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Reversed in Time: A Novel Temporal-Emphasized Benchmark for
Cross-Modal Video-Text Retrieval

Anonymous Authors

ABSTRACT
Video-text retrieval is an important task in the multimodal un-
derstanding field. Temporal understanding makes video-text re-
trieval more challenging than image-text retrieval. However, we
find that the widely used video-text benchmarks have shortcom-
ings in comprehensively assessing abilities of models, especially in
temporal understanding, causing large-scale image-text pre-trained
models can already achieve comparable zero-shot performance
with video-text pre-trained models. In this paper, we introduce
RTime, a novel temporal-emphasized video-text retrieval dataset,
constructed through a top-down three-step scheme. We first ob-
tain videos of actions or events with significant temporality, and
then reverse these videos to create harder negative samples. We
then recruit annotators to judge the significance and reversibility
of candidate videos, and write captions for qualified videos. We fur-
ther adopt GPT-4 to extend more captions based on human-written
captions. Our RTime dataset currently consists of 21k videos with
10 captions per video, totalling about 122 hours. Based on RTime,
we propose three retrieval benchmark tasks: RTime-Origin, RTime-
Hard, and RTime-Binary. We further enhance the use of harder-
negatives in model training, and benchmark a variety of video-text
models on RTime. Extensive experiment analysis proves that RTime
indeed poses new and higher challenges to video-text retrieval. We
will release our RTime benchmarks to further advance video-text
retrieval and multimodal understanding research.

CCS CONCEPTS
• Information systems→ Video search;Multimedia and mul-
timodal retrieval; Evaluation of retrieval results.

KEYWORDS
Video Retrieval; Cross-modal Retrieval; Video-text Benchmark

1 INTRODUCTION
Video-text retrieval has been widely used in various real-world
scenarios, such as video search engines and video recommenda-
tion systems. It is more challenging than image-text retrieval as
it requires understanding the visual semantics of multiple frames
not only spatially but also temporally. In recent years, the intro-
duction of large-scale vision-language pre-trained models [8, 10,
17, 20, 28, 31, 43, 48, 49], which learn cross-modality alignment
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Figure 1: Videos in (a) and (b) have identical spatial appear-
ance but opposite temporal semantics (Open vs Close ), which
can only be differentiated through temporal understanding.
They are considered as temporally harder-negatives of each
other.

through contrastive learning, has brought significant performance
improvements to video-text retrieval. These models can be roughly
divided into two types: one type focuses on transferring image-
text pre-trained models to the video domain (e.g. CLIP4Clip [38],
X-Pool [14], X-Clip [39]), and the other type focuses on utilizing
existing video-text datasets (e.g. HowTo100M [40], WebVid [3])
and employing diverse pre-training objectives to perform video-
text pre-training, such as Frozen [3], Internvideo [53], UMT [31],
Vindlu [8], Violet [11], ALPro [27], etc.

While being excited about the performance improvements achieved
by recent models, we also wonder whether these models have actu-
ally significantly improved video semantic understanding capabili-
ties, especially in terms of temporal understanding. For example,
in Figure 1, the only way to differentiate the two videos with oppo-
site temporal semantics (open laptop vs. close laptop) is through
temporal understanding. Such videos with very similar spatial ap-
pearance but very different temporal semantics can be considered
as temporally harder-negatives of each other. Benchmark datasets
containing harder-negative samples are desired to rigorously verify
the video understanding capabilities of models. However, previous
works [2, 6, 25, 51, 60] point out that there is a notable lack of a
video-text benchmark that emphasizes the temporal understanding.
We randomly sample 100 videos from the MSRVTT [58] test set
and find that only 10% of the video-text pairs involve temporal
semantics1. Besides, most video-text datasets are created without
explicitly incorporating temporally harder-negative samples, which
makes them insufficient for evaluating the temporal understanding
capabilities of models.

Furthermore, on the widely used video-text retrieval datasets,
such as ActivityNet-Caption [24], MSR-VTT [58], and DiDeMo [1],
an image-text pre-trained model [43] or a model pre-trained on

1Please refer to the supplementary material for the evaluation criteria

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 2: Zero-shot performance of different models on some
existing video-text datasets. Models without temporal under-
standing, such as image-text pre-trained models (e.g. CLIP)
and models trained using single frames (e.g. Singular), have
achieved comparable performance to models trained using
video-text pairs (e.g. VINDLU andUMT), indicating that these
datasets are insufficient to comprehensively validate video
understanding capabilities of models, especially in terms of
temporal understanding. Compared models are in the same
scale.

video-text data using a single frame [25] through simple multi-
frame aggregation (e.g. mean pooling or concatenating) without
temporal modeling can already achieve comparable performance
to multi-frame video-text pre-trained models [8, 31], as illustrated
in Figure 2. Previous work [28] also shows that BLIP could even
achieve 43.3% R@1 zero-shot performance on MSR-VTT, surpass-
ing both UMT and VINDLU. This suggests that these datasets are
deficient in assessing models’ retrieval capabilities, particularly in
terms of temporal understanding.

To address the aforementioned deficiencies in current datasets,
we propose to construct a new temporal-emphasized dataset named
RTime and establish new benchmarks for video-text retrieval. The
most prominent feature of our new dataset is its emphasis on tem-
poral understanding, especially the inclusion of temporally harder-
negative samples as exemplified in Figure 1. Specifically, we adopt
a top-down three-step scheme to construct our dataset, as illus-
trate in Figure 3. We first brain-storm common-sense information
about typical activities with strong temporality (e.g. in the for-
mat: open/close something) to form the initial activity list, then
further expand it using GPT-4, followed by manual verification
to ensure that each activity has its temporally reversed counter-
part (harder-negative). Subsequently, we employ GPT-4 to replace
the "something" in each action with typical objects, resulting in
a plethora of phrases containing activities and specified objects.
These phrases are then utilized as queries to search for videos on
the internet through search engines, leading to the collection of a
substantial amount of videos. Next, we recruit a group of profes-
sional annotators to filter and annotate the collected videos. We
provide both the original and reversed video pairs to annotators and
ask them to detect whether the video can be reversed in time. The
annotators select videos that meet requirements and then annotate
each video with fine-grained descriptions. We further apply GPT-4
to rewrite nine semantically similar sentences for each video based
on the human-written caption to allow for more diverse vision-
language alignment, which has been demonstrated beneficial to

vision-language contrastive learning [9]. The current version of our
RTime, a fine-grained and temporal-emphasized dataset, contains
21k videos and 210k video-text pairs, totaling approximately 122
hours. Among these videos, 16,530 have their temporally harder-
negative counterparts, accounting for 76.8% of the entire dataset,
posing higher challenges to the video-text retrieval task.

To comprehensively assess retrieval models base on RTime, we
establish three evaluation tasks: RTime-Origin Retrieval, RTime-
Hard Retrieval and RTime-Binary Retrieval. RTime-Origin Retrieval
is the typical video-text retrieval task, where the retrieval pool only
contains the originally retrieved video-text samples. For RTime-
Hard Retrieval, the reversed counterparts of videos and accompa-
nying texts are added in the test set, which demands the model
to have stronger capability to handle temporal understanding. For
RTime-Binary Retrieval, given the query, the model needs to select
the correct corresponding sample from the two candidate samples,
where the only difference between them lies in the temporal aspect.
Moreover, we evaluate the performance of several state-of-the-art
models on the three video-text retrieval tasks based on RTime,
and conduct empirical studies on some factors that may affect the
temporal understanding capability of video-text models. Exten-
sive experiment results show that although models pre-trained
on a single frame without considering temporal information can
achieve superior performance on traditional datasets such as MSR-
VTT, on our RTime dataset, they significantly lag behind those
models pre-trained with temporal information on multiple frames,
demonstrating that our RTime indeed improves upon deficiencies
in previous benchmarks and enables new temporal-emphasized
video-text retrieval evaluations.

The main contributions of this work are summarized as follows:
• Through collecting videos with strong temporality and re-
versing them in time as harder negatives, we build RTime, a
novel temporal-emphasized dataset, via a top-down three-step
construction with the assistance of Large Language Models.

• Based on RTime dataset, we establish three benchmark tasks:
RTime-Origin Retrieval, RTime-Hard Retrieval, and RTime-
Binary Retrieval, which can more comprehensively assess
the video understanding capabilities of models, especially in
temporal understanding.

• We carry out extensive experiments with a variety of current
state-of-the-art models and conduct empirical studies about im-
pact factors in temporal understanding. Experimental results
show that our new RTime dataset does correct shortcomings
in traditional video-text datasets, and poses new and higher
challenges to video-text retrieval.

2 RELATEDWORKS
2.1 Video-Text Benchmark Datasets
Various video-text retrieval benchmark datasets have been pro-
posed through collecting videos from the internet and manually
annotating with captions, event timestamps, and other relevant
information. For example, MSR-VTT [58] includes 10,000 video
clips, with 20 manually annotated textual descriptions for each clip,
making it one of the widely adopted benchmarks in the video-text
retrieval and video-language understanding domain. VATEX [52] se-
lects videos from a subset of Kinetics-600 dataset [23] and annotates
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them with multi-lingual descriptions. ActivityNet-Caption [24]
contains 20,000 YouTube videos, each annotated with descriptions
and timestamps for events. DiDeMo [1], collected from Flickr, con-
tains 26,892 video clips. In ActivityNet-Caption and DiDeMo, the
video-text retrieval evolves into paragraph-video retrieval, where
all descriptions of a video are concatenated into a single paragraph.

Additionally, some studies have recognized the limitations of
widely used benchmarks in temporal evaluations and have at-
tempted to construct benchmarks with a focus on temporal aspects.
Hendricks et al. [16] concatenate clips of different events from the
same video in DiDeMo [1] along with event descriptions. Lei et al.
[25] reuse the Something-Something dataset [15] and propose SSV2-
Label and SSV2-Template. Li et al. [32] sample videos from test set
of MSRVTT [58] and VATEX [52], employed the GPT-assistant an-
notation framework to generate temporal counterfactual captions
for the videos. In this work, we address such insufficiency in exist-
ing benchmarks and introduce a new dataset that emphasizes the
temporal aspect of videos by including their harder-negative sam-
ples, the temporally reversed counterparts, using both manually
and GPT-assisted data construction approach.

2.2 Video-Text Retrieval Methods
Cross-modal retrieval has beenwidely explored in previousworks [5,
7, 19, 21, 33, 34, 42, 47, 54, 61]. Current video-text retrieval methods
can be roughly divided into three types:

Offline feature extraction and fusion. Offline feature extrac-
tors are the main components commonly used in early video-text
retrieval methods. For example, MMT [12] employsmultiple distinct
models for feature extraction and utilizes a cross-modal transformer
for fusion. VideoCLIP [57] utilizes S3D [56] to extract video features
and applies contrastive learning to align video and text embeddings.

Transferring image-text pretrained models. This type of
methods utilizes pre-trained image-language models (e.g. ALBEF
[29], CLIP [43], BLIP [28]) and transfers them to video retrieval
tasks [14, 22, 35, 36, 38, 39]. For example, CLIP4Clip [38] leverages
CLIP image encoder to encode videos frame by frame and designs
modules for inter-frame information aggregation. TS2Net[35] intro-
duces token shift and token selection modules, further enhancing
the interaction of inter-frame information.

Video-text pre-trained models. This type of methods learns a
video-text pre-trained model from large-scale video-text datasets.
Various design of video encoders have been extensively explored [4,
13, 15, 18, 37, 46, 50, 59]. ClipBERT [26] pioneers the end-to-end
video-text pre-training by sparsely sampling from videos. Frozen [3]
adopts Timesformer [4]as video encoder for conducting joint pre-
training on large-scale video-text and image-text datasets. VIN-
DLU [8] investigates crucial factors in the design of video-text pre-
trained models and demonstrates the importance of pre-training
datasets covering video-text data. UMT [31] utilizes the CLIP im-
age encoder as a teacher to train the video encoder, achieving
state-of-the-art zero-shot performance on multiple downstream
video-text retrieval datasets. Through experimental analysis on our
new RTime dataset, we show that despite the success of these pre-
vious video retrieval methods on previous benchmarks, their true
video understanding capabilities, especially in terms of temporal
understanding, still have a lot of room for improvement.

3 RTIME: NOVEL VIDEO-TEXT BENCHMARK
As currently available widely-used benchmarks are insufficient to
comprehensively assess the capabilities of models on video un-
derstanding, especially temporal understanding, we propose to
construct a new video-text retrieval benchmark dataset to meet the
higher fine-grained and temporal-emphasized evaluation require-
ments. Manually building a new benchmark from scratch is very
expensive and time-consuming, so we leverage the power of LLMs
to improve efficiency and reduce the cost of dataset construction.
We put human in the verification loop2 to control the data quality
during the construction process. Specifically, we propose a top-
down three-step data construction pipeline as illustrated in Figure
3, including seed activity list proposal, activity list enrichment, and
video acquisition and annotation. Following this pipeline, we build
a new fine-grained temporal-emphasized dataset for video-text
retrieval, namely the “reversed in time” (RTime) dataset.

3.1 RTime Dataset Construction
To ensure the temporal emphasis and high quality of our dataset, we
propose a top-down three-step data construction pipeline, which
first progressively forms a comprehensive list of activities by lever-
aging human knowledge and world knowledge of LLMs (e.g. GPT-4).
Each activity in the list may have its temporally opposite activity,
so temporally harder-negatives can be constructed for each activity.
We further leverage human capabilities and machine capabilities
to acquire and annotate videos crawled from the internet based on
the activity list. The specific steps in the pipeline are as follows.

3.1.1 Step 1: Seed Activity List Proposal. By filtering labels
from existing action recognition datasets [15, 23, 41] and our brain-
stormed activity proposals, we initiate an atomic-level activity pair
list, 𝐴ℎ = {(𝑎𝑖 , 𝑎𝑖 )}, each containing an activity with a pronounced
temporal emphasis, as well as its temporally opposite counterpart
(e.g. (open, close)). To improve the diversity of the initial list, we
leverage the world knowledge of GPT-4 to suggest more activities
and their temporally opposite counterparts through few-shot in-
context learning. Specifically, we provide GPT-4 with a few action
pairs in Ah and instruct it to generate more samples. We then man-
ually curate the list of activities, eliminating those activity pairs
that are either illogical or may be indistinguishable via video. We
end up with 144 activity pairs A = {(𝑎𝑖 , 𝑎𝑖 )}144𝑖=1, containing 288
verb phrases.

3.1.2 Step 2: Activity List Enrichment. Directly using the ac-
tivity list from step 1, which does not contain concrete objects, as
queries to search for videos is not optimal. Therefore, leveraging
the world knowledge and in-context learning capability of GPT-4,
we prompt it to substitute [something] in each activity list with
concrete objects to form a verb-noun activity list. Specifically, for
each (𝑎𝑖 , 𝑎𝑖 ) ∈ A, we instruct GPT-43 to generate the verb-noun
phrases L = {(𝑎𝑖 + 𝑛 𝑗 , 𝑎𝑖 + 𝑛 𝑗 ) | 1 ≤ 𝑖 ≤ 144, 𝑛 𝑗 ∈ O}, where O
denotes the object set. On average, we append 20 objects to each
activity, resulting in an enriched list of 5,760 diverse activities.

2Please refer to supplementary materials for details of human verification
3Please refer to supplementary materials for GPT-4 prompts
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Figure 3: Illustration of our top-down three-step dataset construction process. We first generate an action list where each action
can have its meaningful temporally reversed counterpart. We then use GPT to supplement actions with objects. Videos based
on the enriched activity list are crawled from the internet, followed by a filtering process to balance the label distribution.
Finally, we recruit human annotators to verify the temporal information in videos and write up fine-grained descriptions. GPT
is employed to rewrite based on human-written descriptions to increase caption diversity.

3.1.3 Step 3: Video Acquisition and Annotation. Applying
the enriched activity list as queries, we search for videos on the
internet using search engines. We then go through a series of pro-
cesses to filter low-quality videos, produce harder-negative samples
by reversing videos, annotate videos, and rewrite annotations for
diversity. We once again take full advantage of LLMs and human ex-
pertise to improve and ensure the quality of our dataset throughout
the whole process.

Raw Video Acquisition. Directly downloading videos based
on L is sub-optimal because many of the retrieved videos do not
match the query very well due to the limited performance of the
search engine. To improve the overall quality, we paid to recruit
seven workers to search videos with both (𝑎𝑖 + 𝑛 𝑗 ) and (𝑎𝑖 + 𝑛 𝑗 )
as queries using a video search engine. Then they filter out any
activity that falls under the following conditions: 1) the activity
can be identified without relying on temporal information. For
example, "hold basketball" can be identified with a single static
image, whereas "taking off shoes" requires temporal information.
2) the number of videos retrieved using this activity as a query
is less than 50. 3) less than 50% of all the videos retrieved based
on this activity correctly match this activity. After such a manual
filtering process, we obtain a refined activity list F ∈ L, containing
approximately 800 activities with strong temporal nature. To further
balance the distribution of objects, we calculate the frequency of
nouns in F. For activities with lower noun frequencies, we collect
top 30 videos, whereas for activities with higher noun frequencies,
we collect top 20 videos. We end up collecting approximately 21,000
videos V𝑟𝑎𝑤 = {𝑣𝑖 }21,000𝑖=1 that match our requirements.

Video Reversion. If one wants to specifically focus on evaluat-
ing the temporal understanding ability of the model, we believe it is
necessary to include harder-negative samples, that is, videos with
similar visual appearance but exactly opposite temporal semantics.

Figure 4: Illustration of some video samples in our initial
video pool. A1 and A2: temporally insignificant as there is no
significant difference between the raw video and its reversed
counterpart. B1 and B2: ‘garbage comes out of trash can’ is
unreasonable in the reversed counterpart, thus only the raw
video B1 is kept. C1 and C2: both are temporally significant
and temporally meaningful.

Since each activity in our list has its temporally opposite activity
(e.g. open the door vs. close the door), we can reverse the raw video
𝑣𝑖 to get its harder-negative counterpart 𝑣𝑖 . By doing so, each video
and its reversed version (𝑣𝑖 , 𝑣𝑖 ) share same visual appearances but
with reverse temporal order, resulting in completely opposite visual
semantics. So we expand V𝑟𝑎𝑤 = {𝑣𝑖 }21,000𝑖=1 into our initial video
pool V = {(𝑣𝑖 , 𝑣𝑖 )}21,000𝑖=1 .

Manual Annotation.We recruit 23 professional annotators (15
females and 8 males), who are all English majors with an average
English proficiency level equivalent to a score of 7 on the IELTS,
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Figure 5: Examples of some videos and their associated human-written captions from our RTime dataset. Green and red terms
in the text description indicate their temporal semantic difference.

to conduct manual annotation4 on the initial video pool V. Both
the original video 𝑣𝑖 and its reversed version 𝑣𝑖 are provided to
the annotator, who needs to first determine that the raw video 𝑣𝑖
indeed has meaningful strong temporal nature by applying the
following rules: 1) it contains a distinct temporal-related activity;
or 2) it contains consecutive activities with significant differences;
or 3) it involves an apparent change in the state of an object; or 4) it
contains observable changes in the position of an object, etc. Subse-
quently, the annotator needs to evaluate whether the reversed video
𝑣𝑖 matches a meaningful real-world scenario, excluding unrealistic
scenarios such as anti-gravity phenomena or a large number of
cars driving backwards on the street. We illustrate some examples
in Figure 4, where A1 and A2 have very similar semantics, so they
are considered as temporally insignificant and are eliminated. B1
and B2 have different semantics, but ‘garbage comes out of trash
can’ in B2 is unreasonable. Only B1 is kept and annotated which is
only divided into the training set because it doesn’t have reversed
version as hard negative sample. C1 and C2 have different semantics
and the reversed video is also reasonable and meaningful. Both of
them are thus retained and annotated.

Next, for retained videos with meaningful strong temporal na-
ture, annotators proceed to write fine-grained descriptions for them.
Since we applied activity as the query to search engine for video
crawling, there may be multiple matching videos for a brief query
focusing solely on temporal features, which consequently leads to
the occurrence of false negatives and diminishing the effectiveness
of the evaluation [44, 55]. In order to mitigate this issue, annotators
are required to describe not only the temporal features of videos
but also their distinct spatial features. Each video is thus associated
with a fine-grained annotation sentence, e.g. (𝑣𝑖 , 𝑡𝑖 ) or (𝑣𝑖 , 𝑡𝑖 ). Fi-
nally, we obtain 21,537 videos paired with detailed descriptions. We
show some examples in Figure 5.

Rewriting for Diversity. Previous work [9] has demonstrated
that rewriting text descriptions for image-text contrastive learning
can enhance the performance of CLIP [43]. Inspired by this, for
4using Appen Platform: https://www.appen.com/

the purpose of augmenting the diversity of text descriptions and
facilitating effective video-text training, we provide GPT-4 with
the human-written caption, and instruct it to rewrite nine extra
sentences, requiring the rewritten sentences to exhibit diversity in
sentence structure and vocabulary while retaining the key semantic
information of the original sentence. Specifically, for a video-text
pair (𝑣𝑖 , 𝑡𝑖 ) or (𝑣𝑖 , 𝑡𝑖 ), we get {(𝑣𝑖 , 𝑡𝑖 𝑗 )}10𝑗=1 or {(𝑣𝑖 , 𝑡𝑖 𝑗 )}10𝑗=1 after
rewriting. Ultimately, RTime contains ~210k video-text pairs, an
order of magnitude increase. Due to the uncertainty in the quality
of GPT-generated captions, we only add these generated captions
in the training set, and merely utilize manually generated captions
with higher quality in validation and test set.

3.2 Dataset Statistics
Table 1 compares our RTime dataset with other video-text datasets.
RTime contains a total of 21,537 videos, each with one manually
annotated caption and nine GPT-4 generated captions. Among all
the videos, 16,530 videos have their temporally harder-negative
counterparts, accounting for 76.8%. RTime is comparable in dataset
scale to mainstream evaluation datasets. Compared to SSV2-Label
and SSV2-Template, videos in RTime cover a broader range, ad-
dressing the domain limitation in these datasets. The activity list
for RTime construction covers a wide range of natural activities
with strong temporality. Some activities (verb-noun combinations)
and a word-cloud based on the distribution of verb phrases are
illustrated in the supplementary material which shows more bal-
anced distribution of verb phrases in RTime. More importantly, text
sentence lengths in RTime are longer than other similar datasets,
indicating that our text annotations are finer-grained.

3.3 Benchmark Tasks Definition
Video-text retrieval requires the model to search for videos based
on text queries (Text-to-Video retrieval, T2V) or to retrieve seman-
tically matching textual descriptions based on video queries (Video-
to-Text retrieval, V2T). We split our RTime dataset into training,
validation, and testing subsets, containing 18,537, 1,000, and 2,000

https://www.appen.com/
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Table 1: Statistics of RTime and other datasets

Dataset Domain #Video clips #Sentences Avg len(sec) Avg sent len Duration(h)
MSR-VTT[58] open 10K 200K 15.0 9.3 40
YouCook II[62] cooking 14K 14K 19.6 8.8 176
DiDeMo[1] Flickr 27K 41K 6.9 8.0 87
ActivityNet-Cap[24] action 100K 100K 36.0 13.5 849
LSMDC[45] movie 118K 118K 4.8 7.0 158
SSV2-Label[25] ego-centric action 171K 111K 4.0 6.6 190
SSV2-Template[25] ego-centric action 171K 174 4.0 6.0 190
RTime (Ours) open 21K 210K 20.4 20.2 122

videos, respectively. Note that we ensure that the raw video and
its reversed counterpart are in the same subset. We propose three
evaluation settings to assess video-text retrieval models.

Standard Video-Text Retrieval (RTime-Origin). This setting
is similar to other standard video-text retrieval benchmarks without
harder-negatives.We only use raw videos 𝑣 𝑗 with its human-written
captions 𝑡 𝑗 and exclude reversed videos 𝑣𝑖 in the test set, thus the
test set contains 1000 video-text (𝑣 𝑗 , 𝑡 𝑗 ) pairs. We use the commonly
adopted Recall at K (R@K) as our evaluation metrics, which reports
the percentage of correctly retrieved samples in the top K retrieval
results, and K = 1, 5, 10 is applied in our experiments. These metrics
are used for both text-to-video and video-to-text retrieval.

Video-TextRetrievalwithHarder-Negative Samples (RTime-
Hard). In this setting, we use both raw video and its reversed
counterparts with their human-written captions. The inclusion
of reversed videos places higher demands on models to possess
comprehensive understanding of both temporal and spatial informa-
tion. We use it as the primary setting to assess the performance of
video-text retrieval models. We apply R@1, R@5, R@10 evaluation
metrics for both text-to-video and video-to-text retrieval.

Binary Video-Text Retrieval (RTime-Binary) This task set-
ting specifically evaluates the temporal understanding capability of
models, including both the binary text-to-video retrieval and binary
video-to-text retrieval. For binary text-to-video retrieval, given a
text query, the model needs to select the correct video from the two
candidate videos that have the same visual appearance but opposite
temporal semantics. Similarly, for binary video-to-text retrieval,
given a query video, the model needs to find the correct description
from the two candidate descriptions. We use accuracy (Acc) as our
evaluation metric in this setting, and a random selection yields an
accuracy of 50%.

4 EMPIRICAL STUDY ON RTIME
In this section, we carry out extensive empirical studies on the
proposed benchmark tasks with RTime to gain a more in-depth
understanding of challenges in video-text retrieval. We first intro-
duce the model architecture and learning strategy (Sec. 4.1). Next
we evaluate and analyze a variety of video-text retrieval methods
on RTime benchmark (Sec. 4.2). Furthermore we investigate the
factors that could impact the temporal understanding capability
of models in RTime-Hard and RTime-Binary tasks (Sec. 4.3), and
finally we present some additional ablation analysis (Sec. 4.4) and
qualitative results (Sec. 4.5).

4.1 Model Architecture and Learning Strategy
We use model with the two-stream architecture, which consists of a
separate visual encoder and text encoder, followed by a cross-modal
alignment module. The video and text encoders encode videos and
texts into visual and textual features, respectively. The cross-modal
alignment module involves a light transformer layer to fuse visual
and textual features and output the similarity score matrix between
video and text.

The learning objectives include the visual-textual contrastive loss
(VTC) [3, 43] and the visual-textual matching loss (VTM) [25, 28,
30]. Specifically, given a batch of videos and texts’ representations
(𝑣𝑖 , 𝑡𝑖 )B𝑖=1 with size B, the VTC loss is computed as follows:

𝐿vtc−v2t = − 1
𝐵

𝐵∑︁
𝑖

log
exp(𝑡⊤

𝑖
𝑣𝑖/𝜎)∑𝐵

𝑗=1 exp(𝑡⊤𝑖 𝑣 𝑗/𝜎)
, (1)

𝐿vtc−t2v = − 1
𝐵

𝐵∑︁
𝑖

log
exp(𝑣⊤

𝑖
𝑡𝑖/𝜎)∑𝐵

𝑗=1 exp(𝑣⊤𝑖 𝑡 𝑗/𝜎)
, (2)

𝐿vtc =
1
2
(𝐿vtc−v2t + 𝐿vtc−t2v), (3)

where 𝜎 is the temperature parameter. And the VTM loss is com-
puted by:

𝐿vtm−v2t =
1
𝐵

𝐵∑︁
𝑖

𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑦vtm, 𝑝vtm (𝑣𝑖 , 𝑡 𝑗∈{𝑖,𝑖𝑛𝑒𝑔 } )), (4)

𝐿vtm−t2v =
1
𝐵

𝐵∑︁
𝑖

𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑦vtm, 𝑝vtm (𝑡𝑖 , 𝑣 𝑗∈{𝑖,𝑖𝑛𝑒𝑔 } )), (5)

𝐿vtm =
1
2
(𝐿vtm−v2t + 𝐿vtm−t2v), (6)

where 𝑝vtm denotes probability, 𝑖𝑛𝑒𝑔 denotes a negative sample in
the same batch, and 𝑦vtm denotes ground-truth label of matched
or not. We use negative mining [30] for efficiency, sampling the
negative samples in the same batch for VTM loss.

We also enhance the use of harder-negative samples in RTime
by placing positive and harder-negatives (i.e. the reversed counter-
parts) in the same batch during fine-tuning, e.g. UMT-Neg denotes
our fine-tuned UMT with such enhanced use of harder-negatives.
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4.2 Benchmarking SOTA Models on RTime
We evaluate different SOTA models on the three RTime benchmark
tasks: RTime-Origin, RTime-Both, and RTime-Binary, which require
increasingly stronger temporal understanding capabilities. Specifi-
cally, we evaluate two image-text pre-trained models (i.e. CLIP [43]
and BLIP [28]), one model pre-trained on video-text datasets with
single frame (i.e. Singularity [25]), and two video-text models (i.e.
VINDLU [8] and UMT [31]) in our zero-shot experiments. We also
fine-tune two temporally-adapted image-text models based on CLIP
(i.e. CLIP4Clip [38] and Ts2Net [35]) and UMT [31].

As shown in Table 2, since our video descriptions are more
fine-grained and longer than previous benchmarks, they are less
ambiguous and most models can achieve satisfactory results on
RTime-Origin. But there is a performance gap between image-
text pre-trained model (CLIP R@1 58.7, BLIP R@1 71.8), model
pre-trained with one frame (Singularity R@1 74.1) and video-text
pre-trained model (UMT R@1 80.3) with the same model size on
RTime-Origin. The same trend is observed on RTime-Hard as well,
with (CLIP R@1 28.8, BLIP R@1 36.2) vs (Singularity R@1 36.2) vs
(UMT R@1 40.2). Significantly different from the results shown in
Figure 2, where CLIP and Singularity perform comparably to UMT,
these comparison experiments demonstrate that our RTime is more
temporal-emphasized and therefore more effective in evaluating
different video retrieval models. The above phenomenon is the
same in larger-scale models (BLIP-L vs UMT-L).

Moreover, we observe that performances of various models on
RTime-Hard all drop significantly compared to those on RTime-
Origin, with the most significant performance drop in the R@1
metric. This is because models can easily find videos with the same
visual appearance but different temporal semantics based on static
visual information. However, further correctly distinguishing tem-
poral order is challenging, resulting in R@1 degradation. We also
observe that the performances of CLIP-based models (CLIP4Clip
and TS2Net) are significantly improved after fine-tuning, which
indicates to some extent the shortcomings of image-text models in
temporal understanding, and also shows the necessity of learning
temporal understanding ability for models.

The RTime-Binary task focuses only on evaluating the temporal
understanding ability. Experimental results show that all models
we adopt perform poorly, even after fine-tuning. This demonstrates
that RTime indeed poses a significant challenge to current models.
Even fine-tuned models can only achieve slightly better results
than random selection. In addition, it is worth noting that UMT-
Neg, which adopts our enhanced use of harder-negatives, achieves
obvious gain on the RTime-Binary task.

Overall, the results of our benchmarking with various SOTA
models on RTime tasks show that on the one hand, RTime indeed
poses a higher challenge to video-text retrieval, on the other hand,
current video-text models still fall short in temporal understanding.

4.3 Ablation on Temporal Understanding
We investigate factors that could possibly impact the temporal
comprehension performance based on our UMT-Neg model. We
conduct experiments under two task settings, RTime-Hard, which
comprehensively assesses the spatio-temporal understanding capa-
bility of models, and RTime-Binary, which focuses on evaluating
the temporal understanding ability.

Figure 6: Success and failure cases of UMT in choosing the
correct video given the text query. Green boxed represents
the true answer while red boxed denotes the wrong answer.

Impact of leveraging harder negatives within same batch.
One of the prominent features of our RTime is that many video-
text pairs have harder-negative samples (the reversed counterpart),
which may be beneficial for the model to enhance its temporal
understanding ability during fine-tuning. To ablate the impact of
our enhanced use of harder-negatives (i.e. placing positive and
harder-negatives in the same batch), we compare the performances
of the fine-tuned model with (UMT-Neg) and without (UMT) such
strategy. As shown in the last two lines in Table 2, UMT-Neg does
demonstrate better temporal understanding, achieving relative im-
provements of +2.9% (R@1 46.3 vs 45.0) on RTime-Hard and +6.4%
(Acc 54.5 vs 51.2) on RTime-Binary.

Impact of number of input frames. Learning of temporal
information is theoretically closely related to the number of input
frames used during fine-tuning. Our experimental results, shown
in Table 3, demonstrate that increasing the number of input frames
gradually improves the spatial-temporal understanding performance.

Impact of temporal positional embedding. Temporal po-
sitional embedding which contains frame position information
plays a crucial role in the Transformer architecture for learning
temporal information. As shown in Table 4, compared to results
with spatial-only positional embeddings, it is evident that spatio-
temporal positional embeddings are indeed beneficial for temporal
understanding.

4.4 Additional Ablation Analysis
We further ablate other factors in data construction that may affect
the video-text retrieval performance.

Impact of rewriting in data construction. From Table 5, com-
paring row 1with row 3 as well as row 2with row 4, we observe that
applying "rewrite" strategy, which adds extra rewritten captions for
each video into the training data, significantly enhances the model’s
spatio-temporal understanding, demonstrating its effectiveness.

Impact of reverse in data construction. From Table 5, com-
paring the row 1 with row 2 and row 3 with row 4, we observe that
adding "reversed" videos and their text descriptions during training
brings improvement, especially on temporal understanding. It is
notable that with "rewrite" strategy, where more negative captions
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Table 2: Comparison of existing methods on the three RTime benchmarks. ZS: zero-shot, FT: Fine-Tuning. "-L" refers to models
using ViT-L/14 as vision encoder and other the models using the ViT-B/16 with the same size.

RTime-Origin RTime-Hard RTime-Binary

Method T2V V2T T2V V2T T2V V2T
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 Acc Acc

ZS

CLIP 58.7 85.5 91.9 52.1 79.7 88.7 28.8 73.2 83.4 27.7 66.6 77.9 49.1 49.5
BLIP 71.8 91.6 95.4 71.2 91.8 95.0 36.2 84.6 91.3 36.65 82.25 90.15 49.7 49.0
Singularity 74.1 92.7 95.4 75.2 93.5 96.8 36.2 86.1 92.0 39.0 87.3 93.4 48.7 49.9
VINDLU 80.2 96.4 98.8 79.9 97.2 98.7 41.1 91.9 95.9 41.3 92.3 96.9 50.9 49.9
UMT 80.3 95.3 96.9 81.0 95.6 97.8 40.2 89.7 94.7 42.0 90.9 95.6 49.8 50.4
BLIP-L 81.6 96.0 97.8 80.3 95.8 97.4 40.2 90.9 95.8 41.2 90.7 95.2 49.3 50.2
UMT-L 84.7 97.8 98.9 85.7 97.9 99.3 45.4 94.1 97.4 44.8 94.6 98.3 53.1 51.0

FT
CLIP4Clip 75.2 94.7 97.7 75.5 95.0 97.8 37.3 88.0 94.0 37.3 88.6 93.7 49.8 49.8
Ts2Net 74.3 95.3 97.4 76.3 95.6 97.8 37.8 88.8 94.8 38.9 88.5 94.9 50.7 50.0
UMT 86.3 98.3 99.2 86.2 98.3 99.2 45.0 95.0 98.2 45.5 94.9 98.3 51.2 51.3
UMT-Neg (Ours) 84.6 98.2 99.0 85.4 98.3 99.5 46.3 95.0 98.1 46.8 95.1 98.3 54.5 54.2

Table 3: Performance comparison with different number of
frames in fine-tuning. We input 12 frames during inference.

RTime-Hard RTime-Binary

# T2V V2T T2V V2T
R@1 R@5 R@10 R@1 R@5 R@10 Acc Acc

1 38.1 86.0 92.5 36.1 83.6 91.3 49.9 50.6
4 40.9 90.0 95.8 38.5 89.1 95.0 51.4 49.7
8 42.8 91.3 96.1 41.9 91.2 95.4 51.7 51.9
12 46.3 95.0 98.1 46.8 95.1 98.3 54.5 54.2

Table 4: Performance comparison with or without temporal
positional embedding. PE: positional embedding.

RTime-Hard RTime-Binary

PE T2V V2T T2V V2T
R@1 R@5 R@10 R@1 R@5 R@10 Acc Acc

✗ 38.1 86.0 92.5 36.1 83.6 91.3 49.9 50.6
✓ 46.3 95.0 98.1 46.8 95.1 98.3 54.5 54.2

Table 5: Impact of certain processing strategies in data con-
struction. RW: Rewrite, RV: Reverse

RTime-Hard Binary

RW RV T2V V2T T2V V2T
R@1 R@5 R@10 R@1 R@5 R@10 Acc Acc

✗ ✗ 43.35 93.8 97.5 44.4 93.7 97.4 51.6 51.8
✗ ✓ 44.5 93.9 98.1 44.7 93.7 97.6 52.9 51.4
✓ ✗ 45.3 94.6 97.8 44.2 94.3 97.8 52.2 51.1
✓ ✓ 46.3 95.0 98.1 46.8 95.1 98.3 54.5 54.2

exists, the gain in RTime-Binary is more significant. This observa-
tion suggests the necessity for more temporal harder-negatives to
enhance models’ temporal understanding ability.

Impact of test set scales on performance. Since the RTime-
Hard test set (2000) is twice the size of RTime-Origin (1000), one
might argue that, in addition to the difficulty of temporal under-
standing itself, the significantly lower performance on RTime-Hard
might also relate to the test set size. To verify the influence of test

Table 6: Impact of test-set scale on performance.

RTime-Hard RTime-Binary

scale T2V V2T T2V V2T
R@1 R@5 R@10 R@1 R@5 R@10 Acc Acc

1K 47.3 95.2 97.7 47.6 96.8 98.5 53.7 53.7
2K 46.3 95.0 98.1 46.8 95.1 98.3 54.5 54.2

set size, we also extract a subset of size 1,000 from RTime-Hard test
set. As shown in Table 6, performance across different scales does
not vary much, which confirms that the challenge of RTime-Hard
does mainly come from more challenging temporal understanding.

4.5 Qualitative Results
We visualize some success and failure cases in choosing the correct
video given the text query in Figure 6. In the top success case,
UMT can correctly recognize that "embrace" occurs before "rub
their hands," but in the bottom failure case, it fails to distinguish
the "rise" and "fall" of the mercury column in the thermometer.
Distinguishing temporal semantics in videos with identical visual
appearance poses a higher challenge for existing models.

5 CONCLUSION
This work aims to address the lack of temporal understanding
evaluation in existing video-text retrieval benchmarks. We intro-
duce RTime, a novel fine-grained temporal-emphasized video-text
dataset, carefully constructed in a top-down three-step pipeline
by leveraging the power of large language models and human ex-
pertise. We further establish three benchmark tasks: RTime-Origin
retrieval, RTime-Hard retrieval, and RTime-Binary retrieval, which
can support comprehensive and faithful evaluation of video under-
standing capabilities especially in terms of temporal understanding.
The extensive experiment analysis confirms that our RTime in-
deed poses higher challenges to video-text retrieval. We hope that
our work will draw more attention to the importance of temporal
understanding and contribute to more broad advancement of video-
language understanding tasks such as video captioning, videoQA
and Multimodal Large Language Model evaluation.
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