
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Under review as a conference paper at ICLR 2026

UNLOCKING NOISE-RESISTANT VISION: KEY ARCHITEC-
TURAL SECRETS FOR ROBUST MODELS AGAINST GAUS-
SIAN NOISE

Anonymous authors
Paper under double-blind review

ABSTRACT

While the robustness of vision models is often measured, their dependence on specific
architectural design choices is rarely dissected. We investigate why certain vision archi-
tectures are inherently more robust to additive Gaussian noise and convert these empirical
insights into simple, actionable design rules. Specifically, we performed extensive eval-
uations on 1,174 pretrained vision models, empirically identifying four consistent design
patterns for improved robustness against Gaussian noise: larger stem kernels, smaller input
resolutions, average pooling, and supervised vision transformers (ViTs) rather than CLIP
ViTs, which yield up to 506 rank improvements and 21.6%p accuracy gains. We then de-
velop a theoretical analysis that explains these findings, converting observed correlations
into causal mechanisms. First, we prove that low-pass stem kernels attenuate noise with
a gain that decreases quadratically with kernel size and that anti-aliased downsampling
reduces noise energy roughly in proportion to the square of the downsampling factor. Sec-
ond, we demonstrate that average pooling is unbiased and suppresses noise in proportion
to the pooling window area, whereas max pooling incurs a positive bias that grows slowly
with window size and yields a relatively higher mean-squared error and greater worst-case
sensitivity. Third, we reveal and explain the vulnerability of CLIP ViTs via a pixel-space
Lipschitz bound: The smaller normalization standard deviations used in CLIP prepro-
cessing amplify worst-case sensitivity by up to 1.91 times relative to the Inception-style
preprocessing common in supervised ViTs. Our results collectively disentangle robust-
ness into interpretable modules, provide a theory that explains the observed trends, and
build practical, plug-and-play guidelines for designing vision models more robust against
Gaussian noise.

1 INTRODUCTION

Vision models, implemented with deep neural networks, are now deployed across numerous fields, even in
safety-critical applications ranging from medical imaging to autonomous driving. Their remarkable accu-
racy, however, conceals an uncomfortable fact: Performance can deteriorate when test images deviate—even
slightly—from the training distribution (Hendrycks & Dietterich, 2019). Even light Gaussian noise can trig-
ger misclassifications, and in autonomous vehicles, such brittleness can lead to life-threatening failures.

Recent studies have empirically discovered that the architectural design of deep neural networks strongly
shapes their robustness to common image transformations. Specifically, Paul & Chen (2022); Bai et al.
(2021); Naseer et al. (2021) observed that vision transformers (ViTs) often degrade less than previous con-
volutional networks, such as residual networks (ResNets), under various corruptions. Although promising
results with ViTs have been reported, such studies typically treat each architecture as a whole, leaving unan-
swered which specific internal choices contribute to gains in robustness.

1

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Under review as a conference paper at ICLR 2026

In this study, we dissect the robustness of vision models under Gaussian noise, showing that specific micro-
architectural choices are key factors in determining robustness. We performed extensive experiments on
available vision models from the timm library (Wightman, 2019), as well as controlled experiments; our
empirical meta-analysis compares architectures pairwise within the vision models, which enables us to iso-
late the effect of each micro-architectural factor, thereby revealing four interesting design patterns in archi-
tectures that improve robustness against Gaussian noise:

• Larger stem kernels, such as larger patch sizes in ViTs, rather than smaller ones,
• Smaller input resolutions, such as 2242, rather than larger ones, such as 3842,
• Average pooling, rather than max pooling, and
• Supervised learning ViTs, rather than CLIP ViTs.

Extending these empirical observations, we also derive several theoretical results that account for the dif-
ferences in these choices. Specifically, we prove that noise gain decays quadratically with the stem kernel
size and that downsampling after anti-alias filtering yields analogous gains (Section 4). Then we analyze
Gaussian-noise error formulas for both pooling operators, showing that average pooling is unbiased with
decreased variance, whereas max pooling incurs a positive bias and a higher mean-squared error (Section 5).
Finally, we demonstrate that the vulnerability of CLIP ViTs is primarily caused by the choice of mean-std
normalization, whose effect is proven with Lipschitz bounds (Section 6).

2 RELATED WORK

Robustness literature and positioning of this study. Robustness to common corruptions is typically
evaluated using ImageNet-C (Hendrycks & Dietterich, 2019). A consistent observation across studies is that
ViTs often degrade less than CNNs do under such corruptions (Paul & Chen, 2022; Bai et al., 2021; Naseer
et al., 2021). However, most prior comparisons treat architectures as monolithic families or vary training
recipes, making it hard to isolate which micro-architectural choices drive robustness. Furthermore, multiple
corruptions, such as brightness changes and blur, are mixed in. In contrast to these complex corruptions
and architectures, we design a systematic evaluation protocol to isolate the effect of each micro-architectural
factor. Furthermore, we select Gaussian noise due to its approximation of aggregate perturbations by the
central limit theorem and its prevalence in real-world imaging, such as sensor readout and thermal noise.
To this end, our experiments disentangle four architectural choices across pretrained models and controlled
settings, enabling clean attribution. Our findings align with prior results on robustness studies (Paul & Chen,
2022; Boureau et al., 2010) and add causal, quantitative explanations. The parts below review related work
that corresponds to the empirical design patterns we identified for enhancing Gaussian noise robustness.

Anti-aliasing, kernels, and resolution. Anti-aliased downsampling is known to reduce high-frequency
sensitivity and improve stability (Zhang, 2019; Zou et al., 2023), and analogous ideas have been explored for
ViTs (Qian et al., 2021). Complementing these studies, we provide explicit scaling laws: The output noise
energy decays quadratically with the stem kernel size and the anti-aliased downsampling factor, explaining
why larger stem kernels and smaller input resolutions improve robustness.

Pooling under additive noise. Classical analysis shows that average pooling is unbiased with variance
reduction, whereas max pooling introduces a positive bias under Gaussian noise (Boureau et al., 2010);
recent studies further clarify when max pooling aids invariance despite worse noise behavior (Matoba et al.,
2023). We extend this line and empirically verify the predicted advantage of average pooling over max
pooling across multiple datasets.

Normalization, CLIP preprocessing, and Lipschitz sensitivity. Vision models employ specific per-
channel mean-std preprocessing, which, according to Lipschitz-based robustness theory (Virmaux & Sca-
man, 2018; Gouk et al., 2021; Tsuzuku et al., 2018), directly rescales pixel-space sensitivity. We make this

2

094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Under review as a conference paper at ICLR 2026

connection explicit: Smaller channel standard deviations enlarge the end-to-end Lipschitz bound, predicting
greater worst-case and mean-squared sensitivity to additive noise.

3 WHY GAUSSIAN NOISE?

Our study focuses on robustness against additive Gaussian noise, which essentially captures comparable or
even worst-case robustness against common image corruptions. Indeed, additive Gaussian noise is the least
favorable among all perturbations whose covariance is spectrally bounded, which makes it a conservative
measure of robustness.

Setup. Let x ∈ [0, 1]d be an image, and let f : Rd → Rk be a vision model. A corruption produces
x′ = C(x, ξ) with ∆ := x′ − x, and we write δf := f(x+∆)− f(x). For small perturbations, we linearize
at x:

f(x+∆) = f(x) + Jf (x)∆ + r(x,∆), ∥r(x,∆)∥2 ≤ L(x)
2 ∥∆∥22, (1)

where Jf (x) ∈ Rk×d is the Jacobian and L(x) bounds the local Hessian.

Gaussian as a least-favorable perturbation. We show that, under a natural variance constraint, Gaussian
noise maximizes the expected feature-space mean-squared error.
Theorem 1 (Gaussian envelope under a variance constraint). Let ∆ be any zero-mean perturbation with
covariance Σ∆ ⪰ 0 satisfying Σ∆ ⪯ σ2Id. Then, under the local model Eq. 1, we have

E
[
∥f(x+∆)− f(x)∥22

]
= tr

(
Jf (x)Σ∆Jf (x)

⊤)+O
(
E∥∆∥32

)
≤ σ2∥Jf (x)∥2F +O

(
E∥∆∥32

)
.

Moreover, if η ∼ N (0, σ2Id), then E
[
∥f(x+η)−f(x)∥22

]
= σ2∥Jf (x)∥2F +O

(
E∥η∥32

)
, so Gaussian noise

saturates this upper bound on the leading term.

Connection to other corruptions. Other image corruptions, including noise, blur, brightness, weather,
and digital artifacts, can be implemented as locally bounded operators, such as convolutions, pixelwise affine
transforms, and compression. These yield perturbations ∆C,s whose covariance has a bounded spectral
norm λmax

(
Cov(∆C,s)

)
≤ σC(s)

2 for some effective variance level σC(s). Applying Theorem 1 with
σ = σC(s) shows that, to leading order, the expected feature-space distortion induced by corruption C at
severity s is upper-bounded by that induced by Gaussian noise η ∼ N (0, σC(s)

2Id), which is the least
favorable under the same variance budget. Furthermore, averaging over a data distribution x ∼ D gives
Ex,∆

[
∥f(x + ∆) − f(x)∥22

]
≲ σ2Ex

[
∥Jf (x)∥2F

]
, so robustness to Gaussian noise probes essentially the

same Jacobian-based sensitivity that governs many common corruptions. See Appendix J and Appendix K
for further discussion and empirical results.

Limitations Our study focuses exclusively on robustness to additive Gaussian noise, which, although com-
mon in imaging pipelines, does not encompass all real-world corruptions, such as adversarial perturbations,
weather effects, or sensor-specific artifacts. Also, the empirical findings are derived from pretrained models
in the timm library and controlled experiments on specific datasets, which may represent a limitation in their
generalizability to other domains like medical imaging or video processing. Future work could extend these
insights to broader corruptions, architectures, and datasets. See Appendix L for results on other architectures
under a controlled setup.

4 NOISE ATTENUATION BY LOW-PASS KERNELS

ViTs have various configurations (Dosovitskiy et al., 2021), such as the size of each patch in the patch
embedding and the input image size in pixels, which we refer to as the input resolution. Even within the

3

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Under review as a conference paper at ICLR 2026

Table 1: Top-1 accuracy (%) on the ImageNet-1K dataset before and after adding Gaussian noise to images.
For the rank difference (RankDiff), more negative values indicate better robustness under noise. Models
with large kernels and small resolutions consistently showed improved robustness.

Pretrained Model Size Patch Size Resol. Top-1→w/ Noise Rank→w/ Noise RankDiff

vit small patch16 224.augreg in1k S 162 2242 78.84→59.22 885→547 -338
vit small patch16 384.augreg in1k S 162 3842 81.12→56.59 673→613 -60
vit base patch16 224.augreg in1k B 162 2242 79.15→62.21 862→487 -375
vit base patch16 384.augreg in1k B 162 3842 81.10→60.23 676→524 -152
vit base patch32 224.augreg in1k B 322 2242 74.90→58.44 1075→569 -506
vit base patch32 384.augreg in1k B 322 3842 78.75→59.65 893→539 -354
vit tiny patch16 224.augreg in21k ft in1k T 162 2242 75.46→40.34 1060→949 -111
vit tiny patch16 384.augreg in21k ft in1k T 162 3842 78.42→30.50 921→1078 +157
vit small patch16 224.augreg in21k ft in1k S 162 2242 81.39→62.43 644→479 -165
vit small patch16 384.augreg in21k ft in1k S 162 3842 83.80→62.25 349→484 +135
vit small patch32 224.augreg in21k ft in1k S 322 2242 76.00→57.14 1044→601 -443
vit small patch32 384.augreg in21k ft in1k S 322 3842 80.48→57.33 740→596 -144
vit base patch8 224.augreg in21k ft in1k B 82 2242 85.80→73.50 145→118 -27
vit base patch16 224.augreg in21k ft in1k B 162 2242 84.53→71.19 257→192 -65
vit base patch16 384.augreg in21k ft in1k B 162 3842 85.99→70.89 129→208 +79
vit base patch32 224.augreg in21k ft in1k B 322 2242 80.71→65.31 719→392 -327
vit base patch32 384.augreg in21k ft in1k B 322 3842 83.35→63.72 412→437 +25
vit large patch16 224.augreg in21k ft in1k L 162 2242 85.84→76.62 141→55 -86
vit large patch16 384.augreg in21k ft in1k L 162 3842 87.08→76.23 59→61 +2
vit base patch16 224.orig in21k ft in1k B 162 2242 81.79→60.91 603→513 -90
vit base patch16 384.orig in21k ft in1k B 162 3842 84.20→54.91 302→657 +355
vit base patch8 224.augreg2 in21k ft in1k B 82 2242 86.22→76.09 109→67 -42
vit base patch16 224.augreg2 in21k ft in1k B 162 2242 85.10→74.50 203→96 -107
vit base patch16 224.sam in1k B 162 2242 80.24→57.13 771→602 -169
vit base patch32 224.sam in1k B 322 2242 73.69→51.33 1101→748 -353
vit medium patch16 gap 256.sw in12k ft in1k M 162 2562 84.45→73.07 274→132 -142
vit medium patch16 gap 384.sw in12k ft in1k M 162 3842 85.54→73.98 163→106 -57
vit so150m patch16 reg4 gap 256.sbb e250 in12k ft in1k B+ 162 2562 86.68→77.54 81→38 -43
vit so150m patch16 reg4 gap 384.sbb e250 in12k ft in1k B+ 162 3842 87.37→77.30 49→44 -5

same ViT architecture, various pretrained weights are available: They were trained with different recipes, the
hyperparameter combinations used in training. For example, vit base patch16 224.augreg in1k
indicates the ViT with a model size of base, a patch size of 16 to set the size of each patch to 16×16 pixels, a
resolution of 2242, and pretrained weights obtained using a training recipe of AugReg (Steiner et al., 2022)
and a dataset of ImageNet-1K (Deng et al., 2009). Although plenty of variations in its configuration are
allowed, the effect of each choice on robustness against Gaussian noise has not been clearly studied, making
it difficult for practitioners to choose which one to use.

To study the effect of each architectural factor in a ViT on robustness, we performed an ex-
tensive evaluation using pretrained ViTs with various configurations. For example, by comparing
vit base patch16 224.augreg in1k and vit base patch32 224.augreg in1k, we can
study the effect of the choice of patch sizes of 16 and 32 on performance because all other conditions
remained the same. In this section, we first present empirical observations from different configurations, and
then we examine the corresponding properties.

4.1 EMPIRICAL OBSERVATION

We used the timm library, which provides 1,174 pretrained vision models. For all pretrained models,
we evaluated the top-1 accuracy (%) on the standard ImageNet-1K dataset. Then we injected Gaus-
sian noise into the images on the ImageNet-1K dataset and measured the top-1 accuracy. We used the
Albumentations.GaussNoise() function (Buslaev et al., 2020) with a scale factor with a range of
(0.2, 0.44), where the noise was clipped to be [0, 1] and was fixed in our evaluation. Although it is natural
to observe a linear accuracy drop after applying a specific corruption (Recht et al., 2019; Hendrycks & Diet-
terich, 2019), a model with robustness would show a relatively smaller drop in top-1 accuracy. Motivated by
this behavior, we identified robust models by observing relative ranking among the 1,174 models: When a

4

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2026

Figure 1: Classification accuracy (%) using ResNet-50 for different kernel sizes and resolutions. Larger
kernels and smaller resolutions improved performance. Shaded areas represent standard deviations.

model ranked 50th becomes 20th after adding Gaussian noise, we say that it demonstrates relatively stronger
robustness to Gaussian noise. To investigate the model with improved rank, we computed the rank difference
before and after applying Gaussian noise, where more negative values indicate better robustness. Full ratio-
nale for rank difference and technical details are available in Appendix G and Appendix H. Full results on
all models are in supplementary materials. Based on these rank differences, we compared pairs of ViTs with
different configurations and investigated which architectural factors contribute to improved ranking under
noise.

Table 1 summarizes the top-1 accuracy and ranking changes before and after injecting Gaussian noise.
We found that the rank difference was lower when a ViT had 1) a larger patch size, such as 32, and 2) a
smaller resolution, such as 2242. For example, comparing vit base patch16 224.augreg in1k and
vit base patch32 224.augreg in1k, we observed that the model with a patch size of 32 yielded
a lower rank difference than the one with a patch size of 16. We consistently observed similar behavior
across multiple pretrained weights such as AugReg2, original ViTs, SAM, and others (Steiner et al., 2022;
Chen et al., 2022). The same holds for resolution, where a model with a 2242 resolution exhibited a lower
rank difference than one with 3842. Note that this observation is contrary to the common practice of scaling
up resolution to improve general performance (Tan & Le, 2019); our results indicate that this practice may
increase vulnerability to Gaussian noise. These two factors were significantly more important than others,
such as model size.

The patch size of a ViT corresponds to the kernel size used in the patch embedding, which is referred to
as the stem. Based on these observations, we investigated whether using a larger stem kernel and a smaller
resolution improves robustness to Gaussian noise on another architecture, performing controlled experiments
on ResNets (He et al., 2016). Specifically, we trained ResNet-50 on five datasets, including Oxford-IIIT Pet
(Parkhi et al., 2012), Caltech-101 (Fei-Fei et al., 2007), FGVC-Aircraft (Maji et al., 2013), Caltech-UCSD
Birds-200-2011 (Wah et al., 2011), and Stanford Cars (Krause et al., 2013) datasets. Similar to the above
ViT experiments, we trained ResNet in a standard recipe (Appendix H), obtained numerous models with
different kernel sizes and resolutions, and measured classification accuracy after applying Gaussian noise.

We observed that larger kernel sizes and smaller resolutions improved classification accuracy under additive
Gaussian noise (Figure 1). The classification errors on noisy images tended to decrease quadratically with
larger kernel sizes and smaller resolutions.

4.2 THEORETICAL ANALYSIS

Now, we prove that the noise energy decays quadratically with the stem kernel size and the resolution, or
equivalently, the anti-aliased downsampling factor. Full proofs are available in Appendix A. Throughout,

5

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2026

η ∼ N (0, σ2I) denotes independent and identically distributed (i.i.d.) Gaussian noise, and the per-pixel
noise gain is the output noise energy normalized by the number of output pixels (Oppenheim, 1999).

Setup. For a kernel size k ≥ 3, let Kk ∈ Rk×k denote the linear, shift-invariant stem kernel, and K̂k its
DFT (Oppenheim, 1999). We consider a single, mild assumption on the stem kernel:

• (Aroll) Radial low-pass envelope at scale 1/k: There exist β, δ > 0 such that, for all frequencies ω,

|K̂k(ω)| ≤ ϕk(∥ω∥), ϕk(r) := (1 + βkr)−1−δ,

where ϕk is nonincreasing in r. This assumption works well in practical use cases (Appendix F).

Per-pixel noise gain for stem kernel. We define

γ(k) :=
E
[
∥Kk ∗ η∥22

]
σ2HW

(Parseval)
=

1

HW

∑
ω

|K̂k(ω)|2 = ∥Kk∥2F , (2)

where H and W are the height and width. Intuitively, γ(k) is the average squared magnitude response of
the stem kernel.
Theorem 2 (Noise attenuation for practical low-pass stem kernel). Assume (Aroll). Then, there exists a
constant C > 0, independent of k, such that

γ(k) =
E
[
∥Kk ∗ η∥22

]
σ2HW

≤ C

k2
.

Moreover, the k−2 rate is achievable.
Remark 1 (Practical reading of Theorem 2). Doubling the stem kernel size, such as the patch size from 16
to 32, quarters the output noise energy (≈ −6 dB).

Per-output-pixel noise gain for anti-aliased downsampling. For a downsampling factor s ≥ 1, we define

Ds := (⇓s) ◦Kg(s), c1s ≤ g(s) ≤ c2s, (3)

i.e., filter with Kg(s) satisfying the same assumptions at scale g(s) and then downsample by s. We normalize
the noise gain by the number of output pixels:

γ↓(s) :=
E
[
∥Dsη∥22

]
σ2HW/s2

. (4)

Theorem 3 (Resolution-driven robustness). There exists C ′ > 0 independent of s such that

γ↓(s) ≤
C ′

s2
.

This s−2 rate is tight up to constants.
Remark 2 (Practical reading of Theorem 3). Resizing 3842 to 2242 corresponds to s ≈ 1.71 and yields
roughly s−2 ≈ 0.34 of the original noise energy per output pixel (≈ −4.7 dB).

5 CHOICE ON POOLING

5.1 EMPIRICAL OBSERVATION

Extending the above analysis, we probed the effect of choosing specific architectural types of ResNets on
robustness. Specifically, ResNet has several types, including ResNet-{C, D, T, S} (He et al., 2019; Wightman

6

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Under review as a conference paper at ICLR 2026

Table 2: Classification accuracy (%) with different choices of ResNet type. The numbers in the parentheses
represent standard deviations on the five runs with different random seeds.

Dataset Model ResNet-50-T ResNet-50-D ResNet-50-C ResNet-50-S
Configuration

Stem Conv 3-layer 3×3 3-layer 3×3 3-layer 3×3 3-layer 3×3
Stem Width 24, 48, 64 32, 32, 64 32, 32, 64 64, 64, 128
Downsample Average Average Convolution Convolution

Results

Oxford-IIIT Pet Val. Acc. w/ Noise 39.1 (11.1) 37.9 (9.6) 34.9 (11.4) 24.3 (3.3)
Test Acc. w/ Noise 38.1 (11.3) 36.1 (10.3) 34.0 (10.4) 22.9 (2.4)

Caltech-101 Val. Acc. w/ Noise 62.3 (1.4) 61.2 (3.0) 58.8 (1.1) 50.9 (3.2)
Test Acc. w/ Noise 59.7 (1.1) 59.1 (2.8) 57.8 (1.0) 49.5 (2.7)

FGVC-Aircraft Val. Acc. w/ Noise 27.8 (1.6) 27.3 (2.4) 23.9 (1.9) 4.7 (0.9)
Test Acc. w/ Noise 29.9 (1.1) 30.4 (1.6) 26.1 (2.1) 5.5 (0.8)

Caltech-UCSD
Birds-200-2011

Val. Acc. w/ Noise 27.6 (2.0) 28.8 (0.8) 26.3 (1.3) 13.9 (0.6)
Test Acc. w/ Noise 26.3 (2.0) 27.7 (0.6) 25.2 (1.7) 13.7 (1.1)

Stanford Cars Val. Acc. w/ Noise 56.9 (2.3) 55.2 (2.8) 41.6 (2.3) 29.2 (1.9)
Test Acc. w/ Noise 55.0 (1.9) 53.2 (2.7) 40.5 (2.3) 28.5 (2.0)

Table 3: Classification accuracy (%) comparing different poolings. The largest gain came from AvgPool.

Dataset Model MaxPool NNPool AvgPool

Oxford-IIIT Pet Val. Acc. w/ Noise 42.0 (1.1) 44.2 (2.8) 50.2 (1.9)
Test Acc. w/ Noise 41.8 (0.9) 42.3 (3.2) 49.3 (1.8)

Caltech-101 Val. Acc. w/ Noise 59.5 (1.0) 58.3 (1.1) 62.7 (1.8)
Test Acc. w/ Noise 57.2 (1.3) 56.7 (1.1) 60.8 (1.9)

FGVC-Aircraft Val. Acc. w/ Noise 24.2 (3.5) 22.8 (1.9) 41.0 (2.9)
Test Acc. w/ Noise 27.3 (3.6) 24.7 (1.8) 43.1 (3.1)

Caltech-UCSD
Birds-200-2011

Val. Acc. w/ Noise 26.9 (1.8) 27.5 (3.0) 28.8 (1.8)
Test Acc. w/ Noise 26.1 (1.7) 25.6 (2.6) 26.8 (1.2)

Stanford Cars Val. Acc. w/ Noise 43.3 (3.4) 49.1 (1.9) 52.1 (1.8)
Test Acc. w/ Noise 42.2 (2.8) 46.9 (1.3) 51.2 (2.1)

et al., 2021; Guo et al., 2020), although the effects of these choices and their underlying mechanisms on
robustness have been rarely studied. Here, we trained the four ResNets on the five datasets mentioned above
and compared their classification accuracy after applying Gaussian noise (Table 2).

Overall, the T and D types of ResNet demonstrated robust results against Gaussian noise, followed by the
C and S types of ResNet. While there are several different factors among the four ResNets (Appendix H),
the core difference is the pooling in downsampling: the T and D types of ResNet adopt average pooling
with convolution in downsampling, whereas the C and S types of ResNet adopt strided 1× 1 convolution in
downsampling, which is equivalent to nearest-neighbor pooling followed by a 1× 1 convolution.

We further explored the effect of pooling choice on robustness to Gaussian noise. Using ResNet-50, we
compared the original one, which uses max pooling in the stem, and modified ResNets that adopt nearest-
neighbor pooling or average pooling in the stem (Table 3). ResNets with average pooling consistently

7

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2026

yielded robust performance against Gaussian noise among the three setups in pooling. More results for other
architectures under controlled conditions are available in Appendix C.

5.2 THEORETICAL ANALYSIS

We explain why average pooling is more robust than max pooling under i.i.d. additive Gaussian noise.

Setup. Consider a pooling window of size k ≥ 2 in a single channel. Let the clean activations be S =
(S1, . . . , Sk) ∈ Rk and the observation be S + η with i.i.d. noise η ∼ N (0, σ2Ik). We define

Xavg := 1
k

k∑
i=1

(Si + ηi), Xmax := max
1≤i≤k

(Si + ηi),

their clean counterparts Savg := 1
k

∑
i Si, Smax := maxi Si, and the errors δavg := Xavg − Savg, δmax :=

Xmax −Smax. Let ∆ := S(1) −S(2) ≥ 0 be the gap between the largest and second-largest entries. We also
denote Tavg(v) :=

1
k

∑k
i=1 vi, Tmax(v) := max1≤i≤k vi, and ∥T∥ℓ2→ℓ2 for ℓ2-Lipschitz constant.

Theorem 4 (Average and max poolings under Gaussian noise). For any S ∈ Rk and σ > 0, we have

(i) Average pooling is unbiased and reduces variance proportionally to the window area: E[δavg] =
0,Var[δavg] = σ2/k.

(ii) Max pooling incurs a positive noise bias and admits the following mean-squared error (MSE) controls:
(Bias) E[δmax] = E[max

i
(Si + ηi)]−max

i
Si ≥ 0,

(Uniform-signal case) (S1 = · · · = Sk) : δmax = σMk, E[δ2max] = σ2E[M2
k],

(General case) |δmax| ≤ ∥η∥∞ ⇒ E[δ2max] ≤ σ2E[A2
k],

where Mk := max1≤i≤k Zi and Ak := max1≤i≤k |Zi| with Zi
i.i.d.∼ N (0, 1). In particular, E[A2

k] ≤
2 log(2k) + 2, so E[δ2max] ≤ σ2

(
2 log(2k) + 2

)
.

(iii) Adversarial worst-case sensitivity. For any perturbation n ∈ Rk, | 1k
∑

i ni| ≤ ∥n∥2/
√
k, so

∥Tavg∥ℓ2→ℓ2 = k−1/2; and |maxi ai −maxi bi| ≤ ∥a− b∥∞ ≤ ∥a− b∥2, so ∥Tmax∥ℓ2→ℓ2 ≤ 1.

(iv) Large-gap regime. For z := ∆/σ, one has limz→∞ E[δ2max] = σ2; when the top index never switches
under noise, max pooling is equivalent to reading a single noisy entry.

Remark 3 (Practical reading of Theorem 4). Average pooling is unbiased and cuts Gaussian noise variance
by a factor k (e.g., a 2 × 2 window gives −6 dB). Max pooling is positively biased, and its MSE grows at
most logarithmically with the window size, while also having a greater worst-case Lipschitz gain, clearly
worse than average pooling.
Remark 4 (Average and nearest-neighbor poolings). Selecting a fixed element in the window, such as the
nearest-neighbor pooling, is unbiased with an MSE σ2. Hence, average pooling is strictly more robust to
additive Gaussian noise than nearest-neighbor pooling by a factor of k in MSE.

6 WHY ARE CLIP MODELS VULNERABLE?

6.1 EMPIRICAL OBSERVATION

Although the original ViT (Dosovitskiy et al., 2021) was trained with supervised learning, the CLIP study
(Radford et al., 2021) trained ViTs with contrastive learning and successfully achieved competitive per-

8

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2026

Table 4: ImageNet-1K results for ViT-B/16 2242 with eight different pretrained weights. CLIP ViTs tended
to yield worse ranks under noise.

Pretrained Model Mean-Std Top-1 → w/ Noise Rank → w/ Noise RankDiff
vit base patch16 224.augreg in1k INCEPTION 79.15 → 62.21 862 → 487 -375
vit base patch16 224.augreg2 in21k ft in1k INCEPTION 85.10 → 74.50 203 → 96 -107
vit base patch16 224.orig in21k ft in1k INCEPTION 81.79 → 60.91 603 → 513 -90
vit base patch16 224.augreg in21k ft in1k INCEPTION 84.53 → 71.19 257 → 192 -65
vit base patch16 clip 224.openai ft in12k in1k OPENAI 85.94 → 70.81 135 → 209 +74
vit base patch16 clip 224.laion2b ft in12k in1k OPENAI 86.17 → 71.24 114 → 189 +75
vit base patch16 clip 224.laion2b ft in1k OPENAI 85.47 → 67.88 168 → 311 +143
vit base patch16 clip 224.openai ft in1k OPENAI 85.29 → 67.06 182 → 340 +158

formance. Currently, available pretrained weights for ViTs are largely divided into CLIP ViTs and others
trained with supervised learning; we refer to the latter as supervised ViTs. The training methods and datasets
differ between these two sources of ViTs, yielding different pretrained weights, while they have almost the
same architecture with only a single minor difference. Nevertheless, we observed that CLIP ViTs exhib-
ited significant vulnerabilities when Gaussian noise was applied to images (Table 4). Similar observations
regarding the degraded performance of CLIP ViTs due to distribution shifts have been reported in certain
studies (Shu et al., 2023; Wortsman et al., 2022); they focused on the characteristics of CLIP pretrained
weights due to different datasets or training schemes, but we present a different perspective on this issue.

We performed ablation studies to identify what determined the difference in robustness (Appendix E). We
discovered that the core factor in different robustness arose from the preprocessing pipeline. Specifically,
CLIP ViTs apply mean-std normalization to input images using certain per-channel mean and standard de-
viation (std) constants, which we refer to as the OPENAI constants (Appendix H), whereas supervised ViTs
apply different per-channel mean-std constants, which are often called INCEPTION constants (Szegedy
et al., 2016). In other words, the OPENAImean-std constants led to vulnerability to Gaussian noise, whereas
the INCEPTION mean-std constants did not show this vulnerability.

Indeed, when we replaced the OPENAI mean-std constants with the INCEPTION constants, the CLIP ViTs
achieved improved robustness (Table 5). The reverse also holds, and similar vulnerability was observed when
adopting IMAGENETmean-std constants for ViTs. Full results on other datasets are available in Appendix C,
where we observed these improvements across various pretrained weights with different training recipes.

6.2 THEORETICAL ANALYSIS

We give an explanation for the empirical vulnerability of CLIP ViTs to additive Gaussian noise. The key
point is that channel-wise normalization sets the pixel-space sensitivity scale: Smaller per-channel stds in
the input normalization enlarge the worst-case response to perturbations even before the backbone acts.

Setup. Let x ∈ [0, 1]C×H×W be an image and η an additive perturbation. Let µ ∈ RC and σ ∈ RC
>0 be the

per-channel means and stds, and define the normalization Nµ,σ(x) := (x−µ)/σ. Let f : RC×H×W → RK

denote the vision backbone operating on normalized inputs, which is globally ℓ2-Lipschitz with constant Lz

on its domain.1 We study the end-to-end pipeline Fµ,σ := f ◦Nµ,σ and its ℓ2-Lipschitz constant ∥Fµ,σ∥Lip.
Theorem 5 (Pixel-space Lipschitz bound). For any image x and perturbation η, we obtain∥∥Fµ,σ(x+ η)− Fµ,σ(x)

∥∥
2
≤ Lz

∥∥∥ η

σ

∥∥∥
2
≤ Lz

σmin
∥η∥2,

where σmin := minc σc. In particular, the pixel-space Lipschitz constant satisfies ∥Fµ,σ∥Lip ≤ Lz/σmin.
1This assumption holds when linear layers have bounded spectral norms and other modules are Lipschitz. ReLU:

1-Lipschitz (Gouk et al., 2021); GELU: ≈ 1.13 (Hendrycks & Gimpel, 2016); LayerNorm: Lipschitz with a constant
set by γ and ε (Ba et al., 2016).

9

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

Under review as a conference paper at ICLR 2026

Table 5: Classification accuracy (%) for fine-tuning ViTs on the Oxford-IIIT Pet.

Pretrained Model Mean-Std Val. Acc. w/ Noise Test Acc. w/ Noise
vit base patch16 clip 224.openai ft in12k in1k OPENAI 94.5 (1.0) → 77.7 (3.4) 93.8 (1.0) → 76.3 (4.1)
vit base patch16 clip 224.openai ft in12k in1k INCEPTION 95.5 (0.5) → 87.3 (2.1) 95.2 (0.6) → 87.2 (2.2)
vit base patch16 clip 224.openai ft in12k in1k IMAGENET 94.2 (0.4) → 73.9 (2.3) 93.4 (0.5) → 72.7 (2.5)
vit base patch16 clip 224.datacompxl OPENAI 93.6 (0.9) → 67.4 (6.0) 93.2 (0.9) → 67.3 (5.9)
vit base patch16 clip 224.datacompxl INCEPTION 94.7 (0.5) → 78.5 (4.0) 93.6 (0.6) → 78.4 (3.8)
vit base patch16 clip 224.datacompxl IMAGENET 92.8 (0.9) → 57.6 (7.4) 92.6 (0.5) → 58.1 (7.4)
vit base patch16 clip 224.dfn2b OPENAI 95.0 (0.3) → 73.1 (1.5) 94.1 (0.5) → 73.3 (1.9)
vit base patch16 clip 224.dfn2b INCEPTION 94.8 (0.8) → 78.6 (4.9) 93.6 (0.4) → 79.8 (5.0)
vit base patch16 clip 224.dfn2b IMAGENET 95.1 (0.3) → 69.8 (2.7) 94.0 (0.4) → 68.8 (3.1)
vit base patch16 clip 224.metaclip 2pt5b OPENAI 92.8 (0.7) → 64.8 (4.4) 92.0 (0.7) → 62.3 (3.9)
vit base patch16 clip 224.metaclip 2pt5b INCEPTION 94.7 (0.4) → 78.5 (2.0) 93.9 (0.3) → 78.5 (1.8)
vit base patch16 clip 224.metaclip 2pt5b IMAGENET 91.6 (0.3) → 54.5 (2.5) 90.8 (0.3) → 52.8 (1.6)
vit base patch16 clip 224.openai OPENAI 92.5 (0.3) → 71.7 (1.0) 91.9 (0.6) → 70.2 (1.2)
vit base patch16 clip 224.openai INCEPTION 94.0 (0.7) → 78.6 (4.6) 93.2 (0.9) → 77.3 (5.1)
vit base patch16 clip 224.openai IMAGENET 91.2 (0.5) → 58.5 (4.0) 90.7 (0.8) → 58.4 (4.3)
vit base patch16 clip 224.laion2b OPENAI 91.8 (1.2) → 56.1 (7.7) 90.5 (1.1) → 54.0 (6.6)
vit base patch16 clip 224.laion2b INCEPTION 93.8 (0.6) → 76.4 (1.9) 92.8 (0.5) → 75.6 (1.8)
vit base patch16 clip 224.laion2b IMAGENET 90.2 (0.8) → 52.3 (4.4) 89.5 (0.8) → 51.4 (4.1)
vit base patch16 224.augreg in1k OPENAI 95.5 (0.2) → 88.7 (0.3) 94.9 (0.2) → 88.2 (0.7)
vit base patch16 224.augreg in1k INCEPTION 95.5 (0.1) → 89.7 (0.5) 94.4 (0.3) → 89.2 (0.8)
vit base patch16 224.augreg in1k IMAGENET 95.5 (0.2) → 87.7 (0.5) 94.9 (0.2) → 87.9 (0.7)
vit base patch16 224.augreg in21k OPENAI 95.6 (0.3) → 91.4 (0.3) 95.2 (0.5) → 91.9 (0.6)
vit base patch16 224.augreg in21k INCEPTION 95.9 (0.2) → 92.3 (0.3) 95.6 (0.4) → 92.6 (0.4)
vit base patch16 224.augreg in21k IMAGENET 95.7 (0.5) → 91.6 (0.5) 95.6 (0.3) → 92.0 (0.5)
vit base patch16 224.mae OPENAI 93.5 (0.3) → 70.8 (2.8) 93.4 (0.2) → 72.7 (2.3)
vit base patch16 224.mae INCEPTION 93.7 (0.3) → 75.0 (2.1) 93.3 (0.2) → 75.2 (2.5)
vit base patch16 224.mae IMAGENET 93.5 (0.3) → 72.0 (2.0) 92.7 (0.5) → 71.9 (2.2)

Proof. Write z = Nµ,σ(x) and z̃ = Nµ,σ(x + η) = z + η/σ. By Lipschitzness of f , we have ∥f(z̃) −
f(z)∥2 ≤ Lz∥η/σ∥2 ≤ (Lz/σmin)∥η∥2.

Remark 5 (Practical reading of Theorem 5). For the standard choices
σINCEPTION = (0.5, 0.5, 0.5), σCLIP = (0.26862954, 0.26130258, 0.27577711),

the worst-case pixel-space sensitivity bound for CLIP is greater by a factor
Lz/min(σCLIP)

Lz/min(σINCEPTION)
=

0.5

0.26130258
≈ 1.91,

relative to a supervised ViT using INCEPTION statistics. This ∼ 1.91× looser bound amplifies the effect of
input perturbations before the feature extractor.

7 CONCLUSION

Across timm models and controlled experiments, four design patterns consistently improved robustness
against Gaussian noise: (1) larger stem kernel sizes, (2) smaller resolutions, (3) average pooling instead of
max pooling, and (4) supervised ViTs rather than CLIP ViTs. Practically, we recommend models with these
design patterns such as vit base patch32 224.augreg in21k ft in1k for ViT-B as an example.
Our analysis integrates these findings: Theorem 2 proves that noise attenuation is quadratic with stem kernel
size; Theorem 3 yields an analogous gain under anti-aliased downsampling; Theorem 4 shows that average
pooling is unbiased with error that falls as the window grows, whereas max pooling is positively biased
and, for a uniform signal, its error grows logarithmically; and Theorem 5 explains CLIP sensitivity using
pixel-space Lipschitz bounds scaling as 1/σmin, which leads to a ∼ 1.91× difference when comparing
the OPENAI and INCEPTION constants. These insights provide actionable guidelines for practitioners to
enhance the robustness of vision models against Gaussian noise in diverse applications.

10

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2026

REFERENCES

Francis J Anscombe. The transformation of Poisson, binomial and negative-binomial data. Biometrika, 35
(3/4):246–254, 1948.

Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer Normalization. CoRR, abs/1607.06450,
2016.

Yutong Bai, Jieru Mei, Alan L. Yuille, and Cihang Xie. Are Transformers more robust than CNNs? In
NeurIPS, pp. 26831–26843, 2021.

Y-Lan Boureau, Jean Ponce, and Yann LeCun. A Theoretical Analysis of Feature Pooling in Visual Recog-
nition. In ICML, pp. 111–118, 2010.

Alexander Buslaev, Vladimir I. Iglovikov, Eugene Khvedchenya, Alex Parinov, Mikhail Druzhinin, and
Alexandr A. Kalinin. Albumentations: Fast and Flexible Image Augmentations. Inf., 11(2):125, 2020.

Xiangning Chen, Cho-Jui Hsieh, and Boqing Gong. When Vision Transformers Outperform ResNets without
Pre-training or Strong Data Augmentations. In ICLR, 2022.

Ekin Dogus Cubuk, Barret Zoph, Jonathon Shlens, and Quoc Le. RandAugment: Practical Automated Data
Augmentation with a Reduced Search Space. In NeurIPS, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale hierarchical
image database. In CVPR, pp. 248–255, 2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Un-
terthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
Neil Houlsby. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. In ICLR,
2021.

Li Fei-Fei, Robert Fergus, and Pietro Perona. Learning generative visual models from few training examples:
An incremental Bayesian approach tested on 101 object categories. Comput. Vis. Image Underst., 106(1):
59–70, 2007.

Henry Gouk, Eibe Frank, Bernhard Pfahringer, and Michael J. Cree. Regularisation of neural networks by
enforcing Lipschitz continuity. Mach. Learn., 110(2):393–416, 2021.

Jian Guo, He He, Tong He, Leonard Lausen, Mu Li, Haibin Lin, Xingjian Shi, Chenguang Wang, Junyuan
Xie, Sheng Zha, Aston Zhang, Hang Zhang, Zhi Zhang, Zhongyue Zhang, Shuai Zheng, and Yi Zhu.
GluonCV and GluonNLP: Deep Learning in Computer Vision and Natural Language Processing. J. Mach.
Learn. Res., 21:23:1–23:7, 2020.

Peter Hall. On the rate of convergence of normal extremes. Journal of Applied Probability, 16(2):433–439,
1979.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image Recognition.
In CVPR, pp. 770–778, 2016.

Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Junyuan Xie, and Mu Li. Bag of Tricks for Image
Classification with Convolutional Neural Networks. In CVPR, pp. 558–567, 2019.

Dan Hendrycks and Thomas G. Dietterich. Benchmarking Neural Network Robustness to Common Corrup-
tions and Perturbations. In ICLR, 2019.

11

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Under review as a conference paper at ICLR 2026

Dan Hendrycks and Kevin Gimpel. Bridging Nonlinearities and Stochastic Regularizers with Gaussian Error
Linear Units. CoRR, abs/1606.08415, 2016.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q. Weinberger. Deep Networks with Stochastic
Depth. In ECCV (4), volume 9908, pp. 646–661, 2016.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3D Object Representations for Fine-Grained
Categorization. In ICCV Workshops, pp. 554–561, 2013.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic Gradient Descent with Warm Restarts. In ICLR, 2017.

Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. In ICLR, 2019.

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew B. Blaschko, and Andrea Vedaldi. Fine-Grained Visual
Classification of Aircraft. CoRR, abs/1306.5151, 2013.

Kyle Matoba, Nikolaos Dimitriadis, and François Fleuret. Benefits of Max Pooling in Neural Networks:
Theoretical and Experimental Evidence. Trans. Mach. Learn. Res., 2023, 2023.

Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Ming-
Hsuan Yang. Intriguing Properties of Vision Transformers. In NeurIPS, pp. 23296–23308, 2021.

Alan V Oppenheim. Discrete-time signal processing. 1999.

Omkar M. Parkhi, Andrea Vedaldi, Andrew Zisserman, and C. V. Jawahar. Cats and dogs. In CVPR, pp.
3498–3505, 2012.

Sayak Paul and Pin-Yu Chen. Vision Transformers Are Robust Learners. In AAAI, pp. 2071–2081, 2022.

Shengju Qian, Hao Shao, Yi Zhu, Mu Li, and Jiaya Jia. Blending Anti-Aliasing into Vision Transformer. In
NeurIPS, pp. 5416–5429, 2021.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning
Transferable Visual Models From Natural Language Supervision. In ICML, volume 139, pp. 8748–8763,
2021.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do ImageNet Classifiers Gen-
eralize to ImageNet? In ICML, volume 97, pp. 5389–5400, 2019.

Yang Shu, Xingzhuo Guo, Jialong Wu, Ximei Wang, Jianmin Wang, and Mingsheng Long. CLIPood:
Generalizing CLIP to Out-of-Distributions. In ICML, volume 202, pp. 31716–31731, 2023.

Andreas Steiner, Alexander Kolesnikov, Xiaohua Zhai, Ross Wightman, Jakob Uszkoreit, and Lucas Beyer.
How to train your ViT? Data, Augmentation, and Regularization in Vision Transformers. Trans. Mach.
Learn. Res., 2022, 2022.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. Rethinking the
Inception Architecture for Computer Vision. In CVPR, pp. 2818–2826, 2016.

Mingxing Tan and Quoc V. Le. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks.
In ICML, volume 97, pp. 6105–6114, 2019.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé Jégou.
Training data-efficient image transformers & distillation through attention. In ICML, volume 139, pp.
10347–10357, 2021.

12

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Under review as a conference paper at ICLR 2026

Yusuke Tsuzuku, Issei Sato, and Masashi Sugiyama. Lipschitz-Margin Training: Scalable Certification of
Perturbation Invariance for Deep Neural Networks. In NeurIPS, pp. 6542–6551, 2018.

Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in Data Science, 2018.

Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks: analysis and efficient
estimation. In NeurIPS, pp. 3839–3848, 2018.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd birds-
200-2011 dataset. 2011.

Ross Wightman. PyTorch Image Models. https://github.com/rwightman/
pytorch-image-models, 2019.

Ross Wightman, Hugo Touvron, and Hervé Jégou. ResNet strikes back: An improved training procedure in
timm. CoRR, abs/2110.00476, 2021.

Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca Roelofs,
Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong, and Ludwig Schmidt.
Robust fine-tuning of zero-shot models. In CVPR, pp. 7949–7961, 2022.

Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix:
Regularization Strategy to Train Strong Classifiers With Localizable Features. In ICCV, pp. 6022–6031,
2019.

Richard Zhang. Making Convolutional Networks Shift-Invariant Again. In ICML, volume 97, pp. 7324–
7334, 2019.

Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random Erasing Data Augmentation.
In AAAI, pp. 13001–13008, 2020.

Xueyan Zou, Fanyi Xiao, Zhiding Yu, Yuheng Li, and Yong Jae Lee. Delving Deeper into Anti-Aliasing in
ConvNets. Int. J. Comput. Vis., 131(1):67–81, 2023.

13

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Under review as a conference paper at ICLR 2026

APPENDIX TABLE OF CONTENTS

A Proofs for Theorems 2 and 3 14

A.1 Conventions and assumptions . 14

A.2 Proof of Theorem 2 (Quadratic decay in stem kernel size) 15

A.3 Proof of Theorem 3 (Quadratic decay under anti-aliased downsampling) 16

B Proof of Theorem 4 (Average and max poolings under Gaussian Noise) 16

C Additional Experimental Results 19

D Extension to Other Noise Models 20

E Are there other factors that cause vulnerabilities of CLIP? 23

F Empirical Simulations for Testing Assumption and Theorems 24

G Rank difference as a robustness proxy 27

H Experimental Setup 29

I List of Notations 31

J On Gaussian Noise 32

K Proof of Theorem 1 33

L Correlation Analysis 35

A PROOFS FOR THEOREMS 2 AND 3

Here, we provide proofs of the quadratic noise-decay results in Section 4.2.

A.1 CONVENTIONS AND ASSUMPTIONS

DFT convention and Parseval. For u ∈ RH×W with discrete Fourier transform (DFT) û on the frequency
grid Ω, we use the Parseval identity

1

HW

∑
ω∈Ω

∣∣û(ω)
∣∣2 =

∑
p∈{1,...,H}×{1,...,W}

|u(p)|2. (5)

We write ε := 2π/max{H,W} for the infrared cutoff.

14

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

Under review as a conference paper at ICLR 2026

Filter family. For k ≥ 3, let Kk ∈ Rk×k denote the linear, shift-invariant stem kernel with DFT K̂k.
We assume only the following low-pass envelope; the same assumption applies to Kg(s) when used as the
anti-aliasing filter at scale g(s):

• (Aroll) (Radial low-pass envelope at scale 1/k) There exist β, δ > 0 such that, for all frequencies ω,

|K̂k(ω)| ≤ ϕk(∥ω∥), ϕk(r) := (1 + βkr)−1−δ,

where ϕk is nonincreasing in r.

This assumption provides a monotone radial upper envelope sufficient for establishing our upper bounds:
When estimating 1

HW

∑
ω |K̂k(ω)|2, we first dominate |K̂k|2 by ϕ2

k and then apply the sum-integral com-
parison in Eq. 9.

Noise model and gains. Let η ∼ N (0, σ2I) be spatially white Gaussian noise. The per-pixel noise gain
of the stem kernel is

γ(k) :=
E
[
∥Kk ∗ η∥22

]
σ2HW

Eq. 5
=

1

HW

∑
ω

∣∣K̂k(ω)
∣∣2 = ∥Kk∥2F . (6)

For anti-aliased downsampling with a factor s ≥ 1, we define
Ds := (⇓s) ◦Kg(s), c1s ≤ g(s) ≤ c2s, (7)

and its per-output-pixel noise gain

γ↓(s) :=
E
[
∥Dsη∥22

]
σ2HW/s2

. (8)

Radial sum-integral comparison. Let Ω be the H×W DFT grid with spacing ε, and let g : [ε, π] → R≥0

be radially nonincreasing. We partition Ω into annuli Aj := {ω : jε ≤ ∥ω∥ < (j+1)ε}. Because each grid
point occupies an area ≍ ε2 and the annulus area is 2πrε up to boundary effects, there exist absolute lattice
constants c1, c2 > 0—independent of H,W, k, s—with

c1HW (2πjε)ε ≤ |Aj | ≤ c2HW (2π(j + 1)ε)ε.

By monotonicity, g((j + 1)ε)|Aj | ≤
∑

ω∈Aj
g(∥ω∥) ≤ g(jε)|Aj |. Summing over j and dividing by HW

turns the lattice sum into upper and lower Riemann sums for r 7→ 2πrg(r) with mesh ε, yielding absolute
constants A1, A2 > 0 such that

A1

∫ π

ε

rg(r)dr ≤ 1

HW

∑
ω∈Ω

g(∥ω∥) ≤ A2

∫ π

ε

rg(r)dr. (9)

As ε → 0, both bounds converge to the same limit; for finite grids, A1, A2 absorb edge discrepancies and
remain independent of the kernel scale k or downsampling factor s.

A.2 PROOF OF THEOREM 2 (QUADRATIC DECAY IN STEM KERNEL SIZE)

Proof. By Eq. 6, Eq. 9, and (Aroll), we have

γ(k) ≲
∫ π

ε

r
∣∣K̂k(r)

∣∣2dr ≤
∫ π

ε

r
(
1 + βkr

)−2−2δ
dr.

Let u = 1 + βkr. Then r = (u− 1)/(βk) and dr = du/(βk), so∫ π

ε

r(1 + βkr)−2−2δdr =
1

β2k2

∫ 1+βkπ

1+βkε

u− 1

u2+2δ
du ≤ 1

β2k2

∫ ∞

1

u− 1

u2+2δ
du =

C

k2
,

for a finite constant C = C(β, δ). Hence γ(k) ≤ C ′/k2 for some C ′ independent of k.

15

705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Under review as a conference paper at ICLR 2026

A.3 PROOF OF THEOREM 3 (QUADRATIC DECAY UNDER ANTI-ALIASED DOWNSAMPLING)

We first state the following identity for white noise.
Lemma 1 (Per-output-pixel gain identity). For Ds defined in Eq. 3 and white noise η ∼ N (0, σ2I),

γ↓(s) = ∥Kg(s)∥2F .

Proof. Stationarity of white noise and Eq. 5 give

E
[
∥Kg(s) ∗ η∥22

]
= (HW)σ2∥Kg(s)∥2F .

Downsampling by s keeps every s-th sample along each axis: The retained samples all have equal variance
as the original, pre-downsampled field. Therefore,

E
[
∥Dsη∥22

]
=

HW

s2
σ2∥Kg(s)∥2F ,

and the normalization in Eq. 8 yields γ↓(s) = ∥Kg(s)∥2F .

Proof of Theorem 3. By Lemma 1, γ↓(s) = ∥Kg(s)∥2F . Applying Theorem 2 with kernel size k = g(s)
gives

γ↓(s) ≤
C

g(s)2
≤ C

(c1s)2
=

C ′

s2
,

with C ′ = C/c21 independent of s.

B PROOF OF THEOREM 4 (AVERAGE AND MAX POOLINGS UNDER GAUSSIAN
NOISE)

Consider a pooling window of size k ≥ 2 in a single channel. Let the clean activations be S =

(S1, . . . , Sk) ∈ Rk and let the observation be S + η, where η = (η1, . . . , ηk)
i.i.d.∼ N (0, σ2). We define

Xavg :=
1

k

k∑
i=1

(Si + ηi), Xmax := max
1≤i≤k

(Si + ηi),

and their clean counterparts Savg = 1
k

∑
i Si, Smax = maxi Si. Let the errors be δavg := Xavg − Savg,

δmax := Xmax−Smax. Write the order statistics S(1) ≥ · · · ≥ S(k), define the gap ∆ := S(1)−S(2) ≥ 0, and

the standardized gap z := ∆/σ. We use Zi
i.i.d.∼ N (0, 1), Mk := max1≤i≤k Zi, and Ak := max1≤i≤k |Zi|.

Proof of (i). By definition, δavg = 1
k

∑k
i=1 ηi. Hence

E[δavg] =
1

k

∑
i

E[ηi] = 0, Var[δavg] =
1

k2

∑
i

Var[ηi] =
σ2

k
.

This part requires only i.i.d. zero-mean noise with variance σ2.

Proof of (ii). (Positive bias) Let i⋆ ∈ argmaxi Si. Then Xmax ≥ Si⋆ + ηi⋆ . Taking expectations and using
E[ηi⋆] = 0 yields

E[δmax] = E[Xmax − Smax] ≥ 0.

16

752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

Under review as a conference paper at ICLR 2026

4 2 0 2 4
pooled value / (z-score)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

de
ns

ity
Pooling under N(0, 2) noise (w = 3, k = 9)

Average pooling (MC)
Max pooling (MC)
Avg theory
Max theory
Avg mean = 0
Max mean 1.49

Figure 2: Illustration of positive bias introduced by max pooling

(Uniform-signal case) If S1 = · · · = Sk, translate so Si ≡ 0. Then δmax = maxi ηi = σMk and

E[δ2max] = σ2E[M2
k].

Classical Gaussian extreme-value asymptotics (Hall, 1979) give

E[Mk] =
√
2 log k − log log k + log(4π)

2
√
2 log k

+ o
(
(log k)−1/2

)
, Var[Mk] =

π2

12 log k
+ o

(
(log k)−1

)
,

hence
E[M2

k] = Var[Mk] +
(
E[Mk]

)2
= 2 log k − log log k − log(4π) + o(1),

Because δmax = σMk, we have

E[δ2max] = σ2[EM2
k] = σ2(2 log k − log log k − log(4π) + o(1)) = Θ(σ2 log k),

so the MSE scales as Θ(σ2 log k).

(General case) For any realization,∣∣δmax

∣∣ = ∣∣max
i

(Si + ηi)−max
i

Si

∣∣ ≤ max
i

|ηi| = σAk.

Hence
E[δ2max] ≤ σ2E[A2

k].

We now bound E[A2
k] explicitly.

17

799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

Under review as a conference paper at ICLR 2026

Lemma 2. For Ak = max1≤i≤k |Zi| with Zi
i.i.d.∼ N (0, 1), we have E[A2

k] ≤ 2 log(2k) + 2.

Proof of Lemma 2. For t ≥ 0, Pr(Ak ≥ t) ≤
∑k

i=1 Pr(|Zi| ≥ t) ≤ 2ke−t2/2, where the last step uses
the union bound and the standard Gaussian tail estimate Pr(|Z| ≥ t) ≤ 2e−t2/2 for Z ∼ N (0, 1); see,
e.g., Vershynin (2018). Using E[X2] =

∫∞
0

2tPr(X ≥ t)dt for a nonnegative X and splitting at t0 :=√
2 log(2k),

E[A2
k] =

∫ t0

0

2tPr(Ak ≥ t)dt+

∫ ∞

t0

2tPr(Ak ≥ t)dt

≤ t20 +

∫ ∞

t0

4kte−t2/2dt = 2 log(2k) + 4ke−t20/2.

Because e−t20/2 = e− log(2k) = 1/(2k), the last term equals 2, proving the claim.

By Lemma 2,
E[δ2max] ≤ σ2

(
2 log(2k) + 2

)
.

Proof of (iii). Let Tavg(n) = 1
k

∑
i ni. By Cauchy–Schwarz, |Tavg(n)| ≤ ∥n∥2∥k−1(1, . . . , 1)∥2 =

∥n∥2/
√
k, so ∥Tavg∥ℓ2→ℓ2 = k−1/2, tight for constant n. For max, for any a, b, |maxi ai − maxi bi| ≤

∥a− b∥∞ ≤ ∥a− b∥2, hence ∥Tmax∥ℓ2→ℓ2 ≤ 1, tight for a one-hot n.

Proof of (iv). Translate so S(1) = 0 and Si ≤ −∆ for i ≥ 2. Let S be the switch event that some j ≥ 2
overtakes the top index after noise:

S := {∃j ≥ 2 : ηj −∆ ≥ η1} = {∃j ≥ 2 : Zj − Z1 ≥ z}.

Because Zj and Z1 are independent standard normals, we have Zj−Z1 ∼ N (0, 2); hence, by a union bound
Pr(S) ≤ (k − 1)Pr(N (0, 2) ≥ z) ≤ (k − 1)e−z2/4 → 0 as z → ∞. On Sc, Xmax = S(1) + η1 = η1, so
δ2max = η21 . Dominated convergence then gives E[δ2max] → E[η21] = σ2.

Figure 3: Examples of pooling outputs from a noisy image using average, max, and nearest neighbor

18

846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892

Under review as a conference paper at ICLR 2026

Figure 4: The results on the validation set

Table 6: Classification accuracy comparing different poolings, using ResNet-50-D

Dataset Model MaxPool NNPool AvgPool

Oxford-IIIT Pet

Val. Acc. 87.7 (0.6) 87.6 (0.4) 86.7 (0.5)
Test Acc. 85.3 (0.8) 84.7 (0.6) 84.8 (0.9)
Val. Acc. w/ Noise 48.3 (2.2) 46.3 (1.9) 54.0 (3.7)
Test Acc. w/ Noise 47.8 (1.3) 45.2 (2.3) 53.6 (2.7)

Caltech-101

Val. Acc. 81.3 (0.7) 82.4 (1.1) 81.7 (0.5)
Test Acc. 80.5 (0.3) 80.7 (0.4) 81.6 (0.7)
Val. Acc. w/ Noise 61.1 (1.5) 60.3 (1.4) 62.7 (1.4)
Test Acc. w/ Noise 59.8 (1.7) 58.3 (1.3) 61.6 (1.3)

FGVC-Aircraft

Val. Acc. 68.1 (0.2) 67.7 (0.8) 69.0 (0.7)
Test Acc. 68.8 (1.1) 68.3 (1.5) 69.6 (0.3)
Val. Acc. w/ Noise 27.7 (1.6) 24.8 (1.8) 42.9 (1.7)
Test Acc. w/ Noise 31.5 (2.1) 26.9 (0.8) 44.8 (1.1)

Caltech-UCSD
Birds-200-2011

Val. Acc. 69.8 (0.7) 69.8 (0.4) 69.3 (1.1)
Test Acc. 67.3 (0.4) 66.4 (0.6) 65.9 (0.4)
Val. Acc. w/ Noise 26.8 (0.6) 28.7 (1.7) 31.8 (1.6)
Test Acc. w/ Noise 26.0 (0.7) 27.4 (1.2) 31.1 (2.1)

Stanford Cars

Val. Acc. 86.5 (0.5) 85.7 (0.5) 84.9 (0.2)
Test Acc. 84.8 (0.2) 83.6 (0.3) 83.2 (0.3)
Val. Acc. w/ Noise 56.0 (0.5) 53.6 (1.6) 56.8 (2.2)
Test Acc. w/ Noise 54.8 (1.5) 51.6 (1.5) 55.3 (2.0)

C ADDITIONAL EXPERIMENTAL RESULTS

Figure 4 shows the accuracy on the validation set for the controlled experiments on kernel size and resolution.

We also report additional results for ResNet-50-D (Table 6) and ResNet-101-D (Table 7) for different choices
of pooling.

19

893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

Under review as a conference paper at ICLR 2026

Table 7: Classification accuracy comparing different poolings, using ResNet-101-D

Dataset Model MaxPool NNPool AvgPool

Oxford-IIIT Pet

Val. Acc. 87.0 (0.5) 86.5 (0.8) 86.2 (0.3)
Test Acc. 84.8 (0.6) 84.4 (0.7) 84.3 (0.6)
Val. Acc. w/ Noise 52.3 (1.9) 51.0 (1.5) 56.4 (2.1)
Test Acc. w/ Noise 51.0 (1.3) 49.2 (1.4) 56.3 (2.4)

Caltech-101

Val. Acc. 82.0 (0.9) 82.9 (0.6) 82.9 (0.5)
Test Acc. 80.6 (0.4) 80.7 (0.9) 81.2 (0.4)
Val. Acc. w/ Noise 63.4 (1.9) 63.7 (1.3) 64.8 (1.1)
Test Acc. w/ Noise 62.1 (1.5) 61.6 (1.7) 63.7 (1.4)

FGVC-Aircraft

Val. Acc. 69.5 (0.3) 67.7 (0.6) 69.4 (0.8)
Test Acc. 71.0 (1.0) 67.1 (0.4) 69.6 (0.7)
Val. Acc. w/ Noise 36.9 (4.0) 28.5 (2.7) 48.4 (1.5)
Test Acc. w/ Noise 39.1 (3.5) 30.5 (2.6) 49.5 (1.8)

Caltech-UCSD
Birds-200-2011

Val. Acc. 70.5 (0.5) 70.0 (0.7) 68.9 (0.6)
Test Acc. 67.4 (0.7) 66.8 (0.4) 66.0 (0.7)
Val. Acc. w/ Noise 29.7 (1.7) 29.3 (2.0) 33.4 (1.8)
Test Acc. w/ Noise 29.0 (1.7) 29.2 (2.6) 32.2 (1.5)

Stanford Cars

Val. Acc. 84.5 (0.4) 83.9 (0.4) 83.7 (0.5)
Test Acc. 83.3 (0.2) 81.9 (0.8) 82.1 (0.6)
Val. Acc. w/ Noise 57.5 (1.2) 55.2 (0.9) 58.2 (1.2)
Test Acc. w/ Noise 56.0 (0.9) 54.5 (0.7) 56.4 (1.2)

Table 8 summarizes the results for ResNet-AA, which adopts anti-aliasing average pooling architecture
(Zhang, 2019). Specifically, ResNet-AA adopts average pooling in all downsampling layers as well as
replacing the max pooling in the stem with average pooling. ResNet-AA was marginally more robust than
the ResNet with average pooling only in the stem, but not as significant as the difference with the original
ResNet. The result indicates that the core difference in robustness was caused by the use of average pooling
in the stem.

Table 9 summarizes ImageNet-1K results for other ViT configurations, including different patch sizes, reso-
lutions, and training recipes.

Table 10, Table 11, Table 12, and Table 13 summarize full results for fine-tuning ViTs on other datasets.
When we replaced the OPENAI mean-std constants with the INCEPTION constants, the CLIP ViTs
achieved improved robustness.

D EXTENSION TO OTHER NOISE MODELS

We select Gaussian noise due to its approximation of aggregate perturbations by the central limit theorem
and its prevalence in real-world imaging, such as sensor readout and thermal noise. Here, we explain how
our main findings—noise attenuation by larger stem kernels and smaller input resolution (Theorems 2, 3),
the pooling comparison (Theorem 4), and the normalization effect (Theorem 5)—extend beyond Gaussian
noise.

Setup. We continue to use k for a filter side length. For pooling windows, we use w for side length and
m = w2 for the number of elements.

20

940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986

Under review as a conference paper at ICLR 2026

Table 8: Results on ResNet-AA

Dataset Model ResNet-AA-50 ResNet-AA-50-D ResNet-AA-101-D

Oxford-IIIT Pet

Val. Acc. 84.8 (0.8) 86.9 (0.4) 86.2 (0.3)
Test Acc. 83.1 (0.8) 84.7 (0.8) 84.3 (0.2)
Val. Acc. w/ Noise 50.1 (2.7) 55.6 (2.0) 58.1 (2.7)
Test Acc. w/ Noise 49.6 (3.2) 53.9 (1.4) 58.9 (2.9)

Caltech-101

Val. Acc. 80.2 (0.4) 81.7 (0.7) 83.0 (0.3)
Test Acc. 79.5 (0.6) 80.6 (0.5) 80.9 (0.5)
Val. Acc. w/ Noise 61.2 (1.6) 61.7 (2.2) 65.0 (1.5)
Test Acc. w/ Noise 60.1 (1.5) 60.8 (2.8) 63.3 (1.3)

FGVC-Aircraft

Val. Acc. 67.3 (0.5) 69.8 (1.0) 69.1 (0.6)
Test Acc. 67.1 (0.9) 70.7 (1.2) 70.0 (0.9)
Val. Acc. w/ Noise 40.4 (3.6) 45.5 (2.5) 49.0 (2.9)
Test Acc. w/ Noise 42.3 (3.9) 48.3 (2.2) 49.5 (2.5)

Caltech-UCSD
Birds-200-2011

Val. Acc. 65.3 (0.6) 68.9 (0.8) 69.4 (0.6)
Test Acc. 62.3 (1.1) 66.1 (0.6) 66.1 (0.4)
Val. Acc. w/ Noise 28.6 (0.8) 32.5 (1.0) 31.7 (2.8)
Test Acc. w/ Noise 27.5 (1.3) 31.4 (1.9) 31.0 (2.4)

Stanford Cars

Val. Acc. 79.9 (0.6) 85.9 (0.3) 83.5 (0.6)
Test Acc. 78.9 (0.6) 83.9 (0.4) 81.6 (0.8)
Val. Acc. w/ Noise 51.8 (1.6) 60.3 (2.8) 57.2 (3.2)
Test Acc. w/ Noise 50.3 (1.0) 58.9 (2.0) 56.0 (3.2)

Table 9: ImageNet-1K results for other ViT configurations

Pretrained Model Mean-Std Top-1 → w/ Noise Rank → w/ Noise RankDiff
vit base patch16 384.augreg in1k INCEPTION 81.10 → 60.23 676 → 524 -152
vit base patch16 384.augreg in21k ft in1k INCEPTION 85.99 → 70.89 129 → 208 +79
vit base patch16 clip 384.laion2b ft in12k in1k OPENAI 87.21 → 70.38 55 → 227 +172
vit base patch16 clip 384.openai ft in1k OPENAI 86.20 → 68.55 110 → 285 +175
vit base patch16 clip 384.openai ft in12k in1k OPENAI 87.03 → 69.11 61 → 269 +208
vit base patch16 clip 384.laion2b ft in1k OPENAI 86.62 → 66.63 83 → 348 +265

vit base patch32 224.augreg in1k INCEPTION 74.90 → 58.44 1075 → 569 -506
vit base patch32 224.sam in1k INCEPTION 73.69 → 51.33 1101 → 748 -353
vit base patch32 224.augreg in21k ft in1k INCEPTION 80.71 → 65.31 719 → 392 -327
vit base patch32 clip 224.openai ft in1k OPENAI 81.93 → 63.94 591 → 428 -163
vit base patch32 clip 224.laion2b ft in1k OPENAI 82.58 → 63.09 504 → 450 -54
vit base patch32 clip 224.laion2b ft in12k in1k OPENAI 83.30 → 65.57 419 → 386 -33

vit base patch32 384.augreg in1k INCEPTION 78.75 → 59.65 893 → 539 -354
vit base patch32 384.augreg in21k ft in1k INCEPTION 83.35 → 63.72 412 → 437 +25
vit base patch32 clip 384.openai ft in12k in1k OPENAI 85.21 → 68.40 191 → 293 +102
vit base patch32 clip 384.laion2b ft in12k in1k OPENAI 85.37 → 65.58 180 → 383 +203

Poisson noise. Let S be the filter support with |S| = m = k2. Let h = {ht}t∈S denote the linear filter
coefficients on S, and Yt ∼ Poisson(xt) independent. For a locally constant intensity on the filter support,
where xt ≈ x̄ in a smooth patch, we have

Var[
∑
t

htYt] =
∑
t

h2
tVar[Yt] =

∑
t

h2
txt = x̄

∑
t

h2
t +

∑
t

h2
t (xt − x̄) ≈ x̄∥h∥22, (10)

21

987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

Under review as a conference paper at ICLR 2026

Table 10: Classification accuracy (%) for fine-tuning ViTs on the Caltech-101.

Pretrained Model Mean-Std Val. Acc. w/ Noise Test Acc. w/ Noise
vit base patch16 clip 224.openai ft in12k in1k OPENAI 93.1 (0.6) → 84.1 (1.1) 92.0 (0.8) → 81.8 (1.4)
vit base patch16 clip 224.openai ft in12k in1k INCEPTION 95.7 (0.6) → 90.4 (0.8) 94.5 (0.7) → 89.5 (1.2)
vit base patch16 clip 224.openai ft in12k in1k IMAGENET 91.6 (1.2) → 80.5 (2.4) 90.5 (0.8) → 78.5 (2.4)
vit base patch16 clip 224.datacompxl OPENAI 95.3 (0.8) → 86.4 (2.3) 94.6 (0.6) → 84.8 (2.1)
vit base patch16 clip 224.datacompxl INCEPTION 96.2 (0.6) → 91.0 (1.3) 95.7 (0.9) → 89.7 (1.4)
vit base patch16 clip 224.datacompxl IMAGENET 94.7 (0.7) → 82.5 (1.9) 93.8 (1.0) → 80.8 (2.6)
vit base patch16 clip 224.dfn2b OPENAI 90.2 (11.2) → 80.1 (15.0) 88.9 (12.3) → 78.8 (14.8)
vit base patch16 clip 224.dfn2b INCEPTION 96.5 (0.6) → 91.7 (1.2) 95.9 (0.5) → 91.0 (1.8)
vit base patch16 clip 224.dfn2b IMAGENET 93.7 (3.9) → 79.9 (10.5) 92.4 (4.6) → 78.2 (10.7)
vit base patch16 clip 224.metaclip 2pt5b OPENAI 94.9 (0.7) → 81.5 (2.0) 94.2 (0.7) → 79.5 (2.0)
vit base patch16 clip 224.metaclip 2pt5b INCEPTION 96.0 (0.5) → 89.5 (2.1) 95.0 (0.8) → 87.8 (2.8)
vit base patch16 clip 224.metaclip 2pt5b IMAGENET 93.6 (1.0) → 76.3 (3.2) 92.3 (1.2) → 74.6 (2.9)
vit base patch16 clip 224.openai OPENAI 92.8 (0.2) → 78.9 (3.1) 91.7 (1.1) → 76.9 (3.6)
vit base patch16 clip 224.openai INCEPTION 95.4 (0.3) → 87.8 (0.9) 95.4 (0.6) → 86.9 (0.9)
vit base patch16 clip 224.openai IMAGENET 92.3 (0.4) → 80.3 (1.8) 91.8 (0.7) → 77.7 (1.9)
vit base patch16 clip 224.laion2b OPENAI 92.3 (0.9) → 77.7 (2.4) 91.2 (0.6) → 75.6 (1.6)
vit base patch16 clip 224.laion2b INCEPTION 95.3 (0.6) → 87.3 (0.3) 94.3 (0.6) → 85.8 (0.5)
vit base patch16 clip 224.laion2b IMAGENET 90.1 (0.8) → 71.5 (2.4) 89.2 (0.5) → 67.6 (2.4)
vit base patch16 224.augreg in1k OPENAI 94.4 (0.3) → 84.8 (0.9) 94.1 (0.3) → 85.7 (0.4)
vit base patch16 224.augreg in1k INCEPTION 94.1 (0.3) → 86.0 (0.5) 93.8 (0.2) → 86.7 (0.8)
vit base patch16 224.augreg in1k IMAGENET 94.3 (0.6) → 84.7 (0.6) 94.0 (0.3) → 85.7 (0.7)
vit base patch16 224.augreg in21k OPENAI 97.0 (0.4) → 95.1 (0.5) 96.3 (0.4) → 94.5 (0.7)
vit base patch16 224.augreg in21k INCEPTION 97.1 (0.3) → 95.8 (0.5) 96.6 (0.2) → 95.4 (0.3)
vit base patch16 224.augreg in21k IMAGENET 97.2 (0.2) → 95.1 (0.2) 96.6 (0.5) → 94.6 (0.5)
vit base patch16 224.mae OPENAI 92.0 (0.5) → 76.3 (0.7) 91.6 (0.8) → 75.7 (1.2)
vit base patch16 224.mae INCEPTION 91.6 (0.6) → 80.8 (1.2) 91.7 (0.4) → 79.4 (0.7)
vit base patch16 224.mae IMAGENET 91.7 (0.5) → 75.4 (0.6) 91.6 (0.4) → 74.5 (1.2)

Table 11: Classification accuracy (%) for fine-tuning ViTs on the FGVC-Aircraft.

Pretrained Model Mean-Std Val. Acc. w/ Noise Test Acc. w/ Noise
vit base patch16 clip 224.openai ft in12k in1k OPENAI 62.6 (1.7) → 46.6 (1.9) 61.7 (1.2) → 47.4 (1.7)
vit base patch16 clip 224.openai ft in12k in1k INCEPTION 60.4 (23.6) → 50.8 (20.4) 59.5 (23.7) → 50.9 (21.1)
vit base patch16 clip 224.openai ft in12k in1k IMAGENET 59.5 (1.4) → 44.0 (1.6) 58.2 (1.2) → 45.2 (1.2)
vit base patch16 clip 224.datacompxl OPENAI 73.7 (4.9) → 50.7 (7.7) 72.2 (4.0) → 52.7 (7.1)
vit base patch16 clip 224.datacompxl INCEPTION 80.8 (1.9) → 66.3 (3.7) 79.4 (2.0) → 66.3 (3.5)
vit base patch16 clip 224.datacompxl IMAGENET 65.9 (4.1) → 40.0 (6.1) 65.0 (3.4) → 41.5 (5.2)
vit base patch16 clip 224.dfn2b OPENAI 75.4 (4.9) → 55.7 (7.0) 75.2 (5.2) → 57.3 (8.0)
vit base patch16 clip 224.dfn2b INCEPTION 82.0 (4.1) → 70.0 (8.1) 81.7 (4.3) → 70.7 (7.6)
vit base patch16 clip 224.dfn2b IMAGENET 72.9 (6.6) → 51.3 (9.4) 71.3 (7.1) → 52.5 (9.8)
vit base patch16 clip 224.metaclip 2pt5b OPENAI 68.0 (2.7) → 48.4 (4.1) 67.3 (2.5) → 49.7 (3.0)
vit base patch16 clip 224.metaclip 2pt5b INCEPTION 80.5 (1.6) → 68.4 (3.2) 79.2 (2.2) → 69.5 (3.4)
vit base patch16 clip 224.metaclip 2pt5b IMAGENET 64.5 (1.3) → 40.9 (2.4) 64.2 (1.4) → 43.3 (2.3)
vit base patch16 clip 224.openai OPENAI 63.7 (4.7) → 47.4 (5.6) 61.9 (4.3) → 49.1 (4.4)
vit base patch16 clip 224.openai INCEPTION 74.6 (3.5) → 65.4 (4.5) 73.4 (3.8) → 66.0 (5.4)
vit base patch16 clip 224.openai IMAGENET 60.3 (1.6) → 42.6 (2.7) 59.4 (1.4) → 43.4 (2.6)
vit base patch16 clip 224.laion2b OPENAI 59.9 (1.9) → 37.7 (2.4) 58.4 (1.7) → 38.5 (1.9)
vit base patch16 clip 224.laion2b INCEPTION 69.2 (4.4) → 54.3 (5.5) 68.9 (5.4) → 55.0 (6.0)
vit base patch16 clip 224.laion2b IMAGENET 58.3 (1.8) → 36.0 (2.3) 56.9 (1.3) → 37.3 (2.4)
vit base patch16 224.augreg in1k OPENAI 67.8 (0.8) → 50.7 (1.9) 67.0 (1.2) → 51.2 (1.7)
vit base patch16 224.augreg in1k INCEPTION 67.0 (0.5) → 52.4 (1.4) 67.2 (0.9) → 53.6 (1.0)
vit base patch16 224.augreg in1k IMAGENET 67.4 (0.4) → 50.1 (1.4) 67.3 (0.8) → 51.0 (2.5)
vit base patch16 224.augreg in21k OPENAI 78.2 (0.3) → 69.9 (0.5) 77.2 (0.6) → 69.4 (1.1)
vit base patch16 224.augreg in21k INCEPTION 78.6 (0.6) → 71.6 (0.4) 77.3 (0.4) → 71.0 (0.4)
vit base patch16 224.augreg in21k IMAGENET 77.8 (0.6) → 68.9 (0.9) 77.1 (1.0) → 68.5 (1.2)
vit base patch16 224.mae OPENAI 69.3 (0.7) → 39.9 (4.2) 68.8 (1.5) → 40.3 (4.4)
vit base patch16 224.mae INCEPTION 69.1 (0.7) → 43.5 (2.8) 69.1 (0.9) → 44.0 (2.3)
vit base patch16 224.mae IMAGENET 69.1 (0.6) → 40.0 (2.1) 69.4 (1.2) → 41.8 (1.2)

22

1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

Under review as a conference paper at ICLR 2026

Table 12: Classification accuracy (%) for fine-tuning ViTs on the Caltech-UCSD Birds-200-2011.

Pretrained Model Mean-Std Val. Acc. w/ Noise Test Acc. w/ Noise
vit base patch16 clip 224.openai ft in12k in1k OPENAI 84.0 (0.9) → 64.0 (1.7) 81.3 (1.0) → 61.1 (1.1)
vit base patch16 clip 224.openai ft in12k in1k INCEPTION 85.3 (1.6) → 69.3 (1.7) 82.7 (1.3) → 67.0 (2.5)
vit base patch16 clip 224.openai ft in12k in1k IMAGENET 82.6 (0.8) → 59.8 (1.3) 79.7 (1.6) → 56.7 (1.8)
vit base patch16 clip 224.datacompxl OPENAI 83.4 (1.1) → 53.6 (2.3) 81.4 (1.0) → 50.7 (2.6)
vit base patch16 clip 224.datacompxl INCEPTION 84.7 (0.7) → 59.7 (4.5) 82.8 (0.8) → 57.3 (3.8)
vit base patch16 clip 224.datacompxl IMAGENET 83.6 (0.9) → 52.2 (2.8) 81.5 (1.1) → 49.3 (2.6)
vit base patch16 clip 224.dfn2b OPENAI 84.8 (1.2) → 58.8 (2.6) 83.0 (1.3) → 56.4 (2.3)
vit base patch16 clip 224.dfn2b INCEPTION 87.3 (1.6) → 69.6 (4.7) 86.0 (2.0) → 67.3 (5.2)
vit base patch16 clip 224.dfn2b IMAGENET 81.6 (2.7) → 50.0 (2.3) 79.7 (2.8) → 48.1 (2.9)
vit base patch16 clip 224.metaclip 2pt5b OPENAI 83.3 (0.5) → 49.5 (3.5) 81.1 (0.9) → 47.9 (3.2)
vit base patch16 clip 224.metaclip 2pt5b INCEPTION 85.8 (0.9) → 62.1 (2.0) 83.4 (0.6) → 60.1 (1.8)
vit base patch16 clip 224.metaclip 2pt5b IMAGENET 81.3 (2.5) → 45.3 (4.5) 78.7 (2.7) → 43.6 (4.2)
vit base patch16 clip 224.openai OPENAI 83.4 (0.5) → 60.1 (2.4) 81.8 (0.8) → 57.7 (2.8)
vit base patch16 clip 224.openai INCEPTION 85.5 (0.8) → 66.7 (3.4) 83.3 (1.3) → 65.1 (3.7)
vit base patch16 clip 224.openai IMAGENET 75.3 (14.1) → 50.1 (13.8) 72.7 (13.9) → 47.5 (12.6)
vit base patch16 clip 224.laion2b OPENAI 81.4 (1.4) → 52.1 (2.2) 78.5 (2.5) → 50.0 (2.0)
vit base patch16 clip 224.laion2b INCEPTION 84.6 (0.6) → 62.0 (2.1) 82.2 (0.4) → 59.9 (2.1)
vit base patch16 clip 224.laion2b IMAGENET 81.0 (0.4) → 50.1 (0.7) 78.7 (0.5) → 48.3 (1.1)
vit base patch16 224.augreg in1k OPENAI 83.4 (0.4) → 67.6 (0.7) 81.7 (0.8) → 65.8 (0.7)
vit base patch16 224.augreg in1k INCEPTION 83.9 (0.5) → 69.3 (0.7) 81.8 (0.3) → 67.8 (0.5)
vit base patch16 224.augreg in1k IMAGENET 83.7 (0.4) → 67.5 (1.2) 81.8 (0.2) → 65.9 (0.7)
vit base patch16 224.augreg in21k OPENAI 89.6 (0.2) → 84.0 (0.5) 88.9 (0.5) → 83.4 (0.4)
vit base patch16 224.augreg in21k INCEPTION 89.6 (0.2) → 84.9 (0.7) 88.7 (0.4) → 83.7 (0.6)
vit base patch16 224.augreg in21k IMAGENET 89.5 (0.2) → 83.9 (0.1) 88.9 (0.3) → 83.4 (0.7)
vit base patch16 224.mae OPENAI 76.7 (0.5) → 39.3 (4.4) 74.1 (0.6) → 36.7 (3.9)
vit base patch16 224.mae INCEPTION 74.0 (0.3) → 41.1 (4.2) 72.5 (1.1) → 38.9 (4.4)
vit base patch16 224.mae IMAGENET 76.4 (0.9) → 38.0 (1.5) 74.4 (0.5) → 35.6 (1.7)

so the per-output-pixel variance inherits the k−2 and s−2 scalings up to the local factor x̄. Applying the
Anscombe transform A(y) = 2

√
y + 3/8 approximately stabilizes the Poisson variance to ≈ 1, after which

Gaussian-based methods are applicable (Anscombe, 1948).

Salt-and-pepper noise. Under the symmetric model where each pixel is replaced by either 0 or 1 with
probability q and a locally constant patch with mean x̄, we have

E[avg error] = q(1/2− x̄), Var[avg error] = O(1/m).

Max pooling tends to amplify these impulses. As a robust alternative, median pooling recovers the clean
value in constant patches when contamination is lower than 50% and is 1-Lipschitz with respect to ℓ∞;
trimmed means are another option.

Normalization and Lipschitz sensitivity. The pixel-space Lipschitz bound in Theorem 5 does not depend
on the specific noise type, so smaller per-channel normalization stds increase the worst-case sensitivity
equally for Gaussian and non-Gaussian perturbations.

E ARE THERE OTHER FACTORS THAT CAUSE VULNERABILITIES OF CLIP?

We investigated other factors that might possibly address the vulnerability of CLIP. However, the vulnera-
bility of CLIP could not be fully addressed by other factors examined below.

How about swapping pretrained weights with supervised ViT? Answer: No. Differences in training
datasets and losses would lead to different pretrained weights for CLIP ViTs. Assuming that certain dataset
or loss properties, or equivalently certain properties of the pretrained weights of CLIP ViTs, lead to vul-
nerabilities, we performed controlled experiments to swap parts of them with those of supervised ViTs.

23

1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Under review as a conference paper at ICLR 2026

Table 13: Classification accuracy (%) for fine-tuning ViTs on the Stanford-Cars.

Pretrained Model Mean-Std Val. Acc. w/ Noise Test Acc. w/ Noise
vit base patch16 clip 224.openai ft in12k in1k OPENAI 83.8 (0.1) → 71.0 (1.4) 83.0 (0.7) → 69.7 (0.7)
vit base patch16 clip 224.openai ft in12k in1k INCEPTION 87.3 (1.2) → 77.7 (2.1) 86.2 (1.3) → 76.3 (2.2)
vit base patch16 clip 224.openai ft in12k in1k IMAGENET 81.1 (1.6) → 63.8 (2.2) 80.7 (1.9) → 64.6 (2.2)
vit base patch16 clip 224.datacompxl OPENAI 90.1 (0.7) → 76.1 (1.7) 89.2 (0.6) → 75.3 (1.5)
vit base patch16 clip 224.datacompxl INCEPTION 91.3 (0.2) → 80.9 (0.8) 90.4 (0.6) → 79.4 (1.0)
vit base patch16 clip 224.datacompxl IMAGENET 89.8 (1.4) → 75.4 (3.8) 89.1 (1.4) → 74.3 (3.8)
vit base patch16 clip 224.dfn2b OPENAI 91.1 (0.5) → 78.9 (2.5) 90.2 (0.5) → 77.8 (2.2)
vit base patch16 clip 224.dfn2b INCEPTION 94.2 (1.1) → 88.7 (2.2) 93.2 (1.0) → 87.6 (2.8)
vit base patch16 clip 224.dfn2b IMAGENET 91.1 (1.8) → 78.8 (5.0) 90.7 (1.4) → 77.6 (5.4)
vit base patch16 clip 224.metaclip 2pt5b OPENAI 87.7 (0.7) → 67.7 (1.7) 86.9 (0.7) → 66.4 (1.7)
vit base patch16 clip 224.metaclip 2pt5b INCEPTION 91.1 (0.3) → 78.5 (1.3) 90.2 (0.4) → 77.3 (1.6)
vit base patch16 clip 224.metaclip 2pt5b IMAGENET 87.1 (1.3) → 64.7 (2.0) 86.1 (1.7) → 63.2 (2.3)
vit base patch16 clip 224.openai OPENAI 85.6 (3.3) → 73.5 (4.1) 85.3 (3.1) → 72.4 (3.9)
vit base patch16 clip 224.openai INCEPTION 89.8 (0.4) → 81.0 (1.1) 89.5 (0.4) → 80.2 (0.7)
vit base patch16 clip 224.openai IMAGENET 85.2 (1.6) → 70.1 (3.0) 84.2 (1.3) → 69.0 (3.0)
vit base patch16 clip 224.laion2b OPENAI 84.8 (2.4) → 65.6 (4.2) 84.1 (2.3) → 65.3 (3.7)
vit base patch16 clip 224.laion2b INCEPTION 89.9 (0.8) → 78.4 (2.3) 88.8 (0.9) → 77.0 (2.2)
vit base patch16 clip 224.laion2b IMAGENET 79.9 (4.7) → 54.5 (6.6) 79.5 (5.1) → 54.9 (7.6)
vit base patch16 224.augreg in1k OPENAI 82.8 (0.5) → 67.4 (1.0) 81.6 (0.4) → 66.3 (0.9)
vit base patch16 224.augreg in1k INCEPTION 83.2 (0.6) → 69.2 (1.1) 81.6 (0.5) → 67.5 (1.3)
vit base patch16 224.augreg in1k IMAGENET 83.0 (0.3) → 66.2 (1.4) 81.5 (0.2) → 65.1 (1.6)
vit base patch16 224.augreg in21k OPENAI 89.7 (0.2) → 82.6 (0.5) 88.5 (0.3) → 81.4 (0.5)
vit base patch16 224.augreg in21k INCEPTION 89.9 (0.2) → 84.2 (0.4) 88.3 (0.3) → 83.3 (0.7)
vit base patch16 224.augreg in21k IMAGENET 89.9 (0.5) → 81.9 (0.5) 88.6 (0.6) → 81.1 (0.3)
vit base patch16 224.mae OPENAI 80.4 (0.5) → 61.1 (1.5) 78.0 (0.6) → 58.5 (0.9)
vit base patch16 224.mae INCEPTION 80.3 (0.3) → 61.7 (1.0) 77.6 (0.5) → 59.3 (0.8)
vit base patch16 224.mae IMAGENET 80.6 (0.4) → 58.1 (2.2) 78.3 (0.3) → 56.7 (2.4)

Specifically, we swapped pretrained weights of each block in vit base patch16 clip 224.openai
with those of vit base patch16 224.augreg2 in21k ft in1k to see which module weights de-
termine the robustness against Gaussian noise (Table 14). Although swapping pretrained weights partially
addressed the vulnerability of CLIP ViTs in certain cases near the last block such as targeting block12,
the improvements were not as significant as the approach of replacing mean-std constants. Furthermore,
the improvement depended on the specific weight choice in the target block; block12.mlp.fc2.weight im-
proved robustness, whereas block12.norm1.weight did not. When we swapped multiple weights such as
block12.{mlp.fc2, mlp.fc1, norm2}, the performance rather degraded, which indicates that improvement is
not guaranteed.

How about architectural differences such as norm pre? Answer: No. Although the architecture is
almost the same for CLIP ViT and supervised ViTs, one difference is that CLIP ViTs insert additional
LayerNorm in the patch embedding before the transformer blocks start, which we refer to as norm pre.
Assuming that the use of norm pre causes vulnerability, we performed controlled experiments training ViTs
with and without norm pre (Table 16). Nevertheless, the ViT with norm pre, which corresponds to the
identical architecture of CLIP ViTs, rather exhibited improved performance against Gaussian noise, which
indicates that norm pre does not lead to the vulnerability observed in CLIP ViTs.

F EMPIRICAL SIMULATIONS FOR TESTING ASSUMPTION AND THEOREMS

We performed module-level simulations to compare empirical results with the expected values stated in the
assumption and theorems. All simulation results closely matched the theoretical expectations. The used
Python source code is available in the supplementary materials.

24

1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174

Under review as a conference paper at ICLR 2026

Table 14: Results of swapping pretrained weights in CLIP ViT. The accuracy with Gaussian noise partially
improved.

Swap Val. Acc. → w/ Noise Test Acc. → w/ Noise
stem 53.1 (1.2) → 36.3 (0.9) 51.3 (1.5) → 35.4 (1.2)
block1 81.3 (19.1) → 48.6 (14.8) 80.1 (19.9) → 46.2 (14.1)
block2 41.9 (3.4) → 20.1 (1.6) 40.7 (3.9) → 18.8 (1.6)
block3 68.6 (13.6) → 29.9 (4.5) 67.9 (13.7) → 28.7 (4.4)
block4 80.2 (6.8) → 29.6 (7.5) 79.8 (6.4) → 28.6 (7.9)
block5 77.0 (4.0) → 30.0 (4.0) 77.3 (3.2) → 29.0 (3.4)
block6 84.7 (0.8) → 39.9 (1.9) 84.0 (0.5) → 37.8 (2.2)
block7 87.8 (0.4) → 45.0 (0.8) 86.5 (0.6) → 44.9 (1.2)
block8 90.5 (0.4) → 49.9 (2.7) 88.4 (0.6) → 48.4 (1.6)
block9 90.7 (0.2) → 56.5 (3.9) 90.1 (0.4) → 54.8 (2.2)
block10 91.5 (0.4) → 62.3 (3.3) 91.0 (0.4) → 60.4 (3.5)
block11 91.4 (0.4) → 59.6 (5.1) 90.7 (0.9) → 58.1 (6.0)
block12 91.5 (0.5) → 62.3 (4.9) 91.4 (0.6) → 60.8 (4.4)
head 82.8 (7.6) → 48.4 (7.5) 82.3 (6.8) → 48.2 (6.6)

Baseline (IMAGENET) 91.2 (0.5) → 58.5 (4.0) 90.7 (0.8) → 58.4 (4.3)
Ours (INCEPTION) 92.5 (0.3) → 71.7 (1.0) 91.9 (0.6) → 70.2 (1.2)

Table 15: Results of swapping specific weights in block12. Swapping multiple weights did not ensure
improved robustness.

Swap Val. Acc. → w/ Noise Test Acc. → w/ Noise
block12.norm1.weight 91.0 (1.3) → 56.8 (8.2) 90.1 (1.3) → 56.6 (8.6)
block12.norm1.bias 91.5 (0.9) → 59.5 (5.7) 90.7 (1.4) → 58.1 (6.1)
block12.attn.qkv.weight 91.0 (0.5) → 60.5 (1.3) 90.3 (0.8) → 59.0 (1.4)
block12.attn.qkv.bias 91.0 (0.9) → 58.7 (3.6) 90.0 (0.9) → 58.4 (3.7)
block12.attn.proj.weight 92.1 (0.6) → 59.8 (5.6) 91.3 (0.9) → 59.8 (5.8)
block12.attn.proj.bias 90.9 (1.0) → 58.3 (5.4) 90.2 (1.2) → 57.8 (5.0)
block12.norm2.weight 91.8 (0.7) → 62.7 (4.3) 90.7 (0.9) → 61.1 (3.7)
block12.norm2.bias 91.4 (0.9) → 60.8 (3.4) 90.8 (0.7) → 59.7 (3.4)
block12.mlp.fc1.weight 91.4 (1.0) → 61.0 (7.6) 91.0 (1.4) → 60.3 (7.0)
block12.mlp.fc1.bias 91.2 (1.3) → 58.3 (3.4) 90.4 (1.5) → 57.4 (3.7)
block12.mlp.fc2.weight 91.3 (0.4) → 65.2 (2.2) 90.5 (0.3) → 63.8 (2.1)
block12.mlp.fc2.bias 91.4 (0.7) → 58.8 (5.0) 90.7 (0.7) → 58.2 (5.4)

block12.mlp.fc2 90.8 (0.6) → 58.7 (3.2) 90.0 (0.4) → 57.7 (3.1)
block12.mlp.fc2 & mlp.fc1 91.9 (1.1) → 64.2 (4.3) 91.6 (0.8) → 63.8 (5.0)
block12.mlp.fc2 & mlp.fc1 & norm2 91.0 (0.5) → 55.5 (4.3) 90.0 (1.4) → 54.0 (5.2)

Aroll We embed each k×k kernel into a 512×512 grid, compute the normalized spectrum |K̂|, form its
ℓ2-radial profile, and fit the low-pass envelope ϕk(r) = (1 + βkr)−(1+δ) by weighted log-MSE (Table 17).
For representative radii of π/8, π/4, π/2, we observed that the empirical magnitudes lie below the fitted
envelopes, which verifies this assumption in practice.

25

1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221

Under review as a conference paper at ICLR 2026

Table 16: Results on different ViT architectures with and without norm pre. The use of norm pre did not
bring vulnerability.

Architecture Top-1 → w/ Noise Top-5 → w/ Noise
w/o norm pre 77.76 → 47.15 93.84 → 68.96
w/ norm pre 78.84 → 54.22 94.14 → 76.13

Table 17: The upper block reports the results for the box kernel. The lower block reports the results for the
Gaussian kernel.

r (rad) Empirical (|K̂k(ω)|) Theoretical (ϕk(∥ω∥))
0.3962 0.0297134 0.0570019
0.7886 0.0129235 0.0167515
1.5661 0.0040941 0.0042482

0.3962 0.0226295 0.0326660
0.7886 0.0059380 0.0068950
1.6031 0.0007060 0.0010978

Table 18: Measured γ for a k × k kernel. Stds for 100 simulations are reported.

k Empirical Theoretical
4 0.062535 ± 0.001019 0.062500
8 0.015584 ± 0.000484 0.015625
12 0.006911 ± 0.000296 0.006944
16 0.003888 ± 0.000212 0.003906
20 0.002487 ± 0.000169 0.002500
24 0.001728 ± 0.000148 0.001736
28 0.001271 ± 0.000129 0.001276
32 0.000973 ± 0.000115 0.000977

Theorem 2 Table 18 reports the Monte Carlo estimate of the per-pixel noise gain γ for a k×k normalized
box filter. We convolve i.i.d. N (0, σ2) noise with the filter via FFT-based circular convolution and compare
the empirical γ̂ with the theoretical ||Kk||2F = 1/k2, where Kk is the normalized k × k box stem kernel.

Theorem 3 Table 19 reports Monte Carlo estimates of the per-output-pixel noise gain γ↓(s) under anti-
aliased downsampling by a factor s, using a g(s) × g(s) normalized box prefilter and decimation. We
compare the empirical γ̂↓ with the theoretical ||Kg(s)||2F = 1/g(s)2, implying ∼ s−2 when g(s) ∝ s.

Theorem 4 The results in Table 20 were obtained via Monte Carlo with 200k trials on S + η with η ∼
N (0, 1) and k = w2. Theoretical entries correspond to σ2/k for average pooling and Gauss-Hermite
quadrature for E[Mk] and E[M2

k] to compute max-pooling bias and MSE.

Theorem 5 We construct random linear maps A with ∥A∥2 = Lz = 3.0, compose them with D =
diag(1/σ) from INCEPTION and OPENAI, and estimate ∥AD∥2 via power iteration. Table 21 compares
the theoretical bound Lz/σmin with the measured norm and their ratio, confirming the predicted 1/σmin

scaling.

26

1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268

Under review as a conference paper at ICLR 2026

Table 19: Measured γ↓(s) for anti-aliased downsampling by a factor of s. Stds for 100 simulations are
reported.

s Empirical Theoretical
1 0.999667 ± 0.006170 1.000000
2 0.250114 ± 0.002767 0.250000
3 0.110970 ± 0.001869 0.111111
4 0.062447 ± 0.001483 0.062500
6 0.027772 ± 0.000880 0.027778
8 0.015567 ± 0.000649 0.015625
12 0.006945 ± 0.000433 0.006944
16 0.003925 ± 0.000359 0.003906

Table 20: Comparison of empirical (Em.) and theoretical (Th.) results for average and max poolings

w k Avg MSE (Em.) Avg MSE (Th.) Max Bias (Em.) Max Bias (Th.) Max MSE (Em.) Max MSE (Th.)
2 4 0.25083 0.25000 1.02936 1.02938 1.55372 1.55133
3 9 0.11049 0.11111 1.48535 1.48501 2.56409 2.56262
4 16 0.06265 0.06250 1.76524 1.76599 3.41148 3.41374
5 25 0.04006 0.04000 1.96619 1.96531 4.12369 4.12097
6 36 0.02779 0.02778 2.11722 2.11812 4.71818 4.72069

Table 21: Measured ∥AD∥2 closely matches the bound Lz/σmin for random A under INCEPTION and
OPENAI, confirming the 1/σmin scaling

Constants Bound Lz/σmin Measured ∥AD∥2
Lz/σmin

∥AD∥2
INCEPTION 6.000000 5.998213 1.000298
OPENAI 11.480943 11.200055 1.025079

G RANK DIFFERENCE AS A ROBUSTNESS PROXY

Here, we denote the rank difference (RankDiff) at severity τ > 0,
RankDiffi(τ) := rankτ (i)− rank0(i),

where rankτ orders models by accuracy at τ , so a more negative RankDiffi indicates a robustness gain. In
this section, we show that RankDiff is a principled, scale-free proxy because it aggregates pairwise rank flips
caused by robustness slope differences.

Assumption (local linearity with quadratic remainder). For model i ∈ {1, . . . ,M}, let Ai(τ) be its
accuracy at noise severity τ ≥ 0 and pi := Ai(0). For some τ0 > 0,

Ai(τ) = pi − ρiτ + ri(τ), ρi ≥ 0, |ri(τ)| ≤ Liτ
2 (τ ∈ [0, τ0]), (11)

where ρi is the first-order robustness slope, and Li bounds the curvature. The linear accuracy drop after ap-
plying a specific corruption has been verified in several studies (Recht et al., 2019; Hendrycks & Dietterich,
2019).

Pairwise flip rule. For any i ̸= j,
Ai(τ)−Aj(τ) = (pi − pj)− (ρi − ρj)τ + εij(τ), |εij(τ)| ≤ (Li + Lj)τ

2. (12)

27

1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315

Under review as a conference paper at ICLR 2026

If ρi ̸= ρj , the first-order flip threshold is

τ⋆ij :=
pi − pj
ρi − ρj

. (13)

When τ⋆ij ∈ (0, τ0] and the margin condition

|(pi − pj)− (ρi − ρj)τ | > (Li + Lj)τ
2 (14)

holds at τ , the sign of Ai(τ) − Aj(τ) is determined by the first-order term: Model i outranks j at τ if and
only if τ > τ⋆ij when ρi < ρj (Figure 5).

0.0 0.2 0.4 0.6 0.8 1.0
τ (noise severity)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

pi

pj

τ ⋆
ij

τ ⋆
ij = pi − pj

ρi − ρj

j ≻ i i ≻ j

Condition:

ρi < ρj ⇒ i ≻ j iff τ > τ ⋆
ij

Ai(τ) = pi − ρiτ
Aj(τ) = pj − ρjτ

Figure 5: Illustration of a rank flip

RankDiff counts robustness-driven flips. Let Ai(τ) := {j ̸= i : |(pi−pj)−(ρi−ρj)τ | ≤ (Li+Lj)τ
2}

be the set of ambiguous pairs at τ . Then, we have

|RankDiffi(τ) +
∑
j ̸=i

sgn(ρj − ρi)1{ρi ̸= ρj , 0 < τ⋆ij ≤ τ}| ≤ |Ai(τ)|. (15)

In particular, if Eq. 14 holds for all j ̸= i at τ , equality holds in Eq. 15: RankDiffi(τ) equals the net number
of pairwise flips caused by having a smaller slope ρi.

28

1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362

Under review as a conference paper at ICLR 2026

Under the empirically observed near-linearity of accuracy-severity curves within the tested range, RankDiff
is a scale-free robustness score: It ignores absolute calibration of accuracies and rewards models with smaller
slopes ρi by counting the robustness-driven improvements in relative order.

Although we wrote that a negative RankDiff indicates better robustness, we are not saying that understand-
ing the absolute value of RankDiff would capture robustness; to clarify our approach, we rather compare
pairwise architectures to compute their corresponding ∆RankDiff to understand the relative difference in
robustness.

H EXPERIMENTAL SETUP

Here, we present the experimental details and full hyperparameters for the implementations.

Gaussian Noise We injected Gaussian noise into images using the GaussNoise() function
from the Albumentations library (Buslaev et al., 2020). By default, we used the transform
A.GaussNoise(std range=(0.1, 0.22), p=1.0) with a scale factor with range (0.1, 0.22),
which determines the fraction of the maximum value, i.e., 255 for uint8 images or 1.0 for float images.
For ImageNet-1K experiments, we used a scale factor with a range of (0.2, 0.44). The probability of apply-
ing Gaussian noise was set to 1. Note that Gaussian noise was applied only during evaluation, i.e., during
the test phase, not during the training phase.

ResNet Experiments We targeted multi-class classification tasks on the Oxford-IIIT Pet, Caltech-101,
FGVC-Aircraft, Caltech-UCSD Birds-200-2011, and Stanford Cars datasets. The Oxford-IIIT Pet dataset
contains 7K pet images from 37 classes; the Caltech-101 dataset includes 9K object images from 101 classes
with a background category; the FGVC-Aircraft dataset includes 10K aircraft images from 102 classes;
the Caltech-UCSD Birds-200-2011 dataset includes 12K bird images from 200 classes; and the Stanford
Cars dataset includes 16K car images from 196 classes. These datasets are publicly available on their
official websites. Each dataset was split into training, validation, and test sets with a ratio of 70:15:15.
Unless specified otherwise, all experiments were conducted at a resolution of 2242 using standard data
augmentation, including random resized cropping to 256 pixels, random rotations within 15 degrees, color
jitter with a factor of 0.4, random horizontal flip with a probability of 0.5, center cropping with 224-pixel
windows, and mean-std normalization based on ImageNet statistics.

For training, stochastic gradient descent with a momentum of 0.9, learning rate of 0.01, cosine annealing
schedule with 200 iterations (Loshchilov & Hutter, 2017), weight decay of 10−2, and mini-batch size of
128 were used. These hyperparameters were determined based on the accuracy of the validation set. One
exception was made for experiments with larger resolutions ranging from 2242 to 8962, where we used
mini-batch size of 64 to adjust GPU memory, while other hyperparameters are the same. The model with
the highest validation accuracy was obtained after 200 training epochs, and we reported accuracy on the
validation and test sets. The ResNets were trained from scratch to solely focus on the architectural difference.
The training was conducted on a single GPU machine. An average and standard deviation of five runs with
different random seeds were reported for each result.

For ResNet, we used five types with the following architectures:

• Original ResNet: 7× 7 stem with a width = 64 with single-layer, strided convolution in downsam-
pling.

• ResNet-C: 3-layer 3× 3 stem with a width = 32 (32, 32, 64), strided convolution in downsampling.

• ResNet-D: 3-layer 3× 3 stem with a width = 32 (32, 32, 64), average pool in downsampling.

• ResNet-S: 3-layer 3×3 stem with a width = 64 (64, 64, 128), strided convolution in downsampling.

29

1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409

Under review as a conference paper at ICLR 2026

• ResNet-T: 3-layer 3× 3 stem with a width = 32 (24, 48, 64), average pool in downsampling.

CLIP Experiments For the CLIP experiments, we used pretrained weights for both supervised ViTs and
CLIP ViTs. When performing fine-tuning experiments, we used a learning rate of 0.001 and a weight decay
of 2× 10−4, while keeping all other hyperparameters the same as in the above setup in ResNet.

ImageNet-1K Training The ImageNet-1K dataset contains 1.28M images for 1,000 classes. We referred
to the hyperparameter recipe described in the official documentation and the recipe from DeiT (Touvron
et al., 2021). For training, the AdamW optimizer (Loshchilov & Hutter, 2019) with learning rate 5× 10−4,
epochs 400, warm-up learning rate 10−6, cosine annealing schedule (Loshchilov & Hutter, 2017), weight
decay 0.05, label smoothing (Szegedy et al., 2016) 0.1, RandAugment (Cubuk et al., 2020) of magnitude
9 and noise-std 0.5 with increased severity (rand-m9-mstd0.5-inc1), random erasing (Zhong et al., 2020)
with probability 0.25, Cutmix (Yun et al., 2019) 1.0, stochastic depth (Huang et al., 2016) 0.1, mini-batch
size 128 per GPU, Exponential Moving Average of model weights with decay factor 0.99996, and image
resolution 2242 were used. The training was performed on a 4×A100 GPU machine, which required two to
three days per training.

Mean-Std Constants Note that pretrained models may have been trained by any of the normalization
constants; our choice of mean-std constants was applied on evaluation or fine-tuning of pretrained models.
For training our own models, mean-std constants were applied during both the training and test phases. The
exact values are as follows:

OPENAI_CLIP_MEAN = (0.48145466, 0.4578275, 0.40821073)
OPENAI_CLIP_STD = (0.26862954, 0.26130258, 0.27577711)
IMAGENET_INCEPTION_MEAN = (0.5, 0.5, 0.5)
IMAGENET_INCEPTION_STD = (0.5, 0.5, 0.5)
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)

30

1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456

Under review as a conference paper at ICLR 2026

I LIST OF NOTATIONS

Table 22: Kernel and resolution-related notations.

Symbol Description

x ∈ [0, 1]C×H×W Input image with C channels, height H , width W .
η ∼ N (0, σ2I) Additive i.i.d. Gaussian noise with per-pixel std σ.
I, In Identity matrix of appropriate size; In ∈ Rn×n.
∗ 2D discrete convolution.
û DFT of u on the grid Ω.
Ω DFT grid.
ε Infrared cutoff ε = 2π/max{H,W}.
Kk ∈ Rk×k Stem kernel of side length k; K̂k denotes its DFT.
ϕk(r) = (1 + βkr)−1−δ Radial low-pass envelope upper-bounding |K̂k(ω)|.
β, δ Positive envelope constants.

γ(k) =
E∥Kk ∗ η∥22
σ2HW

Per-pixel noise gain of the stem; equals ∥Kk∥2F .
s ≥ 1 Downsampling factor.
g(s) Anti-alias filter size before downsampling; c1s ≤ g(s) ≤ c2s.
c1, c2 Absolute positive constants, independent of s.
Ds = (⇓s) ◦Kg(s) Anti-aliased downsampling: Filter then downsample by s.
⇓s Downsampling by a factor s along height and width.

γ↓(s) =
E∥Dsη∥22
σ2HW/s2

Per-output-pixel noise gain after downsampling.

E[·],Var[·] Expectation and variance.
C,C′ Absolute constants independent of k and s in the bounds.
∥ · ∥2, ∥ · ∥∞, ∥ · ∥F Euclidean, sup, and Frobenius norms.

Table 23: Pooling and CLIP-related notations.

Symbol Description

w,m = w2 Pooling window side length and number of elements.
S = (S1, . . . , Sm) Clean activations in one pooling window; S(j) denotes the j-th order statistic.
Xavg = 1

m

∑m
i=1(Si + ηi) Average-pooled noisy activation.

Xmax = max1≤i≤m(Si + ηi) Max-pooled noisy activation.
Savg = 1

m

∑
i Si, Smax = maxi Si Clean pooled activations.

δavg = Xavg − Savg Avg-pool error; E[δavg] = 0, Var[δavg] = σ2/m.
δmax = Xmax − Smax Max-pool error.
Tavg, Tmax Pooling maps on a window for average and max.
∥T∥ℓ2→ℓ2 Lipschitz constant in ℓ2; ∥Tavg∥ = m−1/2, ∥Tmax∥ ≤ 1.
∆ = S(1) − S(2) Gap between the largest and second-largest clean entries.
Zi

i.i.d.∼ N (0, 1) Standard normals; Mm = maxi Zi, Am = maxi |Zi|.
µ ∈ RC ,σ ∈ RC

>0 Per-channel mean and std for input normalization.
Nµ,σ(x) = (x− µ)/σ Channel-wise normalization.
f Vision backbone operating on normalized inputs.
z = Nµ,σ(x) Normalized input.
Lz Global ℓ2-Lipschitz constant of f on its domain.
Fµ,σ = f ◦Nµ,σ End-to-end map; ∥Fµ,σ∥Lip ≤ Lz/σmin.
σmin = minc σc Smallest channel std in normalization.

31

1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503

Under review as a conference paper at ICLR 2026

Table 24: Rank difference-related notations.

Symbol Description

τ ≥ 0 Noise severity level.
Ai(τ) Accuracy of model i at severity τ ; pi = Ai(0) denotes clean accuracy.
ρi First-order accuracy slope with respect to severity.
Li, τ0 Curvature bound and validity radius for the local model.
rankτ (i) Rank of model i by accuracy at severity τ .
RankDiffi(τ) = rankτ (i)− rank0(i) Rank change.

τ⋆
ij =

pi − pj
ρi − ρj

First-order crossing severity of models i and j.

Ai(τ) Set of j whose ordering with i is ambiguous at τ .
sgn(·),1{·} Sign and indicator functions.

J ON GAUSSIAN NOISE

Figure 6: Illustration of Theorem 1. Features with Gaussian noise serve as an upper bound for corruption
that has the same scale in pixel space.

There are several reasons why analyzing robustness against Gaussian noise is both useful and representative
of common corruptions.

Gaussian surrogate via moment matching. The local linearization Eq. 1 implies that the feature perturba-
tion δf is well-approximated to first order in the input perturbation ∆. Let µ∆ := E[∆] and Σ∆ := Cov(∆),
where the expectation is taken over the randomness of the corruption. Plugging Eq. 1 into δf and taking
expectations gives

E[δf]= Jf (x)µ∆ +O
(
E∥∆∥22

)
,

Cov[δf]= Jf (x)Σ∆Jf (x)
⊤ +O

(
E∥∆∥32

)
.

Thus, up to higher-order terms, any corruption whose pixel perturbation has mean µ∆ and covariance Σ∆

induces the same first two feature-space moments as the Gaussian feature perturbation Jf (x)η generated by
η ∼ N (µ∆,Σ∆). This applies both to zero-mean corruptions, such as noise and blur, and to mean-shifting
ones, such as brightness enhancement, after decomposing ∆ into its mean and zero-mean residual. In this
sense, Gaussian noise serves as a convenient surrogate once we restrict attention to the low-order moments
of the feature perturbation.

32

1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550

Under review as a conference paper at ICLR 2026

Gaussian probes for locally linear corruptions. We now show that Gaussian probes are, in fact, the
worst-case within a broad variance-bounded family. Let a corruption C with randomness ξ produce x′ =
C(x, ξ) with ∆C := x′ − x, and assume that, for small severities, it admits a factorization

∆C = BC(x)ζ, E[ζ] = 0, Cov(ζ) ⪯ Id,

for some linear operator BC(x) that depends smoothly on x and a random vector ζ. The covariance bound
simply constrains the overall severity of the corruption. This model covers many image corruptions: Gaus-
sian blur and motion blur correspond to convolutional BC(x); brightness, contrast, and fog are locally affine
rescalings; and JPEG compression or elastic distortions can be approximated as linear maps plus higher-
order residuals at low severity.

Under the local linearization Eq. 1, we have f(x+∆C)− f(x) ≈ Jf (x)BC(x)ζ, and hence

E
[
∥f(x+∆C)− f(x)∥22

]
≈ E

[
∥Jf (x)BC(x)ζ∥22

]
= tr

(
Jf (x)ΣC(x)Jf (x)

⊤),
with ΣC(x) := BC(x)Cov(ζ)BC(x)

⊤ ⪯ BC(x)BC(x)
⊤. Replacing ζ by η ∼ N (0, Id) yields

E
[
∥f(x+BC(x)η)− f(x)∥22

]
= ∥Jf (x)BC(x)∥2F ,

which saturates the same variance-bounded envelope: Any other zero-mean ζ with Cov(ζ) ⪯ Id can only
decrease this expectation. Thus, once a corruption is reduced to a linear shape BC(x), additive Gaussian
noise with matching BC(x) provides a worst-case, direction-agnostic stress test on f . Our architectural
conclusions, such as kernel size, resolution, pooling, and normalization constants, depend only on how
they scale this Jacobian-based quantity, so they transfer directly from Gaussian probes to a broad range of
common corruptions that admit such local linear models.

Empirical Simulation Here, we performed an empirical simulation to investigate the validity of The-
orem 1. Using common image corruptions, including blur, weather, and digital corruptions used in
Hendrycks & Dietterich (2019), we first calibrated each corruption and Gaussian noise to have an equal
maximum eigenvalue in pixel space and then compared the variance in feature space when passing through
the same linear stem. For the stem, we considered five setups with different kernel sizes of 3, 5, and 7; high
and low resolutions; and average pooling. Theoretically, Gaussian noise achieves an upper bound on this
variance, and our simulations support this expectation: the ratio of corruption to Gaussian in feature-space
variance saturates around 1 across all corruptions tested here (Figure 7). These results clearly demonstrate
that the analysis of Gaussian noise captures the worst-case robustness against these common image corrup-
tions.

K PROOF OF THEOREM 1

In this section, we prove the Gaussian envelope result stated in Theorem 1. Throughout, we fix x and write
J := Jf (x) for the Jacobian of f at x, and all expectations are taken with respect to the perturbation.

Proof. By the local linearization in Eq. 1, for any perturbation ∆, we have

f(x+∆)− f(x) = J∆+ r(x,∆), ∥r(x,∆)∥2 ≤ L(x)
2 ∥∆∥22, (16)

for some local curvature bound L(x) > 0. For brevity, define r := r(x,∆). Then

∥δf∥22 = ∥J∆+ r∥22 = ∥J∆∥22 + 2⟨J∆, r⟩+ ∥r∥22. (17)

33

1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597

Under review as a conference paper at ICLR 2026

Figure 7: Empirical simulation of Theorem 1, comparing the variance in feature space for common image
corruptions and Gaussian noise. All results show the ratio to be close to or less than one, which confirms
that Gaussian noise serves as an upper bound.

Leading term. Taking expectations and using E[∆] = 0 with covariance Σ∆ := E[∆∆⊤], we obtain

E
[
∥J∆∥22

]
= E

[
∆⊤J⊤J∆

]
= tr

(
J⊤JE[∆∆⊤]

)
= tr

(
J⊤JΣ∆

)
= tr

(
JΣ∆J

⊤). (18)

Now use the spectral constraint Σ∆ ⪯ σ2Id. Let B := J⊤J ⪰ 0 and write the eigen-decomposition
Σ∆ = QΛQ⊤, where Λ = diag(λ1, . . . , λd) with 0 ≤ λi ≤ σ2. Then

tr(JΣ∆J
⊤)= tr(BΣ∆) = tr(BQΛQ⊤) = tr(ΛQ⊤BQ)

=

d∑
i=1

λi(Q
⊤BQ)ii ≤

(
max

i
λi

) d∑
i=1

(Q⊤BQ)ii

≤ σ2tr(Q⊤BQ) = σ2tr(B) = σ2∥J∥2F . (19)

Combining Eq. 18 and Eq. 19 yields

tr
(
JΣ∆J

⊤) ≤ σ2∥J∥2F . (20)

Remainder terms. Next, we control the second and third terms in Eq. 17 using the remainder bound
in Eq. 16. First, by Cauchy–Schwarz,∣∣⟨J∆, r⟩

∣∣≤ ∥J∆∥2∥r∥2 ≤ ∥J∥F ∥∆∥2 · L(x)
2 ∥∆∥22 = L(x)

2 ∥J∥F ∥∆∥32, (21)

so ∣∣E[⟨J∆, r⟩]
∣∣ ≤ L(x)

2 ∥J∥FE
[
∥∆∥32

]
. (22)

34

1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644

Under review as a conference paper at ICLR 2026

Similarly, from ∥r∥22 ≤ L(x)2

4 ∥∆∥42, we have E
[
∥r∥22

]
≤ L(x)2

4 E
[
∥∆∥42

]
.

To interpret the big-O term, it is natural to consider a family of small perturbations ∆ = εξ with a fixed
random vector ξ and ε > 0 a scale parameter controlling the perturbation magnitude. Then E∥∆∥32 =
ε3E∥ξ∥32 and E∥∆∥42 = ε4E∥ξ∥42, so we have

2
∣∣E[⟨J∆, r⟩]

∣∣+ E
[
∥r∥22

]
= O(ε3) = O

(
E∥∆∥32

)
, (23)

with a constant depending only on J , L(x), and the law of ξ. We summarize this as O
(
E∥∆∥32

)
in the

statement of the theorem.

Putting everything together. Taking expectations in Eq. 17 and combining Eq. 18, Eq. 20, and Eq. 23,
we obtain

E
[
∥f(x+∆)− f(x)∥22

]
= tr

(
JΣ∆J

⊤)+O
(
E∥∆∥32

)
≤ σ2∥J∥2F +O

(
E∥∆∥32

)
, (24)

which proves the first claim.

Gaussian case and saturation. Now let η ∼ N (0, σ2Id). Then Ση = σ2Id, and the leading term becomes

tr
(
JΣηJ

⊤) = tr
(
J(σ2Id)J

⊤) = σ2tr(JJ⊤) = σ2∥J∥2F . (25)
The same remainder analysis as above, applied with ∆ = η, yields

E
[
∥f(x+ η)− f(x)∥22

]
= σ2∥J∥2F +O

(
E∥η∥32

)
. (26)

Thus, among all zero-mean perturbations with covariance Σ∆ ⪯ σ2Id, Gaussian noise η ∼ N (0, σ2Id)
saturates the upper bound on the leading Jacobian-based contribution to the expected feature-space mean-
squared error.

L CORRELATION ANALYSIS

Figure 8: For all 1,174 timm models, we plotted the rank difference with respect to resolution (left) and the
number of parameters (right). A significant level of correlation was found for resolution.

35

1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691

Under review as a conference paper at ICLR 2026

The experiments in the main text targeted ViTs and ResNets with a controlled setup for kernel size and
resolution. Here, we further found that these observations hold for other vision models. Figure 8 summarizes
how the rank difference is affected by resolution and the number of parameters across all 1,174 timm vision
models, which also include other models beyond ViTs and ResNets. Firstly, we observed that the number of
parameters showed no relationship with the rank difference, which implies that choosing a larger model does
not lead to improved robustness against Gaussian noise. By contrast, we observed that the resolution, as well
as the kernel size, had a significant level of correlation with the rank difference. Note that this correlation
arises even though there are plenty of other factors that affect robustness, such as different training recipes.
Overall, smaller resolution led to a smaller rank difference, and this trend holds as a general behavior across
vision models.

Figure 9: For ViTs, the rank difference exhibited a significant level of correlation with the ratio of patch to
image.

Extending the findings of the main text, we can also say that the ratio of patch to image has a significant
correlation with robustness against Gaussian noise. For ViTs, this ratio becomes 100 · k2/HW (%). We
investigated its relationship with the rank difference (Figure 9), targeting the ViTs listed in Table 1. Again,
although these ViTs were trained with different recipes, the overall tendency showed a significant correlation:
a higher ratio of patch to image led to a smaller rank difference, indicating improved robustness.

36

	Introduction
	Related Work
	Why Gaussian noise?
	Noise Attenuation by Low-Pass Kernels
	Empirical Observation
	Theoretical Analysis

	Choice on Pooling
	Empirical Observation
	Theoretical Analysis

	Why are CLIP models vulnerable?
	Empirical Observation
	Theoretical Analysis

	Conclusion
	Proofs for Theorems 2 and 3
	Conventions and assumptions
	Proof of Theorem 2 (Quadratic decay in stem kernel size)
	Proof of Theorem 3 (Quadratic decay under anti-aliased downsampling)

	Proof of Theorem 4 (Average and max poolings under Gaussian Noise)
	Additional Experimental Results
	Extension to Other Noise Models
	Are there other factors that cause vulnerabilities of CLIP?
	Empirical Simulations for Testing Assumption and Theorems
	Rank difference as a robustness proxy
	Experimental Setup
	List of Notations
	On Gaussian Noise
	Proof of Theorem 1
	Correlation Analysis

