

UNLOCKING NOISE-RESISTANT VISION: KEY ARCHITECTURAL SECRETS FOR ROBUST MODELS *AGAINST GAUSSIAN NOISE*

Anonymous authors
Paper under double-blind review

ABSTRACT

While the robustness of vision models is often measured, their dependence on specific architectural design choices is rarely dissected. We investigate why certain vision architectures are inherently more robust to additive Gaussian noise and convert these empirical insights into simple, actionable design rules. Specifically, we performed extensive evaluations on 1,174 pretrained vision models, empirically identifying four consistent design patterns for improved robustness against Gaussian noise: larger stem kernels, smaller input resolutions, average pooling, and supervised vision transformers (ViTs) rather than CLIP ViTs, which yield up to 506 rank improvements and 21.6%p accuracy gains. We then develop a theoretical analysis that explains these findings, converting observed correlations into causal mechanisms. First, we prove that low-pass stem kernels attenuate noise with a gain that decreases quadratically with kernel size and that anti-aliased downsampling reduces noise energy roughly in proportion to the square of the downsampling factor. Second, we demonstrate that average pooling is unbiased and suppresses noise in proportion to the pooling window area, whereas max pooling incurs a positive bias that grows slowly with window size and yields a relatively higher mean-squared error and greater worst-case sensitivity. Third, we reveal and explain the vulnerability of CLIP ViTs via a pixel-space Lipschitz bound: The smaller normalization standard deviations used in CLIP preprocessing amplify worst-case sensitivity by up to 1.91 times relative to the Inception-style preprocessing common in supervised ViTs. Our results collectively disentangle robustness into interpretable modules, provide a theory that explains the observed trends, and build practical, plug-and-play guidelines for designing vision models more robust against Gaussian noise.

1 INTRODUCTION

Vision models, implemented with deep neural networks, are now deployed across numerous fields, even in safety-critical applications ranging from medical imaging to autonomous driving. Their remarkable accuracy, however, conceals an uncomfortable fact: Performance can deteriorate when test images deviate—even slightly—from the training distribution (Hendrycks & Dietterich, 2019). Even light Gaussian noise can trigger misclassifications, and in autonomous vehicles, such brittleness can lead to life-threatening failures.

Recent studies have empirically discovered that the architectural design of deep neural networks strongly shapes their robustness to common image transformations. Specifically, Paul & Chen (2022); Bai et al. (2021); Naseer et al. (2021) observed that vision transformers (ViTs) often degrade less than previous convolutional networks, such as residual networks (ResNets), under various corruptions. Although promising results with ViTs have been reported, such studies typically treat each architecture as a whole, leaving unanswered which specific internal choices contribute to gains in robustness.

In this study, we dissect the robustness of vision models under Gaussian noise, showing that specific micro-architectural choices are key factors in determining robustness. We performed extensive experiments on available vision models from the `timm` library (Wightman, 2019), as well as controlled experiments; our empirical meta-analysis compares architectures pairwise within the vision models, which enables us to isolate the effect of each micro-architectural factor, thereby revealing four interesting design patterns in architectures that improve robustness against Gaussian noise:

- **Larger** stem kernels, such as larger patch sizes in ViTs, rather than **smaller** ones,
- **Smaller** input resolutions, such as 224^2 , rather than **larger** ones, such as 384^2 ,
- **Average** pooling, rather than **max** pooling, and
- **Supervised** learning ViTs, rather than **CLIP** ViTs.

Extending these empirical observations, we also derive several theoretical results that account for the differences in these choices. Specifically, we prove that noise gain decays quadratically with the stem kernel size and that downsampling after anti-alias filtering yields analogous gains (Section 4). Then we analyze Gaussian-noise error formulas for both pooling operators, showing that average pooling is unbiased with decreased variance, whereas max pooling incurs a positive bias and a higher mean-squared error (Section 5). Finally, we demonstrate that the vulnerability of CLIP ViTs is primarily caused by the choice of mean-std normalization, whose effect is proven with Lipschitz bounds (Section 6).

2 RELATED WORK

Robustness literature and positioning of this study. Robustness to common corruptions is typically evaluated using ImageNet-C (Hendrycks & Dietterich, 2019). A consistent observation across studies is that ViTs often degrade less than CNNs do under such corruptions (Paul & Chen, 2022; Bai et al., 2021; Naseer et al., 2021). However, most prior comparisons treat architectures as monolithic families or vary training recipes, making it hard to isolate which micro-architectural choices drive robustness. Furthermore, multiple corruptions, such as brightness changes and blur, are mixed in. In contrast to these complex corruptions and architectures, we design a systematic evaluation protocol to isolate the effect of each micro-architectural factor. Furthermore, we select Gaussian noise due to its approximation of aggregate perturbations by the central limit theorem and its prevalence in real-world imaging, such as sensor readout and thermal noise. To this end, our experiments disentangle four architectural choices across pretrained models and controlled settings, enabling clean attribution. Our findings align with prior results on robustness studies (Paul & Chen, 2022; Boureau et al., 2010) and add causal, quantitative explanations. The parts below review related work that corresponds to the empirical design patterns we identified for enhancing Gaussian noise robustness.

Anti-aliasing, kernels, and resolution. Anti-aliased downsampling is known to reduce high-frequency sensitivity and improve stability (Zhang, 2019; Zou et al., 2023), and analogous ideas have been explored for ViTs (Qian et al., 2021). Complementing these studies, we provide explicit scaling laws: The output noise energy decays quadratically with the stem kernel size and the anti-aliased downsampling factor, explaining why larger stem kernels and smaller input resolutions improve robustness.

Pooling under additive noise. Classical analysis shows that average pooling is unbiased with variance reduction, whereas max pooling introduces a positive bias under Gaussian noise (Boureau et al., 2010); recent studies further clarify when max pooling aids invariance despite worse noise behavior (Matoba et al., 2023). We extend this line and empirically verify the predicted advantage of average pooling over max pooling across multiple datasets.

Normalization, CLIP preprocessing, and Lipschitz sensitivity. Vision models employ specific per-channel mean-std preprocessing, which, according to Lipschitz-based robustness theory (Virmaux & Scanman, 2018; Gouk et al., 2021; Tsuzuku et al., 2018), directly rescales pixel-space sensitivity. We make this

094 connection explicit: Smaller channel standard deviations enlarge the end-to-end Lipschitz bound, predicting
 095 greater worst-case and mean-squared sensitivity to additive noise.
 096

097 3 WHY GAUSSIAN NOISE?

100 Our study focuses on robustness against additive Gaussian noise, which essentially captures comparable or
 101 even worst-case robustness against common image corruptions. Indeed, additive Gaussian noise is the least
 102 favorable among all perturbations whose covariance is spectrally bounded, which makes it a conservative
 103 measure of robustness.

104 **Setup.** Let $x \in [0, 1]^d$ be an image, and let $f : \mathbb{R}^d \rightarrow \mathbb{R}^k$ be a vision model. A corruption produces
 105 $x' = \mathcal{C}(x, \xi)$ with $\Delta := x' - x$, and we write $\delta_f := f(x + \Delta) - f(x)$. For small perturbations, we linearize
 106 at x :

$$f(x + \Delta) = f(x) + J_f(x)\Delta + r(x, \Delta), \quad \|r(x, \Delta)\|_2 \leq \frac{L(x)}{2} \|\Delta\|_2^2, \quad (1)$$

107 where $J_f(x) \in \mathbb{R}^{k \times d}$ is the Jacobian and $L(x)$ bounds the local Hessian.
 108

110 **Gaussian as a least-favorable perturbation.** We show that, under a natural variance constraint, Gaussian
 111 noise maximizes the expected feature-space mean-squared error.

112 **Theorem 1** (Gaussian envelope under a variance constraint). *Let Δ be any zero-mean perturbation with
 113 covariance $\Sigma_\Delta \succeq 0$ satisfying $\Sigma_\Delta \preceq \sigma^2 I_d$. Then, under the local model Eq. 1, we have*

$$\mathbb{E}[\|f(x + \Delta) - f(x)\|_2^2] = \text{tr}(J_f(x)\Sigma_\Delta J_f(x)^\top) + O(\mathbb{E}\|\Delta\|_2^3) \leq \sigma^2 \|J_f(x)\|_F^2 + O(\mathbb{E}\|\Delta\|_2^3).$$

116 Moreover, if $\eta \sim \mathcal{N}(0, \sigma^2 I_d)$, then $\mathbb{E}[\|f(x + \eta) - f(x)\|_2^2] = \sigma^2 \|J_f(x)\|_F^2 + O(\mathbb{E}\|\eta\|_2^3)$, so Gaussian noise
 117 saturates this upper bound on the leading term.
 118

119 **Connection to other corruptions.** Other image corruptions, including noise, blur, brightness, weather,
 120 and digital artifacts, can be implemented as locally bounded operators, such as convolutions, pixelwise affine
 121 transforms, and compression. These yield perturbations $\Delta_{\mathcal{C}, s}$ whose covariance has a bounded spectral
 122 norm $\lambda_{\max}(\text{Cov}(\Delta_{\mathcal{C}, s})) \leq \sigma_{\mathcal{C}}(s)^2$ for some effective variance level $\sigma_{\mathcal{C}}(s)$. Applying Theorem 1 with
 123 $\sigma = \sigma_{\mathcal{C}}(s)$ shows that, to leading order, the expected feature-space distortion induced by corruption \mathcal{C} at
 124 severity s is upper-bounded by that induced by Gaussian noise $\eta \sim \mathcal{N}(0, \sigma_{\mathcal{C}}(s)^2 I_d)$, which is the least
 125 favorable under the same variance budget. Furthermore, averaging over a data distribution $x \sim \mathcal{D}$ gives
 126 $\mathbb{E}_{x, \Delta}[\|f(x + \Delta) - f(x)\|_2^2] \lesssim \sigma^2 \mathbb{E}_x[\|J_f(x)\|_F^2]$, so robustness to Gaussian noise probes essentially the
 127 same Jacobian-based sensitivity that governs many common corruptions. See Appendix J and Appendix K
 128 for further discussion and empirical results.

129 **Limitations** Our study focuses exclusively on robustness to additive Gaussian noise, which, although com-
 130 mon in imaging pipelines, does not encompass all real-world corruptions, such as adversarial perturbations,
 131 weather effects, or sensor-specific artifacts. Also, the empirical findings are derived from pretrained models
 132 in the `timm` library and controlled experiments on specific datasets, which may represent a limitation in their
 133 generalizability to other domains like medical imaging or video processing. Future work could extend these
 134 insights to broader corruptions, architectures, and datasets. See Appendix L for results on other architectures
 135 under a controlled setup.
 136

137 4 NOISE ATTENUATION BY LOW-PASS KERNELS

139 ViTs have various configurations (Dosovitskiy et al., 2021), such as the size of each patch in the patch
 140 embedding and the input image size in pixels, which we refer to as the input resolution. Even within the

141 Table 1: Top-1 accuracy (%) on the ImageNet-1K dataset before and after adding Gaussian noise to images.
 142 For the rank difference (RankDiff), more negative values indicate better robustness under noise. Models
 143 with large kernels and small resolutions consistently showed improved robustness.

Pretrained Model	Size	Patch Size	Resol.	Top-1→w/ Noise	Rank→w/ Noise	RankDiff
vit_small_patch16_224.augreg.in1k	S	16 ²	224 ²	78.84→59.22	885→547	-338
vit_small_patch16_384.augreg.in1k	S	16 ²	384 ²	81.12→56.59	673→613	-60
vit_base_patch16_224.augreg.in1k	B	16 ²	224 ²	79.15→62.21	862→487	-375
vit_base_patch16_384.augreg.in1k	B	16 ²	384 ²	81.10→60.23	676→524	-152
vit_base_patch32_224.augreg.in1k	B	32 ²	224 ²	74.90→58.44	1075→569	-506
vit_base_patch32_384.augreg.in1k	B	32 ²	384 ²	78.75→59.65	893→539	-354
vit_tiny_patch16_224.augreg.in21k_ft.in1k	T	16 ²	224 ²	75.46→40.34	1060→949	-111
vit_tiny_patch16_384.augreg.in21k_ft.in1k	T	16 ²	384 ²	78.42→30.50	921→1078	+157
vit_small_patch16_224.augreg.in21k_ft.in1k	S	16 ²	224 ²	81.39→62.43	644→479	-165
vit_small_patch16_384.augreg.in21k_ft.in1k	S	16 ²	384 ²	83.80→62.25	349→484	+135
vit_small_patch32_224.augreg.in21k_ft.in1k	S	32 ²	224 ²	76.00→57.14	1044→601	-443
vit_small_patch32_384.augreg.in21k_ft.in1k	S	32 ²	384 ²	80.48→57.33	740→596	-144
vit_base_patch8_224.augreg.in21k_ft.in1k	B	8 ²	224 ²	85.80→73.50	145→118	-27
vit_base_patch16_224.augreg.in21k_ft.in1k	B	16 ²	224 ²	84.53→71.19	257→192	-65
vit_base_patch16_384.augreg.in21k_ft.in1k	B	16 ²	384 ²	85.99→70.89	129→208	+79
vit_base_patch32_224.augreg.in21k_ft.in1k	B	32 ²	224 ²	80.71→65.31	719→392	-327
vit_base_patch32_384.augreg.in21k_ft.in1k	B	32 ²	384 ²	83.35→63.72	412→437	+25
vit_large_patch16_224.augreg.in21k_ft.in1k	L	16 ²	224 ²	85.84→76.62	141→55	-86
vit_large_patch16_384.augreg.in21k_ft.in1k	L	16 ²	384 ²	87.08→76.23	59→61	+2
vit_base_patch16_224.orig.in21k_ft.in1k	B	16 ²	224 ²	81.79→60.91	603→513	-90
vit_base_patch16_384.orig.in21k_ft.in1k	B	16 ²	384 ²	84.20→54.91	302→657	+355
vit_base_patch8_224.augreg2.in21k_ft.in1k	B	8 ²	224 ²	86.22→76.09	109→67	-42
vit_base_patch16_224.augreg2.in21k_ft.in1k	B	16 ²	224 ²	85.10→74.50	203→96	-107
vit_base_patch16_224.sam.in1k	B	16 ²	224 ²	80.24→57.13	771→602	-169
vit_base_patch32_224.sam.in1k	B	32 ²	224 ²	73.69→51.33	1101→748	-353
vit_medium_patch16_gap_256.sw.in12k_ft.in1k	M	16 ²	256 ²	84.45→73.07	274→132	-142
vit_medium_patch16_gap_384.sw.in12k_ft.in1k	M	16 ²	384 ²	85.54→73.98	163→106	-57
vit_sol150m_patch16_reg4_gap_256.sbb_e250.in12k_ft.in1k	B+	16 ²	256 ²	86.68→77.54	81→38	-43
vit_sol150m_patch16_reg4_gap_384.sbb_e250.in12k_ft.in1k	B+	16 ²	384 ²	87.37→77.30	49→44	-5

164 same ViT architecture, various pretrained weights are available: They were trained with different recipes, the
 165 hyperparameter combinations used in training. For example, `vit_base_patch16_224.augreg.in1k`
 166 indicates the ViT with a model size of base, a patch size of 16 to set the size of each patch to 16×16 pixels, a
 167 resolution of 224^2 , and pretrained weights obtained using a training recipe of AugReg (Steiner et al., 2022)
 168 and a dataset of ImageNet-1K (Deng et al., 2009). Although plenty of variations in its configuration are
 169 allowed, the effect of each choice on robustness against Gaussian noise has not been clearly studied, making
 170 it difficult for practitioners to choose which one to use.

171 To study the effect of each architectural factor in a ViT on robustness, we performed an ex-
 172 tensive evaluation using pretrained ViTs with various configurations. For example, by comparing
 173 `vit_base_patch16_224.augreg.in1k` and `vit_base_patch32_224.augreg.in1k`, we can
 174 study the effect of the choice of patch sizes of 16 and 32 on performance because all other conditions
 175 remained the same. In this section, we first present empirical observations from different configurations, and
 176 then we examine the corresponding properties.

178 4.1 EMPIRICAL OBSERVATION

179 We used the `timm` library, which provides 1,174 pretrained vision models. For all pretrained models,
 180 we evaluated the top-1 accuracy (%) on the standard ImageNet-1K dataset. Then we injected Gaus-
 181 sian noise into the images on the ImageNet-1K dataset and measured the top-1 accuracy. We used the
 182 `Albumentations.GaussNoise()` function (Buslaev et al., 2020) with a scale factor with a range of
 183 (0.2, 0.44), where the noise was clipped to be [0, 1] and was fixed in our evaluation. Although it is natural
 184 to observe a linear accuracy drop after applying a specific corruption (Recht et al., 2019; Hendrycks & Diet-
 185 terich, 2019), a model with robustness would show a relatively smaller drop in top-1 accuracy. Motivated by
 186 this behavior, we identified robust models by observing relative ranking among the 1,174 models: When a
 187

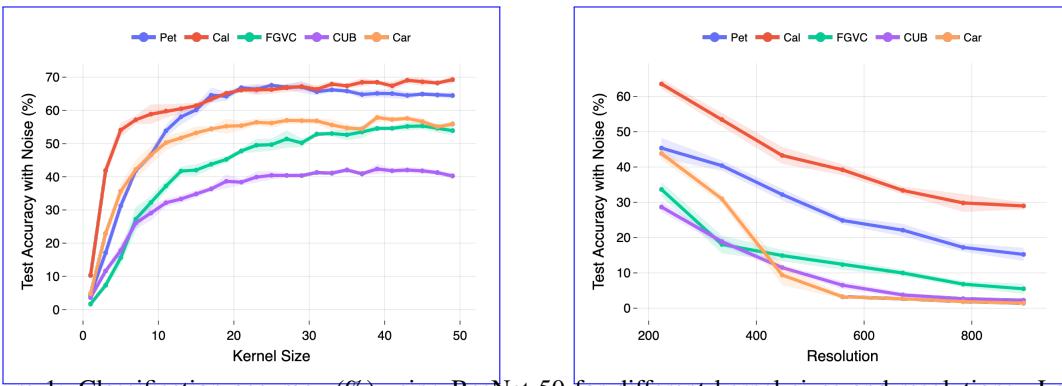


Figure 1: Classification accuracy (%) using ResNet-50 for different kernel sizes and resolutions. Larger kernels and smaller resolutions improved performance. Shaded areas represent standard deviations.

model ranked 50th becomes 20th after adding Gaussian noise, we say that it demonstrates relatively stronger robustness to Gaussian noise. To investigate the model with improved rank, we computed the rank difference before and after applying Gaussian noise, where more negative values indicate better robustness. Full rationale for rank difference and technical details are available in Appendix G and Appendix H. Full results on all models are in supplementary materials. Based on these rank differences, we compared pairs of ViTs with different configurations and investigated which architectural factors contribute to improved ranking under noise.

Table 1 summarizes the top-1 accuracy and ranking changes before and after injecting Gaussian noise. We found that the rank difference was lower when a ViT had 1) a larger patch size, such as 32, and 2) a smaller resolution, such as 224^2 . For example, comparing `vit_base_patch16_224.augreg_in1k` and `vit_base_patch32_224.augreg_in1k`, we observed that the model with a patch size of 32 yielded a lower rank difference than the one with a patch size of 16. We consistently observed similar behavior across multiple pretrained weights such as AugReg2, original ViTs, SAM, and others (Steiner et al., 2022; Chen et al., 2022). The same holds for resolution, where a model with a 224^2 resolution exhibited a lower rank difference than one with 384^2 . Note that this observation is contrary to the common practice of scaling up resolution to improve general performance (Tan & Le, 2019); our results indicate that this practice may increase vulnerability to Gaussian noise. These two factors were significantly more important than others, such as model size.

The patch size of a ViT corresponds to the kernel size used in the patch embedding, which is referred to as the stem. Based on these observations, we investigated whether using a larger stem kernel and a smaller resolution improves robustness to Gaussian noise on another architecture, performing controlled experiments on ResNets (He et al., 2016). Specifically, we trained ResNet-50 on five datasets, including Oxford-IIIT Pet (Parkhi et al., 2012), Caltech-101 (Fei-Fei et al., 2007), FGVC-Aircraft (Maji et al., 2013), Caltech-UCSD Birds-200-2011 (Wah et al., 2011), and Stanford Cars (Krause et al., 2013) datasets. Similar to the above ViT experiments, we trained ResNet in a standard recipe (Appendix H), obtained numerous models with different kernel sizes and resolutions, and measured classification accuracy after applying Gaussian noise.

We observed that larger kernel sizes and smaller resolutions improved classification accuracy under additive Gaussian noise (Figure 1). The classification errors on noisy images tended to decrease quadratically with larger kernel sizes and smaller resolutions.

4.2 THEORETICAL ANALYSIS

Now, we prove that the noise energy decays quadratically with the stem kernel size and the resolution, or equivalently, the anti-aliased downsampling factor. Full proofs are available in Appendix A. Throughout,

$\eta \sim \mathcal{N}(0, \sigma^2 I)$ denotes independent and identically distributed (i.i.d.) Gaussian noise, and the per-pixel noise gain is the output noise energy normalized by the number of output pixels (Oppenheim, 1999).

Setup. For a kernel size $k \geq 3$, let $K_k \in \mathbb{R}^{k \times k}$ denote the linear, shift-invariant stem kernel, and \hat{K}_k its DFT (Oppenheim, 1999). We consider a single, mild assumption on the stem kernel:

- **(A_{roll})** Radial low-pass envelope at scale $1/k$: There exist $\beta, \delta > 0$ such that, for all frequencies ω ,

$$|\hat{K}_k(\omega)| \leq \phi_k(\|\omega\|), \quad \phi_k(r) := (1 + \beta kr)^{-1-\delta},$$

where ϕ_k is nonincreasing in r . This assumption works well in practical use cases (Appendix F).

Per-pixel noise gain for stem kernel. We define

$$\gamma(k) := \frac{\mathbb{E}[\|K_k * \eta\|_2^2]}{\sigma^2 HW} \stackrel{\text{(Parseval)}}{=} \frac{1}{HW} \sum_{\omega} |\hat{K}_k(\omega)|^2 = \|K_k\|_F^2, \quad (2)$$

where H and W are the height and width. Intuitively, $\gamma(k)$ is the average squared magnitude response of the stem kernel.

Theorem 2 (Noise attenuation for practical low-pass stem kernel). *Assume (A_{roll}). Then, there exists a constant $C > 0$, independent of k , such that*

$$\gamma(k) = \frac{\mathbb{E}[\|K_k * \eta\|_2^2]}{\sigma^2 HW} \leq \frac{C}{k^2}.$$

Moreover, the k^{-2} rate is achievable.

Remark 1 (Practical reading of Theorem 2). *Doubling the stem kernel size, such as the patch size from 16 to 32, quarters the output noise energy (≈ -6 dB).*

Per-output-pixel noise gain for anti-aliased downsampling. For a downsampling factor $s \geq 1$, we define

$$D_s := (\downarrow_s) \circ K_{g(s)}, \quad c_1 s \leq g(s) \leq c_2 s, \quad (3)$$

i.e., filter with $K_{g(s)}$ satisfying the same assumptions at scale $g(s)$ and then downsample by s . We normalize the noise gain by the number of output pixels:

$$\gamma_{\downarrow}(s) := \frac{\mathbb{E}[\|D_s \eta\|_2^2]}{\sigma^2 HW/s^2}. \quad (4)$$

Theorem 3 (Resolution-driven robustness). *There exists $C' > 0$ independent of s such that*

$$\gamma_{\downarrow}(s) \leq \frac{C'}{s^2}.$$

This s^{-2} rate is tight up to constants.

Remark 2 (Practical reading of Theorem 3). *Resizing 384^2 to 224^2 corresponds to $s \approx 1.71$ and yields roughly $s^{-2} \approx 0.34$ of the original noise energy per output pixel (≈ -4.7 dB).*

5 CHOICE ON POOLING

5.1 EMPIRICAL OBSERVATION

Extending the above analysis, we probed the effect of choosing specific architectural types of ResNets on robustness. Specifically, ResNet has several types, including ResNet- $\{C, D, T, S\}$ (He et al., 2019; Wightman

282 Table 2: Classification accuracy (%) with different choices of ResNet type. The numbers in the parentheses
 283 represent standard deviations on the five runs with different random seeds.

285	Dataset	Model	ResNet-50-T	ResNet-50-D	ResNet-50-C	ResNet-50-S
Configuration						
287	Stem Conv	3-layer 3×3	3-layer 3×3	3-layer 3×3	3-layer 3×3	3-layer 3×3
288	Stem Width	24, 48, 64	32, 32, 64	32, 32, 64	64, 64, 128	64, 64, 128
289	Downsample	Average	Average	Convolution	Convolution	Convolution
Results						
290	Oxford-IIIT Pet	Val. Acc. w/ Noise	39.1 (11.1)	37.9 (9.6)	34.9 (11.4)	24.3 (3.3)
291		Test Acc. w/ Noise	38.1 (11.3)	36.1 (10.3)	34.0 (10.4)	22.9 (2.4)
292	Caltech-101	Val. Acc. w/ Noise	62.3 (1.4)	61.2 (3.0)	58.8 (1.1)	50.9 (3.2)
293		Test Acc. w/ Noise	59.7 (1.1)	59.1 (2.8)	57.8 (1.0)	49.5 (2.7)
294	FGVC-Aircraft	Val. Acc. w/ Noise	27.8 (1.6)	27.3 (2.4)	23.9 (1.9)	4.7 (0.9)
295		Test Acc. w/ Noise	29.9 (1.1)	30.4 (1.6)	26.1 (2.1)	5.5 (0.8)
296	Caltech-UCSD Birds-200-2011	Val. Acc. w/ Noise	27.6 (2.0)	28.8 (0.8)	26.3 (1.3)	13.9 (0.6)
297		Test Acc. w/ Noise	26.3 (2.0)	27.7 (0.6)	25.2 (1.7)	13.7 (1.1)
298	Stanford Cars	Val. Acc. w/ Noise	56.9 (2.3)	55.2 (2.8)	41.6 (2.3)	29.2 (1.9)
299		Test Acc. w/ Noise	55.0 (1.9)	53.2 (2.7)	40.5 (2.3)	28.5 (2.0)

301
 302 Table 3: Classification accuracy (%) comparing different poolings. The largest gain came from AvgPool.

305	Dataset	Model	MaxPool	NNPool	AvgPool
306	Oxford-IIIT Pet	Val. Acc. w/ Noise	42.0 (1.1)	44.2 (2.8)	50.2 (1.9)
307		Test Acc. w/ Noise	41.8 (0.9)	42.3 (3.2)	49.3 (1.8)
308	Caltech-101	Val. Acc. w/ Noise	59.5 (1.0)	58.3 (1.1)	62.7 (1.8)
309		Test Acc. w/ Noise	57.2 (1.3)	56.7 (1.1)	60.8 (1.9)
310	FGVC-Aircraft	Val. Acc. w/ Noise	24.2 (3.5)	22.8 (1.9)	41.0 (2.9)
311		Test Acc. w/ Noise	27.3 (3.6)	24.7 (1.8)	43.1 (3.1)
312	Caltech-UCSD Birds-200-2011	Val. Acc. w/ Noise	26.9 (1.8)	27.5 (3.0)	28.8 (1.8)
313		Test Acc. w/ Noise	26.1 (1.7)	25.6 (2.6)	26.8 (1.2)
314	Stanford Cars	Val. Acc. w/ Noise	43.3 (3.4)	49.1 (1.9)	52.1 (1.8)
315		Test Acc. w/ Noise	42.2 (2.8)	46.9 (1.3)	51.2 (2.1)

317 et al., 2021; Guo et al., 2020), although the effects of these choices and their underlying mechanisms on
 318 robustness have been rarely studied. Here, we trained the four ResNets on the five datasets mentioned above
 319 and compared their classification accuracy after applying Gaussian noise (Table 2).

320 Overall, the T and D types of ResNet demonstrated robust results against Gaussian noise, followed by the
 321 C and S types of ResNet. While there are several different factors among the four ResNets (Appendix H),
 322 the core difference is the pooling in downsampling: the T and D types of ResNet adopt average pooling
 323 with convolution in downsampling, whereas the C and S types of ResNet adopt strided 1×1 convolution in
 324 downsampling, which is equivalent to nearest-neighbor pooling followed by a 1×1 convolution.

325 We further explored the effect of pooling choice on robustness to Gaussian noise. Using ResNet-50, we
 326 compared the original one, which uses max pooling in the stem, and modified ResNets that adopt nearest-
 327 neighbor pooling or average pooling in the stem (Table 3). ResNets with average pooling consistently

329 yielded robust performance against Gaussian noise among the three setups in pooling. More results for other
 330 architectures under controlled conditions are available in Appendix C.
 331

332 **5.2 THEORETICAL ANALYSIS**
 333

334 We explain why average pooling is more robust than max pooling under i.i.d. additive Gaussian noise.
 335

336 **Setup.** Consider a pooling window of size $k \geq 2$ in a single channel. Let the clean activations be $S =$
 337 $(S_1, \dots, S_k) \in \mathbb{R}^k$ and the observation be $S + \eta$ with i.i.d. noise $\eta \sim \mathcal{N}(0, \sigma^2 I_k)$. We define

$$338 \quad X_{\text{avg}} := \frac{1}{k} \sum_{i=1}^k (S_i + \eta_i), \quad X_{\text{max}} := \max_{1 \leq i \leq k} (S_i + \eta_i),$$

341 their clean counterparts $S_{\text{avg}} := \frac{1}{k} \sum_i S_i$, $S_{\text{max}} := \max_i S_i$, and the errors $\delta_{\text{avg}} := X_{\text{avg}} - S_{\text{avg}}$, $\delta_{\text{max}} :=$
 342 $X_{\text{max}} - S_{\text{max}}$. Let $\Delta := S_{(1)} - S_{(2)} \geq 0$ be the gap between the largest and second-largest entries. We also
 343 denote $T_{\text{avg}}(v) := \frac{1}{k} \sum_{i=1}^k v_i$, $T_{\text{max}}(v) := \max_{1 \leq i \leq k} v_i$, and $\|T\|_{\ell_2 \rightarrow \ell_2}$ for ℓ_2 -Lipschitz constant.
 344

345 **Theorem 4** (Average and max poolings under Gaussian noise). *For any $S \in \mathbb{R}^k$ and $\sigma > 0$, we have*

346 (i) **Average pooling is unbiased and reduces variance proportionally to the window area:** $\mathbb{E}[\delta_{\text{avg}}] =$
 347 0 , $\text{Var}[\delta_{\text{avg}}] = \sigma^2/k$.

348 (ii) **Max pooling incurs a positive noise bias and admits the following mean-squared error (MSE) controls:**

$$350 \quad (\text{Bias}) \quad \mathbb{E}[\delta_{\text{max}}] = \mathbb{E}[\max_i (S_i + \eta_i)] - \max_i S_i \geq 0,$$

$$352 \quad (\text{Uniform-signal case}) \quad (S_1 = \dots = S_k) : \delta_{\text{max}} = \sigma M_k, \mathbb{E}[\delta_{\text{max}}^2] = \sigma^2 \mathbb{E}[M_k^2],$$

$$353 \quad (\text{General case}) \quad |\delta_{\text{max}}| \leq \|\eta\|_\infty \Rightarrow \mathbb{E}[\delta_{\text{max}}^2] \leq \sigma^2 \mathbb{E}[A_k^2],$$

354 where $M_k := \max_{1 \leq i \leq k} Z_i$ and $A_k := \max_{1 \leq i \leq k} |Z_i|$ with $Z_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1)$. In particular, $\mathbb{E}[A_k^2] \leq$
 355 $2 \log(2k) + 2$, so $\mathbb{E}[\delta_{\text{max}}^2] \leq \sigma^2 (2 \log(2k) + 2)$.

356 (iii) **Adversarial worst-case sensitivity.** For any perturbation $n \in \mathbb{R}^k$, $|\frac{1}{k} \sum_i n_i| \leq \|n\|_2 / \sqrt{k}$, so
 357 $\|T_{\text{avg}}\|_{\ell_2 \rightarrow \ell_2} = k^{-1/2}$; and $|\max_i a_i - \max_i b_i| \leq \|a - b\|_\infty \leq \|a - b\|_2$, so $\|T_{\text{max}}\|_{\ell_2 \rightarrow \ell_2} \leq 1$.

360 (iv) **Large-gap regime.** For $z := \Delta/\sigma$, one has $\lim_{z \rightarrow \infty} \mathbb{E}[\delta_{\text{max}}^2] = \sigma^2$; when the top index never switches
 361 under noise, max pooling is equivalent to reading a single noisy entry.

362 **Remark 3** (Practical reading of Theorem 4). *Average pooling is unbiased and cuts Gaussian noise variance
 363 by a factor k (e.g., a 2×2 window gives -6 dB). Max pooling is positively biased, and its MSE grows at
 364 most logarithmically with the window size, while also having a greater worst-case Lipschitz gain, clearly
 365 worse than average pooling.*

366 **Remark 4** (Average and nearest-neighbor poolings). *Selecting a fixed element in the window, such as the
 367 nearest-neighbor pooling, is unbiased with an MSE σ^2 . Hence, average pooling is strictly more robust to
 368 additive Gaussian noise than nearest-neighbor pooling by a factor of k in MSE.*

370 **6 WHY ARE CLIP MODELS VULNERABLE?**
 371

372 **6.1 EMPIRICAL OBSERVATION**
 373

374 Although the original ViT (Dosovitskiy et al., 2021) was trained with supervised learning, the CLIP study
 375 (Radford et al., 2021) trained ViTs with **contrastive** learning and successfully achieved competitive per-

376 Table 4: ImageNet-1K results for ViT-B/16 224² with eight different pretrained weights. CLIP ViTs tended
 377 to yield worse ranks under noise.

379 Pretrained Model	380 Mean-Std	381 Top-1 → w/ Noise	382 Rank → w/ Noise	383 RankDiff
380 vit_base_patch16_224.augreg_in1k	381 INCEPTION	382 79.15 → 62.21	383 862 → 487	384 -375
381 vit_base_patch16_224.augreg2_in21k_ft_in1k	382 INCEPTION	383 85.10 → 74.50	384 203 → 96	385 -107
382 vit_base_patch16_224.orig_in21k_ft_in1k	383 INCEPTION	384 81.79 → 60.91	385 603 → 513	386 -90
383 vit_base_patch16_224.augreg_in21k_ft_in1k	384 INCEPTION	385 84.53 → 71.19	386 257 → 192	387 -65
384 vit_base_patch16_clip_224.openai_ft_in12k_in1k	385 OPENAI	386 85.94 → 70.81	387 135 → 209	388 +74
385 vit_base_patch16_clip_224.laion2b_ft_in12k_in1k	386 OPENAI	387 86.17 → 71.24	388 114 → 189	389 +75
386 vit_base_patch16_clip_224.laion2b_ft_in1k	387 OPENAI	388 85.47 → 67.88	389 168 → 311	390 +143
387 vit_base_patch16_clip_224.openai_ft_in1k	388 OPENAI	389 85.29 → 67.06	390 182 → 340	391 +158

386 performance. Currently, available pretrained weights for ViTs are largely divided into CLIP ViTs and others
 387 trained with supervised learning; we refer to the latter as supervised ViTs. The training methods and datasets
 388 differ between these two sources of ViTs, yielding different pretrained weights, while they have almost the
 389 same architecture with only a single minor difference. Nevertheless, we observed that CLIP ViTs exhibited
 390 significant vulnerabilities when Gaussian noise was applied to images (Table 4). Similar observations
 391 regarding the degraded performance of CLIP ViTs due to distribution shifts have been reported in certain
 392 studies (Shu et al., 2023; Wortsman et al., 2022); they focused on the characteristics of CLIP pretrained
 393 weights due to different datasets or training schemes, but we present a different perspective on this issue.

394 We performed ablation studies to identify what determined the difference in robustness (Appendix E). We
 395 discovered that the core factor in different robustness arose from the preprocessing pipeline. Specifically,
 396 CLIP ViTs apply mean-std normalization to input images using certain per-channel mean and standard de-
 397 viation (std) constants, which we refer to as the OPENAI constants (Appendix H), whereas supervised ViTs
 398 apply different per-channel mean-std constants, which are often called INCEPTION constants (Szegedy
 399 et al., 2016). In other words, the OPENAI mean-std constants led to vulnerability to Gaussian noise, whereas
 400 the INCEPTION mean-std constants did not show this vulnerability.

401 Indeed, when we replaced the OPENAI mean-std constants with the INCEPTION constants, the CLIP ViTs
 402 achieved improved robustness (Table 5). The reverse also holds, and similar vulnerability was observed when
 403 adopting IMAGENET mean-std constants for ViTs. Full results on other datasets are available in Appendix C,
 404 where we observed these improvements across various pretrained weights with different training recipes.

406 6.2 THEORETICAL ANALYSIS

407 We give an explanation for the empirical vulnerability of CLIP ViTs to additive Gaussian noise. The key
 408 point is that channel-wise normalization sets the pixel-space sensitivity scale: Smaller per-channel stds in
 409 the input normalization enlarge the worst-case response to perturbations even before the backbone acts.

410 **Setup.** Let $x \in [0, 1]^{C \times H \times W}$ be an image and η an additive perturbation. Let $\mu \in \mathbb{R}^C$ and $\sigma \in \mathbb{R}_{>0}^C$ be the
 411 per-channel means and stds, and define the normalization $N_{\mu, \sigma}(x) := (x - \mu)/\sigma$. Let $f : \mathbb{R}^{C \times H \times W} \rightarrow \mathbb{R}^K$
 412 denote the vision backbone operating on normalized inputs, which is globally ℓ_2 -Lipschitz with constant L_z
 413 on its domain.¹ We study the end-to-end pipeline $F_{\mu, \sigma} := f \circ N_{\mu, \sigma}$ and its ℓ_2 -Lipschitz constant $\|F_{\mu, \sigma}\|_{\text{Lip}}$.

414 **Theorem 5** (Pixel-space Lipschitz bound). *For any image x and perturbation η , we obtain*

$$415 \|F_{\mu, \sigma}(x + \eta) - F_{\mu, \sigma}(x)\|_2 \leq L_z \left\| \frac{\eta}{\sigma} \right\|_2 \leq \frac{L_z}{\sigma_{\min}} \|\eta\|_2,$$

416 where $\sigma_{\min} := \min_c \sigma_c$. In particular, the pixel-space Lipschitz constant satisfies $\|F_{\mu, \sigma}\|_{\text{Lip}} \leq L_z / \sigma_{\min}$.

417 ¹This assumption holds when linear layers have bounded spectral norms and other modules are Lipschitz. ReLU:
 418 1-Lipschitz (Gouk et al., 2021); GELU: ≈ 1.13 (Hendrycks & Gimpel, 2016); LayerNorm: Lipschitz with a constant
 419 set by γ and ε (Ba et al., 2016).

Table 5: Classification accuracy (%) for fine-tuning ViTs on the Oxford-IIIT Pet.

Pretrained Model	Mean-Std	Val. Acc. w/ Noise	Test Acc. w/ Noise
vit_base_patch16_clip_224.openai_ft_in12k_in1k	OPENAI	94.5 (1.0) → 77.7 (3.4)	93.8 (1.0) → 76.3 (4.1)
vit_base_patch16_clip_224.openai_ft_in12k_in1k	INCEPTION	95.5 (0.5) → 87.3 (2.1)	95.2 (0.6) → 87.2 (2.2)
vit_base_patch16_clip_224.openai_ft_in12k_in1k	IMAGENET	94.2 (0.4) → 73.9 (2.3)	93.4 (0.5) → 72.7 (2.5)
vit_base_patch16_clip_224.datacomp1	OPENAI	93.6 (0.9) → 67.4 (6.0)	93.2 (0.9) → 67.3 (5.9)
vit_base_patch16_clip_224.datacomp1	INCEPTION	94.7 (0.5) → 78.5 (4.0)	93.6 (0.6) → 78.4 (3.8)
vit_base_patch16_clip_224.datacomp1	IMAGENET	92.8 (0.9) → 57.6 (7.4)	92.6 (0.5) → 58.1 (7.4)
vit_base_patch16_clip_224.dfn2b	OPENAI	95.0 (0.3) → 73.1 (1.5)	94.1 (0.5) → 73.3 (1.9)
vit_base_patch16_clip_224.dfn2b	INCEPTION	94.8 (0.8) → 78.6 (4.9)	93.6 (0.4) → 79.8 (5.0)
vit_base_patch16_clip_224.dfn2b	IMAGENET	95.1 (0.3) → 69.8 (2.7)	94.0 (0.4) → 68.8 (3.1)
vit_base_patch16_clip_224.metaclip_2pt5b	OPENAI	92.8 (0.7) → 64.8 (4.4)	92.0 (0.7) → 62.3 (3.9)
vit_base_patch16_clip_224.metaclip_2pt5b	INCEPTION	94.7 (0.4) → 78.5 (2.0)	93.9 (0.3) → 78.5 (1.8)
vit_base_patch16_clip_224.metaclip_2pt5b	IMAGENET	91.6 (0.3) → 54.5 (2.5)	90.8 (0.3) → 52.8 (1.6)
vit_base_patch16_clip_224.openai	OPENAI	92.5 (0.3) → 71.7 (1.0)	91.9 (0.6) → 70.2 (1.2)
vit_base_patch16_clip_224.openai	INCEPTION	94.0 (0.7) → 78.6 (4.6)	93.2 (0.9) → 77.3 (5.1)
vit_base_patch16_clip_224.openai	IMAGENET	91.2 (0.5) → 58.5 (4.0)	90.7 (0.8) → 58.4 (4.3)
vit_base_patch16_clip_224.laion2b	OPENAI	91.8 (1.2) → 56.1 (7.7)	90.5 (1.1) → 54.0 (6.6)
vit_base_patch16_clip_224.laion2b	INCEPTION	93.8 (0.6) → 76.4 (1.9)	92.8 (0.5) → 75.6 (1.8)
vit_base_patch16_clip_224.laion2b	IMAGENET	90.2 (0.8) → 52.3 (4.4)	89.5 (0.8) → 51.4 (4.1)
vit_base_patch16_224.augreg_in1k	OPENAI	95.5 (0.2) → 88.7 (0.3)	94.9 (0.2) → 88.2 (0.7)
vit_base_patch16_224.augreg_in1k	INCEPTION	95.5 (0.1) → 89.7 (0.5)	94.4 (0.3) → 89.2 (0.8)
vit_base_patch16_224.augreg_in1k	IMAGENET	95.5 (0.2) → 87.7 (0.5)	94.9 (0.2) → 87.9 (0.7)
vit_base_patch16_224.augreg_in21k	OPENAI	95.6 (0.3) → 91.4 (0.3)	95.2 (0.5) → 91.9 (0.6)
vit_base_patch16_224.augreg_in21k	INCEPTION	95.9 (0.2) → 92.3 (0.3)	95.6 (0.4) → 92.6 (0.4)
vit_base_patch16_224.augreg_in21k	IMAGENET	95.7 (0.5) → 91.6 (0.5)	95.6 (0.3) → 92.0 (0.5)
vit_base_patch16_224.mae	OPENAI	93.5 (0.3) → 70.8 (2.8)	93.4 (0.2) → 72.7 (2.3)
vit_base_patch16_224.mae	INCEPTION	93.7 (0.3) → 75.0 (2.1)	93.3 (0.2) → 75.2 (2.5)
vit_base_patch16_224.mae	IMAGENET	93.5 (0.3) → 72.0 (2.0)	92.7 (0.5) → 71.9 (2.2)

Proof. Write $z = N_{\mu, \sigma}(x)$ and $\tilde{z} = N_{\mu, \sigma}(x + \eta) = z + \eta/\sigma$. By Lipschitzness of f , we have $\|f(\tilde{z}) - f(z)\|_2 \leq L_z \|\eta/\sigma\|_2 \leq (L_z/\sigma_{\min}) \|\eta\|_2$. \square

Remark 5 (Practical reading of Theorem 5). *For the standard choices*

$$\sigma_{\text{INCEPTION}} = (0.5, 0.5, 0.5), \quad \sigma_{\text{CLIP}} = (0.26862954, 0.26130258, 0.27577711),$$

the worst-case pixel-space sensitivity bound for CLIP is greater by a factor

$$\frac{L_z / \min(\sigma_{\text{CLIP}})}{L_z / \min(\sigma_{\text{INCEPTION}})} = \frac{0.5}{0.26130258} \approx 1.91,$$

relative to a supervised ViT using INCEPTION statistics. This $\sim 1.91 \times$ looser bound amplifies the effect of input perturbations before the feature extractor.

7 CONCLUSION

Across timm models and controlled experiments, four design patterns consistently improved robustness against Gaussian noise: (1) larger stem kernel sizes, (2) smaller resolutions, (3) average pooling instead of max pooling, and (4) supervised ViTs rather than CLIP ViTs. Practically, we recommend models with these design patterns such as vit_base_patch32_224.augreg_in21k_ft_in1k for ViT-B as an example. Our analysis integrates these findings: Theorem 2 proves that noise attenuation is quadratic with stem kernel size; Theorem 3 yields an analogous gain under anti-aliased downsampling; Theorem 4 shows that average pooling is unbiased with error that falls as the window grows, whereas max pooling is positively biased and, for a uniform signal, its error grows logarithmically; and Theorem 5 explains CLIP sensitivity using pixel-space Lipschitz bounds scaling as $1/\sigma_{\min}$, which leads to a $\sim 1.91 \times$ difference when comparing the OPENAI and INCEPTION constants. These insights provide actionable guidelines for practitioners to enhance the robustness of vision models against Gaussian noise in diverse applications.

470 REFERENCES
471

472 Francis J Anscombe. The transformation of Poisson, binomial and negative-binomial data. *Biometrika*, 35
473 (3/4):246–254, 1948.

474 Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer Normalization. *CoRR*, abs/1607.06450,
475 2016.

476 Yutong Bai, Jieru Mei, Alan L. Yuille, and Cihang Xie. Are Transformers more robust than CNNs? In
477 *NeurIPS*, pp. 26831–26843, 2021.

478 Y-Lan Boureau, Jean Ponce, and Yann LeCun. A Theoretical Analysis of Feature Pooling in Visual Recog-
479 nition. In *ICML*, pp. 111–118, 2010.

480 Alexander Buslaev, Vladimir I. Iglovikov, Eugene Khvedchenya, Alex Parinov, Mikhail Druzhinin, and
481 Alexandr A. Kalinin. Albumentations: Fast and Flexible Image Augmentations. *Inf.*, 11(2):125, 2020.

482 Xiangning Chen, Cho-Jui Hsieh, and Boqing Gong. When Vision Transformers Outperform ResNets without
483 Pre-training or Strong Data Augmentations. In *ICLR*, 2022.

484 Ekin Dogus Cubuk, Barret Zoph, Jonathon Shlens, and Quoc Le. RandAugment: Practical Automated Data
485 Augmentation with a Reduced Search Space. In *NeurIPS*, 2020.

486 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale hierarchical
487 image database. In *CVPR*, pp. 248–255, 2009.

488 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
489 Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. In *ICLR*,
490 2021.

491 Li Fei-Fei, Robert Fergus, and Pietro Perona. Learning generative visual models from few training examples:
492 An incremental Bayesian approach tested on 101 object categories. *Comput. Vis. Image Underst.*, 106(1):
493 59–70, 2007.

494 Henry Gouk, Eibe Frank, Bernhard Pfahringer, and Michael J. Cree. Regularisation of neural networks by
495 enforcing Lipschitz continuity. *Mach. Learn.*, 110(2):393–416, 2021.

496 Jian Guo, He He, Tong He, Leonard Lausen, Mu Li, Haibin Lin, Xingjian Shi, Chenguang Wang, Junyuan
497 Xie, Sheng Zha, Aston Zhang, Hang Zhang, Zhi Zhang, Zhongyue Zhang, Shuai Zheng, and Yi Zhu.
498 GluonCV and GluonNLP: Deep Learning in Computer Vision and Natural Language Processing. *J. Mach.
499 Learn. Res.*, 21:23:1–23:7, 2020.

500 Peter Hall. On the rate of convergence of normal extremes. *Journal of Applied Probability*, 16(2):433–439,
501 1979.

502 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image Recognition.
503 In *CVPR*, pp. 770–778, 2016.

504 Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Junyuan Xie, and Mu Li. Bag of Tricks for Image
505 Classification with Convolutional Neural Networks. In *CVPR*, pp. 558–567, 2019.

506 Dan Hendrycks and Thomas G. Dietterich. Benchmarking Neural Network Robustness to Common Corrup-
507 tions and Perturbations. In *ICLR*, 2019.

517 Dan Hendrycks and Kevin Gimpel. Bridging Nonlinearities and Stochastic Regularizers with Gaussian Error
 518 Linear Units. *CoRR*, abs/1606.08415, 2016.

519

520 Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q. Weinberger. Deep Networks with Stochastic
 521 Depth. In *ECCV* (4), volume 9908, pp. 646–661, 2016.

522 Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3D Object Representations for Fine-Grained
 523 Categorization. In *ICCV Workshops*, pp. 554–561, 2013.

524

525 Ilya Loshchilov and Frank Hutter. SGDR: Stochastic Gradient Descent with Warm Restarts. In *ICLR*, 2017.

526

527 Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. In *ICLR*, 2019.

528

529 Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew B. Blaschko, and Andrea Vedaldi. Fine-Grained Visual
 530 Classification of Aircraft. *CoRR*, abs/1306.5151, 2013.

531

532 Kyle Matoba, Nikolaos Dimitriadis, and François Fleuret. Benefits of Max Pooling in Neural Networks:
 533 Theoretical and Experimental Evidence. *Trans. Mach. Learn. Res.*, 2023, 2023.

534

535 Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Ming-
 536 Hsuan Yang. Intriguing Properties of Vision Transformers. In *NeurIPS*, pp. 23296–23308, 2021.

537

538 Alan V Oppenheim. *Discrete-time signal processing*. 1999.

539

540 Omkar M. Parkhi, Andrea Vedaldi, Andrew Zisserman, and C. V. Jawahar. Cats and dogs. In *CVPR*, pp.
 541 3498–3505, 2012.

542

543 Sayak Paul and Pin-Yu Chen. Vision Transformers Are Robust Learners. In *AAAI*, pp. 2071–2081, 2022.

544

545 Shengju Qian, Hao Shao, Yi Zhu, Mu Li, and Jiaya Jia. Blending Anti-Aliasing into Vision Transformer. In
 546 *NeurIPS*, pp. 5416–5429, 2021.

547

548 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
 549 Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning
 550 Transferable Visual Models From Natural Language Supervision. In *ICML*, volume 139, pp. 8748–8763,
 551 2021.

552

553 Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do ImageNet Classifiers Gen-
 554 eralize to ImageNet? In *ICML*, volume 97, pp. 5389–5400, 2019.

555

556 Yang Shu, Xingzhuo Guo, Jialong Wu, Ximei Wang, Jianmin Wang, and Mingsheng Long. CLIPoD:
 557 Generalizing CLIP to Out-of-Distributions. In *ICML*, volume 202, pp. 31716–31731, 2023.

558

559 Andreas Steiner, Alexander Kolesnikov, Xiaohua Zhai, Ross Wightman, Jakob Uszkoreit, and Lucas Beyer.
 560 How to train your ViT? Data, Augmentation, and Regularization in Vision Transformers. *Trans. Mach.
 561 Learn. Res.*, 2022, 2022.

562

563 Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. Rethinking the
 564 Inception Architecture for Computer Vision. In *CVPR*, pp. 2818–2826, 2016.

565

566 Mingxing Tan and Quoc V. Le. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks.
 567 In *ICML*, volume 97, pp. 6105–6114, 2019.

568

569 Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé Jégou.
 570 Training data-efficient image transformers & distillation through attention. In *ICML*, volume 139, pp.
 571 10347–10357, 2021.

564 Yusuke Tsuzuku, Issei Sato, and Masashi Sugiyama. Lipschitz-Margin Training: Scalable Certification of
565 Perturbation Invariance for Deep Neural Networks. In *NeurIPS*, pp. 6542–6551, 2018.
566

567 Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in Data Science, 2018.
568

569 Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks: analysis and efficient
570 estimation. In *NeurIPS*, pp. 3839–3848, 2018.
571

572 Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd birds-
573 200-2011 dataset. 2011.
574

575 Ross Wightman. PyTorch Image Models. [https://github.com/rwightman/
576 pytorch-image-models](https://github.com/rwightman/pytorch-image-models), 2019.
577

578 Ross Wightman, Hugo Touvron, and Hervé Jégou. ResNet strikes back: An improved training procedure in
579 timm. *CoRR*, abs/2110.00476, 2021.
580

581 Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca Roelofs,
582 Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong, and Ludwig Schmidt.
583 Robust fine-tuning of zero-shot models. In *CVPR*, pp. 7949–7961, 2022.
584

585 Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Seong Joon Oh, Youngjoon Yoo, and Junsuk Choe. CutMix:
586 Regularization Strategy to Train Strong Classifiers With Localizable Features. In *ICCV*, pp. 6022–6031,
587 2019.
588

589 Richard Zhang. Making Convolutional Networks Shift-Invariant Again. In *ICML*, volume 97, pp. 7324–
590 7334, 2019.
591

592 Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random Erasing Data Augmentation.
593 In *AAAI*, pp. 13001–13008, 2020.
594

595 Xueyan Zou, Fanyi Xiao, Zhiding Yu, Yuheng Li, and Yong Jae Lee. Delving Deeper into Anti-Aliasing in
596 ConvNets. *Int. J. Comput. Vis.*, 131(1):67–81, 2023.
597

598

599

600

601

602

603

604

605

606

607

608

609

610

611	APPENDIX TABLE OF CONTENTS	
612		
613		
614	A Proofs for Theorems 2 and 3	14
615	A.1 Conventions and assumptions	14
616	A.2 Proof of Theorem 2 (Quadratic decay in stem kernel size)	15
617	A.3 Proof of Theorem 3 (Quadratic decay under anti-aliased downsampling)	16
618		
619		
620	B Proof of Theorem 4 (Average and max poolings under Gaussian Noise)	16
621		
622		
623	C Additional Experimental Results	19
624		
625	D Extension to Other Noise Models	20
626		
627	E Are there other factors that cause vulnerabilities of CLIP?	23
628		
629	F Empirical Simulations for Testing Assumption and Theorems	24
630		
631	G Rank difference as a robustness proxy	27
632		
633	H Experimental Setup	29
634		
635	I List of Notations	31
636		
637	J On Gaussian Noise	32
638		
639	K Proof of Theorem 1	33
640		
641	L Correlation Analysis	35
642		
643		
644		
645	A PROOFS FOR THEOREMS 2 AND 3	
646		
647	Here, we provide proofs of the quadratic noise-decay results in Section 4.2.	
648		
649	A.1 CONVENTIONS AND ASSUMPTIONS	
650		
651	DFT convention and Parseval. For $u \in \mathbb{R}^{H \times W}$ with discrete Fourier transform (DFT) \hat{u} on the frequency	
652	grid Ω , we use the Parseval identity	
653		
654	$\frac{1}{HW} \sum_{\omega \in \Omega} \hat{u}(\omega) ^2 = \sum_{p \in \{1, \dots, H\} \times \{1, \dots, W\}} u(p) ^2. \quad (5)$	
655		
656		
657	We write $\varepsilon := 2\pi / \max\{H, W\}$ for the infrared cutoff.	

658 **Filter family.** For $k \geq 3$, let $K_k \in \mathbb{R}^{k \times k}$ denote the linear, shift-invariant stem kernel with DFT \widehat{K}_k .
 659 We assume only the following low-pass envelope; the same assumption applies to $K_{g(s)}$ when used as the
 660 anti-aliasing filter at scale $g(s)$:

661 • (A_{roll}) (Radial low-pass envelope at scale $1/k$) There exist $\beta, \delta > 0$ such that, for all frequencies ω ,

$$663 \quad |\widehat{K}_k(\omega)| \leq \phi_k(\|\omega\|), \quad \phi_k(r) := (1 + \beta kr)^{-1-\delta},$$

664 where ϕ_k is nonincreasing in r .

666 This assumption provides a monotone radial upper envelope sufficient for establishing our upper bounds:
 667 When estimating $\frac{1}{HW} \sum_{\omega} |\widehat{K}_k(\omega)|^2$, we first dominate $|\widehat{K}_k|^2$ by ϕ_k^2 and then apply the sum-integral com-
 668 parison in Eq. 9.

670 **Noise model and gains.** Let $\eta \sim \mathcal{N}(0, \sigma^2 I)$ be spatially white Gaussian noise. The per-pixel noise gain
 671 of the stem kernel is

$$672 \quad \gamma(k) := \frac{\mathbb{E}[\|K_k * \eta\|_2^2]}{\sigma^2 HW} \stackrel{Eq. 5}{=} \frac{1}{HW} \sum_{\omega} |\widehat{K}_k(\omega)|^2 = \|K_k\|_F^2. \quad (6)$$

674 For anti-aliased downsampling with a factor $s \geq 1$, we define

$$676 \quad D_s := (\downarrow_s) \circ K_{g(s)}, \quad c_1 s \leq g(s) \leq c_2 s, \quad (7)$$

677 and its per-output-pixel noise gain

$$678 \quad \gamma_{\downarrow}(s) := \frac{\mathbb{E}[\|D_s \eta\|_2^2]}{\sigma^2 HW/s^2}. \quad (8)$$

681 **Radial sum-integral comparison.** Let Ω be the $H \times W$ DFT grid with spacing ε , and let $g : [\varepsilon, \pi] \rightarrow \mathbb{R}_{\geq 0}$
 682 be radially nonincreasing. We partition Ω into annuli $\mathcal{A}_j := \{\omega : j\varepsilon \leq \|\omega\| < (j+1)\varepsilon\}$. Because each grid
 683 point occupies an area $\asymp \varepsilon^2$ and the annulus area is $2\pi r\varepsilon$ up to boundary effects, there exist absolute lattice
 684 constants $c_1, c_2 > 0$ —independent of H, W, k, s —with

$$685 \quad c_1 HW(2\pi j\varepsilon)\varepsilon \leq |\mathcal{A}_j| \leq c_2 HW(2\pi(j+1)\varepsilon)\varepsilon.$$

686 By monotonicity, $g((j+1)\varepsilon)|\mathcal{A}_j| \leq \sum_{\omega \in \mathcal{A}_j} g(\|\omega\|) \leq g(j\varepsilon)|\mathcal{A}_j|$. Summing over j and dividing by HW
 687 turns the lattice sum into upper and lower Riemann sums for $r \mapsto 2\pi r g(r)$ with mesh ε , yielding absolute
 688 constants $A_1, A_2 > 0$ such that

$$689 \quad A_1 \int_{\varepsilon}^{\pi} rg(r) dr \leq \frac{1}{HW} \sum_{\omega \in \Omega} g(\|\omega\|) \leq A_2 \int_{\varepsilon}^{\pi} rg(r) dr. \quad (9)$$

692 As $\varepsilon \rightarrow 0$, both bounds converge to the same limit; for finite grids, A_1, A_2 absorb edge discrepancies and
 693 remain independent of the kernel scale k or downsampling factor s .

695 A.2 PROOF OF THEOREM 2 (QUADRATIC DECAY IN STEM KERNEL SIZE)

697 *Proof.* By Eq. 6, Eq. 9, and (A_{roll}), we have

$$698 \quad \gamma(k) \lesssim \int_{\varepsilon}^{\pi} r |\widehat{K}_k(r)|^2 dr \leq \int_{\varepsilon}^{\pi} r (1 + \beta kr)^{-2-2\delta} dr.$$

700 Let $u = 1 + \beta kr$. Then $r = (u - 1)/(\beta k)$ and $dr = du/(\beta k)$, so

$$701 \quad \int_{\varepsilon}^{\pi} r (1 + \beta kr)^{-2-2\delta} dr = \frac{1}{\beta^2 k^2} \int_{1+\beta k\varepsilon}^{1+\beta k\pi} \frac{u-1}{u^{2+2\delta}} du \leq \frac{1}{\beta^2 k^2} \int_1^{\infty} \frac{u-1}{u^{2+2\delta}} du = \frac{C}{k^2},$$

704 for a finite constant $C = C(\beta, \delta)$. Hence $\gamma(k) \leq C'/k^2$ for some C' independent of k . \square

705 A.3 PROOF OF THEOREM 3 (QUADRATIC DECAY UNDER ANTI-ALIASED DOWNSAMPLING)

706
707 We first state the following identity for white noise.708 Lemma 1 (Per-output-pixel gain identity). *For D_s defined in Eq. 3 and white noise $\eta \sim \mathcal{N}(0, \sigma^2 I)$,*

709
710
$$\gamma_{\downarrow}(s) = \|K_{g(s)}\|_F^2.$$

711
712 *Proof.* Stationarity of white noise and Eq. 5 give

713
714
$$\mathbb{E}[\|K_{g(s)} * \eta\|_2^2] = (HW)\sigma^2 \|K_{g(s)}\|_F^2.$$

715
716 Downsampling by s keeps every s -th sample along each axis: The retained samples all have equal variance
as the original, pre-downsampled field. Therefore,

717
718
$$\mathbb{E}[\|D_s \eta\|_2^2] = \frac{HW}{s^2} \sigma^2 \|K_{g(s)}\|_F^2,$$

719
720 and the normalization in Eq. 8 yields $\gamma_{\downarrow}(s) = \|K_{g(s)}\|_F^2$. \square 721
722 *Proof of Theorem 3.* By Lemma 1, $\gamma_{\downarrow}(s) = \|K_{g(s)}\|_F^2$. Applying Theorem 2 with kernel size $k = g(s)$
723 gives

724
725
$$\gamma_{\downarrow}(s) \leq \frac{C}{g(s)^2} \leq \frac{C}{(c_1 s)^2} = \frac{C'}{s^2},$$

726 with $C' = C/c_1^2$ independent of s . \square 727 B PROOF OF THEOREM 4 (AVERAGE AND MAX POOLINGS UNDER GAUSSIAN
728 NOISE)729 Consider a pooling window of size $k \geq 2$ in a single channel. Let the clean activations be $S =$
730 $(S_1, \dots, S_k) \in \mathbb{R}^k$ and let the observation be $S + \eta$, where $\eta = (\eta_1, \dots, \eta_k) \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma^2)$. We define

731
732
$$X_{\text{avg}} := \frac{1}{k} \sum_{i=1}^k (S_i + \eta_i), \quad X_{\text{max}} := \max_{1 \leq i \leq k} (S_i + \eta_i),$$

733
734 and their clean counterparts $S_{\text{avg}} = \frac{1}{k} \sum_i S_i$, $S_{\text{max}} = \max_i S_i$. Let the errors be $\delta_{\text{avg}} := X_{\text{avg}} - S_{\text{avg}}$,
735 $\delta_{\text{max}} := X_{\text{max}} - S_{\text{max}}$. Write the order statistics $S_{(1)} \geq \dots \geq S_{(k)}$, define the gap $\Delta := S_{(1)} - S_{(2)} \geq 0$, and
736 the standardized gap $z := \Delta/\sigma$. We use $Z_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1)$, $M_k := \max_{1 \leq i \leq k} Z_i$, and $A_k := \max_{1 \leq i \leq k} |Z_i|$.
737738
739 *Proof of (i).* By definition, $\delta_{\text{avg}} = \frac{1}{k} \sum_{i=1}^k \eta_i$. Hence

740
741
$$\mathbb{E}[\delta_{\text{avg}}] = \frac{1}{k} \sum_i \mathbb{E}[\eta_i] = 0, \quad \text{Var}[\delta_{\text{avg}}] = \frac{1}{k^2} \sum_i \text{Var}[\eta_i] = \frac{\sigma^2}{k}.$$

742
743 This part requires only i.i.d. zero-mean noise with variance σ^2 . \square 744
745 *Proof of (ii).* (Positive bias) Let $i^* \in \arg \max_i S_i$. Then $X_{\text{max}} \geq S_{i^*} + \eta_{i^*}$. Taking expectations and using
746 $\mathbb{E}[\eta_{i^*}] = 0$ yields

747
748
$$\mathbb{E}[\delta_{\text{max}}] = \mathbb{E}[X_{\text{max}} - S_{\text{max}}] \geq 0.$$

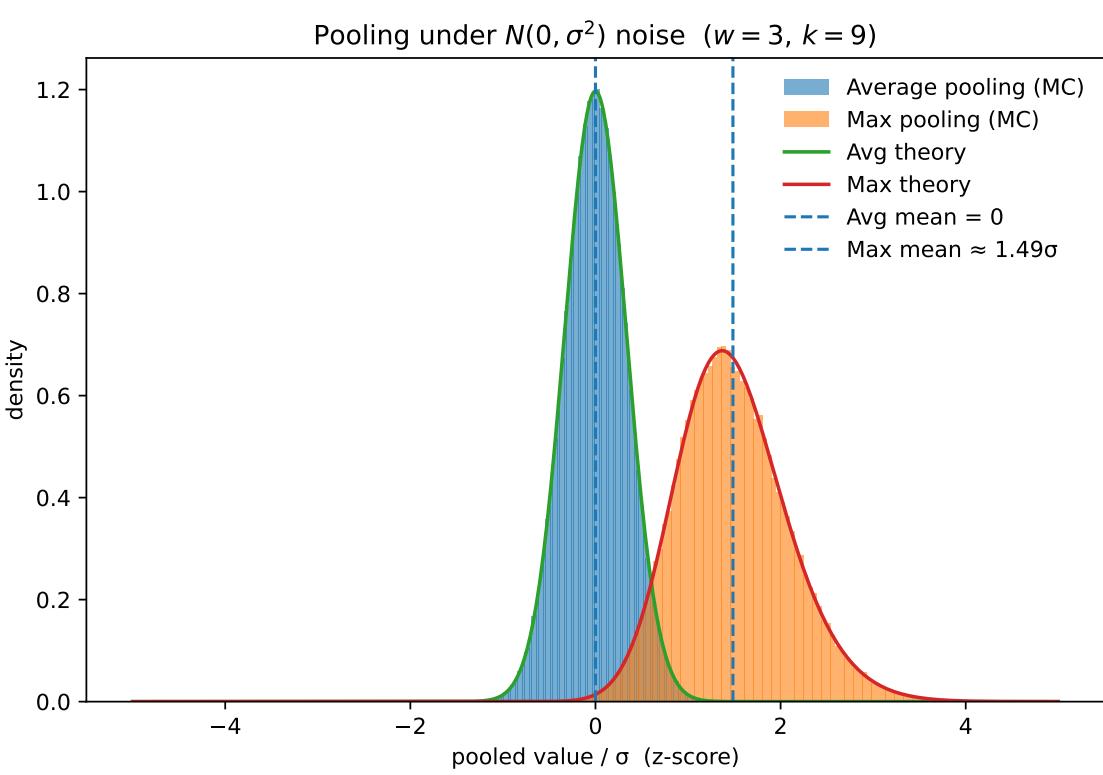


Figure 2: Illustration of positive bias introduced by max pooling

(Uniform-signal case) If $S_1 = \dots = S_k$, translate so $S_i \equiv 0$. Then $\delta_{\max} = \max_i \eta_i = \sigma M_k$ and

$$\mathbb{E}[\delta_{\max}^2] = \sigma^2 \mathbb{E}[M_k^2].$$

Classical Gaussian extreme-value asymptotics (Hall, 1979) give

$$\mathbb{E}[M_k] = \sqrt{2 \log k} - \frac{\log \log k + \log(4\pi)}{2\sqrt{2 \log k}} + o\left((\log k)^{-1/2}\right), \quad \text{Var}[M_k] = \frac{\pi^2}{12 \log k} + o\left((\log k)^{-1}\right),$$

hence

$$\mathbb{E}[M_k^2] = \text{Var}[M_k] + (\mathbb{E}[M_k])^2 = 2 \log k - \log \log k - \log(4\pi) + o(1),$$

Because $\delta_{\max} = \sigma M_k$, we have

$$\mathbb{E}[\delta_{\max}^2] = \sigma^2 \mathbb{E}[M_k^2] = \sigma^2 (2 \log k - \log \log k - \log(4\pi) + o(1)) = \Theta(\sigma^2 \log k),$$

so the MSE scales as $\Theta(\sigma^2 \log k)$.

(General case) For any realization,

$$|\delta_{\max}| = \left| \max_i (S_i + \eta_i) - \max_i S_i \right| \leq \max_i |\eta_i| = \sigma A_k.$$

Hence

$$\mathbb{E}[\delta_{\max}^2] \leq \sigma^2 \mathbb{E}[A_k^2].$$

We now bound $\mathbb{E}[A_k^2]$ explicitly.

Lemma 2. For $A_k = \max_{1 \leq i \leq k} |Z_i|$ with $Z_i \stackrel{i.i.d.}{\sim} \mathcal{N}(0, 1)$, we have $\mathbb{E}[A_k^2] \leq 2 \log(2k) + 2$.

Proof of Lemma 2. For $t \geq 0$, $\Pr(A_k \geq t) \leq \sum_{i=1}^k \Pr(|Z_i| \geq t) \leq 2ke^{-t^2/2}$, where the last step uses the union bound and the standard Gaussian tail estimate $\Pr(|Z| \geq t) \leq 2e^{-t^2/2}$ for $Z \sim \mathcal{N}(0, 1)$; see, e.g., Vershynin (2018). Using $\mathbb{E}[X^2] = \int_0^\infty 2t \Pr(X \geq t)dt$ for a nonnegative X and splitting at $t_0 := \sqrt{2 \log(2k)}$,

$$\begin{aligned}\mathbb{E}[A_k^2] &= \int_0^{t_0} 2t \Pr(A_k \geq t) dt + \int_{t_0}^{\infty} 2t \Pr(A_k \geq t) dt \\ &\leq t_0^2 + \int_{t_0}^{\infty} 4k t e^{-t^2/2} dt = 2 \log(2k) + 4k e^{-t_0^2/2}.\end{aligned}$$

Because $e^{-t_0^2/2} = e^{-\log(2k)} = 1/(2k)$, the last term equals 2, proving the claim.

By Lemma 2,

$$\mathbb{E}[\delta_{\max}^2] \leq \sigma^2(2 \log(2k) + 2).$$

Proof of (iii). Let $T_{\text{avg}}(n) = \frac{1}{k} \sum_i n_i$. By Cauchy–Schwarz, $|T_{\text{avg}}(n)| \leq \|n\|_2 \|k^{-1}(1, \dots, 1)\|_2 = \|n\|_2 / \sqrt{k}$, so $\|T_{\text{avg}}\|_{\ell_2 \rightarrow \ell_2} = k^{-1/2}$, tight for constant n . For \max , for any a, b , $|\max_i a_i - \max_i b_i| \leq \|a - b\|_\infty \leq \|a - b\|_2$, hence $\|T_{\max}\|_{\ell_2 \rightarrow \ell_2} \leq 1$, tight for a one-hot n . \square

Proof of (iv). Translate so $S_{(1)} = 0$ and $S_i \leq -\Delta$ for $i \geq 2$. Let \mathcal{S} be the switch event that some $j \geq 2$ overtakes the top index after noise:

$$\mathcal{S} \coloneqq \{\exists j \geq 2 : \eta_j - \Delta \geq \eta_1\} = \{\exists j \geq 2 : Z_j - Z_1 \geq z\}.$$

Because Z_j and Z_1 are independent standard normals, we have $Z_j - Z_1 \sim \mathcal{N}(0, 2)$; hence, by a union bound $\Pr(\mathcal{S}) \leq (k-1) \Pr(\mathcal{N}(0, 2) \geq z) \leq (k-1)e^{-z^2/4} \rightarrow 0$ as $z \rightarrow \infty$. On \mathcal{S}^c , $X_{\max} = S_{(1)} + \eta_1 = \eta_1$, so $\delta_{\max}^2 = \eta_1^2$. Dominated convergence then gives $\mathbb{E}[\delta_{\max}^2] \rightarrow \mathbb{E}[\eta_1^2] = \sigma^2$. \square

Figure 3: Examples of pooling outputs from a noisy image using average, max, and nearest neighbor

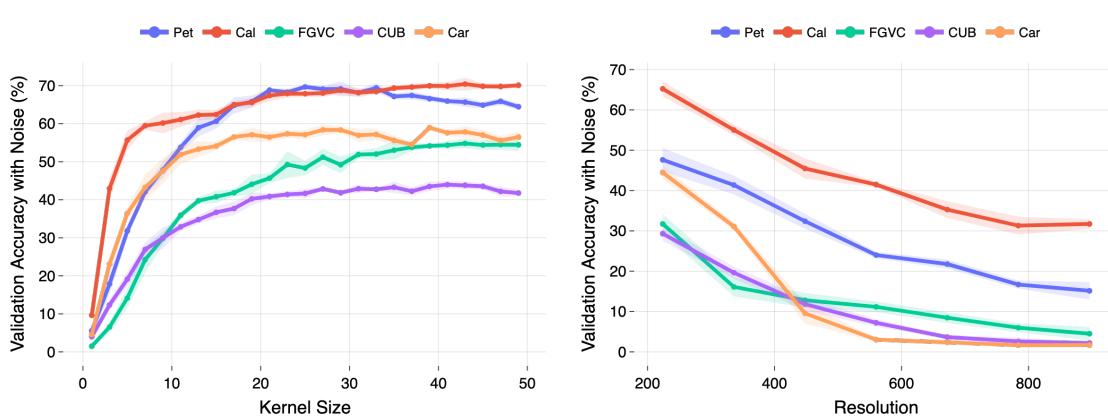


Figure 4: The results on the validation set

Table 6: Classification accuracy comparing different poolings, using ResNet-50-D

Dataset	Model	MaxPool	NNPool	AvgPool
Oxford-IIIT Pet	Val. Acc.	87.7 (0.6)	87.6 (0.4)	86.7 (0.5)
	Test Acc.	85.3 (0.8)	84.7 (0.6)	84.8 (0.9)
	Val. Acc. w/ Noise	48.3 (2.2)	46.3 (1.9)	54.0 (3.7)
	Test Acc. w/ Noise	47.8 (1.3)	45.2 (2.3)	53.6 (2.7)
Caltech-101	Val. Acc.	81.3 (0.7)	82.4 (1.1)	81.7 (0.5)
	Test Acc.	80.5 (0.3)	80.7 (0.4)	81.6 (0.7)
	Val. Acc. w/ Noise	61.1 (1.5)	60.3 (1.4)	62.7 (1.4)
	Test Acc. w/ Noise	59.8 (1.7)	58.3 (1.3)	61.6 (1.3)
FGVC-Aircraft	Val. Acc.	68.1 (0.2)	67.7 (0.8)	69.0 (0.7)
	Test Acc.	68.8 (1.1)	68.3 (1.5)	69.6 (0.3)
	Val. Acc. w/ Noise	27.7 (1.6)	24.8 (1.8)	42.9 (1.7)
	Test Acc. w/ Noise	31.5 (2.1)	26.9 (0.8)	44.8 (1.1)
Caltech-UCSD Birds-200-2011	Val. Acc.	69.8 (0.7)	69.8 (0.4)	69.3 (1.1)
	Test Acc.	67.3 (0.4)	66.4 (0.6)	65.9 (0.4)
	Val. Acc. w/ Noise	26.8 (0.6)	28.7 (1.7)	31.8 (1.6)
	Test Acc. w/ Noise	26.0 (0.7)	27.4 (1.2)	31.1 (2.1)
Stanford Cars	Val. Acc.	86.5 (0.5)	85.7 (0.5)	84.9 (0.2)
	Test Acc.	84.8 (0.2)	83.6 (0.3)	83.2 (0.3)
	Val. Acc. w/ Noise	56.0 (0.5)	53.6 (1.6)	56.8 (2.2)
	Test Acc. w/ Noise	54.8 (1.5)	51.6 (1.5)	55.3 (2.0)

C ADDITIONAL EXPERIMENTAL RESULTS

Figure 4 shows the accuracy on the validation set for the controlled experiments on kernel size and resolution. We also report additional results for ResNet-50-D (Table 6) and ResNet-101-D (Table 7) for different choices of pooling.

893
894
895 Table 7: Classification accuracy comparing different poolings, using ResNet-101-D
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916

Dataset	Model	MaxPool	NNPool	AvgPool
Oxford-IIIT Pet	Val. Acc.	87.0 (0.5)	86.5 (0.8)	86.2 (0.3)
	Test Acc.	84.8 (0.6)	84.4 (0.7)	84.3 (0.6)
	Val. Acc. w/ Noise	52.3 (1.9)	51.0 (1.5)	56.4 (2.1)
	Test Acc. w/ Noise	51.0 (1.3)	49.2 (1.4)	56.3 (2.4)
Caltech-101	Val. Acc.	82.0 (0.9)	82.9 (0.6)	82.9 (0.5)
	Test Acc.	80.6 (0.4)	80.7 (0.9)	81.2 (0.4)
	Val. Acc. w/ Noise	63.4 (1.9)	63.7 (1.3)	64.8 (1.1)
	Test Acc. w/ Noise	62.1 (1.5)	61.6 (1.7)	63.7 (1.4)
FGVC-Aircraft	Val. Acc.	69.5 (0.3)	67.7 (0.6)	69.4 (0.8)
	Test Acc.	71.0 (1.0)	67.1 (0.4)	69.6 (0.7)
	Val. Acc. w/ Noise	36.9 (4.0)	28.5 (2.7)	48.4 (1.5)
	Test Acc. w/ Noise	39.1 (3.5)	30.5 (2.6)	49.5 (1.8)
Caltech-UCSD Birds-200-2011	Val. Acc.	70.5 (0.5)	70.0 (0.7)	68.9 (0.6)
	Test Acc.	67.4 (0.7)	66.8 (0.4)	66.0 (0.7)
	Val. Acc. w/ Noise	29.7 (1.7)	29.3 (2.0)	33.4 (1.8)
	Test Acc. w/ Noise	29.0 (1.7)	29.2 (2.6)	32.2 (1.5)
Stanford Cars	Val. Acc.	84.5 (0.4)	83.9 (0.4)	83.7 (0.5)
	Test Acc.	83.3 (0.2)	81.9 (0.8)	82.1 (0.6)
	Val. Acc. w/ Noise	57.5 (1.2)	55.2 (0.9)	58.2 (1.2)
	Test Acc. w/ Noise	56.0 (0.9)	54.5 (0.7)	56.4 (1.2)

917
918 Table 8 summarizes the results for ResNet-AA, which adopts anti-aliasing average pooling architecture
919 (Zhang, 2019). Specifically, ResNet-AA adopts average pooling in all downsampling layers as well as
920 replacing the max pooling in the stem with average pooling. ResNet-AA was marginally more robust than
921 the ResNet with average pooling only in the stem, but not as significant as the difference with the original
922 ResNet. The result indicates that the core difference in robustness was caused by the use of average pooling
923 in the stem.

924 Table 9 summarizes ImageNet-1K results for other ViT configurations, including different patch sizes, reso-
925 lutions, and training recipes.

926 Table 10, Table 11, Table 12, and Table 13 summarize full results for fine-tuning ViTs on other datasets.
927 When we replaced the `OPENAI` mean-std constants with the `INCEPTION` constants, the CLIP ViTs
928 achieved improved robustness.

930 D EXTENSION TO OTHER NOISE MODELS

931
932 We select Gaussian noise due to its approximation of aggregate perturbations by the central limit theorem
933 and its prevalence in real-world imaging, such as sensor readout and thermal noise. Here, we explain how
934 our main findings—noise attenuation by larger stem kernels and smaller input resolution (Theorems 2, 3),
935 the pooling comparison (Theorem 4), and the normalization effect (Theorem 5)—extend beyond Gaussian
936 noise.

937
938 **Setup.** We continue to use k for a filter side length. For pooling windows, we use w for side length and
939 $m = w^2$ for the number of elements.

Table 8: Results on ResNet-AA

Dataset	Model	ResNet-AA-50	ResNet-AA-50-D	ResNet-AA-101-D
Oxford-IIIT Pet	Val. Acc.	84.8 (0.8)	86.9 (0.4)	86.2 (0.3)
	Test Acc.	83.1 (0.8)	84.7 (0.8)	84.3 (0.2)
	Val. Acc. w/ Noise	50.1 (2.7)	55.6 (2.0)	58.1 (2.7)
	Test Acc. w/ Noise	49.6 (3.2)	53.9 (1.4)	58.9 (2.9)
Caltech-101	Val. Acc.	80.2 (0.4)	81.7 (0.7)	83.0 (0.3)
	Test Acc.	79.5 (0.6)	80.6 (0.5)	80.9 (0.5)
	Val. Acc. w/ Noise	61.2 (1.6)	61.7 (2.2)	65.0 (1.5)
	Test Acc. w/ Noise	60.1 (1.5)	60.8 (2.8)	63.3 (1.3)
FGVC-Aircraft	Val. Acc.	67.3 (0.5)	69.8 (1.0)	69.1 (0.6)
	Test Acc.	67.1 (0.9)	70.7 (1.2)	70.0 (0.9)
	Val. Acc. w/ Noise	40.4 (3.6)	45.5 (2.5)	49.0 (2.9)
	Test Acc. w/ Noise	42.3 (3.9)	48.3 (2.2)	49.5 (2.5)
Caltech-UCSD Birds-200-2011	Val. Acc.	65.3 (0.6)	68.9 (0.8)	69.4 (0.6)
	Test Acc.	62.3 (1.1)	66.1 (0.6)	66.1 (0.4)
	Val. Acc. w/ Noise	28.6 (0.8)	32.5 (1.0)	31.7 (2.8)
	Test Acc. w/ Noise	27.5 (1.3)	31.4 (1.9)	31.0 (2.4)
Stanford Cars	Val. Acc.	79.9 (0.6)	85.9 (0.3)	83.5 (0.6)
	Test Acc.	78.9 (0.6)	83.9 (0.4)	81.6 (0.8)
	Val. Acc. w/ Noise	51.8 (1.6)	60.3 (2.8)	57.2 (3.2)
	Test Acc. w/ Noise	50.3 (1.0)	58.9 (2.0)	56.0 (3.2)

Table 9: ImageNet-1K results for other ViT configurations

Pretrained Model	Mean-Std	Top-1 → w/ Noise	Rank → w/ Noise	RankDiff
vit_base_patch16_384.augreg_in1k	INCEPTION	81.10 → 60.23	676 → 524	-152
vit_base_patch16_384.augreg_in21k_ft_in1k	INCEPTION	85.99 → 70.89	129 → 208	+79
vit_base_patch16_clip_384.laion2b_ft_in12k_in1k	OPENAI	87.21 → 70.38	55 → 227	+172
vit_base_patch16_clip_384.openai_ft_in1k	OPENAI	86.20 → 68.55	110 → 285	+175
vit_base_patch16_clip_384.openai_ft_in12k_in1k	OPENAI	87.03 → 69.11	61 → 269	+208
vit_base_patch16_clip_384.laion2b_ft_in1k	OPENAI	86.62 → 66.63	83 → 348	+265
vit_base_patch32_224.augreg_in1k	INCEPTION	74.90 → 58.44	1075 → 569	-506
vit_base_patch32_224.sam_in1k	INCEPTION	73.69 → 51.33	1101 → 748	-353
vit_base_patch32_224.augreg_in21k_ft_in1k	INCEPTION	80.71 → 65.31	719 → 392	-327
vit_base_patch32_clip_224.openai_ft_in1k	OPENAI	81.93 → 63.94	591 → 428	-163
vit_base_patch32_clip_224.laion2b_ft_in1k	OPENAI	82.58 → 63.09	504 → 450	-54
vit_base_patch32_clip_224.laion2b_ft_in12k_in1k	OPENAI	83.30 → 65.57	419 → 386	-33
vit_base_patch32_384.augreg_in1k	INCEPTION	78.75 → 59.65	893 → 539	-354
vit_base_patch32_384.augreg_in21k_ft_in1k	INCEPTION	83.35 → 63.72	412 → 437	+25
vit_base_patch32_clip_384.openai_ft_in12k_in1k	OPENAI	85.21 → 68.40	191 → 293	+102
vit_base_patch32_clip_384.laion2b_ft_in12k_in1k	OPENAI	85.37 → 65.58	180 → 383	+203

Poisson noise. Let S be the filter support with $|S| = m = k^2$. Let $h = \{h_t\}_{t \in S}$ denote the linear filter coefficients on S , and $Y_t \sim \text{Poisson}(x_t)$ independent. For a locally constant intensity on the filter support, where $x_t \approx \bar{x}$ in a smooth patch, we have

$$\text{Var}[\sum_t h_t Y_t] = \sum_t h_t^2 \text{Var}[Y_t] = \sum_t h_t^2 x_t = \bar{x} \sum_t h_t^2 + \sum_t h_t^2 (x_t - \bar{x}) \approx \bar{x} \|h\|_2^2, \quad (10)$$

987 Table 10: Classification accuracy (%) for fine-tuning ViTs on the Caltech-101.
988

989	Pretrained Model	Mean-Std	Val. Acc. w/ Noise	Test Acc. w/ Noise
990	vit_base_patch16_clip_224.openai_ft_in12k_in1k	OPENAI	93.1 (0.6) → 84.1 (1.1)	92.0 (0.8) → 81.8 (1.4)
991	vit_base_patch16_clip_224.openai_ft_in12k_in1k	INCEPTION	95.7 (0.6) → 90.4 (0.8)	94.5 (0.7) → 89.5 (1.2)
992	vit_base_patch16_clip_224.openai_ft_in12k_in1k	IMAGENET	91.6 (1.2) → 80.5 (2.4)	90.5 (0.8) → 78.5 (2.4)
993	vit_base_patch16_clip_224.datacompxl	OPENAI	95.3 (0.8) → 86.4 (2.3)	94.6 (0.6) → 84.8 (2.1)
994	vit_base_patch16_clip_224.datacompxl	INCEPTION	96.2 (0.6) → 91.0 (1.3)	95.7 (0.9) → 89.7 (1.4)
995	vit_base_patch16_clip_224.datacompxl	IMAGENET	94.7 (0.7) → 82.5 (1.9)	93.8 (1.0) → 80.8 (2.6)
996	vit_base_patch16_clip_224.dfn2b	OPENAI	90.2 (11.2) → 80.1 (15.0)	88.9 (12.3) → 78.8 (14.8)
997	vit_base_patch16_clip_224.dfn2b	INCEPTION	96.5 (0.6) → 91.7 (1.2)	95.9 (0.5) → 91.0 (1.8)
998	vit_base_patch16_clip_224.dfn2b	IMAGENET	93.7 (3.9) → 79.9 (10.5)	92.4 (4.6) → 78.2 (10.7)
999	vit_base_patch16_clip_224.metaclip_2pt5b	OPENAI	94.9 (0.7) → 81.5 (2.0)	94.2 (0.7) → 79.5 (2.0)
1000	vit_base_patch16_clip_224.metaclip_2pt5b	INCEPTION	96.0 (0.5) → 89.5 (2.1)	95.0 (0.8) → 87.8 (2.8)
1001	vit_base_patch16_clip_224.metaclip_2pt5b	IMAGENET	93.6 (1.0) → 76.3 (3.2)	92.3 (1.2) → 74.6 (2.9)
1002	vit_base_patch16_clip_224.openai	OPENAI	92.8 (0.2) → 78.9 (3.1)	91.7 (1.1) → 76.9 (3.6)
1003	vit_base_patch16_clip_224.openai	INCEPTION	95.4 (0.3) → 87.8 (0.9)	95.4 (0.6) → 86.9 (0.9)
1004	vit_base_patch16_clip_224.openai	IMAGENET	92.3 (0.4) → 80.3 (1.8)	91.8 (0.7) → 77.7 (1.9)
1005	vit_base_patch16_clip_224.laion2b	OPENAI	92.3 (0.9) → 77.7 (2.4)	91.2 (0.6) → 75.6 (1.6)
1006	vit_base_patch16_clip_224.laion2b	INCEPTION	95.3 (0.6) → 87.3 (0.3)	94.3 (0.6) → 85.8 (0.5)
1007	vit_base_patch16_clip_224.laion2b	IMAGENET	90.1 (0.8) → 71.5 (2.4)	89.2 (0.5) → 67.6 (2.4)
1008	vit_base_patch16_clip_224.augreg_in1k	OPENAI	94.4 (0.3) → 84.8 (0.9)	94.1 (0.3) → 85.7 (0.4)
1009	vit_base_patch16_clip_224.augreg_in1k	INCEPTION	94.1 (0.3) → 86.0 (0.5)	93.8 (0.2) → 86.7 (0.8)
1010	vit_base_patch16_clip_224.augreg_in1k	IMAGENET	94.3 (0.6) → 84.7 (0.6)	94.0 (0.3) → 85.7 (0.7)
1011	vit_base_patch16_clip_224.augreg_in21k	OPENAI	97.0 (0.4) → 95.1 (0.5)	96.3 (0.4) → 94.5 (0.7)
1012	vit_base_patch16_clip_224.augreg_in21k	INCEPTION	97.1 (0.3) → 95.8 (0.5)	96.6 (0.2) → 95.4 (0.3)
1013	vit_base_patch16_clip_224.augreg_in21k	IMAGENET	97.2 (0.2) → 95.1 (0.2)	96.6 (0.5) → 94.6 (0.5)
1014	vit_base_patch16_clip_224.mae	OPENAI	92.0 (0.5) → 76.3 (0.7)	91.6 (0.8) → 75.7 (1.2)
1015	vit_base_patch16_clip_224.mae	INCEPTION	91.6 (0.6) → 80.8 (1.2)	91.7 (0.4) → 79.4 (0.7)
1016	vit_base_patch16_clip_224.mae	IMAGENET	91.7 (0.5) → 75.4 (0.6)	91.6 (0.4) → 74.5 (1.2)

1010 Table 11: Classification accuracy (%) for fine-tuning ViTs on the FGVC-Aircraft.
1011

1012	Pretrained Model	Mean-Std	Val. Acc. w/ Noise	Test Acc. w/ Noise
1013	vit_base_patch16_clip_224.openai_ft_in12k_in1k	OPENAI	62.6 (1.7) → 46.6 (1.9)	61.7 (1.2) → 47.4 (1.7)
1014	vit_base_patch16_clip_224.openai_ft_in12k_in1k	INCEPTION	60.4 (23.6) → 50.8 (20.4)	59.5 (23.7) → 50.9 (21.1)
1015	vit_base_patch16_clip_224.openai_ft_in12k_in1k	IMAGENET	59.5 (1.4) → 44.0 (1.6)	58.2 (1.2) → 45.2 (1.2)
1016	vit_base_patch16_clip_224.datacompxl	OPENAI	73.7 (4.9) → 50.7 (7.7)	72.2 (4.0) → 52.7 (7.1)
1017	vit_base_patch16_clip_224.datacompxl	INCEPTION	80.8 (1.9) → 66.3 (3.7)	79.4 (2.0) → 66.3 (3.5)
1018	vit_base_patch16_clip_224.datacompxl	IMAGENET	65.9 (4.1) → 40.0 (6.1)	65.0 (3.4) → 41.5 (5.2)
1019	vit_base_patch16_clip_224.dfn2b	OPENAI	75.4 (4.9) → 55.7 (7.0)	75.2 (5.2) → 57.3 (8.0)
1020	vit_base_patch16_clip_224.dfn2b	INCEPTION	82.0 (4.1) → 70.0 (8.1)	81.7 (4.3) → 70.7 (7.6)
1021	vit_base_patch16_clip_224.dfn2b	IMAGENET	72.9 (6.6) → 51.3 (9.4)	71.3 (7.1) → 52.5 (9.8)
1022	vit_base_patch16_clip_224.metaclip_2pt5b	OPENAI	68.0 (2.7) → 48.4 (4.1)	67.3 (2.5) → 49.7 (3.0)
1023	vit_base_patch16_clip_224.metaclip_2pt5b	INCEPTION	80.5 (1.6) → 68.4 (3.2)	79.2 (2.2) → 69.5 (3.4)
1024	vit_base_patch16_clip_224.metaclip_2pt5b	IMAGENET	64.5 (1.3) → 40.9 (2.4)	64.2 (1.4) → 43.3 (2.3)
1025	vit_base_patch16_clip_224.openai	OPENAI	63.7 (4.7) → 47.4 (5.6)	61.9 (4.3) → 49.1 (4.4)
1026	vit_base_patch16_clip_224.openai	INCEPTION	74.6 (3.5) → 65.4 (4.5)	73.4 (3.8) → 66.0 (5.4)
1027	vit_base_patch16_clip_224.openai	IMAGENET	60.3 (1.6) → 42.6 (2.7)	59.4 (1.4) → 43.4 (2.6)
1028	vit_base_patch16_clip_224.laion2b	OPENAI	59.9 (1.9) → 37.7 (2.4)	58.4 (1.7) → 38.5 (1.9)
1029	vit_base_patch16_clip_224.laion2b	INCEPTION	69.2 (4.4) → 54.3 (5.5)	68.9 (5.4) → 55.0 (6.0)
1030	vit_base_patch16_clip_224.laion2b	IMAGENET	58.3 (1.8) → 36.0 (2.3)	56.9 (1.3) → 37.3 (2.4)
1031	vit_base_patch16_clip_224.augreg_in1k	OPENAI	67.8 (0.8) → 50.7 (1.9)	67.0 (1.2) → 51.2 (1.7)
1032	vit_base_patch16_clip_224.augreg_in1k	INCEPTION	67.0 (0.5) → 52.4 (1.4)	67.2 (0.9) → 53.6 (1.0)
1033	vit_base_patch16_clip_224.augreg_in1k	IMAGENET	67.4 (0.4) → 50.1 (1.4)	67.3 (0.8) → 51.0 (2.5)
1034	vit_base_patch16_clip_224.augreg_in21k	OPENAI	78.2 (0.3) → 69.9 (0.5)	77.2 (0.6) → 69.4 (1.1)
1035	vit_base_patch16_clip_224.augreg_in21k	INCEPTION	78.6 (0.6) → 71.6 (0.4)	77.3 (0.4) → 71.0 (0.4)
1036	vit_base_patch16_clip_224.augreg_in21k	IMAGENET	77.8 (0.6) → 68.9 (0.9)	77.1 (1.0) → 68.5 (1.2)
1037	vit_base_patch16_clip_224.mae	OPENAI	69.3 (0.7) → 39.9 (4.2)	68.8 (1.5) → 40.3 (4.4)
1038	vit_base_patch16_clip_224.mae	INCEPTION	69.1 (0.7) → 43.5 (2.8)	69.1 (0.9) → 44.0 (2.3)
1039	vit_base_patch16_clip_224.mae	IMAGENET	69.1 (0.6) → 40.0 (2.1)	69.4 (1.2) → 41.8 (1.2)

Table 12: Classification accuracy (%) for fine-tuning ViTs on the Caltech-UCSD Birds-200-2011.

Pretrained Model	Mean-Std	Val. Acc. w/ Noise	Test Acc. w/ Noise
vit_base_patch16_clip_224.openai_ft_in12k_in1k	OPENAI	84.0 (0.9) → 64.0 (1.7)	81.3 (1.0) → 61.1 (1.1)
vit_base_patch16_clip_224.openai_ft_in12k_in1k	INCEPTION	85.3 (1.6) → 69.3 (1.7)	82.7 (1.3) → 67.0 (2.5)
vit_base_patch16_clip_224.openai_ft_in12k_in1k	IMAGENET	82.6 (0.8) → 59.8 (1.3)	79.7 (1.6) → 56.7 (1.8)
vit_base_patch16_clip_224.datacompxl	OPENAI	83.4 (1.1) → 53.6 (2.3)	81.4 (1.0) → 50.7 (2.6)
vit_base_patch16_clip_224.datacompxl	INCEPTION	84.7 (0.7) → 59.7 (4.5)	82.8 (0.8) → 57.3 (3.8)
vit_base_patch16_clip_224.datacompxl	IMAGENET	83.6 (0.9) → 52.2 (2.8)	81.5 (1.1) → 49.3 (2.6)
vit_base_patch16_clip_224.dfn2b	OPENAI	84.8 (1.2) → 58.8 (2.6)	83.0 (1.3) → 56.4 (2.3)
vit_base_patch16_clip_224.dfn2b	INCEPTION	87.3 (1.6) → 69.6 (4.7)	86.0 (2.0) → 67.3 (5.2)
vit_base_patch16_clip_224.dfn2b	IMAGENET	81.6 (2.7) → 50.0 (2.3)	79.7 (2.8) → 48.1 (2.9)
vit_base_patch16_clip_224.metaclip_2pt5b	OPENAI	83.3 (0.5) → 49.5 (3.5)	81.1 (0.9) → 47.9 (3.2)
vit_base_patch16_clip_224.metaclip_2pt5b	INCEPTION	85.8 (0.9) → 62.1 (2.0)	83.4 (0.6) → 60.1 (1.8)
vit_base_patch16_clip_224.metaclip_2pt5b	IMAGENET	81.3 (2.5) → 45.3 (4.5)	78.7 (2.7) → 43.6 (4.2)
vit_base_patch16_clip_224.openai	OPENAI	83.4 (0.5) → 60.1 (2.4)	81.8 (0.8) → 57.7 (2.8)
vit_base_patch16_clip_224.openai	INCEPTION	85.5 (0.8) → 66.7 (3.4)	83.3 (1.3) → 65.1 (3.7)
vit_base_patch16_clip_224.openai	IMAGENET	75.3 (14.1) → 50.1 (13.8)	72.7 (13.9) → 47.5 (12.6)
vit_base_patch16_clip_224.laion2b	OPENAI	81.4 (1.4) → 52.1 (2.2)	78.5 (2.5) → 50.0 (2.0)
vit_base_patch16_clip_224.laion2b	INCEPTION	84.6 (0.6) → 62.0 (2.1)	82.2 (0.4) → 59.9 (2.1)
vit_base_patch16_clip_224.laion2b	IMAGENET	81.0 (0.4) → 50.1 (0.7)	78.7 (0.5) → 48.3 (1.1)
vit_base_patch16_224.augreg_in1k	OPENAI	83.4 (0.4) → 67.6 (0.7)	81.7 (0.8) → 65.8 (0.7)
vit_base_patch16_224.augreg_in1k	INCEPTION	83.9 (0.5) → 69.3 (0.7)	81.8 (0.3) → 67.8 (0.5)
vit_base_patch16_224.augreg_in1k	IMAGENET	83.7 (0.4) → 67.5 (1.2)	81.8 (0.2) → 65.9 (0.7)
vit_base_patch16_224.augreg_in21k	OPENAI	89.6 (0.2) → 84.0 (0.5)	88.9 (0.5) → 83.4 (0.4)
vit_base_patch16_224.augreg_in21k	INCEPTION	89.6 (0.2) → 84.9 (0.7)	88.7 (0.4) → 83.7 (0.6)
vit_base_patch16_224.augreg_in21k	IMAGENET	89.5 (0.2) → 83.9 (0.1)	88.9 (0.3) → 83.4 (0.7)
vit_base_patch16_224.mae	OPENAI	76.7 (0.5) → 39.3 (4.4)	74.1 (0.6) → 36.7 (3.9)
vit_base_patch16_224.mae	INCEPTION	74.0 (0.3) → 41.1 (4.2)	72.5 (1.1) → 38.9 (4.4)
vit_base_patch16_224.mae	IMAGENET	76.4 (0.9) → 38.0 (1.5)	74.4 (0.5) → 35.6 (1.7)

so the per-output-pixel variance inherits the k^{-2} and s^{-2} scalings up to the local factor \bar{x} . Applying the Anscombe transform $A(y) = 2\sqrt{y + 3/8}$ approximately stabilizes the Poisson variance to ≈ 1 , after which Gaussian-based methods are applicable (Anscombe, 1948).

Salt-and-pepper noise. Under the symmetric model where each pixel is replaced by either 0 or 1 with probability q and a locally constant patch with mean \bar{x} , we have

$$\mathbb{E}[\text{avg error}] = q(1/2 - \bar{x}), \quad \text{Var}[\text{avg error}] = O(1/m).$$

Max pooling tends to amplify these impulses. As a robust alternative, median pooling recovers the clean value in constant patches when contamination is lower than 50% and is 1-Lipschitz with respect to ℓ_∞ ; trimmed means are another option.

Normalization and Lipschitz sensitivity. The pixel-space Lipschitz bound in Theorem 5 does not depend on the specific noise type, so smaller per-channel normalization stds increase the worst-case sensitivity equally for Gaussian and non-Gaussian perturbations.

E ARE THERE OTHER FACTORS THAT CAUSE VULNERABILITIES OF CLIP?

We investigated other factors that might possibly address the vulnerability of CLIP. However, the vulnerability of CLIP could not be fully addressed by other factors examined below.

How about swapping pretrained weights with supervised ViT? Answer: No. Differences in training datasets and losses would lead to different pretrained weights for CLIP ViTs. Assuming that certain dataset or loss properties, or equivalently certain properties of the pretrained weights of CLIP ViTs, lead to vulnerabilities, we performed controlled experiments to swap parts of them with those of supervised ViTs.

Table 13: Classification accuracy (%) for fine-tuning ViTs on the Stanford-Cars.

Pretrained Model	Mean-Std	Val. Acc. w/ Noise	Test Acc. w/ Noise
vit_base_patch16_clip_224.openai_ft_in12k_in1k	OPENAI	83.8 (0.1) → 71.0 (1.4)	83.0 (0.7) → 69.7 (0.7)
vit_base_patch16_clip_224.openai_ft_in12k_in1k	INCEPTION	87.3 (1.2) → 77.7 (2.1)	86.2 (1.3) → 76.3 (2.2)
vit_base_patch16_clip_224.openai_ft_in12k_in1k	IMAGENET	81.1 (1.6) → 63.8 (2.2)	80.7 (1.9) → 64.6 (2.2)
vit_base_patch16_clip_224.datacomp1	OPENAI	90.1 (0.7) → 76.1 (1.7)	89.2 (0.6) → 75.3 (1.5)
vit_base_patch16_clip_224.datacomp1	INCEPTION	91.3 (0.2) → 80.9 (0.8)	90.4 (0.6) → 79.4 (1.0)
vit_base_patch16_clip_224.datacomp1	IMAGENET	89.8 (1.4) → 75.4 (3.8)	89.1 (1.4) → 74.3 (3.8)
vit_base_patch16_clip_224.dfn2b	OPENAI	91.1 (0.5) → 78.9 (2.5)	90.2 (0.5) → 77.8 (2.2)
vit_base_patch16_clip_224.dfn2b	INCEPTION	94.2 (1.1) → 88.7 (2.2)	93.2 (1.0) → 87.6 (2.8)
vit_base_patch16_clip_224.dfn2b	IMAGENET	91.1 (1.8) → 78.8 (5.0)	90.7 (1.4) → 77.6 (5.4)
vit_base_patch16_clip_224.metaclip_2pt5b	OPENAI	87.7 (0.7) → 67.7 (1.7)	86.9 (0.7) → 66.4 (1.7)
vit_base_patch16_clip_224.metaclip_2pt5b	INCEPTION	91.1 (0.3) → 78.5 (1.3)	90.2 (0.4) → 77.3 (1.6)
vit_base_patch16_clip_224.metaclip_2pt5b	IMAGENET	87.1 (1.3) → 64.7 (2.0)	86.1 (1.7) → 63.2 (2.3)
vit_base_patch16_clip_224.openai	OPENAI	85.6 (3.3) → 73.5 (4.1)	85.3 (3.1) → 72.4 (3.9)
vit_base_patch16_clip_224.openai	INCEPTION	89.8 (0.4) → 81.0 (1.1)	89.5 (0.4) → 80.2 (0.7)
vit_base_patch16_clip_224.openai	IMAGENET	85.2 (1.6) → 70.1 (3.0)	84.2 (1.3) → 69.0 (3.0)
vit_base_patch16_clip_224.laion2b	OPENAI	84.8 (2.4) → 65.6 (4.2)	84.1 (2.3) → 65.3 (3.7)
vit_base_patch16_clip_224.laion2b	INCEPTION	89.9 (0.8) → 78.4 (2.3)	88.8 (0.9) → 77.0 (2.2)
vit_base_patch16_clip_224.laion2b	IMAGENET	79.9 (4.7) → 54.5 (6.6)	79.5 (5.1) → 54.9 (7.6)
vit_base_patch16_224.augreg_in1k	OPENAI	82.8 (0.5) → 67.4 (1.0)	81.6 (0.4) → 66.3 (0.9)
vit_base_patch16_224.augreg_in1k	INCEPTION	83.2 (0.6) → 69.2 (1.1)	81.6 (0.5) → 67.5 (1.3)
vit_base_patch16_224.augreg_in1k	IMAGENET	83.0 (0.3) → 66.2 (1.4)	81.5 (0.2) → 65.1 (1.6)
vit_base_patch16_224.augreg_in21k	OPENAI	89.7 (0.2) → 82.6 (0.5)	88.5 (0.3) → 81.4 (0.5)
vit_base_patch16_224.augreg_in21k	INCEPTION	89.9 (0.2) → 84.2 (0.4)	88.3 (0.3) → 83.3 (0.7)
vit_base_patch16_224.augreg_in21k	IMAGENET	89.9 (0.5) → 81.9 (0.5)	88.6 (0.6) → 81.1 (0.3)
vit_base_patch16_224.mae	OPENAI	80.4 (0.5) → 61.1 (1.5)	78.0 (0.6) → 58.5 (0.9)
vit_base_patch16_224.mae	INCEPTION	80.3 (0.3) → 61.7 (1.0)	77.6 (0.5) → 59.3 (0.8)
vit_base_patch16_224.mae	IMAGENET	80.6 (0.4) → 58.1 (2.2)	78.3 (0.3) → 56.7 (2.4)

Specifically, we swapped pretrained weights of each block in `vit_base_patch16_clip_224.openai` with those of `vit_base_patch16_224.augreg2_in21k_ft_in1k` to see which module weights determine the robustness against Gaussian noise (Table 14). Although swapping pretrained weights partially addressed the vulnerability of CLIP ViTs in certain cases near the last block such as targeting block12, the improvements were not as significant as the approach of replacing mean-std constants. Furthermore, the improvement depended on the specific weight choice in the target block; `block12.mlp.fc2.weight` improved robustness, whereas `block12.norm1.weight` did not. When we swapped multiple weights such as `block12.{mlp.fc2, mlp.fc1, norm2}`, the performance rather degraded, which indicates that improvement is not guaranteed.

How about architectural differences such as norm-pre? Answer: No. Although the architecture is almost the same for CLIP ViT and supervised ViTs, one difference is that CLIP ViTs insert additional LayerNorm in the patch embedding before the transformer blocks start, which we refer to as norm-pre. Assuming that the use of norm-pre causes vulnerability, we performed controlled experiments training ViTs with and without norm-pre (Table 16). Nevertheless, the ViT with norm-pre, which corresponds to the identical architecture of CLIP ViTs, rather exhibited improved performance against Gaussian noise, which indicates that norm-pre does not lead to the vulnerability observed in CLIP ViTs.

F EMPIRICAL SIMULATIONS FOR TESTING ASSUMPTION AND THEOREMS

We performed module-level simulations to compare empirical results with the expected values stated in the assumption and theorems. All simulation results closely matched the theoretical expectations. The used Python source code is available in the supplementary materials.

1128 Table 14: Results of swapping pretrained weights in CLIP ViT. The accuracy with Gaussian noise partially
1129 improved.
1130

Swap	Val. Acc. → w/ Noise	Test Acc. → w/ Noise
stem	53.1 (1.2) → 36.3 (0.9)	51.3 (1.5) → 35.4 (1.2)
block1	81.3 (19.1) → 48.6 (14.8)	80.1 (19.9) → 46.2 (14.1)
block2	41.9 (3.4) → 20.1 (1.6)	40.7 (3.9) → 18.8 (1.6)
block3	68.6 (13.6) → 29.9 (4.5)	67.9 (13.7) → 28.7 (4.4)
block4	80.2 (6.8) → 29.6 (7.5)	79.8 (6.4) → 28.6 (7.9)
block5	77.0 (4.0) → 30.0 (4.0)	77.3 (3.2) → 29.0 (3.4)
block6	84.7 (0.8) → 39.9 (1.9)	84.0 (0.5) → 37.8 (2.2)
block7	87.8 (0.4) → 45.0 (0.8)	86.5 (0.6) → 44.9 (1.2)
block8	90.5 (0.4) → 49.9 (2.7)	88.4 (0.6) → 48.4 (1.6)
block9	90.7 (0.2) → 56.5 (3.9)	90.1 (0.4) → 54.8 (2.2)
block10	91.5 (0.4) → 62.3 (3.3)	91.0 (0.4) → 60.4 (3.5)
block11	91.4 (0.4) → 59.6 (5.1)	90.7 (0.9) → 58.1 (6.0)
block12	91.5 (0.5) → 62.3 (4.9)	91.4 (0.6) → 60.8 (4.4)
head	82.8 (7.6) → 48.4 (7.5)	82.3 (6.8) → 48.2 (6.6)
Baseline (IMAGENET)	91.2 (0.5) → 58.5 (4.0)	90.7 (0.8) → 58.4 (4.3)
Ours (INCEPTION)	92.5 (0.3) → 71.7 (1.0)	91.9 (0.6) → 70.2 (1.2)

1148
1149
1150 Table 15: Results of swapping specific weights in block12. Swapping multiple weights did not ensure
1151 improved robustness.
1152

Swap	Val. Acc. → w/ Noise	Test Acc. → w/ Noise
block12.norm1.weight	91.0 (1.3) → 56.8 (8.2)	90.1 (1.3) → 56.6 (8.6)
block12.norm1.bias	91.5 (0.9) → 59.5 (5.7)	90.7 (1.4) → 58.1 (6.1)
block12.attn.qkv.weight	91.0 (0.5) → 60.5 (1.3)	90.3 (0.8) → 59.0 (1.4)
block12.attn.qkv.bias	91.0 (0.9) → 58.7 (3.6)	90.0 (0.9) → 58.4 (3.7)
block12.attn.proj.weight	92.1 (0.6) → 59.8 (5.6)	91.3 (0.9) → 59.8 (5.8)
block12.attn.proj.bias	90.9 (1.0) → 58.3 (5.4)	90.2 (1.2) → 57.8 (5.0)
block12.norm2.weight	91.8 (0.7) → 62.7 (4.3)	90.7 (0.9) → 61.1 (3.7)
block12.norm2.bias	91.4 (0.9) → 60.8 (3.4)	90.8 (0.7) → 59.7 (3.4)
block12.mlp.fc1.weight	91.4 (1.0) → 61.0 (7.6)	91.0 (1.4) → 60.3 (7.0)
block12.mlp.fc1.bias	91.2 (1.3) → 58.3 (3.4)	90.4 (1.5) → 57.4 (3.7)
block12.mlp.fc2.weight	91.3 (0.4) → 65.2 (2.2)	90.5 (0.3) → 63.8 (2.1)
block12.mlp.fc2.bias	91.4 (0.7) → 58.8 (5.0)	90.7 (0.7) → 58.2 (5.4)
block12.mlp.fc2	90.8 (0.6) → 58.7 (3.2)	90.0 (0.4) → 57.7 (3.1)
block12.mlp.fc2 & mlp.fc1	91.9 (1.1) → 64.2 (4.3)	91.6 (0.8) → 63.8 (5.0)
block12.mlp.fc2 & mlp.fc1 & norm2	91.0 (0.5) → 55.5 (4.3)	90.0 (1.4) → 54.0 (5.2)

1171 **A_{roll}** We embed each $k \times k$ kernel into a 512×512 grid, compute the normalized spectrum $|\widehat{K}|$, form its
1172 ℓ_2 -radial profile, and fit the low-pass envelope $\phi_k(r) = (1 + \beta kr)^{-(1+\delta)}$ by weighted log-MSE (Table 17).
1173 For representative radii of $\pi/8, \pi/4, \pi/2$, we observed that the empirical magnitudes lie below the fitted
1174 envelopes, which verifies this assumption in practice.

1175 Table 16: Results on different ViT architectures with and without norm_pre. The use of norm_pre did not
 1176 bring vulnerability.

Architecture	Top-1 → w/ Noise	Top-5 → w/ Noise
w/o norm_pre	77.76 → 47.15	93.84 → 68.96
w/ norm_pre	78.84 → 54.22	94.14 → 76.13

1183 Table 17: The upper block reports the results for the box kernel. The lower block reports the results for the
 1184 Gaussian kernel.

r (rad)	Empirical ($ \hat{K}_k(\omega) $)	Theoretical ($\phi_k(\ \omega\)$)
0.3962	0.0297134	0.0570019
0.7886	0.0129235	0.0167515
1.5661	0.0040941	0.0042482
0.3962	0.0226295	0.0326660
0.7886	0.0059380	0.0068950
1.6031	0.0007060	0.0010978

1195 Table 18: Measured γ for a $k \times k$ kernel. Stds for 100 simulations are reported.

k	Empirical	Theoretical
4	0.062535 ± 0.001019	0.062500
8	0.015584 ± 0.000484	0.015625
12	0.006911 ± 0.000296	0.006944
16	0.003888 ± 0.000212	0.003906
20	0.002487 ± 0.000169	0.002500
24	0.001728 ± 0.000148	0.001736
28	0.001271 ± 0.000129	0.001276
32	0.000973 ± 0.000115	0.000977

1206 **Theorem 2** Table 18 reports the Monte Carlo estimate of the per-pixel noise gain γ for a $k \times k$ normalized
 1207 box filter. We convolve i.i.d. $\mathcal{N}(0, \sigma^2)$ noise with the filter via FFT-based circular convolution and compare
 1208 the empirical $\hat{\gamma}$ with the theoretical $\|K_k\|_F^2 = 1/k^2$, where K_k is the normalized $k \times k$ box stem kernel.

1210 **Theorem 3** Table 19 reports Monte Carlo estimates of the per-output-pixel noise gain $\gamma_{\downarrow}(s)$ under anti-
 1211 aliased downsampling by a factor s , using a $g(s) \times g(s)$ normalized box prefilter and decimation. We
 1212 compare the empirical $\hat{\gamma}_{\downarrow}$ with the theoretical $\|K_{g(s)}\|_F^2 = 1/g(s)^2$, implying $\sim s^{-2}$ when $g(s) \propto s$.

1214 **Theorem 4** The results in Table 20 were obtained via Monte Carlo with 200k trials on $S + \eta$ with $\eta \sim$
 1215 $\mathcal{N}(0, 1)$ and $k = w^2$. Theoretical entries correspond to σ^2/k for average pooling and Gauss-Hermite
 1216 quadrature for $E[M_k]$ and $E[M_k^2]$ to compute max-pooling bias and MSE.

1218 **Theorem 5** We construct random linear maps A with $\|A\|_2 = L_z = 3.0$, compose them with $D =$
 1219 $\text{diag}(1/\sigma)$ from INCEPTION and OPENAI, and estimate $\|AD\|_2$ via power iteration. Table 21 compares
 1220 the theoretical bound L_z/σ_{\min} with the measured norm and their ratio, confirming the predicted $1/\sigma_{\min}$
 1221 scaling.

1222 Table 19: Measured $\gamma_{\downarrow}(s)$ for anti-aliased downsampling by a factor of s . Stds for 100 simulations are
 1223 reported.

	s	Empirical	Theoretical
1226	1	0.999667 ± 0.006170	1.000000
1227	2	0.250114 ± 0.002767	0.250000
1228	3	0.110970 ± 0.001869	0.111111
1229	4	0.062447 ± 0.001483	0.062500
1230	6	0.027772 ± 0.000880	0.027778
1231	8	0.015567 ± 0.000649	0.015625
1232	12	0.006945 ± 0.000433	0.006944
1233	16	0.003925 ± 0.000359	0.003906

1234
 1235 Table 20: Comparison of empirical (Em.) and theoretical (Th.) results for average and max poolings
 1236

w	k	Avg MSE (Em.)	Avg MSE (Th.)	Max Bias (Em.)	Max Bias (Th.)	Max MSE (Em.)	Max MSE (Th.)
1238	2	0.25083	0.25000	1.02936	1.02938	1.55372	1.55133
1239	3	0.11049	0.11111	1.48535	1.48501	2.56409	2.56262
1240	4	0.06265	0.06250	1.76524	1.76599	3.41148	3.41374
1241	5	0.04006	0.04000	1.96619	1.96531	4.12369	4.12097
	6	0.02779	0.02778	2.11722	2.11812	4.71818	4.72069

1242
 1243 Table 21: Measured $\|AD\|_2$ closely matches the bound L_z/σ_{\min} for random A under INCEPTION and
 1244 OPENAI, confirming the $1/\sigma_{\min}$ scaling

Constants	Bound L_z/σ_{\min}	Measured $\ AD\ _2$	$\frac{L_z/\sigma_{\min}}{\ AD\ _2}$
INCEPTION	6.000000	5.998213	1.000298
OPENAI	11.480943	11.200055	1.025079

1251 G RANK DIFFERENCE AS A ROBUSTNESS PROXY

1252 Here, we denote the rank difference (RankDiff) at severity $\tau > 0$,

$$1253 \text{RankDiff}_i(\tau) := \text{rank}_\tau(i) - \text{rank}_0(i),$$

1254 where rank_τ orders models by accuracy at τ , so a more negative RankDiff $_i$ indicates a robustness gain. In
 1255 this section, we show that RankDiff is a principled, scale-free proxy because it aggregates pairwise rank flips
 1256 caused by robustness slope differences.

1257 **Assumption (local linearity with quadratic remainder).** For model $i \in \{1, \dots, M\}$, let $A_i(\tau)$ be its
 1258 accuracy at noise severity $\tau \geq 0$ and $p_i := A_i(0)$. For some $\tau_0 > 0$,

$$1259 A_i(\tau) = p_i - \rho_i \tau + r_i(\tau), \quad \rho_i \geq 0, \quad |r_i(\tau)| \leq L_i \tau^2 \quad (\tau \in [0, \tau_0]), \quad (11)$$

1260 where ρ_i is the first-order robustness slope, and L_i bounds the curvature. The linear accuracy drop after
 1261 applying a specific corruption has been verified in several studies (Recht et al., 2019; Hendrycks & Dietterich,
 1262 2019).

1263 **Pairwise flip rule.** For any $i \neq j$,

$$1264 A_i(\tau) - A_j(\tau) = (p_i - p_j) - (\rho_i - \rho_j)\tau + \varepsilon_{ij}(\tau), \quad |\varepsilon_{ij}(\tau)| \leq (L_i + L_j)\tau^2. \quad (12)$$

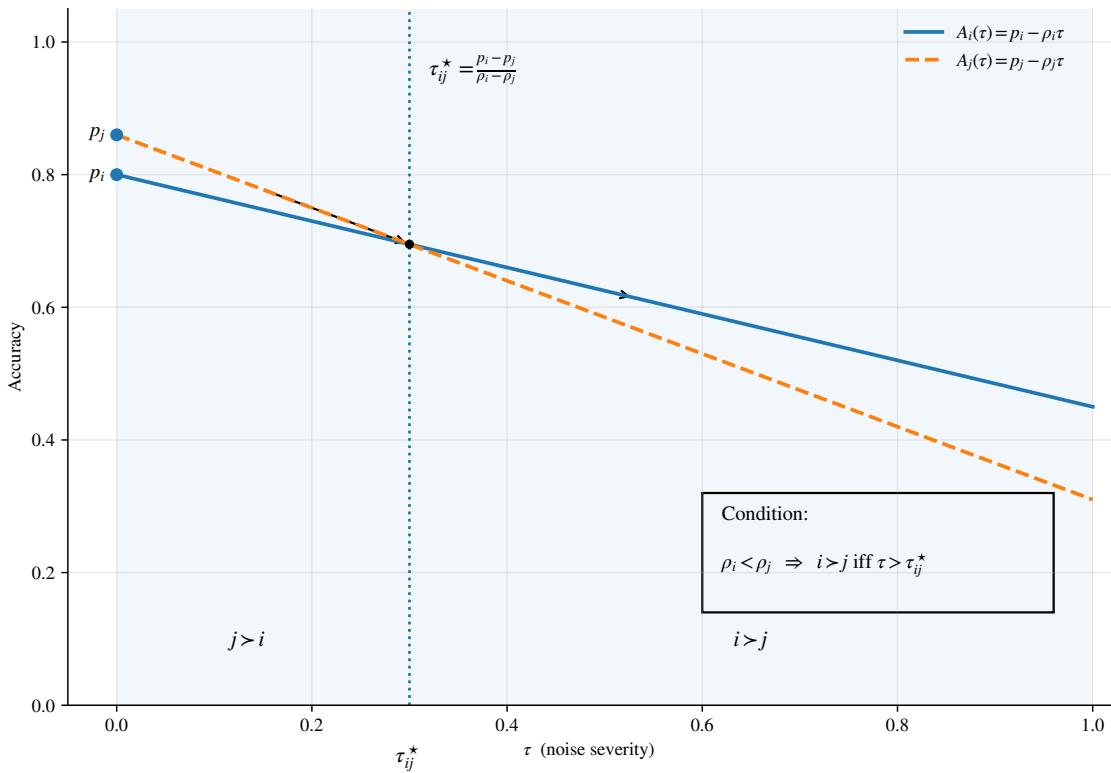
1269 If $\rho_i \neq \rho_j$, the first-order flip threshold is
 1270

$$1271 \quad 1272 \quad \tau_{ij}^* := \frac{p_i - p_j}{\rho_i - \rho_j}. \quad (13)$$

1273 When $\tau_{ij}^* \in (0, \tau_0]$ and the margin condition
 1274

$$1275 \quad |(p_i - p_j) - (\rho_i - \rho_j)\tau| > (L_i + L_j)\tau^2 \quad (14)$$

1277 holds at τ , the sign of $A_i(\tau) - A_j(\tau)$ is determined by the first-order term: Model i outranks j at τ if and
 1278 only if $\tau > \tau_{ij}^*$ when $\rho_i < \rho_j$ (Figure 5).
 1279



1305 Figure 5: Illustration of a rank flip
 1306
 1307

1308 **RankDiff counts robustness-driven flips.** Let $\mathcal{A}_i(\tau) := \{j \neq i : |(p_i - p_j) - (\rho_i - \rho_j)\tau| \leq (L_i + L_j)\tau^2\}$
 1309 be the set of ambiguous pairs at τ . Then, we have
 1310

$$1311 \quad 1312 \quad |\text{RankDiff}_i(\tau) + \sum_{j \neq i} \text{sgn}(\rho_j - \rho_i) \mathbf{1}\{\rho_i \neq \rho_j, 0 < \tau_{ij}^* \leq \tau\}| \leq |\mathcal{A}_i(\tau)|. \quad (15)$$

1313
 1314 In particular, if Eq. 14 holds for all $j \neq i$ at τ , equality holds in Eq. 15: $\text{RankDiff}_i(\tau)$ equals the net number
 1315 of pairwise flips caused by having a smaller slope ρ_i .

1316 Under the empirically observed near-linearity of accuracy-severity curves within the tested range, RankDiff
 1317 is a scale-free robustness score: It ignores absolute calibration of accuracies and rewards models with smaller
 1318 slopes ρ_i by counting the robustness-driven improvements in relative order.

1319
 1320 Although we wrote that a negative RankDiff indicates better robustness, we are not saying that understanding
 1321 the absolute value of RankDiff would capture robustness; to clarify our approach, we rather compare
 1322 pairwise architectures to compute their corresponding Δ RankDiff to understand the relative difference in
 1323 robustness.

1324 H EXPERIMENTAL SETUP

1325 Here, we present the experimental details and full hyperparameters for the implementations.

1326 **Gaussian Noise** We injected Gaussian noise into images using the `GaussNoise()` function
 1327 from the Albumentations library (Buslaev et al., 2020). By default, we used the transform
 1328 `A.GaussNoise(std_range=(0.1, 0.22), p=1.0)` with a scale factor with range (0.1, 0.22),
 1329 which determines the fraction of the maximum value, *i.e.*, 255 for uint8 images or 1.0 for float images.
 1330 For ImageNet-1K experiments, we used a scale factor with a range of (0.2, 0.44). The probability of applying
 1331 Gaussian noise was set to 1. Note that Gaussian noise was applied only during evaluation, *i.e.*, during
 1332 the test phase, not during the training phase.

1333 **ResNet Experiments** We targeted multi-class classification tasks on the Oxford-IIIT Pet, Caltech-101,
 1334 FGVC-Aircraft, Caltech-UCSD Birds-200-2011, and Stanford Cars datasets. The Oxford-IIIT Pet dataset
 1335 contains 7K pet images from 37 classes; the Caltech-101 dataset includes 9K object images from 101 classes
 1336 with a background category; the FGVC-Aircraft dataset includes 10K aircraft images from 102 classes;
 1337 the Caltech-UCSD Birds-200-2011 dataset includes 12K bird images from 200 classes; and the Stanford
 1338 Cars dataset includes 16K car images from 196 classes. These datasets are publicly available on their
 1339 official websites. Each dataset was split into training, validation, and test sets with a ratio of 70:15:15.
 1340 Unless specified otherwise, all experiments were conducted at a resolution of 224^2 using standard data
 1341 augmentation, including random resized cropping to 256 pixels, random rotations within 15 degrees, color
 1342 jitter with a factor of 0.4, random horizontal flip with a probability of 0.5, center cropping with 224-pixel
 1343 windows, and mean-std normalization based on ImageNet statistics.

1344 For training, stochastic gradient descent with a momentum of 0.9, learning rate of 0.01, cosine annealing
 1345 schedule with 200 iterations (Loshchilov & Hutter, 2017), weight decay of 10^{-2} , and mini-batch size of
 1346 128 were used. These hyperparameters were determined based on the accuracy of the validation set. One
 1347 exception was made for experiments with larger resolutions ranging from 224^2 to 896^2 , where we used
 1348 mini-batch size of 64 to adjust GPU memory, while other hyperparameters are the same. The model with
 1349 the highest validation accuracy was obtained after 200 training epochs, and we reported accuracy on the
 1350 validation and test sets. The ResNets were trained from scratch to solely focus on the architectural difference.
 1351 The training was conducted on a single GPU machine. An average and standard deviation of five runs with
 1352 different random seeds were reported for each result.

1353 For ResNet, we used five types with the following architectures:

- 1354 • Original ResNet: 7×7 stem with a width = 64 with single-layer, strided convolution in downsampling.
- 1355 • ResNet-C: 3-layer 3×3 stem with a width = 32 (32, 32, 64), strided convolution in downsampling.
- 1356 • ResNet-D: 3-layer 3×3 stem with a width = 32 (32, 32, 64), average pool in downsampling.
- 1357 • ResNet-S: 3-layer 3×3 stem with a width = 64 (64, 64, 128), strided convolution in downsampling.

1363 • ResNet-T: 3-layer 3×3 stem with a width = 32 (24, 48, 64), average pool in downsampling.
 1364

1365 **CLIP Experiments** For the CLIP experiments, we used pretrained weights for both supervised ViTs and
 1366 CLIP ViTs. When performing fine-tuning experiments, we used a learning rate of 0.001 and a weight decay
 1367 of 2×10^{-4} , while keeping all other hyperparameters the same as in the above setup in ResNet.
 1368

1369 **ImageNet-1K Training** The ImageNet-1K dataset contains 1.28M images for 1,000 classes. We referred
 1370 to the hyperparameter recipe described in the official documentation and the recipe from DeiT (Touvron
 1371 et al., 2021). For training, the AdamW optimizer (Loshchilov & Hutter, 2019) with learning rate 5×10^{-4} ,
 1372 epochs 400, warm-up learning rate 10^{-6} , cosine annealing schedule (Loshchilov & Hutter, 2017), weight
 1373 decay 0.05, label smoothing (Szegedy et al., 2016) 0.1, RandAugment (Cubuk et al., 2020) of magnitude
 1374 9 and noise-std 0.5 with increased severity (rand-m9-mstd0.5-inc1), random erasing (Zhong et al., 2020)
 1375 with probability 0.25, Cutmix (Yun et al., 2019) 1.0, stochastic depth (Huang et al., 2016) 0.1, mini-batch
 1376 size 128 per GPU, Exponential Moving Average of model weights with decay factor 0.99996, and image
 1377 resolution 224² were used. The training was performed on a 4×A100 GPU machine, which required two to
 1378 three days per training.
 1379

1380 **Mean-Std Constants** Note that pretrained models may have been trained by any of the normalization
 1381 constants; our choice of mean-std constants was applied on evaluation or fine-tuning of pretrained models.
 1382 For training our own models, mean-std constants were applied during both the training and test phases. The
 1383 exact values are as follows:
 1384

```
OPENAI_CLIP_MEAN = (0.48145466, 0.4578275, 0.40821073)
OPENAI_CLIP_STD = (0.26862954, 0.26130258, 0.27577711)
IMAGENET_INCEPTION_MEAN = (0.5, 0.5, 0.5)
IMAGENET_INCEPTION_STD = (0.5, 0.5, 0.5)
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
```

1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409

1410 I LIST OF NOTATIONS
1411
1412
1413

Table 22: Kernel and resolution-related notations.

1414 Symbol	1415 Description
1416 $x \in [0, 1]^{C \times H \times W}$	1417 Input image with C channels, height H , width W .
1417 $\eta \sim \mathcal{N}(0, \sigma^2 I)$	1418 Additive i.i.d. Gaussian noise with per-pixel std σ .
1418 I, I_n	1419 Identity matrix of appropriate size; $I_n \in \mathbb{R}^{n \times n}$.
1419 $*$	1420 2D discrete convolution.
1420 \hat{u}	1421 DFT of u on the grid Ω .
1421 Ω	1422 DFT grid.
1422 ε	1423 Infrared cutoff $\varepsilon = 2\pi / \max\{H, W\}$.
1423 $K_k \in \mathbb{R}^{k \times k}$	1424 Stem kernel of side length k ; \hat{K}_k denotes its DFT.
1424 $\phi_k(r) = (1 + \beta kr)^{-1-\delta}$	1425 Radial low-pass envelope upper-bounding $ \hat{K}_k(\omega) $.
1425 β, δ	1426 Positive envelope constants.
1426 $\gamma(k) = \frac{\mathbb{E}\ K_k * \eta\ _2^2}{\sigma^2 HW}$	1427 Per-pixel noise gain of the stem; equals $\ K_k\ _F^2$.
1427 $s \geq 1$	1428 Downampling factor.
1428 $g(s)$	1429 Anti-alias filter size before downampling; $c_1 s \leq g(s) \leq c_2 s$.
1429 c_1, c_2	1430 Absolute positive constants, independent of s .
1430 $D_s = (\downarrow_s) \circ K_{g(s)}$	1431 Anti-aliased downsample: Filter then downsample by s .
1431 \downarrow_s	1432 Downsampling by a factor s along height and width.
1432 $\gamma_{\downarrow}(s) = \frac{\mathbb{E}\ D_s \eta\ _2^2}{\sigma^2 HW / s^2}$	1433 Per-output-pixel noise gain after downsample.
1433 $\mathbb{E}[\cdot], \text{Var}[\cdot]$	1434 Expectation and variance.
1434 C, C'	1435 Absolute constants independent of k and s in the bounds.
1435 $\ \cdot\ _2, \ \cdot\ _\infty, \ \cdot\ _F$	1436 Euclidean, sup, and Frobenius norms.

Table 23: Pooling and CLIP-related notations.

1438 Symbol	1439 Description
1440 $w, m = w^2$	1441 Pooling window side length and number of elements.
1441 $S = (S_1, \dots, S_m)$	1442 Clean activations in one pooling window; $S_{(j)}$ denotes the j -th order statistic.
1442 $X_{\text{avg}} = \frac{1}{m} \sum_{i=1}^m (S_i + \eta_i)$	1443 Average-pooled noisy activation.
1443 $X_{\text{max}} = \max_{1 \leq i \leq m} (S_i + \eta_i)$	1444 Max-pooled noisy activation.
1444 $S_{\text{avg}} = \frac{1}{m} \sum_i S_i, S_{\text{max}} = \max_i S_i$	1445 Clean pooled activations.
1445 $\delta_{\text{avg}} = X_{\text{avg}} - S_{\text{avg}}$	1446 Avg-pool error; $\mathbb{E}[\delta_{\text{avg}}] = 0, \text{Var}[\delta_{\text{avg}}] = \sigma^2 / m$.
1446 $\delta_{\text{max}} = X_{\text{max}} - S_{\text{max}}$	1447 Max-pool error.
1447 $T_{\text{avg}}, T_{\text{max}}$	1448 Pooling maps on a window for average and max.
1448 $\ T\ _{\ell_2 \rightarrow \ell_2}$	1449 Lipschitz constant in ℓ_2 ; $\ T_{\text{avg}}\ = m^{-1/2}, \ T_{\text{max}}\ \leq 1$.
1449 $\Delta = S_{(1)} - S_{(2)}$	1450 Gap between the largest and second-largest clean entries.
1450 $Z_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1)$	1451 Standard normals; $M_m = \max_i Z_i, A_m = \max_i Z_i $.
1451 $\mu \in \mathbb{R}^C, \sigma \in \mathbb{R}_{>0}^C$	1452 Per-channel mean and std for input normalization.
1452 $N_{\mu, \sigma}(x) = (x - \mu) / \sigma$	1453 Channel-wise normalization.
1453 f	1454 Vision backbone operating on normalized inputs.
1454 $z = N_{\mu, \sigma}(x)$	1455 Normalized input.
1455 L_z	1456 Global ℓ_2 -Lipschitz constant of f on its domain.
1456 $F_{\mu, \sigma} = f \circ N_{\mu, \sigma}$	1457 End-to-end map; $\ F_{\mu, \sigma}\ _{\text{Lip}} \leq L_z / \sigma_{\min}$.
1457 $\sigma_{\min} = \min_c \sigma_c$	1458 Smallest channel std in normalization.

Table 24: Rank difference-related notations.

Symbol	Description
$\tau \geq 0$	Noise severity level.
$A_i(\tau)$	Accuracy of model i at severity τ ; $p_i = A_i(0)$ denotes clean accuracy.
ρ_i	First-order accuracy slope with respect to severity.
L_i, τ_0	Curvature bound and validity radius for the local model.
$\text{rank}_\tau(i)$	Rank of model i by accuracy at severity τ .
$\text{RankDiff}_i(\tau) = \text{rank}_\tau(i) - \text{rank}_0(i)$	Rank change.
$\tau_{ij}^* = \frac{p_i - p_j}{\rho_i - \rho_j}$	First-order crossing severity of models i and j .
$\mathcal{A}_i(\tau)$	Set of j whose ordering with i is ambiguous at τ .
$\text{sgn}(\cdot), \mathbf{1}\{\cdot\}$	Sign and indicator functions.

J ON GAUSSIAN NOISE

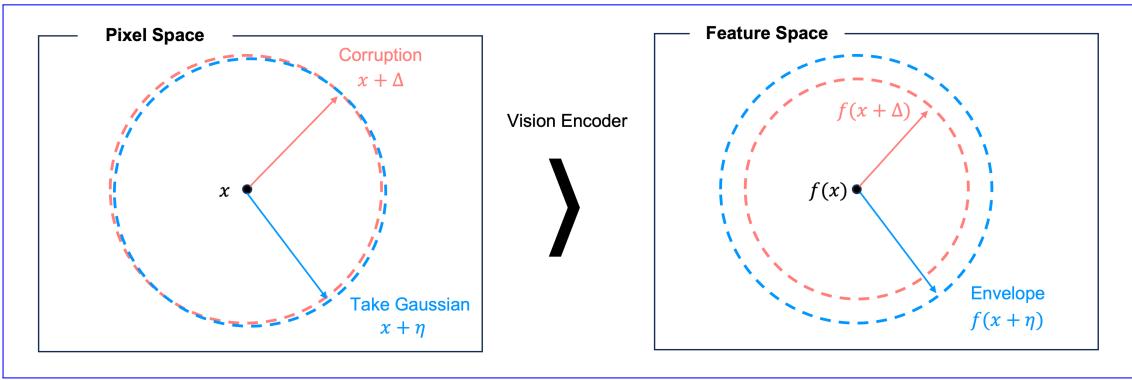


Figure 6: Illustration of Theorem 1. Features with Gaussian noise serve as an upper bound for corruption that has the same scale in pixel space.

There are several reasons why analyzing robustness against Gaussian noise is both useful and representative of common corruptions.

Gaussian surrogate via moment matching. The local linearization Eq. 1 implies that the feature perturbation δ_f is well-approximated to first order in the input perturbation Δ . Let $\mu_\Delta := \mathbb{E}[\Delta]$ and $\Sigma_\Delta := \text{Cov}(\Delta)$, where the expectation is taken over the randomness of the corruption. Plugging Eq. 1 into δ_f and taking expectations gives

$$\begin{aligned}\mathbb{E}[\delta_f] &= J_f(x)\mu_\Delta + O(\mathbb{E}\|\Delta\|_2^2), \\ \text{Cov}[\delta_f] &= J_f(x)\Sigma_\Delta J_f(x)^\top + O(\mathbb{E}\|\Delta\|_2^3).\end{aligned}$$

Thus, up to higher-order terms, any corruption whose pixel perturbation has mean μ_Δ and covariance Σ_Δ induces the same first two feature-space moments as the Gaussian feature perturbation $J_f(x)\eta$ generated by $\eta \sim \mathcal{N}(\mu_\Delta, \Sigma_\Delta)$. This applies both to zero-mean corruptions, such as noise and blur, and to mean-shifting ones, such as brightness enhancement, after decomposing Δ into its mean and zero-mean residual. In this sense, Gaussian noise serves as a convenient surrogate once we restrict attention to the low-order moments of the feature perturbation.

1504 **Gaussian probes for locally linear corruptions.** We now show that Gaussian probes are, in fact, the
 1505 worst-case within a broad variance-bounded family. Let a corruption \mathcal{C} with randomness ξ produce $x' =$
 1506 $\mathcal{C}(x, \xi)$ with $\Delta_{\mathcal{C}} := x' - x$, and assume that, for small severities, it admits a factorization
 1507

$$1508 \quad \Delta_{\mathcal{C}} = B_{\mathcal{C}}(x)\zeta, \quad \mathbb{E}[\zeta] = 0, \quad \text{Cov}(\zeta) \preceq I_d,$$

1509 for some linear operator $B_{\mathcal{C}}(x)$ that depends smoothly on x and a random vector ζ . The covariance bound
 1510 simply constrains the overall severity of the corruption. This model covers many image corruptions: Gaus-
 1511 sian blur and motion blur correspond to convolutional $B_{\mathcal{C}}(x)$; brightness, contrast, and fog are locally affine
 1512 rescalings; and JPEG compression or elastic distortions can be approximated as linear maps plus higher-
 1513 order residuals at low severity.

1514 Under the local linearization Eq. 1, we have $f(x + \Delta_{\mathcal{C}}) - f(x) \approx J_f(x)B_{\mathcal{C}}(x)\zeta$, and hence
 1515

$$1516 \quad \mathbb{E}[\|f(x + \Delta_{\mathcal{C}}) - f(x)\|_2^2] \approx \mathbb{E}[\|J_f(x)B_{\mathcal{C}}(x)\zeta\|_2^2] = \text{tr}(J_f(x)\Sigma_{\mathcal{C}}(x)J_f(x)^\top),$$

1518 with $\Sigma_{\mathcal{C}}(x) := B_{\mathcal{C}}(x)\text{Cov}(\zeta)B_{\mathcal{C}}(x)^\top \preceq B_{\mathcal{C}}(x)B_{\mathcal{C}}(x)^\top$. Replacing ζ by $\eta \sim \mathcal{N}(0, I_d)$ yields
 1519

$$1520 \quad \mathbb{E}[\|f(x + B_{\mathcal{C}}(x)\eta) - f(x)\|_2^2] = \|J_f(x)B_{\mathcal{C}}(x)\|_F^2,$$

1522 which saturates the same variance-bounded envelope: Any other zero-mean ζ with $\text{Cov}(\zeta) \preceq I_d$ can only
 1523 decrease this expectation. Thus, once a corruption is reduced to a linear shape $B_{\mathcal{C}}(x)$, additive Gaussian
 1524 noise with matching $B_{\mathcal{C}}(x)$ provides a worst-case, direction-agnostic stress test on f . Our architectural
 1525 conclusions, such as kernel size, resolution, pooling, and normalization constants, depend only on how
 1526 they scale this Jacobian-based quantity, so they transfer directly from Gaussian probes to a broad range of
 1527 common corruptions that admit such local linear models.

1528 **Empirical Simulation** Here, we performed an empirical simulation to investigate the validity of The-
 1529 orem 1. Using common image corruptions, including blur, weather, and digital corruptions used in
 1530 Hendrycks & Dietterich (2019), we first calibrated each corruption and Gaussian noise to have an equal
 1531 maximum eigenvalue in pixel space and then compared the variance in feature space when passing through
 1532 the same linear stem. For the stem, we considered five setups with different kernel sizes of 3, 5, and 7; high
 1533 and low resolutions; and average pooling. Theoretically, Gaussian noise achieves an upper bound on this
 1534 variance, and our simulations support this expectation: the ratio of corruption to Gaussian in feature-space
 1535 variance saturates around 1 across all corruptions tested here (Figure 7). These results clearly demonstrate
 1536 that the analysis of Gaussian noise captures the worst-case robustness against these common image corrup-
 1537 tions.

1539 K PROOF OF THEOREM 1

1541 In this section, we prove the Gaussian envelope result stated in Theorem 1. Throughout, we fix x and write
 1542 $J := J_f(x)$ for the Jacobian of f at x , and all expectations are taken with respect to the perturbation.
 1543

1544 *Proof.* By the local linearization in Eq. 1, for any perturbation Δ , we have
 1545

$$1546 \quad f(x + \Delta) - f(x) = J\Delta + r(x, \Delta), \quad \|r(x, \Delta)\|_2 \leq \frac{L(x)}{2}\|\Delta\|_2^2, \quad (16)$$

1548 for some local curvature bound $L(x) > 0$. For brevity, define $r := r(x, \Delta)$. Then
 1549

$$1550 \quad \|\delta_f\|_2^2 = \|J\Delta + r\|_2^2 = \|J\Delta\|_2^2 + 2\langle J\Delta, r \rangle + \|r\|_2^2. \quad (17)$$

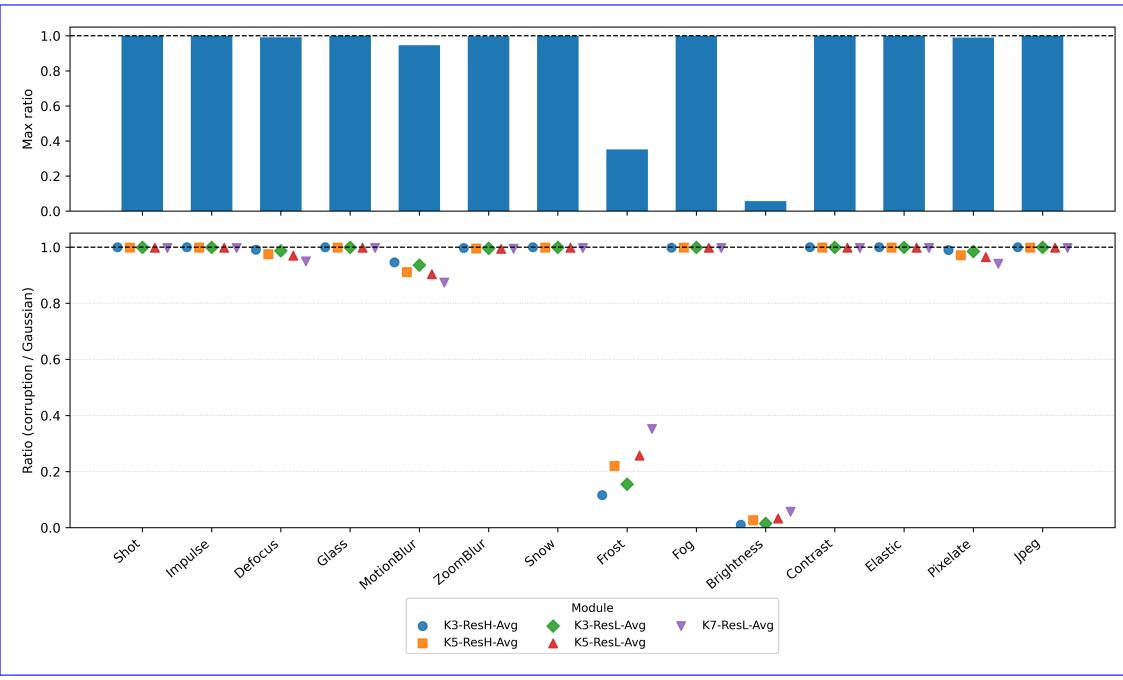


Figure 7: Empirical simulation of Theorem 1, comparing the variance in feature space for common image corruptions and Gaussian noise. All results show the ratio to be close to or less than one, which confirms that Gaussian noise serves as an upper bound.

Leading term. Taking expectations and using $\mathbb{E}[\Delta] = 0$ with covariance $\Sigma_\Delta := \mathbb{E}[\Delta\Delta^\top]$, we obtain

$$\mathbb{E}[\|J\Delta\|_2^2] = \mathbb{E}[\Delta^\top J^\top J\Delta] = \text{tr}(J^\top J\mathbb{E}[\Delta\Delta^\top]) = \text{tr}(J^\top J\Sigma_\Delta) = \text{tr}(J\Sigma_\Delta J^\top). \quad (18)$$

Now use the spectral constraint $\Sigma_\Delta \preceq \sigma^2 I_d$. Let $B := J^\top J \succeq 0$ and write the eigen-decomposition $\Sigma_\Delta = Q\Lambda Q^\top$, where $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_d)$ with $0 \leq \lambda_i \leq \sigma^2$. Then

$$\begin{aligned} \text{tr}(J\Sigma_\Delta J^\top) &= \text{tr}(B\Sigma_\Delta) = \text{tr}(BQ\Lambda Q^\top) = \text{tr}(\Lambda Q^\top BQ) \\ &= \sum_{i=1}^d \lambda_i (Q^\top BQ)_{ii} \leq (\max_i \lambda_i) \sum_{i=1}^d (Q^\top BQ)_{ii} \\ &\leq \sigma^2 \text{tr}(Q^\top BQ) = \sigma^2 \text{tr}(B) = \sigma^2 \|J\|_F^2. \end{aligned} \quad (19)$$

Combining Eq. 18 and Eq. 19 yields

$$\text{tr}(J\Sigma_\Delta J^\top) \leq \sigma^2 \|J\|_F^2. \quad (20)$$

Remainder terms. Next, we control the second and third terms in Eq. 17 using the remainder bound in Eq. 16. First, by Cauchy–Schwarz,

$$|\langle J\Delta, r \rangle| \leq \|J\Delta\|_2 \|r\|_2 \leq \|J\|_F \|\Delta\|_2 \cdot \frac{L(x)}{2} \|\Delta\|_2^2 = \frac{L(x)}{2} \|J\|_F \|\Delta\|_2^3, \quad (21)$$

so

$$|\mathbb{E}[\langle J\Delta, r \rangle]| \leq \frac{L(x)}{2} \|J\|_F \mathbb{E}[\|\Delta\|_2^3]. \quad (22)$$

1598 Similarly, from $\|r\|_2^2 \leq \frac{L(x)^2}{4} \|\Delta\|_2^4$, we have $\mathbb{E}[\|r\|_2^2] \leq \frac{L(x)^2}{4} \mathbb{E}[\|\Delta\|_2^4]$.
 1599

1600 To interpret the big- O term, it is natural to consider a family of small perturbations $\Delta = \varepsilon \xi$ with a fixed
 1601 random vector ξ and $\varepsilon > 0$ a scale parameter controlling the perturbation magnitude. Then $\mathbb{E}\|\Delta\|_2^3 =$
 1602 $\varepsilon^3 \mathbb{E}\|\xi\|_2^3$ and $\mathbb{E}\|\Delta\|_2^4 = \varepsilon^4 \mathbb{E}\|\xi\|_2^4$, so we have

$$1603 2|\mathbb{E}[\langle J\Delta, r \rangle]| + \mathbb{E}[\|r\|_2^2] = O(\varepsilon^3) = O(\mathbb{E}\|\Delta\|_2^3), \quad (23)$$

1605 with a constant depending only on J , $L(x)$, and the law of ξ . We summarize this as $O(\mathbb{E}\|\Delta\|_2^3)$ in the
 1606 statement of the theorem.

1607 **Putting everything together.** Taking expectations in Eq. 17 and combining Eq. 18, Eq. 20, and Eq. 23,
 1608 we obtain

$$1610 \mathbb{E}[\|f(x + \Delta) - f(x)\|_2^2] = \text{tr}(J\Sigma_\Delta J^\top) + O(\mathbb{E}\|\Delta\|_2^3) \\ 1611 \leq \sigma^2 \|J\|_F^2 + O(\mathbb{E}\|\Delta\|_2^3), \quad (24)$$

1613 which proves the first claim.

1615 **Gaussian case and saturation.** Now let $\eta \sim \mathcal{N}(0, \sigma^2 I_d)$. Then $\Sigma_\eta = \sigma^2 I_d$, and the leading term becomes

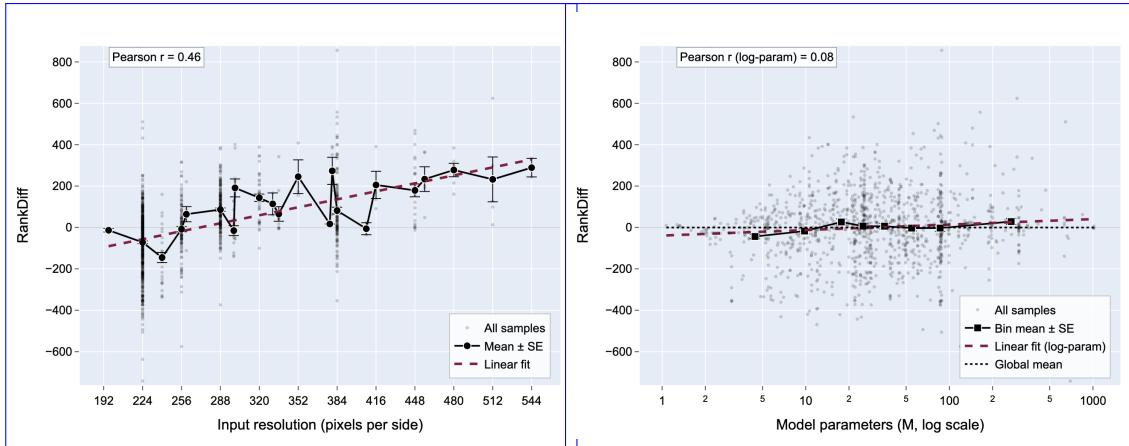
$$1617 \text{tr}(J\Sigma_\eta J^\top) = \text{tr}(J(\sigma^2 I_d)J^\top) = \sigma^2 \text{tr}(JJ^\top) = \sigma^2 \|J\|_F^2. \quad (25)$$

1618 The same remainder analysis as above, applied with $\Delta = \eta$, yields

$$1619 \mathbb{E}[\|f(x + \eta) - f(x)\|_2^2] = \sigma^2 \|J\|_F^2 + O(\mathbb{E}\|\eta\|_2^3). \quad (26)$$

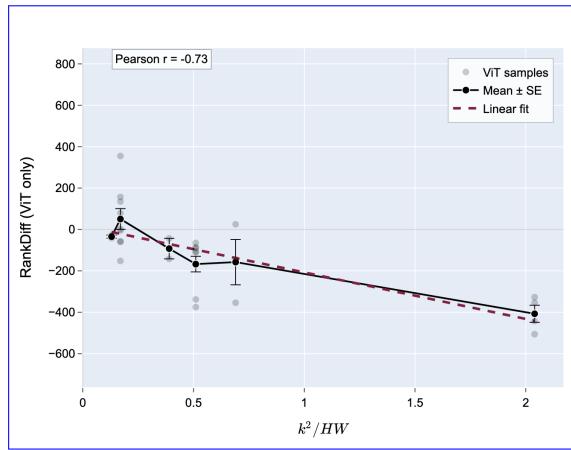
1621 Thus, among all zero-mean perturbations with covariance $\Sigma_\Delta \preceq \sigma^2 I_d$, Gaussian noise $\eta \sim \mathcal{N}(0, \sigma^2 I_d)$
 1622 saturates the upper bound on the leading Jacobian-based contribution to the expected feature-space mean-
 1623 squared error. \square

1625 L CORRELATION ANALYSIS



1642 Figure 8: For all 1,174 timm models, we plotted the rank difference with respect to resolution (left) and the
 1643 number of parameters (right). A significant level of correlation was found for resolution.
 1644

1645 The experiments in the main text targeted ViTs and ResNets with a controlled setup for kernel size and
 1646 resolution. Here, we further found that these observations hold for other vision models. Figure 8 summarizes
 1647 how the rank difference is affected by resolution and the number of parameters across all 1,174 timm vision
 1648 models, which also include other models beyond ViTs and ResNets. Firstly, we observed that the number of
 1649 parameters showed no relationship with the rank difference, which implies that choosing a larger model does
 1650 not lead to improved robustness against Gaussian noise. By contrast, we observed that the resolution, as well
 1651 as the kernel size, had a significant level of correlation with the rank difference. Note that this correlation
 1652 arises even though there are plenty of other factors that affect robustness, such as different training recipes.
 1653 Overall, smaller resolution led to a smaller rank difference, and this trend holds as a general behavior across
 1654 vision models.



1669
 1670 Figure 9: For ViTs, the rank difference exhibited a significant level of correlation with the ratio of patch to
 1671 image.

1672 Extending the findings of the main text, we can also say that the ratio of patch to image has a significant
 1673 correlation with robustness against Gaussian noise. For ViTs, this ratio becomes $100 \cdot k^2/HW$ (%). We
 1674 investigated its relationship with the rank difference (Figure 9), targeting the ViTs listed in Table 1. Again,
 1675 although these ViTs were trained with different recipes, the overall tendency showed a significant correlation:
 1676 a higher ratio of patch to image led to a smaller rank difference, indicating improved robustness.