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ABSTRACT

While the robustness of vision models is often measured, their dependence on specific
architectural design choices is rarely dissected. We investigate why certain vision archi-
tectures are inherently more robust to additive Gaussian noise and convert these empirical
insights into simple, actionable design rules. Specifically, we performed extensive eval-
uations on 1,174 pretrained vision models, empirically identifying four consistent design
patterns for improved robustness against Gaussian noise: larger stem kernels, smaller input
resolutions, average pooling, and supervised vision transformers (ViTs) rather than CLIP
ViTs, which yield up to 506 rank improvements and 21.6%p accuracy gains. We then de-
velop a theoretical analysis that explains these findings, converting observed correlations
into causal mechanisms. First, we prove that low-pass stem kernels attenuate noise with
a gain that decreases quadratically with kernel size and that anti-aliased downsampling
reduces noise energy roughly in proportion to the square of the downsampling factor. Sec-
ond, we demonstrate that average pooling is unbiased and suppresses noise in proportion
to the pooling window area, whereas max pooling incurs a positive bias that grows slowly
with window size and yields a relatively higher mean-squared error and greater worst-case
sensitivity. Third, we reveal and explain the vulnerability of CLIP ViTs via a pixel-space
Lipschitz bound: The smaller normalization standard deviations used in CLIP prepro-
cessing amplify worst-case sensitivity by up to 1.91 times relative to the Inception-style
preprocessing common in supervised ViTs. Our results collectively disentangle robust-
ness into interpretable modules, provide a theory that explains the observed trends, and
build practical, plug-and-play guidelines for designing vision models more robust against
Gaussian noise.

1 INTRODUCTION

Vision models, implemented with deep neural networks, are now deployed across numerous fields, even in
safety-critical applications ranging from medical imaging to autonomous driving. Their remarkable accu-
racy, however, conceals an uncomfortable fact: Performance can deteriorate when test images deviate—even
slightly—from the training distribution (Hendrycks & Dietterich,[2019). Even light Gaussian noise can trig-
ger misclassifications, and in autonomous vehicles, such brittleness can lead to life-threatening failures.

Recent studies have empirically discovered that the architectural design of deep neural networks strongly
shapes their robustness to common image transformations. Specifically, Paul & Chen| (2022); [Bai et al.
(2021); Naseer et al.| (2021) observed that vision transformers (ViTs) often degrade less than previous con-
volutional networks, such as residual networks (ResNets), under various corruptions. Although promising
results with ViTs have been reported, such studies typically treat each architecture as a whole, leaving unan-
swered which specific internal choices contribute to gains in robustness.
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In this study, we dissect the robustness of vision models under Gaussian noise, showing that specific micro-
architectural choices are key factors in determining robustness. We performed extensive experiments on
available vision models from the t imm library (Wightman, |2019), as well as controlled experiments; our
empirical meta-analysis compares architectures pairwise within the vision models, which enables us to iso-
late the effect of each micro-architectural factor, thereby revealing four interesting design patterns in archi-
tectures that improve robustness against Gaussian noise:

» Larger stem kernels, such as larger patch sizes in ViTs, rather than smaller ones,
¢ Smaller input resolutions, such as 2242, rather than larger ones, such as 3842,

* Average pooling, rather than max pooling, and

* Supervised learning ViTs, rather than CLIP ViTs.

Extending these empirical observations, we also derive several theoretical results that account for the dif-
ferences in these choices. Specifically, we prove that noise gain decays quadratically with the stem kernel
size and that downsampling after anti-alias filtering yields analogous gains (Section ). Then we analyze
Gaussian-noise error formulas for both pooling operators, showing that average pooling is unbiased with
decreased variance, whereas max pooling incurs a positive bias and a higher mean-squared error (Section[5).
Finally, we demonstrate that the vulnerability of CLIP ViTs is primarily caused by the choice of mean-std
normalization, whose effect is proven with Lipschitz bounds (Section [6).

2  RELATED WORK

Robustness literature and positioning of this study. Robustness to common corruptions is typically
evaluated using ImageNet-C (Hendrycks & Dietterich, 2019). A consistent observation across studies is that
ViTs often degrade less than CNNs do under such corruptions (Paul & Chenl| 2022} Bai et al.,[2021; Naseer
et al., 2021). However, most prior comparisons treat architectures as monolithic families or vary training
recipes, making it hard to isolate which micro-architectural choices drive robustness. Furthermore, multiple
corruptions, such as brightness changes and blur, are mixed in. In contrast to these complex corruptions
and architectures, we design a systematic evaluation protocol to isolate the effect of each micro-architectural
factor. Furthermore, we select Gaussian noise due to its approximation of aggregate perturbations by the
central limit theorem and its prevalence in real-world imaging, such as sensor readout and thermal noise.
To this end, our experiments disentangle four architectural choices across pretrained models and controlled
settings, enabling clean attribution. Our findings align with prior results on robustness studies (Paul & Chen|
2022; |Boureau et al., 2010) and add causal, quantitative explanations. The parts below review related work
that corresponds to the empirical design patterns we identified for enhancing Gaussian noise robustness.

Anti-aliasing, kernels, and resolution. Anti-aliased downsampling is known to reduce high-frequency
sensitivity and improve stability (Zhang| 2019} Zou et al.|[2023)), and analogous ideas have been explored for
ViTs (Qian et al.l 2021). Complementing these studies, we provide explicit scaling laws: The output noise
energy decays quadratically with the stem kernel size and the anti-aliased downsampling factor, explaining
why larger stem kernels and smaller input resolutions improve robustness.

Pooling under additive noise. Classical analysis shows that average pooling is unbiased with variance
reduction, whereas max pooling introduces a positive bias under Gaussian noise (Boureau et al.| 2010);
recent studies further clarify when max pooling aids invariance despite worse noise behavior (Matoba et al.,
2023). We extend this line and empirically verify the predicted advantage of average pooling over max
pooling across multiple datasets.

Normalization, CLIP preprocessing, and Lipschitz sensitivity. Vision models employ specific per-
channel mean-std preprocessing, which, according to Lipschitz-based robustness theory (Virmaux & Sca-
man| |2018; |Gouk et al.l 2021} [T'suzuku et al., 2018)), directly rescales pixel-space sensitivity. We make this
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connection explicit: Smaller channel standard deviations enlarge the end-to-end Lipschitz bound, predicting
greater worst-case and mean-squared sensitivity to additive noise.

3 WHY GAUSSIAN NOISE?

Our study focuses on robustness against additive Gaussian noise, which essentially captures comparable or
even worst-case robustness against common image corruptions. Indeed, additive Gaussian noise is the least
favorable among all perturbations whose covariance is spectrally bounded, which makes it a conservative
measure of robustness.

Setup. Let z € [0,1]? be an image, and let f : RY — R¥ be a vision model. A corruption produces
' =C(z,§) with A := 2’ — z, and we write §; == f(z + A) — f(x). For small perturbations, we linearize
at x:

flo+8) = f@) + Tp@)A +r(w8),  r(z )2 < ZPAIB, M
where J;(z) € R¥*4 is the Jacobian and L(z) bounds the local Hessian.

Gaussian as a least-favorable perturbation. We show that, under a natural variance constraint, Gaussian
noise maximizes the expected feature-space mean-squared error.

Theorem 1 (Gaussian envelope under a variance constraint). Let A be any zero-mean perturbation with
covariance L a > 0 satisfying S a = 021, Then, under the local model Eq.|I| we have

E[llf(z+A) = f@)|3] = tr(Jy(2)2atr(2) ") + O(E[A[3) < || ()7 + O(EIA[S).

Moreover, if n ~ N (0,021,), then E[|| f (z+n) — f(2)[|3] = o?||J¢(2)||% + O(E|nl13), so Gaussian noise
saturates this upper bound on the leading term.

Connection to other corruptions. Other image corruptions, including noise, blur, brightness, weather,
and digital artifacts, can be implemented as locally bounded operators, such as convolutions, pixelwise affine
transforms, and compression. These yield perturbations A¢ s whose covariance has a bounded spectral
norm Apax (Cov(Ac,s)) < oc(s)? for some effective variance level oc(s). Applying Theorem [1| with
o = o¢(s) shows that, to leading order, the expected feature-space distortion induced by corruption C at
severity s is upper-bounded by that induced by Gaussian noise 7 ~ N(0,0¢(s)?1), which is the least
favorable under the same variance budget. Furthermore, averaging over a data distribution x ~ D gives
Eoalllf(z+ A) = f(2)|3] < 0?Eg[||Jf(2)]|%]. so robustness to Gaussian noise probes essentially the
same Jacobian-based sensitivity that governs many common corruptions. See Appendix [JJand Appendix [K]
for further discussion and empirical results.

Limitations Our study focuses exclusively on robustness to additive Gaussian noise, which, although com-
mon in imaging pipelines, does not encompass all real-world corruptions, such as adversarial perturbations,
weather effects, or sensor-specific artifacts. Also, the empirical findings are derived from pretrained models
in the t imm library and controlled experiments on specific datasets, which may represent a limitation in their
generalizability to other domains like medical imaging or video processing. Future work could extend these
insights to broader corruptions, architectures, and datasets. See Appendix [[]for results on other architectures
under a controlled setup.

4 NOISE ATTENUATION BY LOW-PASS KERNELS

ViTs have various configurations (Dosovitskiy et all [2021])), such as the size of each patch in the patch
embedding and the input image size in pixels, which we refer to as the input resolution. Even within the
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Table 1: Top-1 accuracy (%) on the ImageNet-1K dataset before and after adding Gaussian noise to images.
For the rank difference (RankDiff), more negative values indicate better robustness under noise. Models
with large kernels and small resolutions consistently showed improved robustness.

Pretrained Model | Size Patch Size Resol. | Top-1—w/Noise ~Rank—w/Noise RankDiff
vit_small patchl6_224.augreg_inlk S 162 2242 78.84—59.22 885—547 -338
vit_small_patchl6_384.augreg_-inlk S 162 3842 81.12—56.59 673—613 -60
vit_base_patchl6_224.augreg_inlk B 162 2242 79.15—62.21 862—487 -375
vit_base_patchl6.-384.augreg_inlk B 162 3842 81.10—60.23 676—524 -152
vit_base_patch32_224.augreg_inlk B 322 2242 74.90—58.44 1075—569 -506
vit_base_patch32_384.augreg_inlk B 322 3842 78.75—59.65 893—539 -354
vit_tiny patchl6.224.augreg in21k ft_inlk T 162 2242 75.46—40.34 1060—949 111
vit_tiny patchl6.384.augreg in2lk ft_inlk T 162 3842 78.42—30.50 9211078 +157
vit_small patchl6.224.augreg in2lk ft inlk S 162 2242 81.39—-62.43 644479 -165
vit_small_ patchl6.384.augreg_in2lk_ft_inlk S 162 3842 83.80—62.25 349484 +135
vit_small_patch32_224.augreg_in21lk_ft_inlk S 322 2242 76.00—57.14 1044—601 -443
vit_small_ patch32.384.augreg_in2lk_ft_inlk S 322 3842 80.48—57.33 740—596 -144
vit basepatch8.224.augreg_in2lk_ft_inlk B 82 2242 85.80—73.50 145—118 -27
vit basepatchl6_224.augreg_in2lk_ft_inlk B 162 2242 84.53—71.19 257—192 -65
vit basepatchl6_384.augreg_in2lk_ft_inlk B 162 3842 85.99—70.89 129—208 +79
vit_base_patch32_224.augreg_-in21lk_ft_inlk B 322 2242 80.71—65.31 719—392 -327
vit_base_patch32_384.augreg_-in21lk_ft_inlk B 322 3842 83.35—63.72 412—437 +25
vit_large_patchl6_224.augreg_in2lk_ft_inlk L 162 2242 85.84—76.62 14155 -86
vit_large_patchl6_384.augreg_in2lk_ft_inlk L 162 3842 87.08—76.23 59—61 +2
vit base patchl6 224.0rig in21k_ft_inlk B 162 2242 81.79—60.91 603513 -90
vit_base_patchl6_384.orig_in21k_ft_inlk B 162 3842 84.20—54.91 302—657 +355
vit_base_patch8.224.augreg2_.in21k_ft_inlk B 82 2242 86.22—76.09 109—67 -42
vit_base_patchl6_224.augreg2_in21lk_ft_inlk B 162 2242 85.10—74.50 203—96 -107
vit base_patchl6.224.sam_inlk B 162 2242 80.24—57.13 771—602 -169
vit base_patch32.224.sam_inlk B 322 2242 73.69—51.33 1101748 -353
vitmedium_patchl6_gap-256.sw_inl2k_ft_inlk M 162 2562 84.45—73.07 274—132 -142
vitmediumpatchl6_gap-384.sw_inl2k_ft_inlk M 162 3842 85.54—73.98 163—106 -57
vit_sol50mpatchlé6_regd_gap-256.sbb_e250_.in12k_ft_inlk | B+ 162 2562 86.68—77.54 81—38 -43
vit_sol50mpatchlé6_regd_gap-384.sbb_e250_.inl12k_ft_inlk | B+ 162 3842 87.37—77.30 49—44 -5

same ViT architecture, various pretrained weights are available: They were trained with different recipes, the
hyperparameter combinations used in training. For example, vit base_patchl6.224.augreg._inlk
indicates the ViT with a model size of base, a patch size of 16 to set the size of each patch to 16 x 16 pixels, a
resolution of 2242, and pretrained weights obtained using a training recipe of AugReg (Steiner et al., 2022)
and a dataset of ImageNet-1K (Deng et all 2009). Although plenty of variations in its configuration are
allowed, the effect of each choice on robustness against Gaussian noise has not been clearly studied, making
it difficult for practitioners to choose which one to use.

To study the effect of each architectural factor in a ViT on robustness, we performed an ex-
tensive evaluation using pretrained ViTs with various configurations. For example, by comparing
vit base_patchl6.224.augreg_inlk and vit_base patch32.224.augreg_inlk, we can
study the effect of the choice of patch sizes of 16 and 32 on performance because all other conditions
remained the same. In this section, we first present empirical observations from different configurations, and
then we examine the corresponding properties.

4.1 EMPIRICAL OBSERVATION

We used the timm library, which provides 1,174 pretrained vision models. For all pretrained models,
we evaluated the top-1 accuracy (%) on the standard ImageNet-1K dataset. Then we injected Gaus-
sian noise into the images on the ImageNet-1K dataset and measured the top-1 accuracy. We used the
Albumentations.GaussNoise () function (Buslaev et al.,[2020) with a scale factor with a range of
(0.2, 0.44), where the noise was clipped to be [0, 1] and was fixed in our evaluation. Although it is natural
to observe a linear accuracy drop after applying a specific corruption (Recht et al., | 2019; | Hendrycks & Diet-
terich, 2019), a model with robustness would show a relatively smaller drop in top-1 accuracy. Motivated by
this behavior, we identified robust models by observing relative ranking among the 1,174 models: When a
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Figure 17 Classification accuracy (%) using ResNet-50 for different kernel sizes and resolutions. Larger
kernels and smaller resolutions improved performance. Shaded areas represent standard deviations.

model ranked 50th becomes 20th after adding Gaussian noise, we say that it demonstrates relatively stronger
robustness to Gaussian noise. To investigate the model with improved rank, we computed the rank difference
before and after applying Gaussian noise, where more negative values indicate better robustness. Full ratio-
nale for rank difference and technical details are available in Appendix [G|and Appendix [H] Full results on
all models are in supplementary materials. Based on these rank differences, we compared pairs of ViTs with
different configurations and investigated which architectural factors contribute to improved ranking under
noise.

Table [T] summarizes the top-1 accuracy and ranking changes before and after injecting Gaussian noise.
We found that the rank difference was lower when a ViT had 1) a larger patch size, such as 32, and 2) a
smaller resolution, such as 2242, For example, comparing vit base_patchl6_224.augreg_inlk and
vit base_patch32_224.augreg_inlk, we observed that the model with a patch size of 32 yielded
a lower rank difference than the one with a patch size of 16. We consistently observed similar behavior
across multiple pretrained weights such as AugReg2, original ViTs, SAM, and others (Steiner et al., 2022;
Chen et al| [2022). The same holds for resolution, where a model with a 2242 resolution exhibited a lower
rank difference than one with 3842, Note that this observation is contrary to the common practice of scaling
up resolution to improve general performance (Tan & Lel [2019); our results indicate that this practice may
increase vulnerability to Gaussian noise. These two factors were significantly more important than others,
such as model size.

The patch size of a ViT corresponds to the kernel size used in the patch embedding, which is referred to
as the stem. Based on these observations, we investigated whether using a larger stem kernel and a smaller
resolution improves robustness to Gaussian noise on another architecture, performing controlled experiments
on ResNets (He et al.| 2016). Specifically, we trained ResNet-50 on five datasets, including Oxford-IIIT Pet
(Parkhi et al.} [2012)), Caltech-101 (Fei-Fei et al., 2007), FGVC-Aircraft (Maji et al., [2013)), Caltech-UCSD
Birds-200-2011 (Wah et al., 2011)), and Stanford Cars (Krause et al., |2013)) datasets. Similar to the above
ViT experiments, we trained ResNet in a standard recipe (Appendix [H)), obtained numerous models with
different kernel sizes and resolutions, and measured classification accuracy after applying Gaussian noise.

We observed that larger kernel sizes and smaller resolutions improved classification accuracy under additive
Gaussian noise (Figure [I). The classification errors on noisy images tended to decrease quadratically with
larger kernel sizes and smaller resolutions.

4.2 THEORETICAL ANALYSIS

Now, we prove that the noise energy decays quadratically with the stem kernel size and the resolution, or
equivalently, the anti-aliased downsampling factor. Full proofs are available in Appendix [A] Throughout,
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n ~ N(0,0%I) denotes independent and identically distributed (i.i.d.) Gaussian noise, and the per-pixel
noise gain is the output noise energy normalized by the number of output pixels (Oppenheim, 1999).

Setup. For a kernel size k > 3, let Kj, € R¥** denote the linear, shift-invariant stem kernel, and K, its
DFT (Oppenheim, |1999). We consider a single, mild assumption on the stem kernel:

* (Aron) Radial low-pass envelope at scale 1/k: There exist 8, > 0 such that, for all frequencies w,
K@) < dr(llwll),  dr(r) = (1+ Bhr)~' 77,

where ¢y, is nonincreasing in r. This assumption works well in practical use cases (Appendix [F).

Per-pixel noise gain for stem kernel. We define

E[| Kk #1l3] easevay 1 =
v(k) = % = W Z | K (w)? = || Kl 2

w

where H and W are the height and width. Intuitively, (k) is the average squared magnitude response of
the stem kernel.

Theorem 2 (Noise attenuation for practical low-pass stem kernel). Assume (Acon). Then, there exists a
constant C' > 0, independent of k, such that

E[||Ky xnl3] _ C
= —m—mM= < —.
V() 2HW = k2
Moreover, the k2 rate is achievable.

Remark 1 (Practical reading of Theorem [2). Doubling the stem kernel size, such as the patch size from 16
to 32, quarters the output noise energy (~ —6 dB).

Per-output-pixel noise gain for anti-aliased downsampling. For a downsampling factor s > 1, we define
DS = (‘Us)ng(s)v C1S8 S g(S) S CoS, (3)

i.e., filter with Ky, satisfying the same assumptions at scale g(s) and then downsample by s. We normalize
the noise gain by the number of output pixels:

T 2 W s2
Theorem 3 (Resolution-driven robustness). There exists C' > 0 independent of s such that

C’/
Yi(s) < 2

“

This s~2 rate is tight up to constants.

Remark 2 (Practical reading of Theorem . Resizing 3842 to 224? corresponds to s ~ 1.71 and yields
roughly s=2 ~ 0.34 of the original noise energy per output pixel (=~ —4.7 dB).

5 CHOICE ON POOLING

5.1 EMPIRICAL OBSERVATION

Extending the above analysis, we probed the effect of choosing specific architectural types of ResNets on
robustness. Specifically, ResNet has several types, including ResNet-{C, D, T, S} (He et al.,2019; Wightman
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Table 2: Classification accuracy (%) with different choices of ResNet type. The numbers in the parentheses
represent standard deviations on the five runs with different random seeds.

Dataset Model | ResNet-50-T  ResNet-50-D  ResNet-50-C  ResNet-50-S
Configuration
Stem Conv 3-layer 3x3 3-layer 3x3 3-layer 3x3 3-layer 3x3
Stem Width 24,48, 64 32,32, 64 32,32,64 64, 64, 128
Downsample Average Average Convolution Convolution
Results

Val. Acc. w/Noise | 39.1 (11.1) 37.9 (9.6) 34.9 (11.4) 24.3 (3.3)

Oxford-TIT Pet ¢ Acc. w/Noise | 38.1(11.3)  36.1(103)  340(104)  22.9(2.4)

Cattoch101 Val. Acc. w/ Noise | 623 (1.4) 612 (3.0) 588 (1.1) 50.9 (3.2)
Test Acc. w/ Noise | 59.7 (1.1) 59.1 (2.8) 57.8 (1.0) 49.5 (2.7)

. Val. Acc. w/ Noise | 27.8 (1.6) 273 (2.4) 23.9(1.9) 47(0.9)
FGVC-Aircraft & Ace. w/Noise | 29.9 (1.1) 30.4 (1.6) 26.1 (2.1) 5.5(0.8)
Caltech-UCSD _ Val. Acc. w/ Noise | 27.6 (2.0) 288 (0.8) 263 (1.3) 13.9 (0.6)
Birds-200-2011  Test Acc. w/ Noise | 263 (2.0) 277 (0.6) 252 (1.7) 13.7 (1.1)
Val. Acc. w/ Noise | 569 (2.3) 552 (2.8) 416 (23) 202 (1.9)

Stanford Cars . Acc. w/ Noise | 55.0 (1.9) 532 (2.7) 40.5 (2.3) 28.5 (2.0)

Table 3: Classification accuracy (%) comparing different poolings. The largest gain came from AvgPool.

Dataset Model \ MaxPool = NNPool AvgPool

Val. Acc. w/ Noise | 42.0(1.1) 44.2(2.8) 50.2(1.9)
Test Acc. w/ Noise | 41.8(0.9) 423 (3.2) 49.3(1.8)

Val. Acc. w/ Noise | 59.5(1.0) 583 (1.1) 62.7(1.8)
Test Acc. w/ Noise | 57.2(1.3) 56.7(1.1) 60.8 (1.9)

Val. Acc. w/ Noise | 24.2(3.5) 22.8(1.9) 41.0(2.9)
Test Acc. w/ Noise | 27.3(3.6) 24.7(1.8) 43.1(3.1)

Caltech-UCSD  Val. Acc. w/ Noise | 269 (1.8) 27.5(3.0) 28.8(1.8)
Birds-200-2011  Test Acc. w/ Noise | 26.1 (1.7) 25.6 (2.6) 26.8 (1.2)

Val. Acc. w/ Noise | 43.3(3.4) 49.1(1.9) 52.1(1.8)
Test Acc. w/ Noise | 42.2 (2.8) 46.9(1.3) 51.2(2.1)

Oxford-IIIT Pet

Caltech-101

FGVC-Aircraft

Stanford Cars

et al., 2021} |Guo et al. [2020), although the effects of these choices and their underlying mechanisms on
robustness have been rarely studied. Here, we trained the four ResNets on the five datasets mentioned above
and compared their classification accuracy after applying Gaussian noise (Table[2).

Overall, the T and D types of ResNet demonstrated robust results against Gaussian noise, followed by the
C and S types of ResNet. While there are several different factors among the four ResNets (Appendix [H),
the core difference is the pooling in downsampling: the T and D types of ResNet adopt average pooling
with convolution in downsampling, whereas the C and S types of ResNet adopt strided 1 x 1 convolution in
downsampling, which is equivalent to nearest-neighbor pooling followed by a 1 x 1 convolution.

We further explored the effect of pooling choice on robustness to Gaussian noise. Using ResNet-50, we
compared the original one, which uses max pooling in the stem, and modified ResNets that adopt nearest-
neighbor pooling or average pooling in the stem (Table [3). ResNets with average pooling consistently
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yielded robust performance against Gaussian noise among the three setups in pooling. More results for other
architectures under controlled conditions are available in Appendix

5.2 THEORETICAL ANALYSIS

We explain why average pooling is more robust than max pooling under i.i.d. additive Gaussian noise.

Setup. Consider a pooling window of size £ > 2 in a single channel. Let the clean activations be S =
(S1,...,8k) € R¥ and the observation be S + 7 with i.i.d. noise n ~ N(0, o21},). We define
k

Xavg = % (Si +m3), Xmax = 1I£11_a<Xk(Si + i),
i=1 -

=

their clean counterparts Sayg = ; Si» Smax = max; S;, and the errors duyg = Xavg — Savgs Omax =
Xmax — Smax- Let A == S(1) — S(2) > 0 be the gap between the largest and second-largest entries. We also

denote Tyyg(v) = % Zle Vi, Tmax(v) = maxi<i<k v;, and ||T||¢,—¢, for £2-Lipschitz constant.
Theorem 4 (Average and max poolings under Gaussian noise). For any S € R* and o > 0, we have
(i) Average pooling is unbiased and reduces variance proportionally to the window area: E[davg] =
0, Var[daye] = 02 /k.
(ii) Max pooling incurs a positive noise bias and admits the following mean-squared error (MSE) controls:
(Bias) E[dmax] = E[max(S; + n;)] — max S; > 0,

(Uniform-signal case) (S1=-+-=5k): Omax = o M, E[52

max) = 0 E[ME],
| < *E[A],

(General case) |Omax| < ||1]lce = E[62

max
where My, == maxi<i<k Z; and Ay, = maxi<;<y |Z;| with Z; b N(0,1). In particular, E[AZ] <
2log(2k) + 2, so E[62,,,] < 0?(2log(2k) + 2).

(iii) Adversarial worst-case sensitivity. For any perturbation n € RF,

Finil < nll2/VE so

| Tavglles—e, = k=1/2: and | max; a; — max; b;| < ||a — b]|oo < [|a — bl|2, 50 || Trmax||es—e, < 1.

2 ) = 02; when the top index never switches
under noise, max pooling is equivalent to reading a single noisy entry.

(iv) Large-gap regime. For z .= A /o, one has lim,_, ., E[5>

Remark 3 (Practical reading of Theorem[d). Average pooling is unbiased and cuts Gaussian noise variance
by a factor k (e.g., a 2 X 2 window gives —6 dB). Max pooling is positively biased, and its MSE grows at
most logarithmically with the window size, while also having a greater worst-case Lipschitz gain, clearly
worse than average pooling.

Remark 4 (Average and nearest-neighbor poolings). Selecting a fixed element in the window, such as the
nearest-neighbor pooling, is unbiased with an MSE o?. Hence, average pooling is strictly more robust to
additive Gaussian noise than nearest-neighbor pooling by a factor of k in MSE.

6 WHY ARE CLIP MODELS VULNERABLE?

6.1 EMPIRICAL OBSERVATION

Although the original ViT (Dosovitskiy et al., 2021) was trained with supervised learning, the CLIP study
(Radford et al [2021) trained ViTs with contrastive learning and successfully achieved competitive per-
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Table 4: ImageNet-1K results for ViT-B/16 2242 with eight different pretrained weights. CLIP ViTs tended
to yield worse ranks under noise.

Pretrained Model Mean-Std | Top-1 — w/ Noise ~ Rank — w/Noise ~ RankDiff
vit base_patchl6.224.augreg_inlk INCEPTION 79.15 — 62.21 862 — 487 -375
vit_base_ patchl6_224.augreg2_in2lk_ft_inlk INCEPTION 85.10 — 74.50 203 — 96 -107
vit_base patchl6.224.orig_in21k_ft_inlk INCEPTION 81.79 — 60.91 603 — 513 -90
vit_base_patchl6.224.augreg_in2lk_ft_inlk INCEPTION 84.53 — 71.19 257 — 192 -65
vit_basepatchl6_clip_224.openai_ft_inl2k_inlk OPENATI 85.94 — 70.81 135 — 209 +74
vit_basepatchl6_clip_224.laion2b_ft_inl2k_inlk OPENAI 86.17 — 71.24 114 — 189 +75
vit_base_patchl6.clip-224.laion2b_ft_inlk OPENAT 85.47 — 67.88 168 — 311 +143
vit_base patchl6_clip 224.openai_ft_inlk OPENAT 85.29 — 67.06 182 — 340 +158

formance. Currently, available pretrained weights for ViTs are largely divided into CLIP ViTs and others
trained with supervised learning; we refer to the latter as supervised ViTs. The training methods and datasets
differ between these two sources of ViTs, yielding different pretrained weights, while they have almost the
same architecture with only a single minor difference. Nevertheless, we observed that CLIP ViTs exhib-
ited significant vulnerabilities when Gaussian noise was applied to images (Table ). Similar observations
regarding the degraded performance of CLIP ViTs due to distribution shifts have been reported in certain
studies (Shu et al., 2023} |Wortsman et al., 2022); they focused on the characteristics of CLIP pretrained
weights due to different datasets or training schemes, but we present a different perspective on this issue.

We performed ablation studies to identify what determined the difference in robustness (Appendix [E). We
discovered that the core factor in different robustness arose from the preprocessing pipeline. Specifically,
CLIP ViTs apply mean-std normalization to input images using certain per-channel mean and standard de-
viation (std) constants, which we refer to as the OPENAT constants (Appendix , whereas supervised ViTs
apply different per-channel mean-std constants, which are often called INCEPTION constants (Szegedy
et al.,[2016)). In other words, the OPENAT mean-std constants led to vulnerability to Gaussian noise, whereas
the INCEP TION mean-std constants did not show this vulnerability.

Indeed, when we replaced the OPENAT mean-std constants with the INCEP TION constants, the CLIP ViTs
achieved improved robustness (Table[5)). The reverse also holds, and similar vulnerability was observed when
adopting TMAGENET mean-std constants for ViTs. Full results on other datasets are available in Appendix |C]
where we observed these improvements across various pretrained weights with different training recipes.

6.2 THEORETICAL ANALYSIS

We give an explanation for the empirical vulnerability of CLIP ViTs to additive Gaussian noise. The key
point is that channel-wise normalization sets the pixel-space sensitivity scale: Smaller per-channel stds in
the input normalization enlarge the worst-case response to perturbations even before the backbone acts.

Setup. Letx € [0,1]*H*W be an image and 7 an additive perturbation. Let x € R® and o € Rgo be the
per-channel means and stds, and define the normalization N, o (z) == (z —p)/o. Let f : REXH>XW 5 RE
denote the vision backbone operating on normalized inputs, which is globally ¢5-Lipschitz with constant L
on its domainE] We study the end-to-end pipeline F), » := f o N, » and its {5-Lipschitz constant || F}, o ||Lip-
Theorem 5 (Pixel-space Lipschitz bound). For any image x and perturbation 7, we obtain

n L
2| < ==l
oll2

Omin

[Fpo (@ + 1) = Fuo(@)]|, < L

where oin = min. o.. In particular, the pixel-space Lipschitz constant satisfies ||F, o ||rip < Lz/0min.

'This assumption holds when linear layers have bounded spectral norms and other modules are Lipschitz. ReLU:
1-Lipschitz (Gouk et al.| 2021); GELU: ~ 1.13 (Hendrycks & Gimpel, [2016); LayerNorm: Lipschitz with a constant
set by v and € (Ba et al.|[2016).
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Table 5: Classification accuracy (%) for fine-tuning ViTs on the Oxford-IIIT Pet.

Pretrained Model Mean-Std \ Val. Acc. w/ Noise Test Acc. w/ Noise

vit_base_patchl6_clip_224.openai_ft_inl2k_inlk OPENAI 94.5 (1.0) » 77.7(3.4) 93.8(1.0) — 76.3 (4.1)
vit base patchl6 clip 224.openai ft_inl2k_ inlk INCEPTION | 95.5(0.5) — 87.3(2.1) 95.2(0.6) — 87.2(2.2)
vit basepatchl6.clip_224.openai_ft_inl2k_inlk IMAGENET 94.2 (0.4) — 739 (2.3) 93.4(0.5) — 72.7 (2.5)
vit_base_patchl6.clip-224.datacompxl OPENAT 93.6 (0.9) — 67.4 (6.0) 93.2(0.9) — 67.3(5.9)
vit base patchlé6 clip_224.datacompxl INCEPTION | 94.7 (0.5) — 78.5(4.0) 93.6 (0.6) — 78.4 (3.8)
vit basepatchlé6_clip_224.datacompxl IMAGENET 92.8(0.9) = 57.6(7.4) 92.6(0.5) — 58.1(7.4)
vit_base patchl6.clip_224.dfn2b OPENAI 95.0 (0.3) — 73.1 (1.5) 94.1 (0.5) — 73.3 (1.9)
vit_base patchl6_clip_224.dfn2b INCEPTION | 94.8 (0.8) — 78.6 (4.9) 93.6(0.4) — 79.8 (5.0)
vit_base_patchl6.clip-224.dfn2b IMAGENET 95.1 (0.3) =+ 69.8 (2.7) 94.0(0.4) — 68.8 (3.1)
vit base patchl6 clip 224.metaclip_2pt5b OPENAT 92.8 (0.7) - 64.8 (4.4) 92.0(0.7) — 62.3(3.9)
vit base patchl6 clip 224.metaclip_2ptbb INCEPTION | 94.7 (0.4) — 78.5(2.0) 93.9(0.3) — 78.5(1.8)
vit_base_patchl6_clip_224.metaclip_2pt5b IMAGENET 91.6 (0.3) — 54.5(2.5) 90.8 (0.3) — 52.8 (1.6)
vit base patchl6 clip 224.openai OPENAT 92.5(0.3) - 71.7 (1.0) 91.9 (0.6) — 70.2 (1.2)
vit basepatchl6_clip_224.openai INCEPTION | 94.0(0.7) — 78.6 (4.6) 93.2(0.9) — 77.3(5.1)
vit_base_patchl6.clip-224.openai IMAGENET 91.2 (0.5) — 58.5(4.0) 90.7 (0.8) — 58.4 (4.3)
vit_base patchl6 clip 224.laion2b OPENAI 91.8 (1.2) = 56.1 (7.7) 90.5 (1.1) — 54.0 (6.6)
vit base_patchl6.clip_224.laion2b INCEPTION | 93.8(0.6) - 76.4(1.9) 92.8(0.5) — 75.6 (1.8)
vit_base_patchl6.clip_224.laion2b IMAGENET 90.2 (0.8) — 52.3 (4.4) 89.5(0.8) — 514 (4.1)
vit base patchl6 224.augreg_inlk OPENAT 95.5(0.2) — 88.7(0.3) 94.9(0.2) — 88.2 (0.7)
vit_base_patchl6.224.augreg-inlk INCEPTION | 95.5(0.1) — 89.7 (0.5) 94.4(0.3) — 89.2 (0.8)
vit_base patchl6.224.augreg_inlk IMAGENET 95.5(0.2) — 87.7(0.5) 94.9(0.2) — 87.9 (0.7)
vit_base patchl6_224.augreg_.in2lk OPENAI 95.6 (0.3) — 91.4(0.3) 95.2(0.5) — 91.9 (0.6)
vit_base_patchl6.224.augreg_.in21lk INCEPTION | 959(0.2) -+92.3(0.3) 95.6(0.4) — 92.6 (0.4)
vit base patchl6 224.augreg_in21k IMAGENET 95.7 (0.5) =+ 91.6 (0.5) 95.6 (0.3) — 92.0 (0.5)
vit_base_patchl6.224.mae OPENAT 93.5(0.3) -+ 70.8 (2.8) 93.4(0.2) — 72.7 (2.3)
vit base patchl6.224.mae INCEPTION | 93.7(0.3) — 75.0(2.1) 93.3(0.2) = 75.2(2.5)
vit_base_patchl6.224.mae IMAGENET 93.5(0.3) —» 72.0(2.0) 92.7(0.5) — 719 (2.2)

Proof. Write z = N, »(x) and Z =

Fl2 < Lelln/ellz < (Lz/omin)[11]]2-

Remark 5 (Practical reading of Theorem[5). For the standard choices

ovceprion = (0.5,0.5,0.5),

the worst-case pixel-space sensitivity bound for CLIP is greater by a factor

Lz/ min(acup)

0.5

Lz/min(O'[NCEpTION) - 0.26130258 ~

1.91,

N,.o(x +n) = z+ n/o. By Lipschitzness of f, we have || f(Z) —
O

ocup = (0.26862954, 0.26130258, 0.27577711),

relative to a supervised ViT using INCEPTION statistics. This ~ 1.91x looser bound amplifies the effect of

input perturbations before the feature extractor.

7 CONCLUSION

Across t imm models and controlled experiments, four design patterns consistently improved robustness
against Gaussian noise: (1) larger stem kernel sizes, (2) smaller resolutions, (3) average pooling instead of
max pooling, and (4) supervised ViTs rather than CLIP ViTs. Practically, we recommend models with these
design patterns such as vit _base_patch32_224.augreg_in21k_ft_inlk for ViT-B as an example.
Our analysis integrates these findings: Theorem 2] proves that noise attenuation is quadratic with stem kernel
size; Theorem [3] yields an analogous gain under anti-aliased downsampling; Theorem [ shows that average
pooling is unbiased with error that falls as the window grows, whereas max pooling is positively biased
and, for a uniform signal, its error grows logarithmically; and Theorem [3] explains CLIP sensitivity using
pixel-space Lipschitz bounds scaling as 1/0min, Which leads to a ~ 1.91x difference when comparing
the OPENAT and INCEPTION constants. These insights provide actionable guidelines for practitioners to
enhance the robustness of vision models against Gaussian noise in diverse applications.

10
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A PROOFS FOR THEOREMS [2| AND

Here, we provide proofs of the quadratic noise-decay results in Section4.2]

A.1 CONVENTIONS AND ASSUMPTIONS

DFT convention and Parseval. For v € R”*W with discrete Fourier transform (DFT) % on the frequency
grid €2, we use the Parseval identity

S Yl =Y ) ®

weQ pe{l,... . H}x{1,...W}

We write € := 27/ max{H, W} for the infrared cutoff.

14
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Filter family. For k£ > 3, let K, € R¥*k denote the linear, shift-invariant stem kernel with DFT K k-
We assume only the following low-pass envelope; the same assumption applies to K,y when used as the
anti-aliasing filter at scale g(s):

* (Aron) (Radial low-pass envelope at scale 1/k) There exist 8, > 0 such that, for all frequencies w,

K@) < delllwl),  @rlr) = (1+ Bkr) 77,
where ¢y, is nonincreasing in r.

This assumption provides a monotone radial upper envelope sufficient for establishing our upper bounds:

When estimating 71 >, |I? r(w)|?, we first dominate |IA( 1|? by ¢? and then apply the sum-integral com-
parison in Eq.[9]

Noise model and gains. Let 7 ~ N (0,021) be spatially white Gaussian noise. The per-pixel noise gain
of the stem kernel is

E[||Ke #nl3] mep 1 PENE )
==y LR = (©)
For anti-aliased downsampling with a factor s > 1, we define
Dy = (llé) © Kg(s)7 €18 < g(S) < c28, 7

and its per-output-pixel noise gain
o E[HDan%}

1(s) = HW/$ (8)

Radial sum-integral comparison. Let ) be the H x W DFT grid with spacing €, and let g : [¢, 7] — R>q
be radially nonincreasing. We partition  into annuli A; = {w : je < |w|| < (j +1)e}. Because each grid
point occupies an area < £2 and the annulus area is 277 up to boundary effects, there exist absolute lattice
constants c¢1, co > O—independent of H, W, k, s—with

ca HW (2mje)e < |Aj] < coHW (27(j + 1)e)e.
By monotonicity, g((j + 1))|A4;] < >i,e 4, 9(llwll) < g(je)|A;|. Summing over j and dividing by HW
turns the lattice sum into upper and lower Riemann sums for » — 27rg(r) with mesh ¢, yielding absolute
constants Ay, Ao > 0 such that

™ 1 ™
Al/8 rg(r)dr < W Z g(llwl) < Ag/ rg(r)dr. 9

weN €

As ¢ — 0, both bounds converge to the same limit; for finite grids, A;, Ao absorb edge discrepancies and
remain independent of the kernel scale k£ or downsampling factor s.

A.2 PROOF OF THEOREM (QUADRATIC DECAY IN STEM KERNEL SIZE)
Proof. By Eq.[6l Eq.[9] and (A1), we have

v(k) < /ﬂr’f(\'k(r)fdr < /Trr(l + Bkr
Letu =1+ Bkr. Thenr = (u — 1)€/(5k) and dr = du/e(ﬁk), $0

m 1 Bk 4 1 1 -1 C
1 k 72726d = / —du < 7/ —du = —
/6 r(1+Bkr) "7 R 1pke U2t YRR ), et T

for a finite constant C' = C(f3,4). Hence (k) < C’/k? for some C’ independent of k. O

)72725d7’.
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A.3 PROOF OF THEOREM (QUADRATIC DECAY UNDER ANTI-ALIASED DOWNSAMPLING)

We first state the following identity for white noise.
Lemma 1 (Per-output-pixel gain identity). For D defined in Eq. and white noise n ~ N(0,021I),

1(5) = [ Kg(s)ll-
Proof. Stationarity of white noise and Eq. 5] give
IE[H‘Kvg(s) * 77”%] = (HW)JQHKQ(S)H%

Downsampling by s keeps every s-th sample along each axis: The retained samples all have equal variance
as the original, pre-downsampled field. Therefore,

w

E[|D:nl3] = 50?1 Kg(s) I s
and the normalization in Eq. yields Yu(8) = [ Kg(s) 13- O
ProofofTheoremEl By Lemmal Yu(s) = || Kys)|l%. Applying Theorem with kernel size k = ¢(s)
gives

(s) < ¢ < c _@

TSGR T (e T

with C’ = C'/c? independent of s. O

B PROOF OF THEOREM (AVERAGE AND MAX POOLINGS UNDER GAUSSIAN
NOISE)

Consider a pooling window of size £k > 2 in a single channel. Let the clean activations be S =
(S1,...,8k) € R¥ and let the observation be S + 1, where n = (11,...,7x) kS N(0,02). We define

w\*—‘

Kave 1<i<k

k
Z S +77'L Xmax = max (S +nz)

and their clean counterparts Syvy = %ZZ Si, Smax = max; S;. Let the errors be davg = Xavg — Saves
Omax = Xmax—Smax- Write the order statistics S(1) > - - > Sy, define the gap A := S(1)—S(2) > 0, and
the standardized gap z := A/o. We use Z; i N(0,1), My, := maxy<;<i Z;, and Ay, = maxi<;<x | Zi|.

Proof of (i). By definition, d,vs = % Zle 7;. Hence

avg k‘ ZE nz =0, Var avg k-2 ZVar 771 [

This part requires only i.i.d. zero-mean noise with variance o. O
Proof of (ii). (Positive bias) Let i* € arg max; S;. Then Xy, > S;« + 1;+. Taking expectations and using

E[n;«] = 0 yields E[6] = E[X 5]
max| — max — Omax) = 0.
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Pooling under N(0, 0°) noise (w=3, k=9)

1.2 A ; i [ Average pooling (MC)
! Max pooling (MC)
: —— Avg theory
1.0 - 1 —— Max theory
: -—-- Avgmean =0
: Max mean = 1.490
1
0.8 - |
1
- 1
.§
o 0.6 A
©
0.4 A
0.2
0.0 T T T
-4 -2 0 2 4
pooled value / ¢ (z-score)
Figure 2: Illustration of positive bias introduced by max pooling
(Uniform-signal case) If S1 = - - - = S}, translate so S; = 0. Then §,,,x = max; 7; = 0 M}, and

E[0ax) = o *E[M].

Classical Gaussian extreme-value asymptotics [1979) give

B loglog k + log(4) _1/2 B
E[My] = /2 logk N +0((logk) ) Var[Mj)] =

2
12log k

+0((logk)™),
hence
E[M?] = Var[My] + (]E[Mk])2 = 2log k — loglog k — log(4m) + o(1),

Because dyax = oM, we have

E[62,.] = 0> [EM?] = 0?(2log k — loglog k — log(47) + o(1)) = ©(c? log k),
so the MSE scales as ©(a? log k).
(General case) For any realization,

|5max| = | m?x(Si +n) — m?XSil < max |ni| = o Ayg.

Hence
] < o’E[A}].

max

E[52
We now bound E[A?] explicitly.
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Lemma 2. For A, = maxi<;<y |Z;| with Z; £ N(0,1), we have E[A7] < 2log(2k) + 2.

Proof of Lemma[Z] Fort > 0, Pr(A4, > t) < Zle Pr(|1Z;] > t) < 2ke~t*/2, where the last step uses

the union bound and the standard Gaussian tail estimate Pr(|Z| > t) < 2e=%/2 for Z ~ N(0,1); see,
e.g., [Vershynin| (2018). Using E[X?] = [* 2¢tPr(X > t)dt for a nonnegative X and splitting at to =

v/2log(2k),

to oo
E[A2] = / 2t Pr(Ag > t)dt +/ 2t Pr(Ag > t)dt
0

to

<2+ / dkte™"*/2dt = 21og(2k) + ke 0/2.

to

Because e~0/2 = ¢~ 108(2k) — 1 /(2k), the last term equals 2, proving the claim. O

By Lemmal[Z] ,
E[§

max

] < o”(2log(2k) +2).

O

Proof of (iii). Let Toyg(n) = 13 ,n;. By Cauchy-Schwarz, |Tug(n)| < |In2llk=1(1,...,1)|2
|nlla/Vk, 50 || Tavg|lea—se, = k~'/2, tight for constant n. For max, for any a,b, | max; a; — max; b;| <
la = b]loo < |la — b||2, hence || Tiax||e,—¢, < 1, tight for a one-hot n.

O

Proof of (iv). Translate so S(;) = 0 and S; < —A fori > 2. Let S be the switch event that some j > 2
overtakes the top index after noise:

S={3>2:n—-A>m}={3j>2:2Z;, - Z; > z}.

Because Z; and Z; are independent standard normals, we have Z; — Z; ~ N (0, 2); hence, by a union bound
Pr(S) < (k—1)Pr(N(0,2) > 2) < (k—1)e™*/* = 0as z — 00. On 8, Xmax = Sq1y + 1 = 71, 50
52

max

= n?. Dominated convergence then gives E[62,, ] — E[n?] = o2. O

Average Pool

Max Pool Nearest Neighbor

Figure 3: Examples of pooling outputs from a noisy image using average, max, and nearest neighbor
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Figure 4: The results on the validation set

Table 6: Classification accuracy comparing different poolings, using ResNet-50-D

Dataset Model | MaxPool NNPool  AvgPool
Val. Acc. 87.7(0.6) 87.6(0.4) 86.7(0.5)
Test Acc. 85.3(0.8) 84.7(0.6) 84.8(0.9)

Oxford-IIT Pet  y: 1 Acc w/Noise | 483 (22) 463(1.9) 54.0(3.7)

Test Acc. w/ Noise | 47.8 (1.3) 45.2(2.3) 53.6(2.7)

Val. Acc. 81.3(0.7) 82.4(1.1) 81.7(0.5)
Test Acc. 80.5(0.3) 80.7(0.4) 81.6(0.7)
Val. Acc. w/ Noise | 61.1(1.5) 60.3(1.4) 62.7(1.4)
Test Acc. w/ Noise | 59.8(1.7) 58.3(1.3) 61.6(1.3)

Val. Acc. 68.1 (0.2) 67.7(0.8) 69.0(0.7)
Test Acc. 68.8 (1.1) 683 (1.5 69.6(0.3)
Val. Acc. w/ Noise | 27.7 (1.6) 24.8(1.8) 42.9(1.7)
Test Acc. w/ Noise | 31.5(2.1) 269(0.8) 44.8(1.1)

Val. Acc. 69.8 (0.7) 69.8(0.4) 69.3(1.1)
Caltech-UCSD  Test Acc. 67.3(04) 66.4(0.6) 65.9 (0.4)
Birds-200-2011  Val. Acc. w/ Noise | 26.8 (0.6) 28.7(1.7) 31.8(1.6)

Test Acc. w/ Noise | 26.0 (0.7) 27.4(1.2) 31.1(2.1)

Val. Acc. 86.5(0.5) 85.7(0.5) 84.9(0.2)
Test Acc. 84.8(0.2) 83.6(0.3) 83.2(0.3)
Val. Acc. w/ Noise | 56.0 (0.5) 53.6(1.6) 56.8(2.2)
Test Acc. w/ Noise | 54.8 (1.5) 51.6(1.5) 55.3(2.0)

Caltech-101

FGVC-Aircraft

Stanford Cars

C ADDITIONAL EXPERIMENTAL RESULTS

Figure[dshows the accuracy on the validation set for the controlled experiments on kernel size and resolution.

We also report additional results for ResNet-50-D (Table[6)) and ResNet-101-D (Table[7) for different choices
of pooling.

19



Under review as a conference paper at ICLR 2026

Table 7: Classification accuracy comparing different poolings, using ResNet-101-D

Dataset Model \ MaxPool = NNPool AvgPool

Val. Acc. 87.0(0.5) 86.5(0.8) 86.2(0.3)
Test Acc. 84.8(0.6) 84.4(0.7) 84.3(0.6)
Val. Acc. w/ Noise | 52.3(1.9) 51.0(1.5) 56.4(2.1)
Test Acc. w/ Noise | 51.0(1.3) 49.2(1.4) 56.3 (2.4)

Val. Acc. 82.0(0.9) 82.9(0.6) 82.9(0.5)
Test Acc. 80.6 (0.4) 80.7(0.9) 81.2(0.4)
Val. Acc. w/ Noise | 63.4(1.9) 63.7(1.3) 64.8(1.1)
Test Acc. w/ Noise | 62.1 (1.5) 61.6(1.7) 63.7(1.4)

Val. Acc. 69.5(0.3) 67.7(0.6) 69.4(0.8)
Test Acc. 71.0(1.0) 67.1(0.4) 69.6(0.7)
Val. Acc. w/ Noise | 369 (4.0) 28.5(2.7) 48.4(1.5)
Test Acc. w/ Noise | 39.1 (3.5) 30.5(2.6) 49.5(1.8)

Val. Acc. 70.5(0.5) 70.0(0.7) 68.9 (0.6)
Caltech-UCSD  Test Acc. 67.4(0.7) 66.8(0.4) 66.0(0.7)
Birds-200-2011  Val. Acc. w/ Noise | 29.7 (1.7) 29.3(2.0) 33.4(1.8)
Test Acc. w/ Noise | 29.0 (1.7) 29.2(2.6) 32.2(1.5)

Val. Acc. 84.5(0.4) 83.9(04) 83.7(0.5
Test Acc. 83.3(0.2) 81.9(0.8) 82.1(0.6)
Val. Acc. w/ Noise | 57.5(1.2) 55.2(0.9) 58.2(1.2)
Test Acc. w/ Noise | 56.0 (0.9) 54.5(0.7) 56.4(1.2)

Oxford-IIIT Pet

Caltech-101

FGVC-Aircraft

Stanford Cars

Table |8| summarizes the results for ResNet-AA, which adopts anti-aliasing average pooling architecture
(Zhang| [2019). Specifically, ResNet-AA adopts average pooling in all downsampling layers as well as
replacing the max pooling in the stem with average pooling. ResNet-AA was marginally more robust than
the ResNet with average pooling only in the stem, but not as significant as the difference with the original
ResNet. The result indicates that the core difference in robustness was caused by the use of average pooling
in the stem.

Table 9] summarizes ImageNet- 1K results for other ViT configurations, including different patch sizes, reso-
lutions, and training recipes.

Table [T0} Table [T1] Table and Table [T3] summarize full results for fine-tuning ViTs on other datasets.
When we replaced the OPENAI mean-std constants with the INCEPTION constants, the CLIP ViTs
achieved improved robustness.

D EXTENSION TO OTHER NOISE MODELS

We select Gaussian noise due to its approximation of aggregate perturbations by the central limit theorem
and its prevalence in real-world imaging, such as sensor readout and thermal noise. Here, we explain how
our main findings—noise attenuation by larger stem kernels and smaller input resolution (Theorems [2] [3),
the pooling comparison (Theorem [}, and the normalization effect (Theorem [5)—extend beyond Gaussian
noise.

Setup. We continue to use k for a filter side length. For pooling windows, we use w for side length and
m = w? for the number of elements.
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Table 8: Results on ResNet-AA

Dataset Model | ResNet-AA-50  ResNet-AA-50-D  ResNet-AA-101-D

Val. Acc. 84.8 (0.8) 86.9 (0.4) 86.2 (0.3)

Test Acc. 83.1 (0.8) 84.7 (0.8) 84.3 (0.2)

Oxford-TNT Pet ;1" Ace w/Noise | 50.1 (2.7) 55.6 (2.0) 58.1(2.7)

Test Acc. w/ Noise 49.6 (3.2) 53.9(1.4) 58.9 (2.9)

Val. Acc. 80.2 (0.4) 81.7 (0.7) 83.0 (0.3)

Test Acc. 79.5 (0.6) 80.6 (0.5) 80.9 (0.5)

Caliech-101 ) Ace. w/Noise | 61.2(1.6) 617 (22) 65.0 (1.5)

Test Acc. w/ Noise 60.1 (1.5) 60.8 (2.8) 63.3 (1.3)

Val. Acc. 67.3 (0.5) 69.8 (1.0) 69.1 (0.6)

. Test Acc. 67.1(0.9) 70.7 (1.2) 70.0 (0.9)

FGVC-Aireraft G 4 cc” wiNoise | 40.4 (3.6) 455 (2.5) 49.0 (2.9)

Test Acc. w/ Noise 42.3(3.9) 48.3(2.2) 49.5 (2.5)

Val. Acc. 65.3 (0.6) 68.9 (0.8) 69.4 (0.6)

Caltech-UCSD  Test Acc. 62.3 (1.1) 66.1 (0.6) 66.1 (0.4)

Birds-200-2011  Val. Acc. w/ Noise 28.6 (0.8) 325 (1.0) 31.7(2.8)

Test Acc. w/ Noise 27.5(1.3) 31.4 (1.9) 31.0 (2.4)

Val. Acc. 79.9 (0.6) 85.9 (0.3) 83.5(0.6)

Test Acc. 78.9 (0.6) 83.9 (0.4) 81.6 (0.8)

Stanford Cars ;1" Ace  w/Noise | 51.8 (1.6) 60.3 (2.8) 57.2(32)

Test Acc. w/ Noise 50.3 (1.0) 58.9 (2.0) 56.0 (3.2)

Table 9: ImageNet-1K results for other ViT configurations
Pretrained Model Mean-Std | Top-1 — w/Noise Rank — w/ Noise ~ RankDiff

vit_base_patchl6.384.augreg_inlk INCEPTION 81.10 — 60.23 676 — 524 -152
vit_base_patchl6.384.augreg_in2lk_ft_inlk INCEPTION 85.99 — 70.89 129 — 208 +79
vit_base_patchl6.clip-384.laion2b_ft_inl2k_inlk OPENAI 87.21 — 70.38 55 — 227 +172
vit_base patchl6_clip 384.openai_ft_inlk OPENAT 86.20 — 68.55 110 — 285 +175
vit_basepatchl6_clip 384.openai ft_inl2k_inlk OPENAI 87.03 — 69.11 61 — 269 +208
vit_basepatchl6._clip_384.laion2b_ft_inlk OPENAI 86.62 — 66.63 83 — 348 +265
vit_base_patch32.224.augreg_inlk INCEPTION 74.90 — 58.44 1075 — 569 -506
vit_base_patch32.224.sam_inlk INCEPTION 73.69 — 51.33 1101 — 748 -353
vit_base_patch32.224.augreg_in2lk_ft_inlk INCEPTION 80.71 — 65.31 719 — 392 -327
vit_base patch32_clip_224.openai_ft_inlk OPENAT 81.93 — 63.94 591 — 428 -163
vit_base patch32_ clip 224.laion2b_ft_inlk OPENAT 82.58 — 63.09 504 — 450 -54
vit_basepatch32_ clip 224.laion2b_ft_inl2k_inlk OPENAI 83.30 — 65.57 419 — 386 -33
vit_base patch32_384.augreg_inlk INCEPTION 78.75 — 59.65 893 — 539 -354
vit_base patch32_384.augreg_in2lk_ft_inlk INCEPTION 83.35 — 63.72 412 — 437 +25
vit_base_patch32_clip_384.openai_ft_inl2k_inlk OPENATI 85.21 — 68.40 191 — 293 +102
vit_basepatch32.clip_-384.laion2b_ft_inl2k_inlk OPENATI 85.37 — 65.58 180 — 383 +203

Poisson noise. Let S be the filter support with |S| = m = k?. Let h = {h; };c5 denote the linear filter
coefficients on S, and Y; ~ Poisson(x;) independent. For a locally constant intensity on the filter support,
where x; = Z in a smooth patch, we have

Var[y Yy =Y hiVar[Vi| = hiwe =2 hi+ > hi(z — )~ z|hj3, (10)
t t t t t
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Table 10: Classification accuracy (%) for fine-tuning ViTs on the Caltech-101.

Pretrained Model

Mean-Std

Val. Acc. w/ Noise

Test Acc. w/ Noise

vit_base_patchl6.clip_224

vit base_patchl6_clip_224

vit_base_patchl6_clip_224

vit_base_patchl6_clip_224.
vit_base_patchl6_clip_224.
.dfn2b

.metaclip_2pt5b
vit_base_patchlé_clip_224.
.metaclip_2pt5b
vit base_patchl6.clip_224.
vit base_patchl6_clip_224.
.openai

vit_base_patchl6_clip_224
vit_base_patchl6._clip_224

vit_base_patchl6._clip_224

vit_base_patchl6_clip_224

vit base_patchl6_clip_224.
.laion2b
.laion2b
augreg.-inlk
augreg-inlk
augreg-inlk
augreg-in2lk
augreg-in21lk
augreg-in21lk

vit_base_patchl6._clip 224
vit_base_patchl6_clip_224
vit_base_patchl6_224.
vit_base_patchl6.224.
vit_base_patchl6_224.
vit_base_patchl6.224.
vit base_patchl6.224.
vit_base_patchl6.224.
vit base_patchl6.224.
vit_base_patchl6_224.
vit_base_patchl6._224.

mae
mae
mae

.openai_ft_inl2k_inlk
vit_base_patchlé_clip_224.
.openai_ft_inl2k_inlk
vit_base_patchl6.clip.224.
vit_base_patchl6_clip_224.
.datacompxl

openai_ft_inl2k_inlk

datacompxl
datacompxl

dfn2b
dfn2b
metaclip_2pt5b

openai
openai

laion2b

OPENAI
INCEPTION
IMAGENET
OPENAT
INCEPTION
IMAGENET
OPENAT
INCEPTION
IMAGENET
OPENATI
INCEPTION
IMAGENET
OPENAT
INCEPTION
IMAGENET
OPENAT
INCEPTION
IMAGENET
OPENAI
INCEPTION
IMAGENET
OPENAT
INCEPTION
IMAGENET
OPENAT
INCEPTION
IMAGENET

93.1 (0.6) — 84.1 (1.1)
95.7 (0.6) — 90.4 (0.8)
91.6 (1.2) — 80.5 (2.4)
95.3 (0.8) — 86.4 (2.3)
96.2 (0.6) — 91.0 (1.3)
94.7 (0.7) — 82.5 (1.9)

90.2 (11.2) — 80.1 (15.0)
96.5 (0.6) — 91.7 (1.2)
93.7 (3.9) — 79.9 (10.5)
94.9 (0.7) — 81.5 (2.0)
96.0 (0.5) — 89.5 (2.1)
93.6 (1.0) — 763 (3.2)
92.8 (0.2) — 78.9 (3.1)
95.4 (0.3) — 87.8 (0.9)
92.3 (0.4) — 80.3 (1.8)
92.3(0.9) — 77.7 (2.4)
95.3 (0.6) — 87.3 (0.3)
90.1 (0.8) — 71.5 (2.4)
94.4 (0.3) — 84.8 (0.9)
94.1 (0.3) — 86.0 (0.5)
94.3 (0.6) — 84.7 (0.6)
97.0 (0.4) — 95.1 (0.5)
97.1(0.3) — 95.8 (0.5)
97.2(0.2) — 95.1 (0.2)
92.0 (0.5) — 76.3 (0.7)
91.6 (0.6) — 80.8 (1.2)
91.7 (0.5) — 75.4 (0.6)

92.0 (0.8) — 81.8 (1.4)
94.5 (0.7) — 89.5 (1.2)
90.5 (0.8) — 78.5 (2.4)
94.6 (0.6) — 84.8 (2.1)
95.7 (0.9) — 89.7 (1.4)
93.8 (1.0) — 80.8 (2.6)

88.9 (12.3) — 78.8 (14.8)
95.9 (0.5) — 91.0 (1.8)
92.4 (4.6) — 78.2 (10.7)
94.2 (0.7) — 79.5 (2.0)
95.0 (0.8) — 87.8 (2.8)
92.3(1.2) — 74.6 (2.9)
91.7 (1.1) — 76.9 (3.6)
95.4 (0.6) — 86.9 (0.9)
91.8 (0.7) — 77.7 (1.9)
91.2 (0.6) — 75.6 (1.6)
94.3 (0.6) — 85.8 (0.5)
89.2 (0.5) — 67.6 (2.4)
94.1 (0.3) — 85.7 (0.4)
93.8 (0.2) — 86.7 (0.8)
94.0 (0.3) — 85.7 (0.7)
96.3 (0.4) — 94.5 (0.7)
96.6 (0.2) — 95.4 (0.3)
96.6 (0.5) — 94.6 (0.5)
91.6 (0.8) — 75.7 (1.2)
91.7 (0.4) — 79.4 (0.7)
91.6 (0.4) — 74.5 (1.2)

Table 11: Classification accuracy (%) for fine-tuning ViTs on the FGVC-Aircraft.

Pretrained Model

Mean-Std

Val. Acc. w/ Noise

Test Acc. w/ Noise

vit_base_patchl6._clip 224
vit_base_patchl6_clip_224
vit_base_patchl6._clip_224
vit_base_patchl6._clip_224

vit base_patchl6_clip_224

vit base_patchlé6.clip_224.
vit base_patchl6_clip_224.
.metaclip_2pt5b
vit_base_patchl6_clip_224.
.metaclip_2pt5b
vit_base_patchlé_clip_224.
.openai
vit base_patchl6.clip 224.
.laion2b
.laion2b

vit_base_patchl6.clip 224
vit_base_patchl6._clip_224
vit_base_patchl6.clip_224

vit base_patchl6_clip_224
vit base_patchl6.clip.224

vit base_patchl6_clip_224.
augreg_inlk
augreg_-inlk
augreg.-inlk
augreg-in21lk
augreg-in21lk
augreg-in2lk

vit_base_patchl6._224.
vit_base_patchl6_224.
vit_base_patchl6_224.
vit_base_patchl6.224.
vit_base_patchl6_224.
vit_base_patchl6.224.
vit base_patchl6_224.
vit_base_patchl6.224.
vit base_patchl6.224.

mae
mae
mae

.openai_ft_inl2k_inlk
.openai_ft_inl2k_inlk
.openai_ft_inl2k_inlk
vit_base_patchlé_clip_224.
.datacompxl
vit base_patchl6.clip.224.
.dfn2b

datacompxl
datacompxl

dfn2b
dfn2b

metaclip_2pt5b
openai

openai

laion2b

OPENAI
INCEPTION
IMAGENET
OPENATI
INCEPTION
IMAGENET
OPENAT
INCEPTION
IMAGENET
OPENAI
INCEPTION
IMAGENET
OPENATI
INCEPTION
IMAGENET
OPENATI
INCEPTION
IMAGENET
OPENAT
INCEPTION
IMAGENET
OPENAT
INCEPTION
IMAGENET
OPENAT
INCEPTION
IMAGENET

62.6 (1.7) — 46.6 (1.9)
60.4 (23.6) — 50.8 (20.4)
59.5 (1.4) — 44.0 (1.6)
73.7 (4.9) — 50.7 (1.7)
80.8 (1.9) — 66.3 (3.7)
65.9 (4.1) — 40.0 (6.1)
75.4 (4.9) — 55.7 (7.0)
82.0 (4.1) — 70.0 (8.1)
72.9 (6.6) — 51.3 (9.4)
68.0 (2.7) — 48.4 (4.1)
80.5 (1.6) — 68.4 (3.2)
64.5 (1.3) — 40.9 (2.4)
63.7 (4.7) — 47.4 (5.6)
74.6 (3.5) — 65.4 (4.5)
60.3 (1.6) — 42.6 (2.7)
59.9 (1.9) — 37.7 (2.4)
69.2 (4.4) — 54.3 (5.5)
58.3 (1.8) — 36.0 (2.3)
67.8 (0.8) — 50.7 (1.9)
67.0 (0.5) — 52.4 (1.4)
67.4 (0.4) — 50.1 (1.4)
78.2 (0.3) — 69.9 (0.5)
78.6 (0.6) — 71.6 (0.4)
77.8 (0.6) — 68.9 (0.9)
69.3 (0.7) — 39.9 (4.2)
69.1 (0.7) — 43.5 (2.8)
69.1 (0.6) — 40.0 (2.1)

61.7 (1.2) — 47.4 (1.7)
59.5 (23.7) — 50.9 (21.1)
58.2(1.2) — 45.2(1.2)
72.2 (4.0) — 52.7 (7.1)
79.4 (2.0) — 66.3 (3.5)
65.0 (3.4) — 41.5(5.2)
75.2(5.2) = 57.3 (8.0)
81.7 (4.3) — 70.7 (7.6)
71.3 (7.1) = 52.5 (9.8)
67.3 (2.5) — 49.7 (3.0)
79.2 (2.2) — 69.5 (3.4)
64.2 (1.4) — 433 (2.3)
61.9 (4.3) — 49.1 (4.4)
73.4 (3.8) — 66.0 (5.4)
59.4 (1.4) — 43.4 (2.6)
58.4 (1.7) — 38.5(1.9)
68.9 (5.4) — 55.0 (6.0)
56.9 (1.3) — 37.3 (2.4)
67.0 (1.2) — 51.2(1.7)
67.2 (0.9) — 53.6 (1.0)
67.3 (0.8) — 51.0 (2.5)
77.2(0.6) — 69.4 (1.1)
77.3 (0.4) — 71.0 (0.4)
77.1 (1.0) — 68.5 (1.2)
68.8 (1.5) — 40.3 (4.4)
69.1 (0.9) — 44.0 (2.3)
69.4 (1.2) — 41.8 (1.2)
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Table 12: Classification accuracy (%) for fine-tuning ViTs on the Caltech-UCSD Birds-200-2011.

Pretrained Model Mean-Std \ Val. Acc. w/ Noise Test Acc. w/ Noise
vit basepatchl6._clip_224.openai_ft_inl2k_inlk OPENAI 84.0 (0.9) — 64.0 (1.7) 81.3 (1.0) —» 61.1 (1.1)
vit_base_patchl6.clip 224.openai_ft_inl2k_inlk INCEPTION 85.3 (1.6) — 69.3 (1.7) 82.7 (1.3) — 67.0 (2.5)
vit_base patchl6._clip_224.openai_ft_inl2k_inlk IMAGENET 82.6 (0.8) — 59.8 (1.3) 79.7 (1.6) — 56.7 (1.8)
vit_base_patchl6_clip_224.datacompxl OPENAT 83.4(1.1) — 53.6 (2.3) 81.4 (1.0) — 50.7 (2.6)
vit_base._patchl6.clip_224.datacompxl INCEPTION 84.7 (0.7) — 59.7 (4.5) 82.8 (0.8) — 57.3 (3.8)
vit_base._patchl6.clip_224.datacompxl IMAGENET 83.6 (0.9) — 52.2 (2.8) 81.5 (1.1) — 49.3 (2.6)
vit_base.patchl6.clip.224.dfn2b OPENATI 84.8 (1.2) — 58.8 (2.6) 83.0 (1.3) — 56.4 (2.3)
vit base patchl6 clip 224.dfn2b INCEPTION 87.3 (1.6) — 69.6 (4.7) 86.0 (2.0) — 67.3 (5.2)
vit_base.patchl6.clip.-224.dfn2b IMAGENET 81.6 (2.7) — 50.0 (2.3) 79.7 (2.8) — 48.1 (2.9)
vit base patchl6._clip_224.metaclip 2pt5b OPENATI 83.3(0.5) — 49.5(3.5) 81.1(0.9) - 479 (3.2)
vit_base_patchl6.clip_224.metaclip_2pt5b INCEPTION 85.8 (0.9) — 62.1 (2.0) 83.4 (0.6) — 60.1 (1.8)
vit basepatchl6._clip_224.metaclip 2pt5b IMAGENET 81.3(2.5) = 45.3(4.5) 78.7 (2.7) — 43.6 (4.2)
vit_base_patchl6.clip_224.openai OPENAT 83.4 (0.5) — 60.1 (2.4) 81.8 (0.8) — 57.7 (2.8)
vit base_patchl6_clip_224.openai INCEPTION 85.5(0.8) — 66.7 (3.4) 83.3 (1.3) — 65.1 (3.7)
vit_base._patchl6.clip_224.openai IMAGENET 75.3 (14.1) — 50.1 (13.8)  72.7 (13.9) — 47.5 (12.6)
vit base patchlé clip 224.laion2b OPENAT 81.4(1.4) = 52.1(2.2) 78.5 (2.5) — 50.0 (2.0)
vit base patchl6 clip 224.laion2b INCEPTION 84.6 (0.6) — 62.0 (2.1) 82.2 (0.4) -+ 59.9 (2.1)
vit_base.patchl6.clip.-224.laion2b IMAGENET 81.0 (0.4) — 50.1 (0.7) 78.7 (0.5) — 48.3 (1.1)
vit base patchl6.224.augreg_inlk OPENATI 83.4 (0.4) — 67.6 (0.7) 81.7 (0.8) — 65.8 (0.7)
vit_base_patchl6.224.augreg-inlk INCEPTION 83.9 (0.5) — 69.3 (0.7) 81.8 (0.3) — 67.8 (0.5)
vit base patchl6.224.augreg_inlk IMAGENET 83.7(0.4) — 67.5(1.2) 81.8 (0.2) — 65.9 (0.7)
vit_base_patchl6.224.augreg_in2lk OPENAT 89.6 (0.2) — 84.0 (0.5) 88.9 (0.5) — 83.4 (0.4)
vit base patchl6.224.augreg.in2lk INCEPTION 89.6 (0.2) — 84.9 (0.7) 88.7 (0.4) — 83.7 (0.6)
vit_base._patchl6.224.augreg-in21k IMAGENET 89.5(0.2) — 83.9 (0.1) 88.9 (0.3) — 83.4 (0.7)
vit base_patchl6_224.mae OPENAT 76.7 (0.5) — 39.3 (4.4) 74.1 (0.6) — 36.7 (3.9)
vit base patchl6.224.mae INCEPTION 74.0 (0.3) — 41.1 4.2) 72.5(1.1) — 389 (4.4)
vit_base.patchl6.224.mae IMAGENET 76.4 (0.9) — 38.0 (1.5) 74.4 (0.5) — 35.6 (1.7)

so the per-output-pixel variance inherits the =2 and s~2 scalings up to the local factor Z. Applying the

Anscombe transform A(y) = 21/y + 3/8 approximately stabilizes the Poisson variance to ~ 1, after which
Gaussian-based methods are applicable (Anscombel [1948)).

Salt-and-pepper noise. Under the symmetric model where each pixel is replaced by either 0 or 1 with
probability ¢ and a locally constant patch with mean z, we have

Elavg error] = ¢(1/2 — Z), Var[avg error] = O(1/m).

Max pooling tends to amplify these impulses. As a robust alternative, median pooling recovers the clean
value in constant patches when contamination is lower than 50% and is 1-Lipschitz with respect to £.;
trimmed means are another option.

Normalization and Lipschitz sensitivity. The pixel-space Lipschitz bound in Theorem 5]does not depend
on the specific noise type, so smaller per-channel normalization stds increase the worst-case sensitivity
equally for Gaussian and non-Gaussian perturbations.

E ARE THERE OTHER FACTORS THAT CAUSE VULNERABILITIES OF CLIP?

We investigated other factors that might possibly address the vulnerability of CLIP. However, the vulnera-
bility of CLIP could not be fully addressed by other factors examined below.

How about swapping pretrained weights with supervised ViT? Answer: No. Differences in training
datasets and losses would lead to different pretrained weights for CLIP ViTs. Assuming that certain dataset
or loss properties, or equivalently certain properties of the pretrained weights of CLIP ViTs, lead to vul-
nerabilities, we performed controlled experiments to swap parts of them with those of supervised ViTs.
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Table 13: Classification accuracy (%) for fine-tuning ViTs on the Stanford-Cars.

Pretrained Model Mean-Std \ Val. Acc. w/ Noise Test Acc. w/ Noise

vit_base_patchl6_clip_224.openai_ft_inl2k_inlk OPENAI 83.8(0.1) —» 71.0(1.4) 83.0(0.7) — 69.7 (0.7)
vit base patchl6 clip 224.openai ft_ inl2k_ inlk INCEPTION | 87.3(1.2) — 77.7(2.1) 86.2(1.3) = 76.3(2.2)
vit_base_patchl6.clip-224.openai_ft_inl2k_inlk IMAGENET 81.1(1.6) — 63.8(2.2) 80.7 (1.9) — 64.6 (2.2)
vit_base_patchl6.clip-224.datacompxl OPENAT 90.1 (0.7) = 76.1 (1.7)  89.2 (0.6) — 75.3 (1.5)
vit base patchlé6 clip_224.datacompxl INCEPTION | 91.3(0.2) — 80.9 (0.8) 90.4 (0.6) — 79.4 (1.0)
vit base_patchl6_clip_224.datacompxl IMAGENET 89.8 (1.4) — 754 (3.8) 89.1 (1.4) — 74.3 (3.8)
vit_base patchl6.clip_224.dfn2b OPENAI 91.1(0.5) — 78.9(2.5) 90.2(0.5) — 77.8 (2.2)
vit_base_patchl6_clip_224.dfn2b INCEPTION | 94.2 (1.1) — 88.7(2.2) 93.2(1.0) — 87.6 (2.8)
vit_base_patchl6.clip-224.dfn2b IMAGENET 91.1 (1.8) =+ 78.8(5.0) 90.7(1.4) — 77.6 (5.4)
vit base patchl6 clip 224.metaclip_2pt5b OPENAT 87.7(0.7) — 67.7 (1.7) 86.9 (0.7) — 66.4 (1.7)
vit_base_patchl6.clip_224.metaclip_2pt5b INCEPTION | 91.1(0.3) —78.5(1.3) 90.2(0.4) — 77.3(1.6)
vit base patchlé6_clip_224.metaclip_2ptbb IMAGENET 87.1(1.3) = 64.7(2.0) 86.1(1.7) — 63.2(2.3)
vit base patchl6 clip 224.openai OPENAT 85.6(3.3) »73.5(@4.1) 853(3.1) —>724(3.9)
vit basepatchl6_clip_224.openai INCEPTION | 89.8 (0.4) — 81.0(1.1) 89.5(0.4) — 80.2 (0.7)
vit_base_patchl6.clip-224.openai IMAGENET 85.2 (1.6) — 70.1 (3.0) 84.2(1.3) — 69.0 (3.0)
vit_base_patchl6.clip-224.laion2b OPENAI 84.8 (2.4) — 65.6 (4.2) 84.1(2.3) — 653 (3.7)
vit basepatchlé6_clip_224.laion2b INCEPTION | 89.9(0.8) — 78.4(2.3) 88.8(0.9) — 77.0(2.2)
vit base patchl6 clip 224.laion2b IMAGENET 799 (4.7) — 54.5(6.6) 79.5(5.1) — 54.9 (7.6)
vit base patchl6 224.augreg_inlk OPENAT 82.8(0.5) - 67.4(1.0) 81.6(0.4) — 66.3(0.9)
vit_base_patchl6.224.augreg-inlk INCEPTION | 83.2(0.6) —69.2 (1.1) 81.6(0.5) — 67.5(1.3)
vit base patchl6.224.augreg_inlk IMAGENET 83.0(0.3) — 66.2 (1.4) 81.5(0.2) — 65.1 (1.6)
vit_base_patchl6.224.augreg.in2lk OPENAI 89.7 (0.2) — 82.6 (0.5) 88.5(0.3) — 81.4(0.5)
vit_base_patchl6.224.augreg_.in21lk INCEPTION | 89.9(0.2) — 84.2(0.4) 88.3(0.3) — 83.3(0.7)
vit base patchl6 224.augreg_in21k IMAGENET 89.9 (0.5) —» 81.9(0.5) 88.6(0.6) — 81.1(0.3)
vit_base_patchl6.224.mae OPENAT 80.4 (0.5) — 61.1 (1.5) 78.0 (0.6) — 58.5(0.9)
vit base patchl6.224.mae INCEPTION | 80.3(0.3) = 61.7 (1.0) 77.6 (0.5) — 59.3 (0.8)
vit_base_patchl6.224.mae IMAGENET 80.6 (0.4) — 58.1(2.2) 78.3(0.3) — 56.7 (2.4)

Specifically, we swapped pretrained weights of each block in vit_base_patchl6.clip_-224.openai
with those of vit base patchl6.224.augreg2_in21k_ft_inlk to see which module weights de-
termine the robustness against Gaussian noise (Table [T4). Although swapping pretrained weights partially
addressed the vulnerability of CLIP ViTs in certain cases near the last block such as targeting block12,
the improvements were not as significant as the approach of replacing mean-std constants. Furthermore,
the improvement depended on the specific weight choice in the target block; block12.mlp.fc2.weight im-
proved robustness, whereas block12.norm1.weight did not. When we swapped multiple weights such as
block12.{mlp.fc2, mlp.fc1, norm2}, the performance rather degraded, which indicates that improvement is
not guaranteed.

How about architectural differences such as norm_pre? Answer: No. Although the architecture is
almost the same for CLIP ViT and supervised ViTs, one difference is that CLIP ViTs insert additional
LayerNorm in the patch embedding before the transformer blocks start, which we refer to as norm_pre.
Assuming that the use of norm_pre causes vulnerability, we performed controlled experiments training ViTs
with and without norm_pre (Table [T6). Nevertheless, the ViT with norm_pre, which corresponds to the
identical architecture of CLIP ViTs, rather exhibited improved performance against Gaussian noise, which
indicates that norm_pre does not lead to the vulnerability observed in CLIP ViTs.

F  EMPIRICAL SIMULATIONS FOR TESTING ASSUMPTION AND THEOREMS
We performed module-level simulations to compare empirical results with the expected values stated in the

assumption and theorems. All simulation results closely matched the theoretical expectations. The used
Python source code is available in the supplementary materials.
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Table 14: Results of swapping pretrained weights in CLIP ViT. The accuracy with Gaussian noise partially

improved.
Swap \ Val. Acc. — w/ Noise Test Acc. — w/ Noise
stem 53.1 (1.2) — 36.3 (0.9) 51.3(1.5) =+ 35.4(1.2)
block1 81.3 (19.1) — 48.6 (14.8)  80.1 (19.9) — 46.2 (14.1)
block2 41.9 (3.4) — 20.1 (1.6) 40.7 (3.9) — 18.8 (1.6)
block3 68.6 (13.6) —+29.9 (4.5) 67.9(13.7) — 28.7 (4.4)
block4 80.2 (6.8) — 29.6 (7.5) 79.8 (6.4) — 28.6 (7.9)
block5 77.0 (4.0) — 30.0 (4.0) 77.3(3.2) —+29.0 (3.4)
block6 84.7 (0.8) — 39.9 (1.9) 84.0 (0.5) — 37.8 (2.2)
block7 87.8 (0.4) — 45.0 (0.8) 86.5 (0.6) — 44.9 (1.2)
block8 90.5 (0.4) — 49.9 (2.7) 88.4 (0.6) — 48.4 (1.6)
block9 90.7 (0.2) — 56.5 (3.9) 90.1 (0.4) — 54.8 (2.2)
block10 91.5(0.4) — 62.3 (3.3) 91.0 (0.4) — 60.4 (3.5)
block11 91.4(0.4) — 59.6 (5.1) 90.7 (0.9) — 58.1 (6.0)
block12 91.5(0.5) — 62.3 (4.9) 91.4 (0.6) — 60.8 (4.4)
head 82.8 (7.6) — 48.4 (7.5) 82.3 (6.8) — 48.2 (6.6)

Baseline (IMAGENET)
Ours (INCEPTION)

91.2 (0.5) — 58.5 (4.0)
92.5(0.3) — 71.7 (1.0)

90.7 (0.8) — 58.4 (4.3)
91.9 (0.6) — 70.2 (1.2)

Table 15: Results of swapping specific weights in block12. Swapping multiple weights did not ensure

improved robustness.

Swap

Val. Acc. — w/ Noise

Test Acc. — w/ Noise

block12.norm1.weight
block12.norm1.bias
block12.attn.qkv.weight
block12.attn.qgkv.bias
block12.attn.proj.weight
block12.attn.proj.bias
block12.norm2.weight
block12.norm2.bias
block12.mlp.fcl.weight
block12.mlp.fcl.bias
block12.mlp.fc2.weight
block12.mlp.fc2.bias

91.0 (1.3) — 56.8 (8.2)
91.5 (0.9) — 59.5 (5.7)
91.0 (0.5) — 60.5 (1.3)
91.0 (0.9) — 58.7 (3.6)
92.1 (0.6) — 59.8 (5.6)
90.9 (1.0) — 58.3 (5.4)
91.8 (0.7) — 62.7 (4.3)
91.4 (0.9) — 60.8 (3.4)
91.4 (1.0) — 61.0 (7.6)
91.2 (1.3) — 58.3 (3.4)
91.3 (0.4) — 65.2 (2.2)
91.4 (0.7) — 58.8 (5.0)

90.1 (1.3) — 56.6 (8.6)
90.7 (1.4) — 58.1 (6.1)
90.3 (0.8) — 59.0 (1.4)
90.0 (0.9) — 58.4 (3.7)
91.3 (0.9) — 59.8 (5.8)
90.2 (1.2) — 57.8 (5.0)
90.7 (0.9) — 61.1 (3.7)
90.8 (0.7) — 59.7 (3.4)
91.0 (1.4) — 60.3 (7.0)
90.4 (1.5) — 57.4 (3.7)
90.5 (0.3) — 63.8 (2.1)
90.7 (0.7) — 58.2 (5.4)

block12.mlp.fc2
block12.mlp.fc2 & mlp.fcl
block12.mlp.fc2 & mlp.fcl & norm2

90.8 (0.6) — 58.7 (3.2)
919 (1.1) — 64.2 (4.3)
91.0 (0.5) — 55.5 (4.3)

90.0 (0.4) — 57.7 (3.1)
91.6 (0.8) — 63.8 (5.0)
90.0 (1.4) — 54.0 (5.2)

Aron We embed each kxk kernel into a 512x512 grid, compute the normalized spectrum |K |, form its
{y-radial profile, and fit the low-pass envelope ¢ (1) = (1 + Bkr)~(119) by weighted log-MSE (Table .
For representative radii of 7/8,7/4,7/2, we observed that the empirical magnitudes lie below the fitted
envelopes, which verifies this assumption in practice.
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Table 16: Results on different ViT architectures with and without norm_pre. The use of norm_pre did not
bring vulnerability.

Architecture | Top-1 — w/ Noise  Top-5 — w/ Noise

77.76 — 47.15 93.84 — 68.96
78.84 — 54.22 94.14 — 76.13

w/0 norm_pre
w/ norm_pre

Table 17: The upper block reports the results for the box kernel. The lower block reports the results for the
Gaussian kernel.

r (rad) ‘ Empirical (|Kj(w))  Theoretical (¢ (||w]|))

0.3962 0.0297134 0.0570019
0.7886 0.0129235 0.0167515
1.5661 0.0040941 0.0042482
0.3962 0.0226295 0.0326660
0.7886 0.0059380 0.0068950
1.6031 0.0007060 0.0010978

Table 18: Measured v for a & x k kernel. Stds for 100 simulations are reported.

k| Empirical Theoretical

4 | 0.062535 + 0.001019 0.062500
8 | 0.015584 £ 0.000484 0.015625
12 | 0.006911 + 0.000296 0.006944
16 | 0.003888 + 0.000212 0.003906
20 | 0.002487 £+ 0.000169 0.002500
24 | 0.001728 + 0.000148 0.001736
28 | 0.001271 £ 0.000129 0.001276
32 | 0.000973 £+ 0.000115 0.000977

Theorem[2] Table[I8|reports the Monte Carlo estimate of the per-pixel noise gain + for a k x k normalized
box filter. We convolve i.i.d. N(0, o?) noise with the filter via FFT-based circular convolution and compare
the empirical 4 with the theoretical || K ||2 = 1/k?, where K} is the normalized k x k box stem kernel.

Theorem Table [19| reports Monte Carlo estimates of the per-output-pixel noise gain v, (s) under anti-
aliased downsampling by a factor s, using a g(s) x g(s) normalized box prefilter and decimation. We
compare the empirical 4, with the theoretical || K y(s)||3. = 1/g(s)?, implying ~ s~2 when g(s) o s.

Theorem [4] The results in Table 20| were obtained via Monte Carlo with 200k trials on S + 1 with  ~
N(0,1) and & = w?. Theoretical entries correspond to o2 /k for average pooling and Gauss-Hermite
quadrature for E[M}] and E[M?] to compute max-pooling bias and MSE.

Theorem [5| We construct random linear maps A with ||Al]s = L, = 3.0, compose them with D =
diag(1/o’) from INCEPTION and OPENAT, and estimate || AD||> via power iteration. Table 21] compares
the theoretical bound L, /o, with the measured norm and their ratio, confirming the predicted 1/0min
scaling.
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Table 19: Measured v, (s) for anti-aliased downsampling by a factor of s. Stds for 100 simulations are
reported.

s | Empirical Theoretical
1 0.999667 £ 0.006170 1.000000
2 0.250114 £ 0.002767 0.250000
3 0.110970 £ 0.001869 0.111111
4 | 0.062447 £ 0.001483 0.062500
6 0.027772 £ 0.000880 0.027778
8 0.015567 £ 0.000649 0.015625
12 | 0.006945 + 0.000433 0.006944
16 | 0.003925 £ 0.000359 0.003906

Table 20: Comparison of empirical (Em.) and theoretical (Th.) results for average and max poolings

w k \ Avg MSE (Em.) Avg MSE (Th.) Max Bias (Em.) Max Bias (Th.) Max MSE (Em.) Max MSE (Th.)
2 4 0.25083 0.25000 1.02936 1.02938 1.55372 1.55133
3 9 0.11049 0.11111 1.48535 1.48501 2.56409 2.56262
4 16 0.06265 0.06250 1.76524 1.76599 341148 341374
5 25 0.04006 0.04000 1.96619 1.96531 4.12369 4.12097
6 36 0.02779 0.02778 2.11722 2.11812 471818 4.72069

Table 21: Measured ||AD]||2 closely matches the bound L, /oy, for random A under INCEPTION and
OPENAT, confirming the 1/0 i, scaling

Lz min

Constants | Bound L./0,;,  Measured ||AD||, L:/Omin
[AD]|,

INCEPTION 6.000000 5.998213 1.000298

OPENAI 11.480943 11.200055 1.025079

G RANK DIFFERENCE AS A ROBUSTNESS PROXY

Here, we denote the rank difference (RankDiff) at severity 7 > 0,
RankDiff; (1) := rank, (i) — rankg(i),
where rank, orders models by accuracy at 7, so a more negative RankDiff; indicates a robustness gain. In

this section, we show that RankDiff is a principled, scale-free proxy because it aggregates pairwise rank flips
caused by robustness slope differences.

Assumption (local linearity with quadratic remainder). For model ¢ € {1,..., M}, let A;(7) be its
accuracy at noise severity 7 > 0 and p; := A;(0). For some 7y > 0,
Ai(r) =p;i — piT+1i(7),  pi >0, ()| < Liv* (7 €[0,70)), (11)

where p; is the first-order robustness slope, and L; bounds the curvature. The linear accuracy drop after ap-
plying a specific corruption has been verified in several studies (Recht et al.,|2019; [Hendrycks & Dietterichl
2019).

Pairwise flip rule. For any i # j,
Ai(r) = Aj(7) = (pi = pj) = (pi = pj)T +ij (1), lewi(T)] < (Li + Ly)T™. (12)
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If p; # p;, the first-order flip threshold is

T = .
’ Pi — Pj

When 77; € (0, 70] and the margin condition

\(pi — p;) — (pi — pj)T| > (Li + Lj)7° (14)

holds at 7, the sign of A;(7) — A;(7) is determined by the first-order term: Model 4 outranks j at 7 if and
only if 7 > 77 when p; < p; (Figure E[)

1.0 — Ai(D)=pi—pit
X =Pih Aj(m)=pj—pjT
Y Pi—Pj
Pj e

0.8 1

0.6 1
P
g
5
54
<

0.4 4

Condition:
02 pi<p; = i>jiffr>7r
Jj>i i>j
0.0 T T - T T T T
0.0 0.2 0.4 0.6 0.8 1.0
* 7 (noise severity)

ij

Figure 5: Ilustration of a rank flip

RankDiff counts robustness-driven flips. Let A;(7) = {j # i : |(pi —p;) — (pi —p;j)7| < (Li+L;)7T%}
be the set of ambiguous pairs at 7. Then, we have

[RankDiff; (7) + > sgn(p; — pi)1{pi # p;,0 < 75 < 7} < |Ai(7)]. (15)
J#i

In particular, if Eq.[T4]holds for all j # i at 7, equality holds in Eq. [I5} RankDiff;(7) equals the net number
of pairwise flips caused by having a smaller slope p;.
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Under the empirically observed near-linearity of accuracy-severity curves within the tested range, RankDiff
is a scale-free robustness score: It ignores absolute calibration of accuracies and rewards models with smaller
slopes p; by counting the robustness-driven improvements in relative order.

Although we wrote that a negative RankDiff indicates better robustness, we are not saying that understand-
ing the absolute value of RankDiff would capture robustness; to clarify our approach, we rather compare
pairwise architectures to compute their corresponding ARankDiff to understand the relative difference in
robustness.

H EXPERIMENTAL SETUP

Here, we present the experimental details and full hyperparameters for the implementations.

Gaussian Noise We injected Gaussian noise into images using the GaussNoise () function
from the Albumentations library (Buslaev et al) 2020). By default, we used the transform
A.GaussNoise (std.range=(0.1, 0.22), p=1.0) with a scale factor with range (0.1, 0.22),
which determines the fraction of the maximum value, i.e., 255 for uint8 images or 1.0 for float images.
For ImageNet-1K experiments, we used a scale factor with a range of (0.2, 0.44). The probability of apply-
ing Gaussian noise was set to 1. Note that Gaussian noise was applied only during evaluation, i.e., during
the test phase, not during the training phase.

ResNet Experiments We targeted multi-class classification tasks on the Oxford-IIIT Pet, Caltech-101,
FGVC-Aircraft, Caltech-UCSD Birds-200-2011, and Stanford Cars datasets. The Oxford-IIIT Pet dataset
contains 7K pet images from 37 classes; the Caltech-101 dataset includes 9K object images from 101 classes
with a background category; the FGVC-Aircraft dataset includes 10K aircraft images from 102 classes;
the Caltech-UCSD Birds-200-2011 dataset includes 12K bird images from 200 classes; and the Stanford
Cars dataset includes 16K car images from 196 classes. These datasets are publicly available on their
official websites. Each dataset was split into training, validation, and test sets with a ratio of 70:15:15.
Unless specified otherwise, all experiments were conducted at a resolution of 2242 using standard data
augmentation, including random resized cropping to 256 pixels, random rotations within 15 degrees, color
jitter with a factor of 0.4, random horizontal flip with a probability of 0.5, center cropping with 224-pixel
windows, and mean-std normalization based on ImageNet statistics.

For training, stochastic gradient descent with a momentum of 0.9, learning rate of 0.01, cosine annealing
schedule with 200 iterations (Loshchilov & Hutter, [2017)), weight decay of 1072, and mini-batch size of
128 were used. These hyperparameters were determined based on the accuracy of the validation set. One
exception was made for experiments with larger resolutions ranging from 2242 to 8962, where we used
mini-batch size of 64 to adjust GPU memory, while other hyperparameters are the same. The model with
the highest validation accuracy was obtained after 200 training epochs, and we reported accuracy on the
validation and test sets. The ResNets were trained from scratch to solely focus on the architectural difference.
The training was conducted on a single GPU machine. An average and standard deviation of five runs with
different random seeds were reported for each result.

For ResNet, we used five types with the following architectures:

* Original ResNet: 7 x 7 stem with a width = 64 with single-layer, strided convolution in downsam-
pling.

* ResNet-C: 3-layer 3 x 3 stem with a width = 32 (32, 32, 64), strided convolution in downsampling.

* ResNet-D: 3-layer 3 x 3 stem with a width = 32 (32, 32, 64), average pool in downsampling.

* ResNet-S: 3-layer 3 x 3 stem with a width = 64 (64, 64, 128), strided convolution in downsampling.
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* ResNet-T: 3-layer 3 x 3 stem with a width = 32 (24, 48, 64), average pool in downsampling.

CLIP Experiments For the CLIP experiments, we used pretrained weights for both supervised ViTs and
CLIP ViTs. When performing fine-tuning experiments, we used a learning rate of 0.001 and a weight decay
of 2 x 10~4, while keeping all other hyperparameters the same as in the above setup in ResNet.

ImageNet-1K Training The ImageNet-1K dataset contains 1.28M images for 1,000 classes. We referred
to the hyperparameter recipe described in the official documentation and the recipe from DeiT (Touvron
et al.,[2021)). For training, the AdamW optimizer (Loshchilov & Hutter, [2019) with learning rate 5 X 1074,
epochs 400, warm-up learning rate 10~%, cosine annealing schedule (Loshchilov & Hutter, 2017)), weight
decay 0.05, label smoothing (Szegedy et al., 2016) 0.1, RandAugment (Cubuk et al., |2020) of magnitude
9 and noise-std 0.5 with increased severity (rand-m9-mstd0.5-inc1), random erasing (Zhong et al.| [2020)
with probability 0.25, Cutmix (Yun et al.| 2019) 1.0, stochastic depth (Huang et al., 2016)) 0.1, mini-batch
size 128 per GPU, Exponential Moving Average of model weights with decay factor 0.99996, and image
resolution 2242 were used. The training was performed on a 4 x A100 GPU machine, which required two to
three days per training.

Mean-Std Constants Note that pretrained models may have been trained by any of the normalization
constants; our choice of mean-std constants was applied on evaluation or fine-tuning of pretrained models.
For training our own models, mean-std constants were applied during both the training and test phases. The
exact values are as follows:

OPENAI_CLIP_MEAN = (0.48145466, 0.4578275, 0.40821073)
OPENAI_CLIP_STD = (0.26862954, 0.26130258, 0.27577711)
IMAGENET_INCEPTION_MEAN = (0.5, 0.5, 0.5)
IMAGENET_INCEPTION_STD = (0.5, 0.5, 0.5)
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
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LIST OF NOTATIONS

Table 22: Kernel and resolution-related notations.

Symbol

Description

o= [07 1]C><H><W

Input image with C channels, height H, width W.

n ~ N(0,0%T) Additive i.i.d. Gaussian noise with per-pixel std o.
1,1, Identity matrix of appropriate size; I, € R™*"™.

* 2D discrete convolution.

u DFT of u on the grid 2.

Q DFT grid.

€ Infrared cutoff e = 27/ max{H, W}.

K € RF¥F Stem kernel of side length k; K}, denotes its DFT.

S
#r(r) = (14 Bkr)~*=%  Radial low-pass envelope upper-bounding | K (w)|.

Positive envelope constants.

E|| K 5 . o
~v(k) = % Per-pixel noise gain of the stem; equals || Ky ||%.
o
s>1 Downsampling factor.
g(s) Anti-alias filter size before downsampling; c1s < g(s) < cas.
c1,C2 Absolute positive constants, independent of s.
Ds = (UJs) o Ky Anti-aliased downsampling: Filter then downsample by s.
Us Downsampling by a factor s along height and width.
E||Dsnll3 . o .
v.(s) = J2HH7W;7/H322 Per-output-pixel noise gain after downsampling.
E[], Var[] Expectation and variance.
c,c’ Absolute constants independent of k and s in the bounds.
-2, || Mooy |- |7 Euclidean, sup, and Frobenius norms.
Table 23: Pooling and CLIP-related notations.
Symbol Description
w,m = w? Pooling window side length and number of elements.
S=(S5,...,5m) Clean activations in one pooling window; S(;y denotes the j-th order statistic.
Xavg = % S (Se4+m) Average-pooled noisy activation.
Kmax = maxi<i<m (Si + 1) Max-pooled noisy activation.
Saveg = i ;Si,Smax = max; S;  Clean pooled activations.
Oavg = Xave — Save Avg-pool error; E[davg] = 0, Var[0avg] = JQ/m.
Omax = Xmax — Smax Max-pool error.
Toves Tmax Pooling maps on a window for average and max.
17|y 25 Lipschitz constant in £2; | Tavg || = m ™2, || Tinax|| < 1.
A =51 — S Gap between the largest and second-largest clean entries.
z; "k N(0,1) Standard normals; M,,, = max; Z;, Am = max; | Z;|.

ueRC oc ]Rgo Per-channel mean and std for input normalization.
Nyo(z)=(z—p)/o Channel-wise normalization.

f Vision backbone operating on normalized inputs.
2= Nyo(x) Normalized input.

L. Global ¢2-Lipschitz constant of f on its domain.
Foo=f0oNuo End-to-end map; || Fju.o ||Lip < L=/0min.

Omin = Min¢ o Smallest channel std in normalization.
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Table 24: Rank difference-related notations.

Symbol Description
720 Noise severity level.
Ai(T) Accuracy of model 7 at severity 7; p; = A;(0) denotes clean accuracy.
pi First-order accuracy slope with respect to severity.
Li, 1o Curvature bound and validity radius for the local model.
rank(7) Rank of model i by accuracy at severity 7.
RankDiff, (1) = rank, (i) — ranko(¢)  Rank change.

= bi—Pj First-order crossing severity of models ¢ and j.

pi = Pi

Ai(r Set of j whose ordering with ¢ is ambiguous at 7.
sgn(-), 1{-} Sign and indicator functions.
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Figure 6: Illustration of Theorem (I} Features with Gaussian noise serve as an upper bound for corruption
that has the same scale in pixel space.

There are several reasons why analyzing robustness against Gaussian noise is both useful and representative
of common corruptions.

Gaussian surrogate via moment matching. The local linearization Eq.[T|implies that the feature perturba-
tion d; is well-approximated to first order in the input perturbation A. Let pa = E[A] and X5 = Cov(A),
where the expectation is taken over the randomness of the corruption. Plugging Eq. [I]into ¢ and taking
expectations gives

E[0f]= Jr(z)ua + O(E[A[3),
Cov[s]= Jy(z)EaJs(z) " + O(E[A[3).

Thus, up to higher-order terms, any corruption whose pixel perturbation has mean pa and covariance YA
induces the same first two feature-space moments as the Gaussian feature perturbation .J¢(x)n generated by
1 ~ N(pua,Xa). This applies both to zero-mean corruptions, such as noise and blur, and to mean-shifting
ones, such as brightness enhancement, after decomposing A into its mean and zero-mean residual. In this
sense, Gaussian noise serves as a convenient surrogate once we restrict attention to the low-order moments
of the feature perturbation.
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Gaussian probes for locally linear corruptions. We now show that Gaussian probes are, in fact, the
worst-case within a broad variance-bounded family. Let a corruption C with randomness £ produce =’ =
C(x, &) with A¢ = 2’ — x, and assume that, for small severities, it admits a factorization

Ac = Be(z)¢,  E[¢(] =0, Cov(() = Ia,

for some linear operator Be(x) that depends smoothly on = and a random vector ¢. The covariance bound
simply constrains the overall severity of the corruption. This model covers many image corruptions: Gaus-
sian blur and motion blur correspond to convolutional Be(x); brightness, contrast, and fog are locally affine
rescalings; and JPEG compression or elastic distortions can be approximated as linear maps plus higher-
order residuals at low severity.

Under the local linearization Eq. |1} we have f(z + A¢) — f(z) = J(z)Bc(x)(, and hence

E[|f(z + Ac) = f(@)]3] = E[llJf () Be(x)C|I3] = tr(J5(2) e (2) Ty () ),
with 3¢ (z) = Be(x)Cov(¢)Be(x) " = Be(x)Be(x) . Replacing ¢ by  ~ N(0, 1) yields

E[|f(z + Be(a)n) — f(@)lI3] = 177 () Be ()%,

which saturates the same variance-bounded envelope: Any other zero-mean ¢ with Cov({) =< I; can only
decrease this expectation. Thus, once a corruption is reduced to a linear shape B¢ (z), additive Gaussian
noise with matching B¢ (z) provides a worst-case, direction-agnostic stress test on f. Our architectural
conclusions, such as kernel size, resolution, pooling, and normalization constants, depend only on how
they scale this Jacobian-based quantity, so they transfer directly from Gaussian probes to a broad range of
common corruptions that admit such local linear models.

Empirical Simulation Here, we performed an empirical simulation to investigate the validity of The-
orem [} Using common image corruptions, including blur, weather, and digital corruptions used in
[Hendrycks & Dietterich| (2019), we first calibrated each corruption and Gaussian noise to have an equal
maximum eigenvalue in pixel space and then compared the variance in feature space when passing through
the same linear stem. For the stem, we considered five setups with different kernel sizes of 3, 5, and 7; high
and low resolutions; and average pooling. Theoretically, Gaussian noise achieves an upper bound on this
variance, and our simulations support this expectation: the ratio of corruption to Gaussian in feature-space
variance saturates around 1 across all corruptions tested here (Figure[7). These results clearly demonstrate
that the analysis of Gaussian noise captures the worst-case robustness against these common image corrup-
tions.

K PROOF OF THEOREM

In this section, we prove the Gaussian envelope result stated in Theorem [T} Throughout, we fix  and write
J == Jy(z) for the Jacobian of f at z, and all expectations are taken with respect to the perturbation.

Proof. By the local linearization in Eq.[I} for any perturbation A, we have

fla+A) = f(@) =JA+r(z,A),  |r(z,A)l2 < E2|A|3, (16)
for some local curvature bound L(z) > 0. For brevity, define r := r(x, A). Then

67113 = I7A + 713 = [TA[Z +2(TA, ) + |Ir[l3. (17
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Figure 7: Empirical simulation of Theorem comparing the variance in feature space for common image
corruptions and Gaussian noise. All results show the ratio to be close to or less than one, which confirms
that Gaussian noise serves as an upper bound.

Leading term. Taking expectations and using E[A] = 0 with covariance ¥5 := E[AAT], we obtain
E[|[JA|3]=E[ATTTJA] = tr(JTJE[AAT]) = tr(J " JSA) = tr(JEaJ ). (18)
Now use the spectral constraint ¥ = 02I;. Let B .= J'J > 0 and write the eigen-decomposition
YA = QAQT, where A = diag(\q, ..., \g) with 0 < \; < ¢2. Then
tr(JEaJ )= tr(BXA) = tr(BQAQ") = tr(AQ " BQ)

d d
— S N (QTBQ): < (max \;) S (QTBQ).
i=1 i=1
< o*tr(Q " BQ) = o*tr(B) = o?||J||%. (19)
Combining Eq. [T8]and Eq. [19]yields
tr(JEAJ ") < 02| |3 (20)

Remainder terms. Next, we control the second and third terms in Eq. [I7) using the remainder bound
in Eq.[T6] First, by Cauchy—Schwarz,

(IA, D)< [TA2l7]l2 < 1Tl Al - E2)A1Z = £&2 )0 #] A3, @1)
SO I
IE(JA, )] < Z2 |71 -E[|Al3]- (22)
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.. L(x)? L(z)?
Similarly, from [|7[|3 < Z&7 || Al|4, we have E[||7[|3] < 2SR [||A[14].

To interpret the big-O term, it is natural to consider a family of small perturbations A = £ with a fixed
random vector £ and € > 0 a scale parameter controlling the perturbation magnitude. Then E|lA]3 =
e3E||€)|3 and E||A||3 = *E||€][3, so we have

2E[(7A, ]|+ E[l|r3] = O(e*) = O(EIIAS), (23)
with a constant depending only on J, L(z), and the law of {&. We summarize this as O(E||A[3) in the
statement of the theorem.

Putting everything together. Taking expectations in Eq.[T7]and combining Eq.[T8] Eq.[20] and Eq. 23]
we obtain
E[|lf(z +A8) = f@)|3]=tr(J2a] ") + O(EA|S)
< o?||l7]|% + O(E[A]3), 24)

which proves the first claim.

Gaussian case and saturation. Now let ) ~ N'(0,021,;). Then ¥, = 021, and the leading term becomes

tr(JS,J ") = tr(J(0?1y)J ") = o*tr(JIT) = o?|| || 3. (25)
The same remainder analysis as above, applied with A = 7, yields
E[llf (@ +n) = f(@)II3] = o*T1F + O(Eln]3)- (26)

Thus, among all zero-mean perturbations with covariance XA = 021,, Gaussian noise n~N (0, oQId)
saturates the upper bound on the leading Jacobian-based contribution to the expected feature-space mean-
squared error. O
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Figure 8: For all 1,174 timm models, we plotted the rank difference with respect to resolution (left) and the
number of parameters (right). A significant level of correlation was found for resolution.
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The experiments in the main text targeted ViTs and ResNets with a controlled setup for kernel size and
resolution. Here, we further found that these observations hold for other vision models. Figure@summarizes
how the rank difference is affected by resolution and the number of parameters across all 1,174 timm vision
models, which also include other models beyond ViTs and ResNets. Firstly, we observed that the number of
parameters showed no relationship with the rank difference, which implies that choosing a larger model does
not lead to improved robustness against Gaussian noise. By contrast, we observed that the resolution, as well
as the kernel size, had a significant level of correlation with the rank difference. Note that this correlation
arises even though there are plenty of other factors that affect robustness, such as different training recipes.
Overall, smaller resolution led to a smaller rank difference, and this trend holds as a general behavior across
vision models.
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Figure 9: For ViTs, the rank difference exhibited a significant level of correlation with the ratio of patch to
image.

Extending the findings of the main text, we can also say that the ratio of patch to image has a significant
correlation with robustness against Gaussian noise. For ViTs, this ratio becomes 100 - k2 JHW (%). We
investigated its relationship with the rank difference (Figure[J), targeting the ViTs listed in Table[I] Again,
although these ViTs were trained with different recipes, the overall tendency showed a significant correlation:
a higher ratio of patch to image led to a smaller rank difference, indicating improved robustness.
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