prede-
fined strategy. These chunks are then concatenated
and processed by the selective encoder () together
with the query Q.

It is worth noting the following: (1) the chunk-
ing process occurs before the selective encoder’s
processing, meaning it is a preprocessing step
rather than a task for the selective encoder (¢);
(2) the chunking process is the procedure of label-
ing the context C' according to a predefined chunk-
ing policy (e.g., using passages as the chunking
unit, where each passage of C'is enclosed within
<PA></PA> tags). All the chunks are then concate-
nated to form a preprocessed context C;4, which is
input into the selective encoder () along with the
query (Q and processed in a single pass rather than
being processed individually in multiple passes; (3)
if the length of raw context C' exceeds the selective
encoder’s input length limit, we can first divide C
into smaller segments and then apply the selective
encoder (y) to compress each segment individu-
ally. This segmentation process is different from
the chunking process we mentioned above.

Examples of preprocessed data following this
procedure are provided in Figure 7, Figure 8 and
Figure 9.

C Implementation Details

In this section, we provide a detailed implementa-
tion. As described in Section 4.1.4, to ensure fair
comparison with baseline methods, the maximum
input length was constrained to 600 tokens. During
dataset construction, only input samples that fell
within this limit were retained. All experiments
were conducted using LLaMA-2-7B and Qwen-2-
7B as backbone models. Unless otherwise noted in
Section 4.1.2, all models were trained using open-
source implementations. For ATACompressor, we
set the hyperparameter \ in Eq.(8) to 10~% and ¢ in
Eq.(10) to 10 during pretraining. The policy ratio
r in Eq. (5) was randomly selected from the set
1, 5, 10, 20, 50 for each training batch in the pre-
training stage. During finetuning and evaluation,
r was fixed at 10 unless specified otherwise. The
maximum number of compressed tokens, denoted
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by Emax, Was set to 8 for both training and inference
phases.

We evaluated the generation quality using sev-
eral widely adopted automatic metrics, including
ROUGE, BLEU, Exact Match, and F1 score. The
evaluation was implemented in Python, leveraging
the NLTK (version 3.8.1) and rouge (version 1.0.1)
libraries.

Further hyperparameter configurations and im-
plementation details can be found in Table 4 and
Table 5. Meanwhile, figure 10 shows the input
prompt for the selective encoder .

D Case Study

Table 7 presents the results of a case study com-
paring ICAE and ATACompressor. Unlike ICAE,
which performs full-text compression, ATACom-
pressor selectively compresses relevant context ac-
cording to task-specific needs, ensuring critical in-
formation is preserved and reducing the risk of key
errors. For instance, in Question 3, ICAE Intro-
duced a critical error by incorrectly stating "over
the first half of the 11th century” instead of the
correct text "in the first half of the 10th century".
Additionally, ATACompressor employs adaptive
compression, dynamically adjusting token usage
based on the length of relevant content. This mech-
anism optimizes resource efficiency while main-
taining high performance across tasks.



Illustrative Preprocessed Sample from the HotpotQA Dataset

Question: "Which writer was from England, Henry Roth or Robert Erskine Childers?"

Context: "<PA> Asgard is a 51 ft gaff rigged yacht. She was owned by the English-born writer and
Irish nationalist Erskine Childers and his wife Molly Childers. She is most noted for her use
in the Howth gun-running of 1914. </PA> <PA> Henry Roth (February 8, 1906 - October 13, 1995)
was an American novelist and short story writer. </PA> <PA> The R509 road, following part of
the Childers Road (named after Erskine Childers), is a regional road in Ireland, running through
the southeastern side of Limerick City. It forms what is somewhat akin to an inner ring road
(albeit mostly two-lane only). </PA> <PA> Mary Alden Osgood Childers, MBE (14 December 1875 -
1 January 1964) was an American-born Irish writer and Irish nationalist. She was the daughter
of Dr Hamilton Osgood and Margaret Cushing Osgood of Beacon Hill, Boston, Massachusetts. Her
older sister was Gretchen Osgood Warren. Molly married the writer and Irish nationalist, Robert
Erskine Childers. Their son, Erskine Hamilton Childers, became the fourth President of Ireland.
</PA> <PA> Gretchen Osgood Warren (19 March 1868 - September 1961), the wife of Fiske Warren,
was an actress, singer and poet. The daughter of Dr. Hamilton Osgood and Margaret Cushing Osgood
of Beacon Hill, Boston, Massachusetts, her younger sister was Mary Alden Childers, the wife
of writer and Irish nationalist Robert Erskine Childers. Her nephew Erskine Hamilton Childers
served as the fourth President of Ireland from 1973-74. </PA> <PA> Robert Caesar Childers (1838
- 25 July 1876) was a British Orientalist scholar, compiler of the first Pali-English dictionary.
Childers was the husband of Anna Barton of Ireland. He was the father of Irish nationalist Robert
Erskine Childers and grandfather to the fourth President of Ireland, Erskine Hamilton Childers.
</PA> <PA> Robert Erskine Childers DSC (25 June 1870 - 24 November 1922), universally known as
Erskine Childers, was a British writer, whose works included the influential novel "The Riddle
of the Sands”, and a Fenian revolutionary who smuggled guns to Ireland in his sailing yacht
"Asgard”. He was executed by the authorities of the nascent Irish Free State during the Irish
Civil War. He was the son of British Orientalist scholar Robert Caesar Childers; the cousin
of Hugh Childers and Robert Barton; and the father of the fourth President of Ireland, Erskine
Hamilton Childers. </PA> <PA> The Irish Bulletin was the official gazette of the government of
the Irish Republic. It was produced by the Department of Propaganda during the Irish War of
Independence. and its offices were originally located at No. 6 Harcourt Street, Dublin. The
paper’s first editor was Desmond FitzGerald, until his arrest and replacement by Robert Erskine
Childers. "The Bulletin” appeared in weekly editions from 11 November 1919 to 11 July 1921.
</PA>"

Gold context: "<PA> Henry Roth (February 8, 1906 — October 13, 1995) was an American novelist
and short story writer. </PA> <PA> Robert Erskine Childers DSC (25 June 1870 - 24 November
1922), universally known as Erskine Childers, was a British writer, whose works included the
influential novel "The Riddle of the Sands”, and a Fenian revolutionary who smuggled guns to
Ireland in his sailing yacht "Asgard”. He was executed by the authorities of the nascent Irish
Free State during the Irish Civil War. He was the son of British Orientalist scholar Robert
Caesar Childers; the cousin of Hugh Childers and Robert Barton; and the father of the fourth
President of Ireland, Erskine Hamilton Childers. </PA> "

Answer: "Robert Erskine Childers DSC"

Figure 7: Illustrative Preprocessed Sample from HotpotQA.
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Illustrative Preprocessed Sample from the MSMACRO Dataset

Question: "Is Bob Hewitt a citizen of a different country than Ray Ruffels?”

Context: "<PA> The presence of communication amid scientific minds was equally important to
the success of the Manhattan Project as scientific intellect was. The only cloud hanging over
the impressive achievement of the atomic researchers and engineers is what their success truly
meant; hundreds of thousands of innocent lives obliterated. </PA> <PA> The Manhattan Project
and its atomic bomb helped bring an end to World War II. Its legacy of peaceful uses of atomic
energy continues to have an impact on history and science. </PA> <PA> Essay on The Manhattan
Project - The Manhattan Project The Manhattan Project was to see if making an atomic bomb
possible. The success of this project would forever change the world forever making it known
that something this powerful can be manmade. </PA> <PA> The Manhattan Project was the name
for a project conducted during World War II, to develop the first atomic bomb. It refers
specifically to the period of the project from 194 . .. 2-1946 under the control of the U.S.
Army Corps of Engineers, under the administration of General Leslie R. Groves. </PA> <PA>
versions of each volume as well as complementary websites. The first website-The Manhattan
Project: An Interactive History-is available on the Office of History and Heritage Resources
website, http://www.cfo.doe.gov/me70/history. The Office of History and Heritage Resources and
the National Nuclear Security </PA> <PA> The Manhattan Project. This once classified photograph
features the first atomic bomb — a weapon that atomic scientists had nicknamed Gadget.. The
nuclear age began on July 16, 1945, when it was detonated in the New Mexico desert. </PA> <PA>
Nor will it attempt to substitute for the extraordinarily rich literature on the atomic bombs and
the end of World War II. This collection does not attempt to document the origins and development
of the Manhattan Project. </PA> "

Gold context: "<PA> Raymond Owen RayRuffels (born 23 March 1946 in Sydney) is an Australian
former professional tennis player and coach. </PA> <PA> Robert Anthony John Hewitt (born 12
January 1940) is a former professional tennis player from Australia. In 1967, after marrying a
South African, he became a South African citizen. He has won 15 major titles and a career Grand
Slam in both men’s and mixed doubles.</PA>"

Answer: "yes"

Figure 8: Illustrative Preprocessed Sample from MSMACRO.

Illustrative Preprocessed Sample from the SQUAD Dataset

Question: "When was the Duchy of Normandy founded?”

Context: "<PA> In the course of the 10th century, the initially destructive incursions of Norse
war bands into the rivers of France evolved into more permanent encampments that included local
women and personal property. </PA> <PA> The Duchy of Normandy, which began in 911 as a fiefdom,
was established by the treaty of Saint-Clair-sur-Epte between King Charles III of West Francia
and the famed Viking ruler Rollo, and was situated in the former Frankish kingdom of Neustria.
</PA> <PA> The treaty offered Rollo and his men the French lands between the river Epte and the
Atlantic coast in exchange for their protection against further Viking incursions. </PA> <PA>
The area corresponded to the northern part of present-day Upper Normandy down to the river Seine,
but the Duchy would eventually extend west beyond the Seine. </PA> <PA> The territory was roughly
equivalent to the old province of Rouen, and reproduced the Roman administrative structure of
Gallia Lugdunensis II (part of the former Gallia Lugdunensis). </PA>"

Gold context: "<PA> The Duchy of Normandy, which began in 911 as a fiefdom, was established by
the treaty of Saint-Clair-sur-Epte between King Charles III of West Francia and the famed Viking
ruler Rollo, and was situated in the former Frankish kingdom of Neustria. </PA>"

Answer: "911"

Figure 9: Illustrative Preprocessed Sample from SQUAD.

Input prompt for the selective encoder ¢

<QUESTION> {{Question}} </QUESTION> <CONTEXT> {{Context}} </CONTEXT> <INST> Please identify and
extract the <PA> sections that can answer the question (which may not be unique) </INST>

Figure 10: Input prompt for the selective encoder ¢
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Table 4: Hyperparameters for Pretraining

Hyperparameter Assignment

learning Rate le-5

Ir scheduler type constant with warmup

warmup steps 300

weight decay 0.2

overall batch size 16

optimizer AdamW

epochs 3

LoRa layers all linear layers

LoRar 64

LoRa alpha 32

LoRa dropout 0.2

LoRa bias None

mixed-precision fpl6

GPU 4 x A100 40GB

max context length 600

Ain Eq. (8) le-4

policy ratio r randomly chosen from {1, 5, 10, 20, 50} per
batch.

maximum number of compressed tokens k4 8

Table 5: Hyperparameters for Finetuning

Hyperparameter Assignment
learning Rate le-5

Ir scheduler type constant with warmup
warmup steps 300

weight decay 0.2

overall batch size 16

optimizer AdamW

epochs 1

LoRa layers all linear layers
LoRar 64

LoRa alpha 32

LoRa dropout 0.2

LoRa bias None
mixed-precision fpl6

GPU 4 x A100 40GB
max context length 600

policy ratio r 10

maximum number of compressed tokens kp,q; 8

Dataset Mean Gold Length Mean Predicted Length MAE
HotpotQA 239.50 243.72 4.52
MSMARCO 137.76 145.30 7.63
SQUAD 40.35 52.73 13.99

Table 6: Mean absolute error (MAE) of probe predictions on different datasets
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Table 7: Case study of ATACompressor and ICAE on Qwen-2-7B. [red highlights errors in key information, typically referring
to incorrect statements directly impacting the answer. yellow indicates mistakes in less critical details that do not directly

affect the core answer. | green denotes hallucinations, where the text contains information not present in the original source.

blue signals information loss, meaning less important content from the original text is missing. Finally, brown indicates
paraphrasing, where the original content is reworded without changing its meaning. Also, k represents the number of compressed

tokens or average.

Original Text (The input to ICAE does not include the labels <PA> and </PA>.)

succeeding centuries.

<PA> The Normans (Norman: Nourmands; French: Normands; Latin: Normanni) were the people who in the 10th
and 11th centuries gave their name to Normandy, a region in France. </PA> <PA> They were descended from
Norse ("Norman" comes from "Norseman") raiders and pirates from Denmark, Iceland and Norway who, under
their leader Rollo, agreed to swear fealty to King Charles III of West Francia. </PA> <PA> Through generations of
assimilation and mixing with the native Frankish and Roman-Gaulish populations, their descendants would
gradually merge with the Carolingian-based cultures of West Francia. </PA> <PA> The distinct cultural and ethnic
identity of the Normans emerged initially in the first half of the 10th century, and it continued to evolve over the

</PA>

Question

ATACompressor Regeneration Out-
put (The value of k is 2, 4, and 2 for
the following three questions, respec-
tively.)

ICAE Regeneration Output (k=8)

Q1: In what country is
Normandy located?

The Normans ( Norman ; French: Nor-
mands; Latin: Normanni) were the peo-
ple who in the 10th and 11th centuries
gave their name to Normandy ; aregion
in France.

Q2: From which coun-
tries did the Norse
originate?

The Normans (| Norman ;
Normands; Latin: Normanni) were
the people who in the 10th and 11th
gave their name to Normandy ; a
region in France. They were descended
from Norse ("Norman" comes from
"Norseman") raiders and pirates
from Denmark, Iceland, and Norway
who,

agreed to
Charles

under the leadership of Rollo ,

swear
I of

fealty
West

to King
Francia.

Q3: What century did
the Normans first gain
their separate iden-
tity?

French:

The distinctive cultural and ethnic
identity of the Normans emerged
initially in the first half of the
10th century, and it continued to
evolve over the succeeding centuries.

The Normans ( Normand; Nourmands :  French
; Latin: Normanni) were the people who
were the Normans  in the 10th and 11th centuries
who gave their name to Normandy, a region in
France. They descended from Norse ("Norman"

comes from "Norseman") raiders and pirates from
Denmark, Iceland and Norway who, under their
leader Rollo, agreed to swear fealty to King Charles
IIT of West Francia. Through generations of

assimilation and mixing of the
Norman and Frankish cultures , their
first- and second-generation descendants would

inherit the Roman-Gallic cultural identity of the
Carolingian Normans . The | distinctive cultural
and ethnic identity emerged gradually over the

first half of the [ 11th century,
and it was the native Frankish culture that initially

dominated Western Europe.
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