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ABSTRACT

In many real world applications of sequential decision-making problems, such as
robotics or autonomous driving, expert-level data is available (or easily obtain-
able) with methods such as tele-operation. However, directly learning to copy
these expert behaviours can result in poor performance due to distribution shift
at deployment time. Adversarial imitation learning algorithms alleviate this is-
sue by learning to match the expert state-action distribution through additional
environment interactions. Such methods are built around standard reinforcement-
learning algorithms with both model-based and model-free approaches. In this
work we focus on the model-based approach and argue that algorithms developed
for online RL are sub-optimal for the distribution matching problem. We theoret-
ically justify utilizing conservative algorithms developed for the offline learning
paradigm in online adversarial imitation learning and empirically demonstrate im-
proved performance and safety on a complex long-range robot manipulation task,
directly from images.

1 INTRODUCTION

Demonstrations are a natural way to teach to robots and intelligent agents, and can be obtained more
easily than accurate than dense reward functions in the real world (i.e. via tele-operation) . More-
over, demonstrations alleviate many of the issues around exploration, which are prevalent in the
online reinforcement learning setting. Behaviour Cloning (BC) (Pomerleau, 1988) is a classic algo-
rithm which aims to copy expert behaviour from an available dataset of demonstrations. However,
when deployed, it can suffer from instability (Ross et al., 2011) due to environment stochasticity,
policy errors, or covariate shifts that distance the agent from the data support of the expert demon-
strations. This issue can be alleviated through a wide enough expert coverage (Spencer et al., 2021),
or the ability to query the expert (Ross et al., 2011). In contrast, inverse RL (IRL) (Finn et al., 2016b;
Fu et al., 2018) and adversarial imitation learning (AIL) (Ho & Ermon, 2016; Finn et al., 2016a) aim
to match the long-term state visitation distribution of the expert policy (Ghasemipour et al., 2019).
Essentially, these methods use additional environment interactions to learn to self-correct when the
agent deviates from the support of the expert distribution. AIL approaches formulate the imita-
tion learning problem as a GAN (Goodfellow et al., 2014): a discriminator is trained to distinguish
between the expert trajectories and those produced by the policy. The policy acts as a generator,
producing rollouts from the environment, and is optimized with RL to fool the discriminator. Both
model-free (Ho & Ermon, 2016; Kostrikov et al., 2019; Blondé & Kalousis, 2019) and model-based
approaches (Baram et al., 2016; Rafailov et al., 2021) to the RL optimization problem have been
developed. In general, these methods deploy a pre-existing policy optimization algorithm with the
discriminator-based reward-learning framework described above.

We argue that algorithms designed for online RL are not well-suited to the imitation learning
paradigm, as they carry out excessive exploration. In IRL/AIL settings, we already have samples
from the expert distribution and the goal of the agent is to match that distribution, hence, we argue
this setting is better suited as an offline-to-online fine-tuning problem. A recent imitation learning
method, inverse Q-Learning (Garg et al., 2021), has drawn connections between imitation learning
and conservative Q-learning (Kumar et al.) an offline RL method, and achieves good results in both
the fully offline and the online learning settings. In this work we focus on model-based approaches.
We theoretically justify the use of conservative model-based optimization used in offline RL for on-
line imitation learning and propose a practical algorithm. We evaluate our method on the challenging
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Franka Kitchen Environment with image observations only, and show a significant improvement in
efficiency and stability over prior model-based algorithms. As far as we are aware, this is the most
sample-efficient method to solve the environment, the first method to solve it directly from images,
and the first method to solve it without access to a reward function.

2 MODEL-BASED ADVERSARIAL IMITATION LEARNING

Model-based algorithms for RL and IL involve learning an approximate dynamics model xM using
environment interactions. We then optimize a policy using large amount of data sampled from the
learned model xM. We can bound the performance gap of the policy in the following theorem:
Theorem 2.1. (Simultaneous policy and model deviation) Let Rmax “ maxps,aq rps,aq be the
maximum of the unknown reward in the MDP with unknown dynamics M. For any policy π, we can
bound the sub-optimality with respect to the expert policy πE as:
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which is a simple application of the triangle inequality.

Term I: The first term yields the distribution matching component of Eq. 1 in the following way:
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The first inequality is a direct application of the triangle inequality. The second line follows from
the same considerations we used to bound Term I above. We can then recursively apply the same
reasoning to the final term to obtain the model mismatch component of the bound.

In a prior work (Rafailov et al., 2021) the authors consider a similar objective to Eq. 1, however
they assume a uniform model discrepancy bound and only optimize the first term of the inequality.
Several prior works (Yu et al., 2020; Kidambi et al., 2020; Rafailov et al., 2020) have considered the
model mismatch objective of Eq. 1 in the context of offline model-based RL, while we consider the
online adversarial imitation learning problem.

3 OUR METHOD

Our full algorithm has several components: 1) variational dynamics model, 2) state-action discrim-
inator, 3) critic, and 4) actor policy. We will discuss all of these in more detail. During the online
training phase, we iterate between training the model, discriminator, actor and critic.

Variational Dynamics Models We use use a recurrent state-space model (RSSM) (Hafner et al.,
2019; 2020), but without reward prediction and optimize the standard ELBO bound:
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Here both the inference distribution qθ and the latent dynamics model Mθ are Gaussian distributions
parameterized by neural networks. Following (Rafailov et al., 2020) we train a latent ensemble of
dynamics models tMθiu

K
i“1 by selecting a different member of the ensemble to evaluate the above

loss at every time step in the trajectory.

Reward Formulation Directly applying Theorem 1 in (Rafailov et al., 2021), we can bound the
objective of Eq. 1 by optimizing the same bound in the learned models’ latent belief space. In more
detail, we consider sequences of data of the form τ “ px1:T ,a1:T q. At each agent training step, we
infer latent states s01:T „ qθps1:T |x1:T ,a1:T q. We also denote a1:T as a0

1:T . Using these states as
starting points, we use the policy πψ to generate H-step rollouts steps with the following notation:
âtj „ πψpa|ŝtjq and ŝt`1

j „ pθps|âtj , ŝ
t
jq. Following standard off-policy learning algorithms, we

use critics tQψiu
m
i“1 and and target networks t sQψiu

m
i“1.

We can bound the distribution matching component of Eq. 1 through Pinsker’s inequality and follow
a standard adversarial approach by training a discriminator (Ghasemipour et al., 2019):
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samples from the model also give theoretical justification for this discriminator learning objective as
the expectation is taken under the current policy. We cannot directly optimize the model mismatch
component of Eq. 1, as we cannot directly estimate divergence factor. Instead, following prior work
(Yu et al., 2020; Kidambi et al., 2020; Rafailov et al., 2020), we optimize a surrogate objective based
on ensemble model disagreement. In particular, we use
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where µθips,aq is the parameterization of the mean of i´th Gaussian latent model Mθip¨|s,aq.
The combined final reward is then:

rps,aq “ logDψps,aq ´ logp1 ´ Dψps,aqq ´ αstdptµθips,aquKi“1q (4)

where α is a tunable hyper-parameter. We note that this still a fully differentiable function of the
state. We can then label all data and model-sampled latent transitions rti “ rpsti,a

t
iq.

Actor Optimization Once we have rewards, we can calculate Monte-Carlo based policy returns:
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And the final actor objective is:
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which maximizes the expected MC return at the dataset and rollout states together. Notice that
this fully differentiable function of the policy parameters, by differentiating through the model and
reward function.
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Figure 1: Left: Observation from the Franka Kitchen Environment. Right: Performance of our
algorithm compared to a straightforward model-based imitation approach. Our algorithm learns
faster and in a more stable manner than VMAIL.

Critic Optimization We can use MC return estimates to train the critics as well. We recompute
the critic target values sV kpŝtjq for all states similarly to Eq. 5 using the target networks t sQψiu

m
i“1.

Critics are trained on both the model-generated and real data with two losses:
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The final critic loss is a combination of the two losses:

LQψi “ Lmodel
Qψi

` Ldata
Qψi

(9)

The loss Ldata
Qψi

is computed on transitions sampled form the dataset trajectories through the inference
model qθ. Training the critics on the available expert demonstrations serves as a strong supervision.

4 EXPERIMENTS

We evaluate our method on the Franka Kitchen environment (Gupta et al., 2019; Fu et al., 2020),
shown in Fig, 1. The environment consist of a Franka robot with a joint-space control in a kitchen
setting. The observation consists of a single RGB image and we do not assume access to robot or
object states. The agent is provided with 10 demonstrations of the microwave, kettle, light switch,
slide cabinet task configuration. We compare our method to VMAIL (Rafailov et al., 2021) an online
model-based imitation learning approach that does not employ conservatism. Training results are
shown in Fig. 1 we see that our method learns faster and in a more stable way as compared to
VMAIL. As far as we are aware, this is the most sample-efficient method to solve the environment,
the first method to solve it directly from images, and the first method to solve it without access to a
reward function.

5 CONCLUSION

In this work we argue that policy optimization algorithms designed for online RL are not well suited
to the IRL/AIL setting as they carry out excessive exploration. We focus on the model-based case
and argue that conservative models used for offline RL are better suited for policy optimization. We
provide a theoretical justification for our design choices, as well as a practical algorithm and evaluate
it on a challenging robot manipulation task. The proposed algorithm achieves faster and more stable
performance as compared to previous model-based imitation learning approaches. In future work
we plan to evaluate our method on further domains, as well as the fully offline IL setting.
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