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Abstract001

Long-context inputs in large language mod-002
els (LLMs) often suffer from the "lost in the003
middle" problem, where critical information004
becomes diluted or ignored due to excessive005
length. Context compression offers a promis-006
ing solution, however, current compression007
methods still have notable limitations: hard008
prompt methods often suffer from low compres-009
sion ratios, while soft prompt methods tend to010
lose critical task-relevant information and lack011
adaptability. We propose ATACompressor, an012
adaptive, task-aware context compressor that013
combines the strengths of both paradigms. AT-014
ACompressor (1) efficiently compresses con-015
text into compact soft prompts, (2) selectively016
preserves task-relevant information through a017
trained encoder, and (3) dynamically adjusts018
compression rates via an adaptive controller.019
Experiments on QA benchmarks demonstrate020
that ATACompressor achieves state-of-the-art021
performance while maintaining high efficiency.022

1 Introduction023

Large language models (LLMs) demonstrate re-024

markable performance across diverse tasks, such025

as natural language understanding, text genera-026

tion, and question answering (Chang et al., 2024;027

Naveed et al., 2023; Min et al., 2023). How-028

ever, their static nature poses significant challenges.029

For example, they cannot independently update030

or adapt to new information. To bridge this gap,031

LLMs need external context to inject dynamic,032

domain-specific knowledge (Parthasarathy et al.,033

2024; Wang et al., 2023). This dependency high-034

lights the critical importance of contextual infor-035

mation. Without it, large models could be outdated036

or misaligned with real-world data, compromising037

both their accuracy and practical utility.038

Techniques like retrieval-augmented generation039

(RAG) address this challenge by retrieving rele-040

vant information from external sources, enabling041

the model to access up-to-date, task-specific data 042

(Huang and Huang, 2024; Fan et al., 2024). De- 043

spite the benefits of providing ample context, naive 044

RAG that appends raw document tokens to the 045

model input could create excessively long context 046

that overwhelms LLMs (Cuconasu et al., 2024), 047

making it difficult for them to identify critical in- 048

formation, especially information in the middle of 049

the context — a phenomenon commonly referred 050

to as the "lost in the middle" problem (Hsieh et al., 051

2024; Liu et al., 2024a). 052

One way to address this challenge is by reduc- 053

ing the input length. A widely adopted approach 054

is compressing the lengthy context into a more 055

concise form, which eases the “lost in the middle” 056

effect and lowers inference cost and latency (Li 057

et al., 2024a). Existing long-context compression 058

techniques can be broadly categorized into hard- 059

prompt and soft-prompt methods. Hard prompt 060

methods, such as Selective-Context (Li et al., 2023) 061

and LongLLMLingua (Jiang et al., 2023), reduce 062

context size by identifying and removing irrele- 063

vant or low-value content. While these methods 064

effectively preserve task-relevant information, they 065

typically result in lower compression ratios. In con- 066

trast, soft prompt methods, such as AutoCompres- 067

sor (Chevalier et al., 2023), ICAE (Ge et al., 2023), 068

and 500Compressor (Li et al., 2024b), compress 069

text into a sequence of special tokens, achieving 070

higher compression and greater information den- 071

sity by representing hundreds of tokens with just 072

a few. However, these methods often suffer from 073

the loss of task-relevant content due to the absence 074

of task-specific information (e.g., questions) dur- 075

ing the compression process. Additionally, their 076

compression tokens number are fixed and cannot 077

be dynamically adjusted based on the requirements 078

of the task. These shortcomings prevent effective 079

compression based on task-specific needs. 080

To address these challenges, we propose the 081

Adaptive Task-Aware Compressor (ATACompres- 082
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Figure 1: Comparative schematic of three approaches, us-
ing selective compressor to represent the hard prompt and
500Compressor to represent the traditional soft prompt.

sor), which offers three key advantages: (1) Ef-083

ficient Context Compression: ATACompressor084

leverages soft prompt techniques to condense long085

contexts into compact token representations, pre-086

serving essential information and improving down-087

stream task efficiency. (2) Effective Key Informa-088

tion Preservation: ATACompressor trains a selec-089

tive encoder to compress only task-relevant con-090

tent, filtering out irrelevant information while max-091

imizing the retention of critical information. This092

task-aware compression strategy enhances down-093

stream performance by focusing on the most impor-094

tant content. (3) Adaptive Resource Allocation:095

ATACompressor employs an adaptive allocation096

controller that infers the length of relevant content097

from internal states and dynamically adjusts the098

compression rate accordingly. It allocates fewer099

tokens to shorter relevant spans and more to longer100

ones, ensuring adequate preservation of essential101

information while optimizing resource utilization102

across diverse tasks. Figure 1 illustrates the charac-103

teristics of ATACompressor.104

Our experiments on three public QA benchmarks105

show that ATACompressor consistently achieves106

state-of-the-art performance while maintaining107

high efficiency. Additionally, we conduct a se-108

ries of ablation studies and analysis experiments to109

further investigate and understand the underlying110

effectiveness of ATACompressor.111

2 Related Work112

2.1 Retrieval-augmented Generation113

Retrieval-Augmented Generation (RAG) enhances114

large language models by integrating external re-115

trieval, improving content accuracy and factuality116

(Gao et al., 2023; Zhao et al., 2024a; Huang and117

Huang, 2024; Wang et al., 2023). It typically com-118

bines a retrieval module with a language model119

to generate responses based on retrieved data (Liu 120

et al., 2024b; Gao et al., 2023; Hu and Lu, 2024). 121

However, RAG struggles with long contexts due to 122

issues like the "lost in the middle" effect (Cuconasu 123

et al., 2024; Liu et al., 2024a; Hsieh et al., 2024), 124

where critical mid-sequence information is missed. 125

Processing long texts also increases computational 126

cost and latency, limiting real-time or resource- 127

constrained use (Zhao et al., 2024a; Agrawal et al., 128

2024). Addressing these challenges is essential for 129

practical long-context applications. 130

2.2 Context Compression 131

A common approach to handling long contexts is 132

extending the LLM’s context window, typically via 133

larger pretraining windows (Nijkamp et al., 2023), 134

positional embedding interpolation (Peng et al., 135

2023; Zhu et al., 2023; Ding et al., 2024), or at- 136

tention refinements (Chen et al., 2023). Though 137

effective, these methods often entail significant ar- 138

chitectural modifications. 139

Unlike context extension, context compression 140

shortens inputs without modifying LLM architec- 141

ture, enabling efficient long-context handling. It 142

consists of two types: hard and soft prompt meth- 143

ods. Hard methods like Selective-Context (Li et al., 144

2023) and LongLLMLingua (Jiang et al., 2023) 145

remove irrelevant tokens using external models or 146

perplexity-based scoring but yield low compres- 147

sion ratios due to token retention. Soft methods, 148

such as AutoCompressor (Chevalier et al., 2023), 149

ICAE (Ge et al., 2023), and 500Compressor (Li 150

et al., 2024b), compress contexts into dense vectors 151

via fine-tuning or autoencoders, achieving higher 152

ratios but often ignoring task relevance and lack- 153

ing dynamic adaptability. Recent query-guided 154

soft prompt methods like QGC (Cao et al., 2024), 155

xRAG (Cheng et al., 2024), FlexRag (Liu et al., 156

2024b), and COCOM (Rau et al., 2024) improve 157

task awareness but depend heavily on external re- 158

trievers and suffer from complex architectures, re- 159

sulting in longer inference times and reliance on 160

retriever quality. 161

Our ATACompressor algorithm, built on soft- 162

prompt techniques, incorporates task information 163

during compression and leverages the compres- 164

sor’s intrinsic ability to selectively extract, retain 165

and compress the relevant portions of the context. 166

It also dynamically adjusts the compression rate 167

based on the task requirements. These features 168

make it well-suited for RAG and other downstream 169

tasks while delivering superior performance and 170
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efficiency.171

2.3 Probe for LLMs172

Probing techniques are used to interpret and en-173

hance LLM behavior by attaching lightweight mod-174

els to analyze internal representations (Dong et al.,175

2023; Ju et al., 2024; Ibanez-Lissen et al., 2024;176

Zhao et al., 2024b; Wang et al., 2024b). Prior work177

has used probes to uncover biases (Dong et al.,178

2023), analyze contextual encoding across layers179

(Ju et al., 2024), and study cross-lingual alignment180

(Wang et al., 2024a). In our work, we probe en-181

coder hidden states to estimate relevant context182

length, enabling adaptive resource allocation.183

3 Method184

3.1 Problem Formulation185

LLMs often take a task prompt (Q) and a con-186

text (C) as input to generate a target answer (A).187

However, the typically large size of C leads to chal-188

lenges such as the "lost in the middle" problem,189

increased inference costs, longer latencies and po-190

tential performance degradation. A widely adopted191

way to address this challenge is context compres-192

sion, the objective of ATACompressor can be for-193

mulated as:194

min
φ(Q,C)

d
[
LLM

(
A | Q,C

)
,LLM

(
Ã | φ(Q,C), Q

)]
s.t. |φ(Q,C)| = k

(1)195

Here, Ã represents the output of the LLM with196

the compressed tokens φ(Q,C), k represents the197

number of compressed tokens, and d(·, ·) is a dis-198

tance function, such as KL divergence, that mea-199

sures the difference between two distributions.200

3.2 Architecture201

As shown in Figure 2, ATACompressor com-202

prises a selective encoder (φ), an adaptive allo-203

cation controller (AAC), and a target LLM (de-204

coder). The process begins by segmenting the205

context C into chunks C1, C2, . . . , Cn using a pre-206

defined strategy. And then, the selective encoder207

(φ) processes the concatenated chunked context208

Cckd = {C1, C2, . . . , Cn} along with the query209

Q 1, selectively compressing relevant information210

into a compressed token sequence, whose length211

k is determined by the AAC. The key-value (KV)212

1In the following, we refer to all text inputs to the selective
encoder as "input text".

representations of these compressed tokens are sub- 213

sequently passed to the target LLM for downstream 214

task. It is important to note that the selective en- 215

coder (φ) processes the input text and compresses 216

the relevant parts into tokens continuously, due 217

to the autoregressive nature of LLM. Figure 2 is 218

split into two steps to illustrate this process more 219

intuitively. As soon as the selective encoder (φ) 220

processes the last token of the input text, it contin- 221

ues generating the first compressed token without 222

interruption. At this point, the AAC also begins 223

processing in parallel. Since the AAC is very effi- 224

ciently due to its relatively lightweight structure, it 225

can predict the total number of compressed tokens 226

before the first compressed token is generated. 227

Compared to prior soft compression methods, 228

ATACompressor introduces two key innovations: 229

task-aware compression and dynamic token alloca- 230

tion, ensuring efficient resource utilization while 231

preserving essential information. These are real- 232

ized through two core components: the selective 233

encoder (φ) and the adaptive allocation controller 234

(AAC), detailed in the following sections. 235

3.3 Selective Encoder 236

Traditional soft embedding methods compress the 237

entire context C using an encoder, but often fail 238

to effectively identify and retain query-relevant in- 239

formation, potentially leading to the loss of crucial 240

content. To address this, we train a selective en- 241

coder (φ) designed to enhance the encoder’s ability 242

to sense and extract relevant information. The se- 243

lective encoder consists of a frozen LLM ΘLLM 244

with trainable LoRA parameters ΘLoRA, and se- 245

lectively compresses only the portions of the con- 246

text needed to answer the query Q into a compact 247

set of tokens. This improves compression by pre- 248

serving relevant content and discarding irrelevant 249

information, thereby enhancing downstream task 250

performance. 251

Training the selective encoder φ is challenging 252

because the optimization objective adopted in stan- 253

dard soft-prompt compressors (Ge et al., 2023; Li 254

et al., 2024b) no longer applies. During pretraining, 255

conventional compressors reconstruct the entire in- 256

put, so the supervision signal—the input itself—is 257

complete and internally consistent. In ATACom- 258

pressor, however, φ preserves and compresses only 259

the context fragments needed to answer Q; thus the 260

supervision signal is the relevant parts of the whole 261

context. This shift introduces granularity ambigu- 262

ity. In real-world datasets, annotations of relevant 263
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Figure 2: The inference workflow of ATACompressor. The illustration of the training workflow is provided in §A

context can vary in granularity (e.g., at the passage264

or document level). Without proper preprocessing,265

the inconsistent granularity of the annotated rele-266

vant context during training can confuse φ about267

how to process the context. For example, if some268

gold-truths indicate relevance at the document level269

while others are at the sentence level, φ will strug-270

gle with whether to group information coarsely or271

finely. Conversely, enforcing a single fixed granu-272

larity during training would limit its adaptability to273

tasks with different granularity requirements. Con-274

sequently, we must devise a mechanism that ex-275

plicitly guides φ to perceive and compress relevant276

information at the desired granularity.277

To mitigate this, we deterministically chunk278

the context C into uniform units C1, . . . , Cn that279

match the granularity of its gold labels 2, concate-280

nate them into Cckd, and feed ⟨Q,Cckd⟩ to the se-281

lective encoder φ in one pass. φ then isolates the282

query-relevant subset ĈRel ⊆ Cckd and compresses283

it into k tokens c1, . . . , ck, with k determined by284

the adaptive allocation controller (AAC). The strat-285

egy lets ATACompressor handle mixed or user-286

specified granularities. The formal process is de-287

scribed as follows 3:288

φ(Q,C) = φ(⟨Q,Cckd⟩) = φ
(
ĈRel

)
= (c1, . . . , ck)︸ ︷︷ ︸

k determined by AAC

,

(2)

289

ĈRel = {Ct1 , . . . , Ctm}︸ ︷︷ ︸
Cti

relevant to Q

⊆ {C1, . . . , Cn}, (3)290

291

2At inference time the chunking granularity is determined
by user or task requirements.

3Some examples of the preprocessed inputs are provided
in §B

3.4 Adaptive Allocation Controller (AAC) 292

The adaptive allocation controller (AAC) is com- 293

posed of a probe (ζ) and a policy function (η). The 294

probe (ζ) captures the selective encoder’s hidden 295

states to estimate the length of relevant content. 296

This estimation directs the policy function (η) to 297

dynamically adjust the compression rate, preserv- 298

ing relevant information and optimizing compu- 299

tational resource usage. The reason for selecting 300

the length of ĈRel as a key signal for adjusting the 301

number of compressed tokens (k) is as follows: 302

The length of ĈRel represents length of the text 303

needed to complete the task. Prior studies (Ge et al., 304

2023; Li et al., 2024b; Cao et al., 2024; Rau et al., 305

2024) have demonstrated that the performance of 306

a soft-prompt compressor is primarily influenced 307

by the ratio between the text length and k. With 308

a fixed k, the performance of the compressor de- 309

clines rapidly as the text length increases. By es- 310

timating the length of ĈRel, k can be dynamically 311

adjusted to task needs—allocating fewer tokens for 312

shorter and more for longer relevant spans. This 313

task-aware strategy ensures a more efficient and 314

effective compression. 315

The probe (ζ) is a lightweight neural network 316

comprising an MLP and attention layers. It ana- 317

lyzes the hidden states from the selective encoder 318

(φ) to estimate the length of ĈRel, guiding dynamic 319

compression. Specifically, after φ processes the 320

input, ζ takes its final-layer hidden states at the last 321

token and outputs the estimated length L̂Rel, which 322

is then used by the policy function (η) to determine 323

the number of compressed tokens (k). The process 324
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is formalized as:325

L̂Rel = ζ(Hφ), k = η(L̂Rel) (4)326

Here, ζ(·) denotes the probe’s operation on the327

encoder’s final hidden states Hφ to estimate L̂Rel.328

The policy function η(·) then determines the num-329

ber of compressed tokens k based on L̂Rel. In our330

approach, k is set by dividing L̂Rel by a policy ratio331

r, capped by a maximum kmax:332

k = η(L̂Rel) = min

(
L̂Rel
r

, kmax

)
(5)333

Notably, the selective encoder (φ) and AAC op-334

erate independently, ensuring that the probe (ζ)335

structure or policy function (η) does not affect the336

encoder’s ability. This independence allows flexi-337

bility in designing the AAC, particularly the policy338

function (η), to suit task-specific needs. For in-339

stance, the policy ratio r in our function can be340

adjusted without retraining, unlike traditional soft341

prompt methods that require retraining to change342

the compressed tokens’ number (Ge et al., 2023;343

Li et al., 2024b).344

3.5 Workflow345

ATACompressor operates in three stages: pretrain-346

ing, finetuning, and inference. For detailed infor-347

mation, please refer to the §A.348

Pretraining. We jointly train the selective en-349

coder φ and the probe ζ. Given a chunked con-350

text Cckd and query Q, φ produces compressed351

key–value pairs KV that enable the frozen LLM352

to reconstruct the task-relevant subsequence CRel,353

while ζ predicts its token length L̂Rel. Their objec-354

tives combine into a single loss.355

Lpretrain = −
n∑

j=1

logP
(
wj | KV, [BOS], w1:j−1

)
︸ ︷︷ ︸

Lφ (cross–entropy)

+ λLζ ,

(1)356

where wj is the j-th token of CRel and Lζ is a357

Huber loss (Gokcesu and Gokcesu, 2021).358

Finetuning. The selective encoder (φ) is further359

trained for downstream tasks. The target LLM360

generates task-specific outputs based on the KV361

of the compressed tokens. The loss function is362

defined as:363

LF = −
n∑

j=1

logP
(
aj | KV, q1:m, a1:j−1

)
, (2)364

where aj is the j-th gold answer token and q1:m is365

the query sequence.366

Inference. During inference, all parameters are 367

frozen. As described in §3.2, the inference process 368

concludes with the compressed token KV pairs be- 369

ing passed to the target LLM to generate outputs in 370

two modes: regenerating CRel (triggered by [BOS]) 371

and answering the query. 372

For regeneration: 373

ŵi = argmax
ŵi

P (ŵi | KV, [BOS], ŵ1:i−1; ΘLLM)

(6) 374

For question answering: 375

âj = argmax
âj

P (âj | KV, q1:m, â1:j−1; ΘLLM)

(7) 376

4 Experiments 377

4.1 Settings 378

4.1.1 Datasets 379

The experiments are based on the three datasets 4: 380

• HotpotQA (Yang et al., 2018): Multi-hop QA 381

dataset that demands combining information 382

from multiple documents. We use it to evalu- 383

ate compressors at the document level, where 384

answers are synthesized from relevant docu- 385

ments. 386

• MSMARCO (Nguyen et al., 2016): A high- 387

quality question answering dataset curated by 388

Microsoft. We use it to evaluate compressors 389

at the passage level, where answers are syn- 390

thesized from relevant passages. 391

• SQUAD (Rajpurkar et al., 2018): A dataset 392

where each question is paired with a passage, 393

and the answer is typically a span of text found 394

within that passage. We use it to evaluate com- 395

pressors at the sentence level, where answers 396

are synthesized from relevant sentences. 397

4.1.2 Baselines 398

We use three types of baselines. 399

1. No Compression 400

• Closed-Book The LLM directly answers ques- 401

tions without access to any external context. 402

• Original-Context The LLM answers ques- 403

tions with access to the full external context, 404

using the original uncompressed context with- 405

out any modifications. 406

2. Hard Prompt Compression 407

4Details of the dataset and examples of the preprocessed
inputs are provided in §B.
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Table 1: The experimental results on three benchmark datasets include the following metrics: EM (Exact Match), F1 (F1
score), CR (Compression Ratio), and TP (Throughput in examples / second). Our ATACompressor algorithm shows significant
improvements in all metrics across all datasets compared to QGC and 500Compressor , with p < 0.001.

Methods HotpotQA MSMARCO SQUAD

F1 EM CR TP F1 EM CR TP F1 EM CR TP

Qwen-2-7B

Closed-book 30.61 10.35 – 5.64 15.48 0.99 – 2.83 38.84 6.33 – 5.29
Original-Context 59.88 39.73 1.0x 1.24 40.79 4.25 1.0x 0.41 68.52 48.75 1.0x 2.04

Selective-Context 53.76 37.10 3.41x 1.24 32.43 2.58 3.86x 0.66 59.67 40.49 4.64x 1.65
LongLLMLingua 64.63 40.08 4.37x 1.28 43.52 4.91 5.64x 0.75 64.89 48.10 5.08x 2.10

ICAE 65.39 39.71 22.92x 3.61 46.21 5.17 14.32x 1.26 61.26 45.33 21.19x 2.96
500Compressor 67.46 42.18 22.92x 3.51 47.23 5.33 14.32x 1.24 64.68 47.95 21.19x 2.95
QGC 72.41 51.54 13.75x 1.83 49.85 6.15 16.44x 0.79 66.79 49.27 16.92x 1.49

ATACompressor 80.23 65.49 23.81x 3.63 53.30 8.15 25.32x 1.35 70.52 52.10 27.39x 3.07

LLaMA-2-7B

Closed-book 22.84 4.82 – 6.37 10.94 0.70 – 3.47 37.93 5.42 – 5.67
Original-Context 53.71 36.20 1.0x 1.21 38.72 4.09 1.0x 0.44 68.89 50.38 1.0x 2.12

Selective-Context 51.68 36.09 3.30x 1.22 30.58 2.36 3.63x 0.61 57.71 39.37 4.55x 1.36
LongLLMLingua 62.82 37.27 3.95x 1.32 42.98 3.44 4.58x 0.86 65.40 48.26 4.73x 1.72

AutoCompressor 59.66 32.05 11.96x 2.96 33.96 2.45 13.70x 1.26 60.52 41.49 14.21x 2.61
ICAE 62.10 37.72 22.92x 3.77 38.51 3.32 14.32x 1.27 64.28 46.75 21.19x 3.02
500Compressor 64.28 39.65 22.92x 3.70 40.30 3.40 14.32x 1.23 69.61 50.60 21.19x 3.13
QGC 68.21 45.15 14.32x 1.96 44.22 5.22 15.51x 0.81 68.43 50.45 15.91x 1.77

ATACompressor 78.44 62.65 24.15x 3.86 50.06 8.00 27.36x 1.29 71.67 53.00 27.18x 3.14

• Selective-Context (Li et al., 2023): It lever-408

ages self-information computed by an external409

language model to remove redundant words.410

• LongLLMLingua (Jiang et al., 2023): It uses411

a language model to assess document impor-412

tance via question-aware perplexity and ap-413

plies a coarse-to-fine strategy to remove irrel-414

evant tokens.415

3. Soft Prompt Compression416

• AutoCompressor (Chevalier et al., 2023): It417

fine-tunes an LLM to iteratively compress418

long contexts into summary vectors. We419

use the released AutoCompressor-Llama-2-420

7B-6K model5 for experiments.421

• ICAE (Ge et al., 2023): It adopts an autoen-422

coder architecture to compress long contexts423

into compact memory slots.424

• 500Compressor (Li et al., 2024b): Similar425

to ICAE, the key difference is that it uses the426

KV representations of the compressed tokens427

instead of the embeddings.428

• QGC (Cao et al., 2024): It compresses query-429

guided document representations into n-grams430

based on word importance to the query.431

5https://huggingface.co/princeton-nlp/AutoCompressor-
Llama-2-7b-6k

4.1.3 Main Evaluation Metrics 432

Following prior work (Cao et al., 2024; Li et al., 433

2024b), we evaluate downstream QA tasks using 434

F1 score and Exact Match (EM). We also compute 435

the compression ratio (CR), the ratio of original 436

to compressed context length, and report inference 437

throughput (TP) on two A100-40G GPUs, includ- 438

ing compression and answer generation. In ad- 439

dition, Rouge-L-F is used in §5 to evaluate the 440

performance of the regeneration task. 441

4.1.4 Implementation Details 442

We utilized a 280k dataset (180k MSMARCO and 443

100k HotpotQA) from training sets for pretrain- 444

ing and finetuning. For evaluation, 5k examples 445

were randomly sampled from the test sets of MS- 446

MARCO, HotpotQA, and SQUAD. All reported re- 447

sults are averages over 5 random samplings unless 448

stated otherwise. For ATACompressor, following 449

§3.3, the datasets was segmented into <PA></PA> 450

chunks: each document (HotpotQA), passage (MS- 451

MARCO), or sentence (SQUAD) was treated as 452

a chunk. Other models used the same training 453

data. To facilitate comparison with baselines, the 454

maximum input length was set to 600 tokens (as 455

many baselines conduct their main experiments us- 456

ing input lengths around 500 tokens and resource 457

limitation), and only inputs below this limit were 458

retained during dataset construction. Experiments 459

were conducted using LLaMA-2-7B and Qwen-2- 460
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Table 2: The ablation study results on MSMARCO using
LLAMA-2-7B. Here, k represents the number of compressed
tokens or average.

Methods F1 EM CR(k) TP
ATAcompressor 50.06 8.00 27.36x (4.18) 1.29
w/o AAC 47.52 7.34 19.06x (6.00) 1.29
w/o Selective 40.83 3.51 24.59x (4.65) 1.29

7B as backbones, with all models trained using461

open-source code unless noted in §4.1.2. See §B462

and §C for details on datasets and training.463

4.2 Main Results464

Table 1 shows the performance of various methods465

across three benchmark datasets. ATACompressor466

consistently outperforms all other methods in both467

task performance (F1 and EM scores) and com-468

pression efficiency, highlighting its effectiveness469

and efficiency in long-context compression. A case470

study of the compression results can be found in471

§D. First of all, ATACompressor demonstrates sig-472

nificant advantages over non-compression methods,473

effectively alleviating the "lost in the middle" is-474

sue by focusing on key information within lengthy475

contexts. Furthermore, ATACompressor achieves476

the greatest relative improvement on HotpotQA,477

a dataset with the longest contexts and coarsest478

granularity. The relatively larger amount of irrel-479

evant text highlights the advantage of ATACom-480

pressor’s selective compression, demonstrating its481

strong ability to handle long-context scenarios with482

the selective encoder. Results on MSMARCO and483

SQUAD further demonstrate ATACompressor’s ca-484

pability to selectively preserve task-relevant infor-485

mation across varying context lengths. Meanwhile,486

ATACompressor consistently achieves high com-487

pression ratios across datasets, effectively com-488

pressing long contexts while preserving informa-489

tion quality. This is particularly obvious in datasets490

with longer contexts, such as HotpotQA. Its strong491

efficiency makes it well-suited for real-time or492

large-scale applications. Moreover, its consistent493

performance across different models highlights its494

adaptability.495

4.3 Ablation Study496

As shown in Table 2, we conduct two types of497

ablation studies:498

(1) w/o Adaptive Allocation Controller (AAC):499

This variant replaces the adaptive allocation con-500

troller with a fixed number of compressed tokens.501

As a result, both task performance and compres-502

sion ratio drop. This highlights the importance of503

AAC in preserving essential information and dy-504

namically adjusting compression rates based on the505

(a) Pretraining Results (Regeneration)

(b) Finetuning Results (QA)

Figure 3: Performance on pretraining (regeneration) and fine-
tuning (QA) tasks with varying numbers of compressed tokens
using the LLAMA-2-7B model on HotpotQA.

task. TP remains similar across settings, as AAC 506

and the selective encoder run in parallel (§3.2). 507

(2) w/o Selective: This variant removes selec- 508

tive compression, applying compression uniformly 509

to all context tokens. Without identifying task- 510

relevant content, AAC adjusts compression rates 511

based on total context length. This leads to clear 512

declines in both performance and compression ra- 513

tio, showing that without the selective encoder, the 514

model fails to prioritize critical information, reduc- 515

ing overall compression effectiveness. 516

5 Analysis 517

We conduct experiments to further evaluate AT- 518

ACompressor, using ICAE and 500Compres- 519

sor as main baselines for their strong perfor- 520

mance and generality. For ATACompressor and 521

ATACompressor-w/o-Selective, the average num- 522

ber of compressed tokens k is controlled by direct 523

adjusting the policy ratio r without training, while 524

for other methods, k is adjusted by training separate 525

models with different k values. 526

5.1 Impact of the Compressed Tokens’ 527

Number 528

The analysis in Figure 3 on the impact of the num- 529

ber of compressed tokens k demonstrates ATA- 530

Compressor’s robustness. As k decreases, ATA- 531

Compressor shows a smaller performance drop 532

compared to other methods, highlighting its ability 533

7



Figure 4: Performance on pretraining (regeneration) across
varying input text lengths using the Qwen-2-7B. k represents
the number of compressed tokens or average.

to handle varying compression levels with mini-534

mal performance loss. While all methods expe-535

rience some degradation as k reduces, ATACom-536

pressor maintains relatively high task performance,537

even under tighter compression. In contrast, ICAE538

and 500Compressor exhibit sharp performance539

drops due to the lack of mechanisms for preserv-540

ing task-relevant information. Additionally, both541

ATACompressor-w/o-AAC and ATACompressor-542

w/o-Selective also see performance drops as k de-543

creases, underscoring the combined importance of544

the two key components. Together, these com-545

ponents enable ATACompressor to maintain com-546

petitive performance across different compression547

limitations.548

5.2 Performance Across Input Text Lengths549

Figure 4 illustrates ATACompressor’s effectiveness550

across varying input lengths. Its lower performance551

on shorter texts stems from the policy yielding very552

few compressed tokens in such cases. This can be553

mitigated in practice by setting a minimum token554

threshold. Overall, ATACompressor shows strong555

robustness on longer texts, outperforming 500Com-556

pressor and ICAE as input length increases. In557

contrast, ATACompressor-w/o-AAC, ICAE, and558

500Compressor use a fixed number of compressed559

tokens, performing well on shorter texts but degrad-560

ing rapidly with longer inputs. ATACompressor-561

w/o-Selective shows a similar trend to ATACom-562

pressor but lacks the selective mechanism, resulting563

in significantly lower performance.564

5.3 Performance of the Probe565

Figure 5 shows that the adaptive allocation con-566

troller achieves high prediction accuracy across all567

datasets. Identifying whether a sentence is nec-568

essary for answering a query is inherently harder569

than judging document-level relevance, as sentence-570

level decisions lack broader context. This explains571

why HotpotQA, despite its longer inputs, yields572

Figure 5: Comparison of gold (LRel) and predicted lengths
(L̂Rel) across three datasets on Qwen-2-7B.

lower prediction error—its document-level granu- 573

larity provides richer context for identifying rele- 574

vant chunks. In contrast, SQUAD’s sentence-level 575

granularity increases uncertainty, leading to higher 576

error. These results highlight that higher granular- 577

ity enables the selective encoder to leverage global 578

context, improving relevance estimation and pre- 579

diction accuracy. The detailed performance of the 580

probe is shown in Table 6. 581

5.4 Computational Efficiency 582

Table 3: QA task efficiency evaluated on the HotpotQA using
the LLaMA2-7B model on two A100-40G GPUs. k represents
the number of compressed tokens or average.

Method k Inference Time (ms) GPU Mem. (GB)

Closed Book - 156.99 18.79
Original-Context - 826.45 21.58

Selective-Context - 819.67 23.82
LongLLMLingua - 757.58 33.56

Autocompressor 15.33 337.84 25.56
ICAE 8.00 265.11 23.97
500Compressor 8.00 270.28 24.32
QGC 12.80 510.20 35.44

ATACompressor-
w/o-AAC

8.00 254.18 24.30

ATACompressor-
w/o-Selective

7.91 255.10 28.42

ATACompressor 7.59 255.08 28.66
1.62 254.89 28.49

Table 3 compares the efficiency of different 583

methods for the QA task in terms of inference time 584

and GPU memory cost. It shows that ATACom- 585

pressor demonstrates excellent efficiency, with low 586

inference time and GPU memory usage. The per- 587

formance remains stable across a small range of 588

k. Compared to Orginal-Context method, ATA- 589

Compressor significantly reduces inference time. 590

Compared to QGC, which uses a soft prompt frame- 591

work for query-based compression, ATACompres- 592

sor achieves lower inference times and GPU mem- 593

ory usage, demonstrating its efficiency. 594
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Limitations595

Despite the promising results, our approach still596

has several limitations:597

Exploration in cross-model compression scenar-598

ios. One recent study (Rau et al., 2024) proposes599

adapting the traditional soft prompt method, ICAE600

(Ge et al., 2023), to the RAG setting, where a small601

model is used as the compressor and a larger LLM602

serves as the target model. Our method is naturally603

compatible with this setting, but we have not yet604

explored its application in such architectures. We605

leave this direction for future work.606

Dependence on open-source models. Similar to607

other soft prompt–based approaches, our method608

relies on access to the internal representations and609

parameters of LLMs. This reliance limits its ap-610

plicability in black-box scenarios, where model611

internals are not accessible or exposed.612

Limited exploration of downstream applications.613

Our current experiments focus on QA tasks, follow-614

ing standard experimental paradigms adopted in615

prior work. This choice facilitates fair and meaning-616

ful comparisons with the baselines. However, this617

focus also limits the exploration of our method’s618

potential in broader application scenarios. Investi-619

gating these directions in future work could further620

demonstrate the robustness and versatility of our621

approach.622
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A Workflow Details810

In this section, we provide detailed descriptions of811

the workflow. Figure 6 illustrates the procedures812

involved in the pre-training and fine-tuning stages,813

as outlined in § 3.5.814

A.1 Pretrain815

During pretraining, we jointly optimize the selec-816

tive encoder (φ) and the probe (ζ). The selective817

encoder (φ) is trained to extract and effectively818

compress the relevant portions of the context C819

required to query Q, while the probe (ζ) is trained820

to accurately predict the relevant text length L̂Rel.821

The overall loss function for this stage combines822

the encoder loss (Lφ) and the probe loss (Lζ), with823

a weighting factor λ to balance their contributions.824

The total loss is defined as:825

Lpretrain = Lφ + λ · Lζ (8)826

Encoder Loss (Lφ) The encoder loss is for-827

mulated using a cross-entropy objective to measure828

the alignment between the predicted token distri-829

bution and the gold-truth token distribution. CRel830

is a context formed by concatenating chunks from831

the context C that are explicitly labeled as relevant832

for addressing the task Q, representing the anno-833

tated gold truth of ĈRel. We ensure that the chunk834

granularity of ĈRel is consistent with that of CRel.835

During training, teacher forcing (Ge et al., 2023;836

Li et al., 2024b) is used to guide the LLM in recon-837

structing the gold-truth sequence by providing true838

tokens as input, enhancing the model’s ability to839

predict the correct sequence. The loss is defined as840

follows:841

Lφ = −
n∑

j=1

logP (wj | KV, [BOS], w1:j−1; ΘLLM,ΘLoRA)

(9)842

Where wj is the j-th token in the CRel, and KV is843

the key-value representations of the compressed to-844

kens generated by the selective encoder (φ), passed845

to the target LLM. The sequence starts with the846

beginning-of-sequence token [BOS] as a signal for847

pretraining, while ΘLLM denotes the frozen pa-848

rameters of the target LLM, and ΘLoRA the train-849

able parameters of the LoRA adapter in the selec-850

tive encoder. P (wj | ·) represents the predicted851

probability distribution of the j-th token. The se- 852

quence ends when the model generates the end-of- 853

sequence token [EOS], implicitly included in the 854

token generation process. 855

Probe Loss (Lζ) The probe loss is calculated 856

using the huber loss (Gokcesu and Gokcesu, 2021), 857

which measures the error between the estimated 858

length L̂Rel and the gold-truth length LRel (length 859

of CRel), δ is a hyperparameter: 860

Lζ =

{
1
2
(L̂Rel − LRel)

2 if |L̂Rel − LRel| ≤ δ,

δ(|L̂Rel − LRel| − δ
2
) otherwise

(10) 861

A.2 Finetune 862

During the finetuning, the selective encoder (φ) is 863

further trained for downstream tasks. The target 864

LLM generates task-specific outputs based on the 865

key-value representations of the compressed tokens. 866

This process also employs teacher forcing. The loss 867

function during finetuning is defined as: 868

LF = −
n∑

j=1

logP (aj | KV, q1:m, a1:j−1; ΘLLM,ΘLoRA)

(11) 869

where aj denotes the j-th gold-truth answer to- 870

ken for the task, and q1:m is the query Q. 871

A.3 Inference 872

During inference, all components’ parameters are 873

frozen. As illustrated in §3.2, the concatenated 874

chunked context along with the query are com- 875

pressed by the selective encoder into a set of com- 876

pressed tokens. The number of compressed tokens 877

is determined by the adaptive allocation controller. 878

And then, the key and value representations of the 879

compressed tokens are passed to the target LLM 880

to generate outputs in two situations: the regener- 881

ation of CRel (triggered by the [BOS] token) and 882

the generation of answers based on the query. For 883

regeneration, the target LLM predicts each token 884

ŵi in the sequence using the probability distribu- 885

tion conditioned on the compressed representations 886

and previously generated tokens: 887

ŵi = argmax
ŵi

P (ŵi | KV, [BOS], ŵ1:i−1; ΘLLM)

(12) 888

For generating answers, the target LLM pro- 889

duces each token âj in the task-specific output con- 890

ditioned on the compressed representations, the 891

input query q1:m, and previously generated answer 892
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(a) Pretraining workflow

(b) Fintuning workflow

Figure 6: Traing workflows

tokens:893

âj = argmax
âj

P (âj | KV, q1:m, â1:j−1; ΘLLM)

(13)894

B Dataset Details895

B.1 Dataset Information896

The experiments are based on the three datasets:897

• HotpotQA (Yang et al., 2018): HotpotQA6 is898

a multi-hop question answering dataset where899

the answer requires information from more900

than one document. We use it to evaluate901

models at the document level, where the LLM902

needs to aggregate information from multiple903

docs to generate a correct answer.904

6https://hotpotqa.github.io/

• MSMARCO (Nguyen et al., 2016): MS- 905

MARCO (Question Answering v2.1) 7 is a 906

high-quality question answering dataset cu- 907

rated by Microsoft. In this study, we employ 908

the dataset to assess models at the passage 909

level, where the LLM is tasked with synthe- 910

sizing information from relevant passages to 911

produce the correct answer. 912

• SQUAD (Rajpurkar et al., 2018): SQUAD8 is 913

a question-answering dataset where each ques- 914

tion is paired with a passage, and the answer 915

is typically a span of text found within that 916

passage. We utilize SQUAD is structured to 917

assess models at the sentence level, demand- 918

7https://huggingface.co/datasets/microsoft/ms_marco/viewer/v2.1
8https://huggingface.co/datasets/rajpurkar/squad_v2
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ing the LLM to aggregate information from919

sentences to generate a correct answer.920

B.2 Data Preprocessing921

As described in §3.2, the context C is first seg-922

mented into chunks C1, C2, . . . , Cn using a prede-923

fined strategy. These chunks are then concatenated924

and processed by the selective encoder (φ) together925

with the query Q.926

It is worth noting the following: (1) the chunk-927

ing process occurs before the selective encoder’s928

processing, meaning it is a preprocessing step929

rather than a task for the selective encoder (φ);930

(2) the chunking process is the procedure of label-931

ing the context C according to a predefined chunk-932

ing policy (e.g., using passages as the chunking933

unit, where each passage of C is enclosed within934

<PA></PA> tags). All the chunks are then concate-935

nated to form a preprocessed context Cckd, which is936

input into the selective encoder (φ) along with the937

query Q and processed in a single pass rather than938

being processed individually in multiple passes; (3)939

if the length of raw context C exceeds the selective940

encoder’s input length limit, we can first divide C941

into smaller segments and then apply the selective942

encoder (φ) to compress each segment individu-943

ally. This segmentation process is different from944

the chunking process we mentioned above.945

Examples of preprocessed data following this946

procedure are provided in Figure 7, Figure 8 and947

Figure 9.948

C Implementation Details949

In this section, we provide a detailed implementa-950

tion. As described in Section 4.1.4, to ensure fair951

comparison with baseline methods, the maximum952

input length was constrained to 600 tokens. During953

dataset construction, only input samples that fell954

within this limit were retained. All experiments955

were conducted using LLaMA-2-7B and Qwen-2-956

7B as backbone models. Unless otherwise noted in957

Section 4.1.2, all models were trained using open-958

source implementations. For ATACompressor, we959

set the hyperparameter λ in Eq.(8) to 10−4 and δ in960

Eq.(10) to 10 during pretraining. The policy ratio961

r in Eq. (5) was randomly selected from the set962

1, 5, 10, 20, 50 for each training batch in the pre-963

training stage. During finetuning and evaluation,964

r was fixed at 10 unless specified otherwise. The965

maximum number of compressed tokens, denoted966

by kmax, was set to 8 for both training and inference 967

phases. 968

We evaluated the generation quality using sev- 969

eral widely adopted automatic metrics, including 970

ROUGE, BLEU, Exact Match, and F1 score. The 971

evaluation was implemented in Python, leveraging 972

the NLTK (version 3.8.1) and rouge (version 1.0.1) 973

libraries. 974

Further hyperparameter configurations and im- 975

plementation details can be found in Table 4 and 976

Table 5. Meanwhile, figure 10 shows the input 977

prompt for the selective encoder φ. 978

D Case Study 979

Table 7 presents the results of a case study com- 980

paring ICAE and ATACompressor. Unlike ICAE, 981

which performs full-text compression, ATACom- 982

pressor selectively compresses relevant context ac- 983

cording to task-specific needs, ensuring critical in- 984

formation is preserved and reducing the risk of key 985

errors. For instance, in Question 3, ICAE Intro- 986

duced a critical error by incorrectly stating "over 987

the first half of the 11th century" instead of the 988

correct text "in the first half of the 10th century". 989

Additionally, ATACompressor employs adaptive 990

compression, dynamically adjusting token usage 991

based on the length of relevant content. This mech- 992

anism optimizes resource efficiency while main- 993

taining high performance across tasks. 994
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Illustrative Preprocessed Sample from the HotpotQA Dataset

Question: "Which writer was from England, Henry Roth or Robert Erskine Childers?"
Context: "<PA> Asgard is a 51 ft gaff rigged yacht. She was owned by the English-born writer and
Irish nationalist Erskine Childers and his wife Molly Childers. She is most noted for her use
in the Howth gun-running of 1914. </PA> <PA> Henry Roth (February 8, 1906 – October 13, 1995)
was an American novelist and short story writer. </PA> <PA> The R509 road, following part of
the Childers Road (named after Erskine Childers), is a regional road in Ireland, running through
the southeastern side of Limerick City. It forms what is somewhat akin to an inner ring road
(albeit mostly two-lane only). </PA> <PA> Mary Alden Osgood Childers, MBE (14 December 1875 –
1 January 1964) was an American-born Irish writer and Irish nationalist. She was the daughter
of Dr Hamilton Osgood and Margaret Cushing Osgood of Beacon Hill, Boston, Massachusetts. Her
older sister was Gretchen Osgood Warren. Molly married the writer and Irish nationalist, Robert
Erskine Childers. Their son, Erskine Hamilton Childers, became the fourth President of Ireland.
</PA> <PA> Gretchen Osgood Warren (19 March 1868 – September 1961), the wife of Fiske Warren,
was an actress, singer and poet. The daughter of Dr. Hamilton Osgood and Margaret Cushing Osgood
of Beacon Hill, Boston, Massachusetts, her younger sister was Mary Alden Childers, the wife
of writer and Irish nationalist Robert Erskine Childers. Her nephew Erskine Hamilton Childers
served as the fourth President of Ireland from 1973–74. </PA> <PA> Robert Caesar Childers (1838
– 25 July 1876) was a British Orientalist scholar, compiler of the first Pāli-English dictionary.
Childers was the husband of Anna Barton of Ireland. He was the father of Irish nationalist Robert
Erskine Childers and grandfather to the fourth President of Ireland, Erskine Hamilton Childers.
</PA> <PA> Robert Erskine Childers DSC (25 June 1870 – 24 November 1922), universally known as
Erskine Childers, was a British writer, whose works included the influential novel "The Riddle
of the Sands", and a Fenian revolutionary who smuggled guns to Ireland in his sailing yacht
"Asgard". He was executed by the authorities of the nascent Irish Free State during the Irish
Civil War. He was the son of British Orientalist scholar Robert Caesar Childers; the cousin
of Hugh Childers and Robert Barton; and the father of the fourth President of Ireland, Erskine
Hamilton Childers. </PA> <PA> The Irish Bulletin was the official gazette of the government of
the Irish Republic. It was produced by the Department of Propaganda during the Irish War of
Independence. and its offices were originally located at No. 6 Harcourt Street, Dublin. The
paper’s first editor was Desmond FitzGerald, until his arrest and replacement by Robert Erskine
Childers. "The Bulletin" appeared in weekly editions from 11 November 1919 to 11 July 1921.
</PA>"
Gold context: "<PA> Henry Roth (February 8, 1906 – October 13, 1995) was an American novelist
and short story writer. </PA> <PA> Robert Erskine Childers DSC (25 June 1870 – 24 November
1922), universally known as Erskine Childers, was a British writer, whose works included the
influential novel "The Riddle of the Sands", and a Fenian revolutionary who smuggled guns to
Ireland in his sailing yacht "Asgard". He was executed by the authorities of the nascent Irish
Free State during the Irish Civil War. He was the son of British Orientalist scholar Robert
Caesar Childers; the cousin of Hugh Childers and Robert Barton; and the father of the fourth
President of Ireland, Erskine Hamilton Childers. </PA> "
Answer: "Robert Erskine Childers DSC"

Figure 7: Illustrative Preprocessed Sample from HotpotQA.
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Illustrative Preprocessed Sample from the MSMACRO Dataset

Question: "Is Bob Hewitt a citizen of a different country than Ray Ruffels?"
Context: "<PA> The presence of communication amid scientific minds was equally important to
the success of the Manhattan Project as scientific intellect was. The only cloud hanging over
the impressive achievement of the atomic researchers and engineers is what their success truly
meant; hundreds of thousands of innocent lives obliterated. </PA> <PA> The Manhattan Project
and its atomic bomb helped bring an end to World War II. Its legacy of peaceful uses of atomic
energy continues to have an impact on history and science. </PA> <PA> Essay on The Manhattan
Project - The Manhattan Project The Manhattan Project was to see if making an atomic bomb
possible. The success of this project would forever change the world forever making it known
that something this powerful can be manmade. </PA> <PA> The Manhattan Project was the name
for a project conducted during World War II, to develop the first atomic bomb. It refers
specifically to the period of the project from 194 . . . 2-1946 under the control of the U.S.
Army Corps of Engineers, under the administration of General Leslie R. Groves. </PA> <PA>
versions of each volume as well as complementary websites. The first website–The Manhattan
Project: An Interactive History–is available on the Office of History and Heritage Resources
website, http://www.cfo.doe.gov/me70/history. The Office of History and Heritage Resources and
the National Nuclear Security </PA> <PA> The Manhattan Project. This once classified photograph
features the first atomic bomb — a weapon that atomic scientists had nicknamed Gadget.. The
nuclear age began on July 16, 1945, when it was detonated in the New Mexico desert. </PA> <PA>
Nor will it attempt to substitute for the extraordinarily rich literature on the atomic bombs and
the end of World War II. This collection does not attempt to document the origins and development
of the Manhattan Project. </PA> "
Gold context: "<PA> Raymond Owen R̈ayR̈uffels (born 23 March 1946 in Sydney) is an Australian
former professional tennis player and coach. </PA> <PA> Robert Anthony John Hewitt (born 12
January 1940) is a former professional tennis player from Australia. In 1967, after marrying a
South African, he became a South African citizen. He has won 15 major titles and a career Grand
Slam in both men’s and mixed doubles.</PA>"
Answer: "yes"

Figure 8: Illustrative Preprocessed Sample from MSMACRO.

Illustrative Preprocessed Sample from the SQUAD Dataset

Question: "When was the Duchy of Normandy founded?"
Context: "<PA> In the course of the 10th century, the initially destructive incursions of Norse
war bands into the rivers of France evolved into more permanent encampments that included local
women and personal property. </PA> <PA> The Duchy of Normandy, which began in 911 as a fiefdom,
was established by the treaty of Saint-Clair-sur-Epte between King Charles III of West Francia
and the famed Viking ruler Rollo, and was situated in the former Frankish kingdom of Neustria.
</PA> <PA> The treaty offered Rollo and his men the French lands between the river Epte and the
Atlantic coast in exchange for their protection against further Viking incursions. </PA> <PA>
The area corresponded to the northern part of present-day Upper Normandy down to the river Seine,
but the Duchy would eventually extend west beyond the Seine. </PA> <PA> The territory was roughly
equivalent to the old province of Rouen, and reproduced the Roman administrative structure of
Gallia Lugdunensis II (part of the former Gallia Lugdunensis). </PA>"
Gold context: "<PA> The Duchy of Normandy, which began in 911 as a fiefdom, was established by
the treaty of Saint-Clair-sur-Epte between King Charles III of West Francia and the famed Viking
ruler Rollo, and was situated in the former Frankish kingdom of Neustria. </PA>"
Answer: "911"

Figure 9: Illustrative Preprocessed Sample from SQUAD.

Input prompt for the selective encoder φ

<QUESTION> {{Question}} </QUESTION> <CONTEXT> {{Context}} </CONTEXT> <INST> Please identify and
extract the <PA> sections that can answer the question (which may not be unique) </INST>

Figure 10: Input prompt for the selective encoder φ
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Table 4: Hyperparameters for Pretraining

Hyperparameter Assignment

learning Rate 1e-5
lr scheduler type constant with warmup
warmup steps 300
weight decay 0.2
overall batch size 16
optimizer AdamW
epochs 3
LoRa layers all linear layers
LoRa r 64
LoRa alpha 32
LoRa dropout 0.2
LoRa bias None
mixed-precision fp16
GPU 4 × A100 40GB
max context length 600
λ in Eq. (8) 1e-4
policy ratio r randomly chosen from {1, 5, 10, 20, 50} per

batch.
maximum number of compressed tokens kmax 8

Table 5: Hyperparameters for Finetuning

Hyperparameter Assignment

learning Rate 1e-5
lr scheduler type constant with warmup
warmup steps 300
weight decay 0.2
overall batch size 16
optimizer AdamW
epochs 1
LoRa layers all linear layers
LoRa r 64
LoRa alpha 32
LoRa dropout 0.2
LoRa bias None
mixed-precision fp16
GPU 4 × A100 40GB
max context length 600
policy ratio r 10
maximum number of compressed tokens kmax 8

Dataset Mean Gold Length Mean Predicted Length MAE
HotpotQA 239.50 243.72 4.52
MSMARCO 137.76 145.30 7.63
SQUAD 40.35 52.73 13.99

Table 6: Mean absolute error (MAE) of probe predictions on different datasets
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Table 7: Case study of ATACompressor and ICAE on Qwen-2-7B. red highlights errors in key information, typically referring
to incorrect statements directly impacting the answer. yellow indicates mistakes in less critical details that do not directly
affect the core answer. green denotes hallucinations, where the text contains information not present in the original source.

blue signals information loss, meaning less important content from the original text is missing. Finally, brown indicates
paraphrasing, where the original content is reworded without changing its meaning. Also, k represents the number of compressed
tokens or average.

Original Text (The input to ICAE does not include the labels <PA> and </PA>.)
<PA> The Normans (Norman: Nourmands; French: Normands; Latin: Normanni) were the people who in the 10th
and 11th centuries gave their name to Normandy, a region in France. </PA> <PA> They were descended from
Norse ("Norman" comes from "Norseman") raiders and pirates from Denmark, Iceland and Norway who, under
their leader Rollo, agreed to swear fealty to King Charles III of West Francia. </PA> <PA> Through generations of
assimilation and mixing with the native Frankish and Roman-Gaulish populations, their descendants would
gradually merge with the Carolingian-based cultures of West Francia. </PA> <PA> The distinct cultural and ethnic
identity of the Normans emerged initially in the first half of the 10th century, and it continued to evolve over the
succeeding centuries. </PA>

Question ATACompressor Regeneration Out-
put (The value of k is 2, 4, and 2 for
the following three questions, respec-
tively.)

ICAE Regeneration Output (k=8)

Q1: In what country is
Normandy located?

The Normans ( Norman ; French: Nor-
mands; Latin: Normanni) were the peo-
ple who in the 10th and 11th centuries
gave their name to Normandy ; a region
in France.

The Normans ( Normand; Nourmands : French
; Latin: Normanni) were the people who

were the Normans in the 10th and 11th centuries
who gave their name to Normandy, a region in

France. They descended from Norse ("Norman"
comes from "Norseman") raiders and pirates from
Denmark, Iceland and Norway who, under their
leader Rollo, agreed to swear fealty to King Charles
III of West Francia. Through generations of
assimilation and mixing of the
Norman and Frankish cultures , their
first- and second-generation descendants would

inherit the Roman-Gallic cultural identity of the

Carolingian Normans . The distinctive cultural

and ethnic identity emerged gradually over the

first half of the 11th century,
and it was the native Frankish culture that initially

dominated Western Europe.

Q2: From which coun-
tries did the Norse
originate?

The Normans ( Norman ; French:
Normands; Latin: Normanni) were
the people who in the 10th and 11th
gave their name to Normandy ; a
region in France. They were descended
from Norse ("Norman" comes from
"Norseman") raiders and pirates
from Denmark, Iceland, and Norway
who, under the leadership of Rollo ,
agreed to swear fealty to King
Charles III of West Francia.

Q3: What century did
the Normans first gain
their separate iden-
tity?

The distinctive cultural and ethnic
identity of the Normans emerged
initially in the first half of the
10th century, and it continued to
evolve over the succeeding centuries.
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