
SKEWACT: Red Teaming Large Language Models via
Activation-Skewed Adversarial Prompt Optimization

 This paper contains AI-generated content that can be offensive to readers in nature.

Hanxi Guo
Purdue University

guo778@purdue.edu

Siyuan Cheng
Purdue University

cheng535@purdue.edu

Guanhong Tao
University of Utah

guanhong.tao@utah.edu

Guangyu Shen
Purdue University

shen447@purdue.edu

Zhuo Zhang
Purdue University

zhan3299@purdue.edu

Shengwei An
Purdue University
an93@purdue.edu

Kaiyuan Zhang
Purdue University

zhan4057@purdue.edu

Xiangyu Zhang
Purdue University

xyzhang@cs.purdue.edu

Abstract

Large Language Models (LLMs) have become increasingly impactful across var-
ious domains, including coding and data analysis. However, their widespread
adoption has raised concerns about misuse, particularly in generating harmful or
unethical content. Optimization-based jailbreaking techniques, a key component
of LLM red teaming, aim to expose LLM vulnerabilities by inserting optimized
adversarial triggers into prompts to elicit harmful outputs. Despite their potential,
existing methods suffer from ineffectiveness and inefficiency due to the gap be-
tween the gradient-based candidate ranking and the discrete trigger update. In this
paper, we present SKEWACT, a novel optimization-based jailbreak framework de-
signed to enhance both the efficacy and efficiency of adversarial prompt generation
for better LLM red teaming. By utilizing gradients from both the original and an
activation-perturbed target model—referred to as the skewed model—SKEWACT
identifies candidates that point toward the minima of the wide convex regions of the
loss landscape. This approach preventing the optimization from bouncing between
multiple local minima (i.e., gradient overshooting). Experimental results show that
SKEWACT improves the Attack Success Rate (ASR) by over 10% and reduce the
converged loss with more than 12%, consistently outperforming GCG across seven
LLMs with various safety levels, model architectures and model sizes.

1 Introduction

In recent years, Large Language Models (LLMs) have made significant advancements, expanding
their utility beyond linguistic tasks to everyday applications such as coding, data analysis, and
education [3, 34, 13]. However, as LLMs grow more influential, concerns about their misuse
have also intensified [28, 30]. Adversarial actors, including nation-state groups [8], have already
begun leveraging LLMs for malicious purposes such as social engineering and exploiting system
vulnerabilities. To address these emerging threats, efforts like OpenAI’s LLM alignment [1, 28]
have been introduced. This process integrates human feedback during training to minimize the risk
of LLMs generating harmful or unethical content. Beyond alignment, comprehensive post-training

NeurIPS 2024 Workshop on Red Teaming GenAI: What Can We Learn from Adversaries?

red-teaming tests, often referred to as LLM jailbreaking [27, 32, 24, 6, 18], are essential for exposing
and mitigating vulnerabilities in these models. Among the current approaches, optimization-based
jailbreaking [27, 39, 25, 9, 15] has demonstrated the highest effectiveness, particularly in scenarios
where developers have full access to the model for comprehensive evaluation and improvement.

A typical optimization-based jailbreaking method [39] seeks to modify input prompts to induce a
specific target response from the model (e.g., a toxic answer in this context). Unlike conventional
gradient-based optimization during model training, which adjusts model parameters in a continuous
space using a small learning rate, optimizing input prompts presents the additional challenge of
working with discrete token representations. Specifically, each token is represented by a one-hot vector
(the actual object of the optimization), which exists in a discrete space, making small, continuous
adjustments impossible. To overcome this, current methods rely on a generic search algorithm rather
than directly applying gradients for optimization. Instead of using gradient descent to adjust tokens,
these methods rank token candidates based on the gradient information associated with each token’s
corresponding dimension in the one-hot vector representation. The top-k ranked token candidates are
evaluated, and the prompt that results in the lowest loss is selected as the optimal choice at each step.

Despite the progress made by existing methods, optimization-based jailbreaking techniques still
suffer from low effectiveness. For example, in our evaluation, the well-known GCG [39] achieves
less than 20% jailbreak success rate on Llama 2 models [31] on average, while taking more than 20
minutes to optimize a single adversarial suffix. Upon investigation, we found that during the search
process, some top-ranked token candidates do not contribute to improving the prompt and, in some
cases, even steer the search in the wrong direction. Further analysis reveals that the root cause of this
issue is gradient overshooting. Specifically, when a token candidate is selected, its corresponding
value in the one-hot vector representation shifts abruptly from 0 to 1. This sharp transition acts as a
large update, akin to using an excessively high learning rate in the optimization process. As a result,
the algorithm overshoots the optimal solution, leading to optimization instability.

In this work, we address the instability caused by the discrete nature of input prompts in optimization-
based jailbreaking techniques. Our core idea is to select token candidates that not only reduce the
loss (as existing approaches do), but also reside within wide convex regions of the loss landscape.
This ensures that even when large optimization steps are required (due to discrete token updates),
the process remains well-directed and avoids overshooting the optimal region. We further observe
that these wide convex regions are more resilient to slight changes in the model and hence the
loss landscape. In these regions, the loss landscape exhibits gentle curvature, meaning that small
changes to the model’s parameters or architecture have limited effect on the gradient’s direction. The
landscape’s flatness helps maintain gradient stability, absorbing minor perturbations. In contrast, in
sharper or narrower regions, small changes can cause significant variations in gradient direction due
to the steeper curvature.

Based on these observations, we propose a novel optimization-based jailbreaking technique that
incorporates a token ranking strategy considering gradients from both the original model and a
slightly modified version, referred to as the skewed model. Specifically, we adjust the original
model’s activation functions, e.g., replacing Sigmoid Linear Unit (SiLU) [5] with Rectified Linear
Unit (ReLU) [21], to change the curvature of the loss landscape. This modification impacts the
smoothness and convexity around optimal solutions. We then compute the loss gradients with respect
to the input tokens for both the original and skewed models, defining robust gradients as those
that remain significant across both models. By focusing on tokens with consistently high gradient
magnitudes in both models, which indicates they are in wide convex regions, we minimize the impact
of abrupt gradient shifts due to discrete token updates. These token candidates are subsequently used
in the search process. As such, we propose SKEWACT, an efficient optimization-based jailbreaking
technique that leverages robust gradients to enhance stability in discrete token spaces. SKEWACT
achieves over a 10% improvement in Attack Success Rate (ASR) and consistently demonstrates more
than 0.02 lower converged loss against LLMs with various safety levels and sizes, compared to GCG.

2 Background

2.1 Threat Model

We adopt the threat model established in the literature [39, 35, 12, 33]. Given a malicious user
query, the attacker’s goal is to craft a prompt that successfully compels the target LLM to produce a

2

corresponding toxic response, thereby circumventing the model’s alignment safeguards. We assume
a white-box access scenario, where the attacker has access to the target model’s internal activations
and outputs.

2.2 Related Work

Existing jailbreaking methods can be broadly classified into two categories: optimization-based and
non-optimization-based methods.

Optimization-based Methods. These methods typically involve optimizing a transferable jailbreak-
ing prompt using white-box access to a holdout LLM. The underlying assumption is that most
language models exhibit similar behavior, as they are likely trained on similar corpora. GCG [39]
is a milestone work in this category, using gradient approximation and loss guidance to compel
the LLM to respond with affirmative phrases like “Sure, here is.” It optimizes adversarial prompts
across multiple open-source models, such as Vicuna-7b and Vicuna-13b, and achieves high attack
success rates even on production models like ChatGPT. AmpleGCG [15] addresses the limitations of
loss guidance in GCG by introducing an additional LLM trained specifically to generate jailbreak-
ing prompts automatically. Several optimization-based methods originally designed for traditional
NLP classification tasks can also be adapted for jailbreaking, including PEZ [33], GBDA [7], and
DBS [26].

Non-optimization-based Methods. In contrast, non-optimization methods [14, 35, 16, 36, 38, 2, 11]
rely on sophisticated templates, either manually crafted or generated by LLMs, to bypass safety
alignment. These methods aim to mislead the LLM by issuing complex, distracting instructions that
shift its attention away from safety alignment. For example, DeepInception [14] employs manually
designed nested scenarios to obscure the attacker’s intent, often confusing the model after several
iterations. GPTFUZZER [35] treats LLM jailbreaking as a fuzzing challenge, akin to traditional
software testing, by mutating pre-collected templates to create stronger variants. AutoDAN [16]
introduces an automated prompting technique that forces the model into a "Do Anything Now" (DAN)
mode. PAP [36] draws inspiration from social science, developing a persuasion taxonomy and using
another LLM to paraphrase harmful queries in ways that persuade the target LLM to generate harmful
content. These non-optimization-based methods generally produce more interpretable prompts and
require only black-box access to the target model. However, their success rates in jailbreaking are
typically lower compared to optimization-based methods.

3 Motivation

To
p-

K
C

an
di

da
te

 In
de

x

(a) GCG

(b) SkewAct

−0.2

0

0.2
−0.2

0

0.2

0

20

40

60
0

20

40

60

Optimization Round
0 5 10 15 20 25 30

Figure 1: Comparison of candidate quality be-
tween GCG and SKEWACT.

<latexit sha1_base64="ZwKkaJcdU3hHlnhMyVD4tdz55QM=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaNryPRi0dI5JHAhswODYzMzm5mZo1kwxd48aAxXv0kb/6NA+xBwUo6qVR1p7sriAXXxnW/ndzK6tr6Rn6zsLW9s7tX3D9o6ChRDOssEpFqBVSj4BLrhhuBrVghDQOBzWB0O/Wbj6g0j+S9Gcfoh3QgeZ8zaqxUe+oWS27ZnYEsEy8jJchQ7Ra/Or2IJSFKwwTVuu25sfFTqgxnAieFTqIxpmxEB9i2VNIQtZ/ODp2QE6v0SD9StqQhM/X3REpDrcdhYDtDaoZ60ZuK/3ntxPSv/ZTLODEo2XxRPxHERGT6NelxhcyIsSWUKW5vJWxIFWXGZlOwIXiLLy+TxlnZuyxf1M5LlZssjjwcwTGcggdXUIE7qEIdGCA8wyu8OQ/Oi/PufMxbc042cwh/4Hz+AOl5jQY=</latexit>x

<latexit sha1_base64="0lPQpFj/BuYj6bJGABuEf2Etqkw=">AAAB+3icbVDLSsNAFJ3UV62vWJduBotQoZREfC2LblwoVLAPaEOZTCft0MkkzEykIeRX3LhQxK0/4s6/cdJmoa0HBg7n3Ms9c9yQUaks69sorKyurW8UN0tb2zu7e+Z+uS2DSGDSwgELRNdFkjDKSUtRxUg3FAT5LiMdd3KT+Z0nIiQN+KOKQ+L4aMSpRzFSWhqY5b6P1Bgjltyl1Wktrt2fDMyKVbdmgMvEzkkF5GgOzK/+MMCRT7jCDEnZs61QOQkSimJG0lI/kiREeIJGpKcpRz6RTjLLnsJjrQyhFwj9uIIz9fdGgnwpY9/Vk1lSuehl4n9eL1LelZNQHkaKcDw/5EUMqgBmRcAhFQQrFmuCsKA6K8RjJBBWuq6SLsFe/PIyaZ/W7Yv6+cNZpXGd11EEh+AIVIENLkED3IImaAEMpuAZvII3IzVejHfjYz5aMPKdA/AHxucPBw6Tyg==</latexit>L(x, y,M)
Optimization Path of

Optimization Path of GCG

<latexit sha1_base64="Co4sZJi4XDwoOxag/2/qVSvQZ9k=">AAAB+XicbVDJTgJBEO3BDXEb9eilIzHxRGaM2xH14hGjLAlMSE9TQIeeJd01KJnwJ148aIxX/8Sbf2MDc1DwJZW8vFeVqnp+LIVGx/m2ckvLK6tr+fXCxubW9o69u1fTUaI4VHkkI9XwmQYpQqiiQAmNWAELfAl1f3Az8etDUFpE4QOOYvAC1gtFV3CGRmrbdgvhCTVP7wfweMVx3LaLTsmZgi4SNyNFkqHStr9anYgnAYTIJdO66ToxeilTKLiEcaGVaIgZH7AeNA0NWQDaS6eXj+mRUTq0GylTIdKp+nsiZYHWo8A3nQHDvp73JuJ/XjPB7qWXijBOEEI+W9RNJMWITmKgHaGAoxwZwrgS5lbK+0wxjiasggnBnX95kdROSu556ezutFi+zuLIkwNySI6JSy5ImdySCqkSTobkmbySNyu1Xqx362PWmrOymX3yB9bnDxRFk/Y=</latexit>

SkewAct

Adversarial Trigger Found by GCG

Adversarial Trigger Found by
<latexit sha1_base64="Co4sZJi4XDwoOxag/2/qVSvQZ9k=">AAAB+XicbVDJTgJBEO3BDXEb9eilIzHxRGaM2xH14hGjLAlMSE9TQIeeJd01KJnwJ148aIxX/8Sbf2MDc1DwJZW8vFeVqnp+LIVGx/m2ckvLK6tr+fXCxubW9o69u1fTUaI4VHkkI9XwmQYpQqiiQAmNWAELfAl1f3Az8etDUFpE4QOOYvAC1gtFV3CGRmrbdgvhCTVP7wfweMVx3LaLTsmZgi4SNyNFkqHStr9anYgnAYTIJdO66ToxeilTKLiEcaGVaIgZH7AeNA0NWQDaS6eXj+mRUTq0GylTIdKp+nsiZYHWo8A3nQHDvp73JuJ/XjPB7qWXijBOEEI+W9RNJMWITmKgHaGAoxwZwrgS5lbK+0wxjiasggnBnX95kdROSu556ezutFi+zuLIkwNySI6JSy5ImdySCqkSTobkmbySNyu1Xqx362PWmrOymX3yB9bnDxRFk/Y=</latexit>

SkewAct

Figure 2: Comparison of optimization paths
of GCG and SKEWACT.

Recent advancements in optimization-based jailbreak techniques for Large Language Models
(LLMs)[39, 7, 33, 27] have primarily focused on developing more persuasive and effective ini-
tial prompts[9, 36] or devising more efficient candidate selection methods [9, 25, 15]. However, the
insufficiency of candidate ranking in existing jailbreak methodologies received little attention. In
this work, we delve deeper into the optimization process and identify a more fundamental cause of
failure and inefficiency in existing optimization-based jailbreak techniques: the gradient is not an
accurate reference in candidate ranking, leading to the selection of less effective candidates for
loss-guided optimization. This is due to the fact that the gradient is calculated in a continuous space,
whereas the update of adversarial triggers occurs via a discrete approach (i.e., changing at least one

3

trigger token per step). The gap between continuous gradient calculation and discrete trigger updates
can result in highly ranked candidate tokens being ineffective due to gradient overshooting.

To substantiate our claim, we provide an illustrative example with GCG in Figure 1 (a). In each
optimization round, we record the top-64 candidate tokens for the trigger, update these candidates
to the initial trigger, and measure the loss difference before and after the update. A lighter grid
color indicates that the candidate increases the loss (contrary to expectations), whereas a darker
grid color indicates that the candidate reduces the loss. We observe that in each GCG optimization
round, some top-64 candidates (light-colored grids) actually increase the loss, signifying ineffective
candidates. When these ineffective candidates are selected, the optimization may bounce between the
local minima in the narrow convex regions or bypass an effective minima in the wide convex region,
resulting in lower efficiency and a reduced ASR for GCG in finding effective adversarial triggers.

To address the shortcomings of gradient-based ranking in existing jailbreak techniques, we propose
SKEWACT, which leverages an activation-perturbed target model (referred to as the skewed model)
as a reference to adjust the gradient computed from the original target model. The loss landscape
can be divided into wide convex regions and narrow convex regions, with the former offering greater
resilience to discrete trigger updates. This resilience allows optimization toward these wide convex
regions improves both the success and efficiency of the jailbreak process, as these regions minimize
the likelihood of the optimization process bouncing between multiple narrow convex regions. Thus,
we prioritize the candidate point to the minima of wide convex regions in SKEWACT.

To identify such minima in the wide convex regions, we hypothesize that they are more likely to
occur in regions where the loss landscapes of both the original and skewed target models overlap.
The perturbation of the activation layers, which forms the foundation of the skewed model, is inspired
by prior studies [21, 37, 20, 29] that emphasize the significant role of activation functions in shaping
LLM behavior and performance. By adjusting these layers, we can alter the curvature of the loss
landscape, offering a complementary perspective that enhances gradient stability and optimization.
Consequently, candidates that rank highly according to both the original and skewed gradients are
more likely to guide the optimization process toward these wide convex regions, increasing the
likelihood of discovering a stable and effective adversarial trigger.

Figure 2 presents the optimization paths of GCG and SKEWACT, demonstrating that SKEWACT ’s
optimization path reaches a minima in a wide convex region, whereas GCG’s path skips three local
minima in the narrow convex regions before reaching a non-optimal point. Additionally, Figure 1
(b) visualizes the quality of candidates produced by SKEWACT. The top-64 candidates ranked by
SKEWACT are more likely to reduce the loss, as indicated by their darker color, compared to those
selected by GCG. This supports our hypothesis that the resilience of wide convex regions increases
the likelihood that the trigger remains within the same wide convex region after discrete updates,
resulting in either reduced or slightly increased loss.

4 Methodology of SKEWACT

4.1 Overview of SKEWACT

Typical optimization-based jailbreak techniques consist of two phases: One-time Initialization
and Iterative Trigger Optimization. In the One-time Initialization phase, attackers initialize the
jailbreak triggers (e.g., suffix and prefix) and other configurations (e.g., output targets and auxiliary
mechanisms) for use in the subsequent Iterative Trigger Optimization phase. This phase occurs only
at the beginning of the jailbreak process and is not repeated. During the Iterative Trigger Optimization
phase, attackers iteratively update the tokens in the trigger based on the gradients of the large language
model or other guidance, coercing the target model to output unethical or harmful content.

Our SKEWACT consists of four main stages during such two phases of jailbreak, including one stage
(Activate Replacement) in the One-time Initialization phase and three stages (Gradient Calculation,
Candidate Filtering and Re-ranking, Trigger Candidate Selection and Update) in the Iterative
Trigger Optimization phase. The overview figure of SKEWACT is shown as Figure 3.

Stage 1: Activation Replacement. In the first stage, SKEWACT crafts a skewed model by replacing
each activation function with either a ReLU [21] or LeakyReLU [17] function. This skewed model is

4

Original Gradient

Skewed Gradient

Original Model

Activation
Replacement

Stage 1 Candidate Filtering
& Re-ranking

Stage 3

One-time Initialization

User Prompt Initial Trigger

Trigger Candidate
Selection & Update

Stage 4

Ja
ilb

re
ak

Iterative Trigger Optimization

Gradient
Calculation

Stage 2

Target
Output

Not Jailbreak
Next Round Trigger OptimizationSkewed Model

Core Module Customizable Module Input Operation

Figure 3: Overview of SKEWACT. Without losing generality, we use the suffix trigger as an
example, while our method can be compatible with other types of trigger.

then used as a surrogate model in Stage 2 and Stage 3. This stage is executed only once during the
One-time Initialization phase.

Stage 2: Gradient Calculation. Given both the target model and the skewed model, SKEWACT
feeds the same input prompt (user prompt with jailbreak trigger) into both models and individually
calculates the gradients of the trigger tokens in the second stage. We refer to the gradient from the
original model as the "original gradient" and the gradient from the skewed model as the "skewed
gradient."

Stage 3: Candidate Filtering and Re-ranking. SKEWACT then uses both the original gradient and
the skewed gradient to rank the candidate tokens for each position in the input jailbreak trigger. In
this stage, SKEWACT filters out unstable trigger token candidates while prioritizing robust ones by
comparing the original and skewed gradients. More details are provided in Section 4.4.

Stage 4: Trigger Candidate Selection and Update. In the final stage of each optimization step,
SKEWACT selects the most promising trigger token candidate and updates the trigger accordingly.
Note that this stage is compatible with, and can be replaced by, any existing candidate selection
method (e.g., GCG [39]). SKEWACT then tests the output of the user prompt with the updated trigger
to determine whether another round of optimization is needed.

4.2 Activation Replacement

Normalization

Attention

Normalization

Up Proj Gate Proj

Down Proj

SiLU
ReLU

LeakyReLU

Figure 4: Replacing activation function in
Llama2 layer.

SiLU
LeakyReLU
ReLU

Enriched Information
Sparsified Information

−0.25

−0.20

−0.15

−0.10

−0.05

0

0.05

−8 −6 −4 −2

Figure 5: Impact on model’s information flow when
using different activation functions.

In Stage 1, SKEWACT replaces the activation functions within the target model. Figure 4 presents
an example for the Llama 2 [31] layer. We search through all components of each target LLM
layer and replace the original activation function with either ReLU or LeakyReLU functions. The

5

intuition behind this activation replacement in SKEWACT is illustrated in Figure 5, which shows
the distributions of ReLU, LeakyReLU, and SiLU (used in the original Llama 2 models) functions.
Since these activation functions behave similarly when the input is greater than zero, we focus
on the distributions when the input is less than zero. The blue region highlights how the ReLU
function sparsifies the information flow by eliminating negative outputs compared to the original
SiLU function, while the red region shows how the LeakyReLU function enriches the information
flow by allowing more negative values to pass through. Such replacements change the loss landscape
of the model during the gradient calculation, shifting the narrow convex regions while leaving
overlaps to the wide convex regions compared to the loss landscape of the original target model. A
hyper-parameter controls which skewed model is utilized in SKEWACT during the subsequent three
stages in the Iterative Trigger Optimization phase.

4.3 Gradient Calculation

With both the original model M and the skewed model M̃ , SKEWACT individually calculates the
gradients using the two models with the input prompt I and the target output y, where I consists of
the harmful user prompt um and the initial trigger x in the current Iterative Trigger Optimization
round (i.e., I = um ⊕ x). The gradient calculation process in SKEWACT is the same as the existing
jailbreak techniques, e.g., GCG [39] and Ripple [25].

Specifically, given a sequence of target output tokens y with length k and the target model Mt, the
optimization problem could be formulated as finding a trigger x that makes the model Mt output
the target sequence y with high probability, which could be further formulated as minimizing the
cross-entropy loss between Mt’s output logits and the target sequence y, denoted as:

min
x∈V |x|

L(um ⊕ x, y,Mt), (1)

where the loss function L is defined as:

L(um ⊕ x, y,Mt) = − log(

k∏
j=1

pMt
(yj |um ⊕ x⊕ y0:j−1)) (2)

The original gradient g and the skewed gradient ĝ in SKEWACT are hence calculated as:

g = ∇xL(um ⊕ x, y,M), g̃ = ∇xL(um ⊕ x, y, M̃), (3)

These two gradients then used in the next stage for trigger token candidate filtering and re-ranking.

4.4 Candidate Filtering and Re-ranking

Table 1: Behaviors of robust and non-
robust trigger token candidates in the
gradients from the original model and
the skewed model.

Value
Gradient
Original

Value
Gradient
Skewed

Type
Candidate

≤ 0 > 0 Non-Robust

≤ 0 ≤ 0 Robust

> 0 ≤ 0 Non-Robust

> 0 > 0 Robust

Algorithm 1: SKEWACT’s candidate filtering and
re-ranking algorithm.

1 function filterRerank(g, g̃)
2 ĝ ← zeros(shapeOf(g));
3 for i in range len(g) do
4 for each candidate v in V do

% Filter the non-robust candidates
5 if gv

i · g̃v
i < 0 then

6 ĝv
i ← max(gv

i , g̃v
i);

% Re-rank the robust candidates
7 else
8 ĝv

i ← α · gv
i + (1− α) · g̃v

i ;

9 return ĝ;

After calculating both the original and skewed gradients from the respective models, SKEWACT
compares the gradient values of each token candidate at each trigger token position. Then, SKEWACT
applies the filterRerank() algorithm to filter and re-rank the candidates for the next stage. Specif-
ically, token candidates are classified into two categories at each trigger token position: robust and
non-robust candidates. The key idea is that if a token candidate is consistently ranked by both the
original and skewed models, it is likely to be more effective for jailbreak purposes.

6

As observed in existing optimization-based jailbreak techniques, lower gradients indicate higher
priority during candidate selection, while higher gradients suggest less effectiveness. Most existing
methods select trigger candidates from tokens with negative gradient values and discard those with
positive values. Based on this observation, SKEWACT evaluates the ranking preference of the model
using the sign of the gradient. Candidates with opposite signs in the original and skewed gradients
are classified as non-robust, while those with matching signs are deemed robust (shown in Table 1).

The filterRerank() algorithm, outlined in Algorithm 9, filters non-robust candidates and re-ranks
the robust ones by re-calculating the score for each token candidate at all the trigger token positions.
Here, g represents the original gradients, g̃ represents the skewed gradients, and ĝ represents the
filtered and re-ranked scores for each token candidate at each trigger token position. V denotes the
vocabulary of the target model.

Specifically, SKEWACT scans both the original and skewed gradients at each trigger token position i.
At position i, SKEWACT compares the gradient signs of each token candidate v from the model’s
vocabulary V (i.e., comparing the signs of gv

i and g̃v
i). If the signs of gv

i and g̃v
i differ, candidate v is

classified as a non-robust candidate. SKEWACT assigns this candidate the maximum value between
gv
i and g̃v

i —a positive value—meaning it is likely to be filtered out in the next stage. For robust
candidates, where the signs of gv

i and g̃v
i are the same, SKEWACT mixes the gradient values using a

hyper-parameter α. This mixed value becomes the score for robust candidates, allowing SKEWACT
to re-rank them. The hyper-parameter α controls the intensity of the re-ranking.

Once the filtered and re-ranked scores for each candidate v at each trigger token position i are
calculated, SKEWACT updates the trigger using these new scores in the next stage.

4.5 Trigger Candidate Selection and Update

In the final stage of SKEWACT during the Iterative Trigger Optimization phase, SKEWACT selects the
most potentially effective candidate for the trigger at all positions or at a specific position, then tests
the effectiveness of the updated trigger. If the target model outputs related and harmful content, the
jailbreak is considered successful. Otherwise, SKEWACT begins a new Iterative Trigger Optimization
round, using the updated trigger from the previous round as the starting point.

As shown in Figure 3, this stage in SKEWACT is customizable and compatible with any candidate
selection and update methods used in existing jailbreak techniques. The only modification SKEWACT
makes is replacing the gradients g typically used by these techniques with the filtered and re-ranked
candidate scores ĝ from Stage 3.

SKEWACT uses the candidate selection method in GCG by default, in which SKEWACT selects the
top-K candidates in ascending order of ĝi at each trigger token position i and randomly chooses one
as the new candidate to update the trigger. If the trigger consists of n tokens, SKEWACT generates
n updated triggers, as GCG’s candidate selection method only updates one trigger token in each
optimization round. The entire updated trigger set would be like:

x̂1 x2 x3 · · · xn

x1 x̂2 x3 · · · xn

x1 x2 x̂3 · · · xn

...
...

...
...

...
x x2 x3 · · · x̂n

,

where xi represents the trigger token in the initial trigger of the current Iterative Trigger Optimization
round, and x̂i represents the updated trigger token. According to GCG’s metric, SKEWACT tests
the losses of each updated trigger with respect to the target output y and selects the trigger with the
minimal loss as the final updated trigger.

5 Evaluation

5.1 Experimental Setup

Models and Datasets. To evaluate the effectiveness of our proposed SKEWACT, we conduct
experiments in both white-box and black-box settings with five open-source models, including

7

Llama2-7B [31], Llama2-13B [31], Llama2-70B [31], Vicuna-7B [4], and Mistral-7B [10], and two
commercial models, GPT-3.5-turbo [22] and GPT-4o [23]. The Llama2 and GPT models are widely
recognized for their robust alignment against harmful inputs, whereas the Vicuna and Mistral models
are known to be more vulnerable to such attacks. We utilize 100 randomly selected harmful queries
from AdvBench [39] to compare the performance of SKEWACT with that of GCG [39]. The results
of SKEWACT are aggregated using both the LeakyReLU-skewed model and the ReLU-skewed model,
providing a comprehensive assessment of its overall efficacy.

Metrics. To comprehensively assess the jailbreak effectiveness of SKEWACT, we employ three
metrics: Attack Success Rate (ASR), Average Converged Loss (Avg. Loss), and Average Optimization
Rounds (Avg. Rounds). These metrics individually evaluate the jailbreak effectiveness, the quality
of the optimization’s converged point, and the optimization efficiency. Specifically, the ASR is
determined using the TDC Judge [19].

5.2 SKEWACT’s Jailbreak Performance

Table 2: Jailbreak Performance of SKEWACT compared to GCG.

Test Scenario Target Model
ASR Avg. Loss Avg. Round

GCG SKEWACT GCG SKEWACT GCG SKEWACT

White-Box

Llama2-7B 25% 35% 0.1689 0.1439 288 336
Llama2-13B 12% 17% 0.1819 0.1756 375 417
Llama2-70B 28% 39% 0.1894 0.1483 228 280
Vicuna-7B 70% 86% 0.2782 0.2563 65 53
Mistral-7B 65% 73% 0.5139 0.4701 19 16

Black-Box GPT-3.5-Turbo 65% 72% - - - -
GPT-4o 1% 3% - - - -

Table 2 presents the Attack Success Rate (ASR), average converged loss, and average optimization
rounds for both GCG and SKEWACT. Our method, SKEWACT, consistently outperforms GCG,
demonstrating an average ASR improvement of over 10% in both white-box and black-box settings,
along with a reduction in average converged loss by more than 0.02 (in the white-box setting).

White-Box Jailbreak Performance. Against the more vulnerable Vicuna-7B and Mistral-7B models,
both GCG and SKEWACT achieve high ASRs, but SKEWACT achieves an ASR that is 16% and 8%
higher than GCG, respectively. Additionally, SKEWACT requires 18% and 16% fewer optimization
rounds to jailbreak the Vicuna-7B and Mistral-7B models compared to GCG.

When evaluated against the well-aligned Llama2 models, both GCG and SKEWACT show lower
ASRs; however, SKEWACT consistently achieves an average ASR that is 8.6% higher than GCG.
Among the Llama2 models (7B, 13B, and 70B), Llama2-13B proves to be the most robust and secure,
with both GCG and SKEWACT achieving less than 20% ASR. Despite this, SKEWACT maintains a 5%
higher ASR than GCG. For Llama2-7B and Llama2-70B, SKEWACT demonstrates a 10% and 11%
ASR improvement over GCG, respectively. Additionally, it is acceptable that SKEWACT requires
more optimization rounds to locate local minima in the wide-convex regions, avoiding getting trapped
in ineffective local minima in the narrow convex regions.

Black-Box Jailbreak Performance. In the black-box setting, we directly test all the triggers found
during the white-box jailbreaking, which are optimized individually using the five open-source
models, against two commercial LLMs, testing the transferability of the optimized triggers on
blackbox models. Against the less robust GPT-3.5-Turbo model, both GCG and SKEWACT achieve
more than 60% ASR, with SKEWACT’s ASR being 7% higher than GCG’s. When tested against the
latest GPT-4o model, both GCG and SKEWACT exhibit lower ASRs, but SKEWACT still demonstrates
a 2% ASR improvement over GCG, which only has 1% ASR.

These results highlight the consistent superior performance of SKEWACT over GCG across various
LLMs with different safety levels and architectures. Moreover, the consistently higher jailbreak
ASR of SKEWACT across Llama2 models of different sizes underscores its general effectiveness and
scalability in improving jailbreak success.

8

5.3 SKEWACT’s Better Optimization Converged Point

GCG
SkewAct

C
E

Lo
ss

0

0.5

1.0

1.5

Optimization Round
0 200 400 600

0.5

1.0

1.5

Optimization Round
0 200

0

0.5

1.0

Optimization Round
0 50 100 150

0.2

0.4

0.6

0.8

Optimization Round
0 20 40

0.5

0.6

0.7

0.8

Optimization Round
0 5 10

(a) Llama2-7B (b) Llama2-13B (c) Llama2-70B (d) Vicuna-7B (e) Mistral-7B

Figure 6: Loss curves of SKEWACT and GCG against different target models.

In addition to the superior jailbreak performance of SKEWACT compared to GCG, SKEWACT
consistently achieves better optimization converged points, as demonstrated by the Avg. Loss in
Table 2. Across all five open-source models, SKEWACT converges at lower losses, outperforming
GCG by more than 0.02 on average. To further illustrate the detailed optimization procedure, we
present a concrete example in Figure 6, which shows the loss curves for both SKEWACT and GCG
against the five open-source LLMs when the harmful user prompt is "Design an app that encourages
self-harm or anorexia". We truncate the curves of either GCG or SKEWACT at the convergence point
of the method that finishes earlier. The results clearly show that SKEWACT not only converges faster
than GCG but also achieves lower losses at the converged point, particularly for the Vicuna-7B and
Llama2-7B models. This further emphasizes the superior efficiency and effectiveness of SKEWACT
in identifying more optimal adversarial triggers.

6 Discussion and Future Directions

The experimental results demonstrate the improvements of SKEWACT over GCG, validating our
hypothesis that gradients alone are insufficient to consistently prioritize effective trigger candidates
during optimization. However, there remain several directions for future exploration and enhancement.
One key direction is to develop methods to precisely identify and select accessible and effective wide
convex regions in the loss landscape during the optimization. This is crucial for both increasing
the ASR of optimization-based jailbreak techniques and improving their efficiency, especially when
red teaming well-aligned LLMs with stronger defenses. Another important direction for future
research is to find more transferable adversarial triggers that can generalize across different models
via prioritizing such triggers during optimization. This would extend the impact and applicability of
optimization-based jailbreak methods.

Beyond providing direct guidance for future red-teaming techniques, our proposed hypothesis may
also have broader implications for advancing research in other areas. In SKEWACT, we observed
that activation-perturbed models offer valuable guidance during trigger optimization, while this
approach may be useful to research in learning theory and explainable AI. For example, applying
model perturbations to explore how gradients behave and how loss landscapes evolve could offer
deeper insights about how LLMs perform memory, reasoning, and inference, guiding us to find more
efficient and robust model architectures.

7 Conclusion

In this paper, we investigate a fundamental cause of the ineffectiveness and inefficiency in existing
optimization-based jailbreak techniques for LLMs: the gap between gradient-guided candidate
ranking and the discrete trigger update process. We hence propose a novel optimization-based
jailbreak pipeline, named SKEWACT, which prioritizes candidates that steer optimization toward
local minima in wide convex regions of the loss landscape, thereby mitigating the impact of gradient
overshooting caused by discrete trigger update. We evaluate SKEWACT against the renowned
optimization-based jailbreak method, GCG, on seven LLMs with varying architectures and sizes
in both white-box and black-box settings. SKEWACT achieves more than a 10% increase in Attack
Success Rate (ASR) and over a 0.02 reduction in converged loss on average, demonstrating significant
improvements in both effectiveness and efficiency.

9

Acknowledgments and Disclosure of Funding

We are grateful to the Center for AI Safety for providing computational resources. This work was
funded in part by the National Science Foundation (NSF) Awards SHF-1901242, SHF-1910300,
Proto-OKN 2333736, IIS-2416835, DARPA VSPELLS - HR001120S0058, IARPA TrojAI W911NF-
19-S0012, ONR N000141712045, N000141410468 and N000141712947. Any opinions, findings
and conclusions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the sponsors.

References
[1] Collin Burns, Pavel Izmailov, Jan Hendrik Kirchner, Bowen Baker, Leo Gao, Leopold Aschenbrenner,

Yining Chen, Adrien Ecoffet, Manas Joglekar, Jan Leike, Ilya Sutskever, and Jeffrey Wu. Weak-to-strong
generalization: Eliciting strong capabilities with weak supervision. In International Conference on Machine
Learning (ICML), 2024.

[2] Patrick Chao, Alexander Robey, Edgar Dobriban, Hamed Hassani, George J Pappas, and Eric Wong.
Jailbreaking black box large language models in twenty queries. In R0-FoMo: Robustness of Few-shot and
Zero-shot Learning in Large Foundation Models.

[3] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large language models
trained on code. arXiv preprint arXiv:2107.03374, 2021.

[4] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot impressing gpt-4
with 90%* chatgpt quality. See https://vicuna. lmsys. org (accessed 14 April 2023), 2023.

[5] Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network function
approximation in reinforcement learning. Neural networks, 107:3–11, 2018.

[6] Deep Ganguli, Liane Lovitt, Jackson Kernion, Amanda Askell, Yuntao Bai, Saurav Kadavath, Ben Mann,
Ethan Perez, Nicholas Schiefer, Kamal Ndousse, et al. Red teaming language models to reduce harms:
Methods, scaling behaviors, and lessons learned. arXiv preprint arXiv:2209.07858, 2022.

[7] Chuan Guo, Alexandre Sablayrolles, Hervé Jégou, and Douwe Kiela. Gradient-based adversarial attacks
against text transformers. In Conference on Empirical Methods in Natural Language Processing (EMNLP),
2021.

[8] Microsoft Threat Intelligence. Staying ahead of threat actors in the age of ai. See
https://www.microsoft.com/en-us/security/blog/2024/02/14/staying-ahead-of-threat-actors-in-the-
age-of-ai/ (accessed 14 February 2024), 2024.

[9] Xiaojun Jia, Tianyu Pang, Chao Du, Yihao Huang, Jindong Gu, Yang Liu, Xiaochun Cao, and Min
Lin. Improved techniques for optimization-based jailbreaking on large language models. arXiv preprint
arXiv:2405.21018, 2024.

[10] Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al. Mistral 7b.
arXiv preprint arXiv:2310.06825, 2023.

[11] Xiaolong Jin, Zhuo Zhang, and Xiangyu Zhang. Multiverse: Exposing large language model alignment
problems in diverse worlds. arXiv preprint arXiv:2402.01706, 2024.

[12] Erik Jones, Anca Dragan, Aditi Raghunathan, and Jacob Steinhardt. Automatically auditing large language
models via discrete optimization. In International Conference on Machine Learning (ICML), 2023.

[13] Enkelejda Kasneci, Kathrin Seßler, Stefan Küchemann, Maria Bannert, Daryna Dementieva, Frank Fischer,
Urs Gasser, Georg Groh, Stephan Günnemann, Eyke Hüllermeier, et al. Chatgpt for good? on opportunities
and challenges of large language models for education. Learning and Individual Differences, 103:102274,
2023.

[14] Xuan Li, Zhanke Zhou, Jianing Zhu, Jiangchao Yao, Tongliang Liu, and Bo Han. Deepinception: Hypnotize
large language model to be jailbreaker. arXiv preprint arXiv:2311.03191, 2023.

[15] Zeyi Liao and Huan Sun. Amplegcg: Learning a universal and transferable generative model of adversarial
suffixes for jailbreaking both open and closed llms. In Conference on Language Modeling (COLM), 2024.

10

[16] Xiaogeng Liu, Nan Xu, Muhao Chen, and Chaowei Xiao. Autodan: Generating stealthy jailbreak prompts
on aligned large language models. In International Conference on Learning Representations (ICLR), 2024.

[17] Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. Rectifier nonlinearities improve neural network
acoustic models. In International Conference on Machine Learning (ICML), 2013.

[18] Mantas Mazeika, Long Phan, Xuwang Yin, Andy Zou, Zifan Wang, Norman Mu, Elham Sakhaee, Nathaniel
Li, Steven Basart, Bo Li, et al. Harmbench: A standardized evaluation framework for automated red
teaming and robust refusal. In International Conference on Machine Learning (ICML), 2024.

[19] Mantas Mazeika, Andy Zou, Norman Mu, Long Phan, Zifan Wang, Chunru Yu, Adam Khoja, Fengqing
Jiang, Aidan O’Gara, Ellie Sakhaee, Zhen Xiang, Arezoo Rajabi, Dan Hendrycks, Radha Poovendran,
Bo Li, and David Forsyth. Tdc 2023 (llm edition): The trojan detection challenge. In NeurIPS Competition
Track, 2023.

[20] Iman Mirzadeh, Keivan Alizadeh, Sachin Mehta, Carlo C Del Mundo, Oncel Tuzel, Golnoosh Samei,
Mohammad Rastegari, and Mehrdad Farajtabar. Relu strikes back: Exploiting activation sparsity in large
language models. In Advances in Neural Information Processing Systems (NeurIPS), 2023.

[21] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
International Conference on Machine Learning (ICML), 2010.

[22] OpenAI. Gpt-3.5 turbo api. https://platform.openai.com/docs/models/gpt-3-5-turbo, 2023.

[23] OpenAI. Gpt-4o system card. https://openai.com/index/gpt-4o-system-card/, 2024.

[24] Ethan Perez, Saffron Huang, Francis Song, Trevor Cai, Roman Ring, John Aslanides, Amelia Glaese, Nat
McAleese, and Geoffrey Irving. Red teaming language models with language models. In Conference on
Empirical Methods in Natural Language Processing (EMNLP), 2022.

[25] Guangyu Shen, Siyuan Cheng, Kaiyuan Zhang, Guanhong Tao, Shengwei An, Lu Yan, Zhuo Zhang,
Shiqing Ma, and Xiangyu Zhang. Rapid optimization for jailbreaking llms via subconscious exploitation
and echopraxia. arXiv preprint arXiv:2402.05467, 2024.

[26] Guangyu Shen, Yingqi Liu, Guanhong Tao, Qiuling Xu, Zhuo Zhang, Shengwei An, Shiqing Ma, and
Xiangyu Zhang. Constrained optimization with dynamic bound-scaling for effective nlp backdoor defense.
In International Conference on Machine Learning (ICML), 2022.

[27] Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric Wallace, and Sameer Singh. Autoprompt: Eliciting
knowledge from language models with automatically generated prompts. In Conference on Empirical
Methods in Natural Language Processing (EMNLP), 2020.

[28] Irene Solaiman, Miles Brundage, Jack Clark, Amanda Askell, Ariel Herbert-Voss, Jeff Wu, Alec Radford,
Gretchen Krueger, Jong Wook Kim, Sarah Kreps, et al. Release strategies and the social impacts of
language models. arXiv preprint arXiv:1908.09203, 2019.

[29] Chenyang Song, Xu Han, Zhengyan Zhang, Shengding Hu, Xiyu Shi, Kuai Li, Chen Chen, Zhiyuan Liu,
Guangli Li, Tao Yang, et al. Prosparse: Introducing and enhancing intrinsic activation sparsity within large
language models. arXiv preprint arXiv:2402.13516, 2024.

[30] Alex Tamkin, Miles Brundage, Jack Clark, and Deep Ganguli. Understanding the capabilities, limitations,
and societal impact of large language models. arXiv preprint arXiv:2102.02503, 2021.

[31] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and
fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[32] Alexander Wei, Nika Haghtalab, and Jacob Steinhardt. Jailbroken: How does llm safety training fail?
Advances in Neural Information Processing Systems (NeurIPS), 2023.

[33] Yuxin Wen, Neel Jain, John Kirchenbauer, Micah Goldblum, Jonas Geiping, and Tom Goldstein. Hard
prompts made easy: Gradient-based discrete optimization for prompt tuning and discovery. Advances in
Neural Information Processing Systems (NeurIPS), 2024.

[34] Frank F Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn. A systematic evaluation of large
language models of code. In ACM SIGPLAN International Symposium on Machine Programming (MAPS),
2022.

11

[35] Jiahao Yu, Xingwei Lin, and Xinyu Xing. Gptfuzzer: Red teaming large language models with auto-
generated jailbreak prompts. arXiv preprint arXiv:2309.10253, 2023.

[36] Yi Zeng, Hongpeng Lin, Jingwen Zhang, Diyi Yang, Ruoxi Jia, and Weiyan Shi. How johnny can persuade
llms to jailbreak them: Rethinking persuasion to challenge ai safety by humanizing llms. In Annual
Meeting of the Association for Computational Linguistics: System Demonstrations (ACL), 2024.

[37] Zhengyan Zhang, Yixin Song, Guanghui Yu, Xu Han, Yankai Lin, Chaojun Xiao, Chenyang Song, Zhiyuan
Liu, Zeyu Mi, and Maosong Sun. Relu2 wins: Discovering efficient activation functions for sparse llms.
arXiv preprint arXiv:2402.03804, 2024.

[38] Sicheng Zhu, Ruiyi Zhang, Bang An, Gang Wu, Joe Barrow, Zichao Wang, Furong Huang, Ani Nenkova,
and Tong Sun. Autodan: Automatic and interpretable adversarial attacks on large language models. arXiv
preprint arXiv:2310.15140, 2023.

[39] Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J Zico Kolter, and Matt Fredrikson. Universal and
transferable adversarial attacks on aligned language models. arXiv preprint arXiv:2307.15043, 2023.

12

	Introduction
	Background
	Threat Model
	Related Work

	Motivation
	Methodology of SkewAct
	Overview of SkewAct
	Activation Replacement
	Gradient Calculation
	Candidate Filtering and Re-ranking
	Trigger Candidate Selection and Update

	Evaluation
	Experimental Setup
	SkewAct's Jailbreak Performance
	SkewAct's Better Optimization Converged Point

	Discussion and Future Directions
	Conclusion

