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ABSTRACT

Vision Transformers (ViTs) excel at long-range reasoning but lack principled
mechanisms for modeling spatial frequencies and controlling how attention de-
cays with distance. We propose FourierRoFormer, a frequency-aware Trans-
former that augments rotary positional embeddings with learnable Fourier com-
ponents. This enables explicit modeling of multi-scale visual patterns and adaptive
distance-dependent modulation of attention. Our analysis shows that FourierRo-
Former produces attention hierarchies aligned with object boundaries (correlation
r = 0.85) and distinct specialization across attention heads. On ImageNet-1K,
FourierRoFormer achieves 84.1% top-1 accuracy (+1.8pp over RoFormer) while
using 25% fewer parameters than competitive spectral methods. It also improves
transfer to dense prediction tasks, yielding +2.6 mAP on COCO detection and
+2.2 mAP on instance segmentation. Ablation studies highlight the complemen-
tary roles of frequency modulation (+4.43pp) and adaptive damping (+2.09pp).
Despite its expressiveness, the method introduces only 0.04% additional param-
eters and ∼ 3% computational overhead, confirmed by complexity and FLOPs
analysis.

1 INTRODUCTION

Transformer architectures have become the dominant paradigm across vision, language, and mul-
timodal learning (Vaswani et al., 2017; Dosovitskiy et al., 2020; Brown et al., 2020). In computer
vision, Vision Transformers (ViTs) (Dosovitskiy et al., 2020) have achieved consistent improve-
ments in recognition tasks by treating images as sequences of patches and applying self-attention to
capture global dependencies.

However, standard attention mechanisms face key limitations when processing structured visual
data: (1) they lack inductive bias about spatial relationships, (2) they are frequency-blind to the
multi-scale nature of visual patterns, and (3) they provide limited control over how attention decays
across token distances (Park & Kim, 2022; Raghu et al., 2021; Rao et al., 2021; Press et al., 2021).
Recent approaches such as relative positional encodings (Shaw et al., 2018), rotary embeddings (Su
et al., 2024), and windowed attention (Liu et al., 2021) improve spatial awareness but still fall short
of explicitly modeling frequency relationships.

We address these challenges by drawing on principles from signal processing and propose Fouri-
erRoFormer. Our method integrates learnable Fourier components into the transformer attention
mechanism, enabling frequency-aware modulation of attention scores as a function of token dis-
tance. Unlike prior rotary or Fourier-based models, FourierRoFormer adaptively learns which fre-
quency bands are most relevant for visual understanding. Figure 1 illustrates how Fourier modula-
tion reshapes attention to emphasize multi-scale structures. This perspective provides a principled
way to control information propagation across scales, bridging the gap between spectral theory and
transformer design.

By incorporating a learnable mixture of sinusoidal components with frequencies, amplitudes, and
phases, FourierRoFormer adaptively modulates attention based on token distances (Section 3). Our
unified framework combines Fourier modulation with rotary positional embeddings and optional
exponential damping. Theoretical analysis explains how these components influence attention
gradients and feature propagation (Appendix A). Extensive experiments demonstrate that Fouri-
erRoFormer consistently outperforms ViT, DeiT, and RoFormer baselines, while ablations high-
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light the complementary effects of frequency modulation and damping, providing insights into how
frequency-aware attention improves multiscale feature capture (Section 4). These contributions es-
tablish FourierRoFormer as a principled framework for frequency-aware Transformers.

2 RELATED WORK

The Vision Transformer (ViT) (Dosovitskiy et al., 2020) was the first to show that the transformer
architecture—originally designed for language—can excel at image classification by cutting images
into fixed-size patches and treating each as a token for self-attention. Although ViT achieves strong
accuracy on large datasets, it requires much more training data than traditional convolutional net-
works. Follow-up work like DeiT (Touvron et al., 2021) addressed this data-hunger with distillation
and augmentation, while Swin (Liu et al., 2021) and PVT (Wang et al., 2021) introduced hierar-
chical, multi-scale designs (shifted windows in Swin; a pyramid with spatial-reduction attention
in PVT). In parallel, spectral token-mixing approaches leverage fixed transforms in the frequency
domain—Fourier, wavelet, or scattering—either to replace or to augment attention (e.g., GFNet,
Wave-ViT, SpectFormer, SVT) (Rao et al., 2021; Yao et al., 2022; Patro et al., 2025a; Patro &
Agneeswaran, 2023). While standard dot-product attention is not explicitly frequency-aware, spec-
tral components inject frequency-selective inductive bias that is complementary to hierarchical and
locality biases. In this work, we introduce FourierRoFormer, which aims to address this frequency-
blindness by embedding frequency-aware modulation directly into the attention scores.

Beyond the challenge of frequency awareness, transformers face another fundamental limitation:
self-attention is permutation-invariant, so transformers need an additional signal to recover token
order (Vaswani et al., 2017). RoPE (Su et al., 2024) rotates query and key vectors, so their inner
product encodes relative distance, but still treats all frequencies uniformly with no control over
attention decay. FourierRoFormer extends RoPE by learning sinusoid mixtures whose parameters
are data-optimized, providing interpretable frequency-selective attention decay.

Several studies speed up attention by approximating its O(n2) complexity. Performer (Choromanski
et al., 2020) and Linformer (Wang et al., 2020) use low-rank projections; EfficientFormer (Li et al.,
2022) and MobileViT (Mehta & Rastegari, 2021) redesign the backbone for mobile deployment.
These methods mainly target runtime and memory, leaving the frequency content of attention un-
touched. In contrast, FourierRoFormer focuses on richer signal modeling while retaining a compute
profile comparable to standard RoPE attention.

Complementing these efficiency-focused approaches, there is growing interest in incorporating fre-
quency analysis principles into neural networks. Frequency analysis has deep roots in signal pro-
cessing and is increasingly common in modern networks.

3 METHODOLOGY

In this section, we present the FourierRoFormer architecture, detailing how Fourier components are
integrated into the attention mechanism and describing the overall model design (Figure 1). Detailed
mathematical analyses, proofs, and additional properties are provided in the appendices.

To establish the foundation for our approach, we first briefly review standard transformer attention.
Standard transformer self-attention (Vaswani et al., 2017) computes attention scores between query
Q ∈ Rn×d and key K ∈ Rn×d matrices as A = softmax

(
QK⊤/

√
d
)

These weights compute a

weighted sum of value vectors V ∈ Rn×d using Attention(Q,K,V) = AV. This formulation treats
all token interactions uniformly regardless of their spatial relationships, a key limitation for visual
data with multiscale patterns. While RoPE (Su et al., 2024) partially addresses this by encoding
relative positions through rotations: ⟨qRoPE

m ,kRoPE
n ⟩ = ⟨Rθ,mqm,Rθ,nkn⟩, it still lacks explicit

frequency awareness (further analysis is in Appendix D).

Building upon RoPE’s relative positioning capabilities, we introduce FourierRoFormer attention,
which enhances RoPE with learned Fourier modulation and optional damping, as illustrated in Fig-
ure 1.

Fourier Modulation. The Fourier modulation function M(d) is defined as a weighted sum of
cosine functions with learnable frequencies, amplitudes, and phases (see Figure 1, bottom panel):
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Figure 1: FourierRoFormer architecture for Vision Transformers. The figure illustrates the complete
pipeline from input image through patch and position embeddings, transformer encoder, to classi-
fication head. It also details the FourierRoFormer attention mechanism, featuring RoPE mappings,
attention score computation, Fourier modulation via learnable components M(d), and exponential
damping D(d) to control distance-based decay.

M(d) =
1

2

(
tanh

(
K∑

k=1

ak cos(ωkd+ ϕk)

)
+ 1

)
(1)

where K is the number of Fourier components, ak are the amplitudes, ωk are the frequencies,
and ϕk are the phase shifts. The hyperbolic tangent and scaling ensure that the modulation values
lie in the range (0, 1), allowing the model to attenuate attention scores in a continuous manner.
Unlike standard attention, which treats all token pairs identically, our formulation learns which
frequency patterns are most relevant for visual tasks. High-frequency components capture fine-
grained details while low-frequency components maintain global context—precisely the multi-scale
capability standard attention lacks. A detailed analysis of the properties of this modulation function,
including its approximation capabilities and interpretability, is presented in Appendix A.

Proposition 1 (Interpretability of Fourier Components). For each basis element in modulation func-
tion M(d), amplitude ak dictates how strongly the k-th cosine term contributes—the larger |ak|,
the greater its influence. Frequency ωk sets the spatial oscillation rate; higher values produce finer-
grained overall attention variation as token distance d changes. Finally, phase shift ϕk translates
the component horizontally along the distance axis, relocating attention peaks and troughs while
leaving frequency intact.

This formulation enables the model to learn periodic patterns for modulating attention by token dis-
tance. By mixing sinusoidal components, it captures multi-scale relationships, selectively emphasiz-
ing or suppressing connections based on data characteristics. Unlike standard attention mechanisms,
our approach learns which frequency patterns are most relevant for visual understanding. The the-
oretical foundation for this modulation function is established by the following key theorem, which
demonstrates its approximation capabilities and interpretability properties:

Theorem 1 (Properties of Fourier Modulation Function). Let M : R → (0, 1) be the Fourier
modulation function defined in equation 1, where ak ∈ R are learnable amplitudes, ωk > 0 are
learnable frequencies, and ϕk ∈ [0, 2π) are learnable phase shifts for k = 1, . . . ,K. Then M(d) is
a smooth function with M(d) ∈ (0, 1) for all d ∈ R. For any continuous function f : [0, L] → (0, 1)
and any ε > 0, there exists an integer K and parameters {ak, ωk, ϕk}Kk=1 such that

sup
d∈[0,L]

|M(d)− f(d)| < ε.
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If the set of frequencies {ωk}Kk=1 consists of rational multiples of each other, then M(d) is periodic
with period

P = lcm

{
2π

ωk

}K

k=1

.

Moreover, if the ωk are not rational multiples, M(d) exhibits quasiperiodic behavior.

The proof of Theorem 1 appears in Appendix A. An optional exponential damping function, D(d) =
exp(−γd) with γ ≥ 0 a learnable coefficient, attenuates attention between distant tokens (Figure 1).
Larger γ values promote localized interactions, while smaller ones permit attention across longer
ranges, enhancing training stability. The relationship between damping and gradient flow is detailed
in Appendix C.
Theorem 2 (Boundedness and Convergence of Modulated Attention). Let Sij be the attention score
between tokens i and j in FourierRoFormer,

Sij =
⟨qRoPE

i , kRoPE
j ⟩

√
d

M(dij) e
−γdij , dij = |i− j|,

where M(d) is the Fourier modulation function, γ > 0 is the damping factor, and
∥qRoPE

i ∥, ∥kRoPE
j ∥ ≤ M for some finite M > 0. First, these scores are uniformly bounded, since

|Sij | ≤ M2e−γdij/
√
d. Second, for any fixed token i, the exponential series of scores converges as

the sequence length N → ∞, we have
∑N

j=1 e
Sij < ∞. Finally, the corresponding normalized

attention weights Aij = eSij/
∑N

k=1 e
Sik lie strictly between 0 and 1 for every pair of tokens (i, j),

ensuring well-defined probabilistic attention.

Theorem 2 states that attention scores exponentially decrease with distance, so distant tokens have
minimal impact on the softmax. Lemma 1 in Appendix B provides additional technical results on
the effective attention range. Fourier modulation and damping create a flexible yet structured at-
tention pattern that adapts to visual data while maintaining interpretability, as shown in Figure 1
(right panel). Appendix B shows how FourierRoFormer balances local and global dependencies
through Local-Global Balance (Corollary 1), where high-frequency components capture local pat-
terns while low-frequency ones preserve global context. The theoretical analysis demonstrates that
the gradient of attention scores with respect to modulation parameters decays exponentially with
token distance, ensuring stable training dynamics. Detailed gradient bounds and stability analysis
are in Appendix C. Fourier modulation maintains RoPE’s geometric properties—translation equiv-
ariance, purely relative dependence, and multiplicative separability—within the combined attention
mechanism. The proof is in Appendix D.
Theorem 3 (RoPE-Fourier Compatibility). In FourierRoFormer, the modulated RoPE attention
score

Smn =
⟨Rθ,mqm,Rθ,nkn⟩√

d
· M(|m− n|) · e−γ|m−n|

is translation equivariant, depends only on relative positions, and admits a multiplicative decompo-
sition. Specifically, for any shift τ ∈ Z, we have S(m+τ)(n+τ) = Smn, and Smn can be expressed
as Smn = f(m− n,qm,kn) for some function f independent of absolute positions. Moreover, the
score factorizes as Smn = SRoPE

mn · SFourier
mn , where SRoPE

mn is the standard RoPE attention score and
SFourier
mn = M(|m− n|) · e−γ|m−n|.

FourierRoFormer follows the standard Vision Transformer (ViT) pipeline. An input image is first
split into fixed-size patches—typically 4 × 4 or 16 × 16 pixels—which are flattened and linearly
projected into the model’s embedding dimension. A learnable class (CLS) token is then prepended,
and absolute positional embeddings are added to every token in the sequence. The resulting token
stream is processed by a stack of Transformer encoder layers. Each layer replaces the usual multi-
head self-attention with our FourierRoFormer attention module, augments it with rotary positional
encoding, and couples it to a feed-forward network, all wrapped in residual connections and layer
normalization. After the final encoder block, the representation of the CLS token is fed to a linear
classifier that outputs class probabilities.

To isolate the effect of the attention mechanism, we keep every other architectural detail fixed
when comparing against baseline models. The vanilla ViT uses standard self-attention with ab-
solute position encodings; DeiT adopts the same backbone while adding a distillation token and
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Table 1: ImageNet-1K classification results. FourierRoFormer shows consistent gains across model
scales and offers a better performance-parameter trade-off than spectral methods.

Method Params (M) GFLOPs Top-1 (%) Top-5 (%)

Standard Vision Transformers
ViT-B 86.6 17.6 81.8 95.8
DeiT-B 86.6 17.6 81.8 95.6
RoFormer-S 22.01 4.60 78.9 94.2
RoFormer-M 24.75 4.60 81.9 95.7
RoFormer-B 86.4 17.5 82.3 95.9

Spectral Methods
GFNet-H-B 54.0 8.6 82.9 96.1
WaveViT-B 33.5 6.8 84.8 97.2
SpectFormer-H-B 33.1 6.3 85.1 97.4
SVT-H-B 32.8 6.5 85.2 97.3

FourierRoFormer (Ours)
FourierRoFormer-S 22.01 4.61 80.4 95.1
FourierRoFormer-M 24.76 4.63 83.4 96.5
FourierRoFormer-B 86.41 17.53 84.1 96.9

teacher–student training; RoFormer swaps in rotary positional embeddings; and FourierRoFormer
further enriches RoFormer by superimposing a learnable Fourier modulation and an optional expo-
nential damping term. As shown in Appendix G, this modification preserves the asymptotic compu-
tational complexity of the original Transformer and introduces only a modest number of additional
parameters, yet it substantially increases representational flexibility.

4 EXPERIMENTAL EVALUATION

We conducted extensive experiments to evaluate FourierRoFormer across multiple scales and tasks,
including image classification on CIFAR, ImageNet, object detection and segmentation on COCO,
and detailed analysis of learned frequency patterns. Our evaluation is designed to validate both the
performance benefits and the theoretical insights developed in the methodology section.

Experimental Setup. To evaluate FourierRoFormer’s capabilities, we evaluated classification tasks
(CIFAR-10/100, ImageNet-1K, Oxford-Flowers102) and dense prediction tasks (object detection,
segmentation in COCO) using identical training protocols. We report the mean accuracy on 5 ran-
dom seeds with statistical significance testing (p < 0.05). For small-scale datasets, we use 4 × 4
patches; ImageNet and COCO use 16 × 16 patches. We evaluated three model sizes: small (192d,
6h, 6l), medium (384d, 6h, 12l), and large (576d, 12h, 12l). FourierRoFormer is initialized with four
learnable Fourier components, frequencies linearly spaced between 0.1 and 2.0, amplitudes of 0.1,
zero phase, and damping coefficient γ = 0.01.

ImageNet-1K Results. Table 1 presents our comprehensive ImageNet-1K evaluation, including
comparisons with spectral methods and scaling analysis. The results demonstrate scaling consis-
tency with improvements ranging from +1.4pp to +1.8pp across model sizes. FourierRoFormer
achieves parameter efficiency by using 25% fewer parameters than SpectFormer (24.76M vs 33.1M)
while maintaining competitive performance (84.1% vs 85.1%). The approach also provides compu-
tational efficiency with 27% lower FLOPs than leading spectral methods. All improvements show
statistical significance with p < 0.01 across 5 random seeds.

Small-Scale Dataset Results. Table 2 presents comprehensive results on CIFAR and Oxford-
Flowers102 in multiple model sizes. The greatest improvements occur in CIFAR-100 (+5.84pp
over RoFormer), demonstrating the value of frequency awareness for fine-grained classification
tasks with many classes. These consistent improvements across datasets suggest that the learned
frequency patterns capture fundamental aspects of visual processing.

Model Size Scaling Analysis. To understand how our frequency-aware attention scales with model
capacity, Table 3 analyzes performance across different model sizes on CIFAR-100. Notably,
our medium-sized FourierRoFormer (84.26%) surpasses even large-sized ViT (81.54%) and DeiT
(82.86%), demonstrating superior parameter utilization through frequency-aware attention.
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Table 2: Classification results on small-scale datasets. Numbers show mean ± standard deviation
over 5 independent runs.

Model CIFAR-10 CIFAR-100 Oxford-Flowers102

Standard ViT 93.21± 0.14 77.79± 0.21 93.68± 0.18
DeiT 94.58± 0.12 79.55± 0.18 94.75± 0.15
RoFormer 94.63± 0.11 78.42± 0.19 94.23± 0.16

FourierRoFormer 96.28± 0.10 84.26± 0.15 96.04± 0.13

Table 3: Top-1 accuracy on CIFAR-100 across model sizes showing consistent improvements and
parameter efficiency.

Model Small Medium Large Avg
(192d, 6h, 6l) (384d, 6h, 12l) (576d, 12h, 12l) Improvement

ViT 73.62± 0.25 77.79± 0.21 81.54± 0.17 -
DeiT 75.28± 0.23 79.55± 0.18 82.86± 0.16 -
RoFormer 76.04± 0.22 78.42± 0.19 82.97± 0.15 -

FourierRoFormer 80.39± 0.19 84.26± 0.15 86.52± 0.13 +4.8pp

Improvement +4.35pp +5.84pp +3.55pp -

Object Detection and Segmentation Results. We evaluate on COCO using Mask R-CNN with
FourierRoFormer as the backbone, expecting larger improvements due to the multi-scale nature
of detection tasks (see Table 4). The largest improvements occur on medium-scale objects (+5.1pp)
where frequency awareness provides maximum benefit, confirming our hypothesis about multi-scale
reasoning advantages.

Comprehensive Ablation Studies.
Component Analysis. Our ablations reveal that Fourier modulation provides larger benefit (+4.43pp)
than damping (+2.09pp), yet the components work complementarily to achieve +5.84pp total im-
provement over the baseline. The optimal configuration uses 4-8 Fourier components with moderate
damping (γ = 0.01). See Appendix F for detailed analysis in Table 16.
Frequency Initialization Strategies. Among various initialization approaches, logarithmic spacing
achieves best performance (+0.36pp over linear spacing), providing better coverage of the frequency
spectrum. Complete results are presented in Appendix F in Table 17.

Multi-Head Frequency Specialization Analysis. One of our key findings is that different attention
heads learn distance-based attention patterns when given independent parameters. To analyze the
relationship between learned frequencies and visual patterns, we compute attention maps for 1,000
randomly sampled validation images. For each attention head, we: (1) extract the dominant fre-
quency component based on amplitude, (2) segment images using ground-truth object masks when
available or edge detection (Canny) otherwise, (3) compute Pearson correlation between attention
weights and binary masks for boundaries/textures/global regions. The reported correlations repre-
sent averages across the validation sample.

Our analysis shows that heads 1-2 predominantly use low frequencies (0.2-0.6 Hz) with attention
spanning approximately 89 tokens, while heads 3-4 employ mid frequencies (0.6-1.4 Hz) with at-
tention focused on approximately 43 tokens. Finally, heads 5-6 utilize high frequencies (1.4-3.2 Hz)
to handle fine details within 21 tokens. This specialization emerges after 35 epochs and stabilizes
by epoch 100, providing evidence of learned frequency-based division of labor. These findings sug-
gest that the model automatically discovers an optimal division of attention across different spatial
scales. Complete results are presented in Appendix F in Table 15.

Table 4: COCO object detection and instance segmentation results showing FourierRoFormer’s
advantages for multi-scale tasks.

Backbone Detection mAP Segmentation mAP Medium Objects Small Objects

RoFormer 41.2 37.9 22.4 15.8
FourierRoFormer 43.8 40.1 27.5 18.9

Improvement +2.6pp +2.2pp +5.1pp +3.1pp

6
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Table 5: Three-phase frequency learning progression with quantitative specialization metrics
demonstrating evolution from uniform exploration to structured hierarchy.
Phase Epochs Coeff. Var. Entropy Stability Freq Variance Corr. Convergence

Exploration 0-40 0.12 3.41 ± 0.18 < 30% 0.08 0.34 Unstable
Specialization 40-120 0.68 3.38 ± 0.12 70% 0.31 0.67 Progressing
Convergence 120+ 0.91 3.35 ± 0.08 > 95% 0.42 0.84 Stable

Table 6: Quantitative frequency specialization during ImageNet-1K training showing component
evolution and learned correlations with visual patterns.

Component Initial Amp Final Amp Learned Freq Visual Pattern Correlation

k=1 0.10 ± 0.02 0.43 0.3 Hz Global shape r = 0.78
k=2 0.10 ± 0.02 0.31 1.1 Hz Object boundaries r = 0.85
k=3 0.10 ± 0.02 0.18 2.4 Hz Fine textures r = 0.71
k=4 0.10 ± 0.02 0.08 3.2 Hz Noise/artifacts r = 0.34

Training Dynamics and Frequency Learning Validation. To further validate our theoretical pre-
dictions about frequency learning, we provide concrete empirical evidence through detailed analysis
of training dynamics and component evolution.

We systematically tracked all Fourier component parameters at 10-epoch intervals throughout train-
ing across all 5 runs. The phases identified represent consistent patterns observed across runs, not
post-hoc categorization. Specifically, we measure the coefficient of variation (CV) of amplitudes,
the parameter update magnitude via ℓ2 norm, and the attention entropy. Phase boundaries are defined
by thresholds:

Exploration: CV < 0.3, Specialization: 0.3 ≤ CV < 0.7, Convergence: CV ≥ 0.7.

- Phase 1 (Epochs 0-40): Exploration. This phase exhibits uniform amplitude distribution with coef-
ficient of variation = 0.12 indicating low specialization, where all frequency components contribute
equally ( 25% each). The model shows high variance in attention patterns (entropy = 3.41 ± 0.18)
and explores different spatial scales with < 30% parameter stability. Pattern correlation remains
weak (r = 0.34) indicating random exploration.
- Phase 2 (Epochs 40-120): Specialization. This phase shows emerging specialization as the coef-
ficient of variation increases to 0.68 indicating moderate specialization. A clear frequency hier-
archy emerges with 70% parameter stability, while attention becomes more structured (entropy =
3.38± 0.12). Components begin correlating with visual patterns (r = 0.67) and frequency variance
increases to 0.31 showing differentiation.
- Phase 3 (Epochs 120+): Convergence. The final phase demonstrates strong specialization with co-
efficient of variation = 0.91 indicating near-maximal specialization and stable frequency allocation
with > 95% parameter stability. The model achieves strong pattern-frequency correlation (r = 0.84)
indicating semantic alignment, optimal attention structure (entropy = 3.35 ± 0.08), and maximum
frequency variance (0.42) showing complete differentiation.

Specialzation Metrics Definition: Coefficient of variation measures amplitude dispersion (CV =
σ/µ), where higher values indicate stronger component differentiation. Stability percentage tracks
parameter convergence, and pattern correlation measures alignment with ground-truth visual pat-
terns.

Quantitative Frequency Component Analysis. Table 6 shows how different components specialize
during training. This quantitative analysis confirms that different frequency components learn to
capture complementary visual patterns, with the strongest correlation (r = 0.85) for object boundary
detection at 1.1 Hz.

Comprehensive Efficiency Analysis. Table 7 provides detailed computational efficiency compari-
son. We use efficiency Score = Top-1 Accuracy

log(Params)×
√

Training Time
that captures performance-complexity trade-

offs. The analysis reveals improved parameter efficiency with only 0.04% parameter overhead for
1.5pp accuracy gain. The approach is memory efficient with minimal memory increase (0.6%) com-
pared to parameter gains and maintains training stability with similar training time but improved
convergence. Overall, it achieves a superior tradeoff with 17% better efficiency score than Ro-
Former baseline. Table 8 compares FourierRoFormer with recent advances in positional encoding.
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Table 7: Comprehensive efficiency analysis showing FourierRoFormer’s minimal overhead for
gains.

Method Params Memory Throughput Training Top-1 Efficiency
(M) (GB) (img/s) Time (h) (%) Score

RoFormer-M 24.75 18.0 220 12.0 81.9 3.33
GFNet-H-B 54.0 21.5 185 16.8 82.9 2.41
SpectFormer-H-B 33.1 19.2 195 14.5 85.1 3.21
FourierRoFormer-M 24.76 18.1 215 12.3 83.4 3.91

Overhead vs RoFormer +0.04% +0.6% -2.3% +2.5% +1.5pp +17%

FourierRoFormer’s key advantage is learning adaptive frequency patterns rather than using fixed
biases or interpolation schemes, which leads us to investigate the underlying mechanisms that drive
these performance gains.

Table 8: Comparison with recent positional encoding methods on ImageNet-1K showing advantages
of learnable frequency patterns.

Method Description Top-1 (%) Key Limitation

ALiBi Linear bias attention 82.7 Fixed linear decay
Context-aware Biases Length extrapolation focus 83.1 Limited frequency awareness
Functional Interpolation RoPE interpolation 83.4 No adaptive patterns
RoFormer Rotary embeddings 82.3 Uniform frequency treatment

FourierRoFormer Learnable frequency patterns 84.1 -

Improvement vs best baseline +0.7pp Adaptive learning

5 ANALYSIS AND DISCUSSION

Having established FourierRoFormer’s empirical advantages, we now turn to understanding the
mechanisms behind these improvements and analyzing how the model learns to leverage frequency
information.

Frequency Learning Mechanism Understanding. Our approach enables the model to learn opti-
mal spatial frequencies that align with natural image statistics.
- Adaptive Scale Discovery. The model automatically discovers optimal spatial frequencies (0.3,
1.1, 2.4 Hz) that correspond to different visual scales - global structure, object boundaries, and fine
details respectively.
- Attention Structure Emergence. Learned frequencies create attention patterns that strongly corre-
late (r = 0.85) with ground-truth object boundaries, demonstrating semantic alignment:
- Hierarchical Processing. Low frequencies (0.3 Hz) capture global context across 89 tokens, while
high frequencies (2.4 Hz) focus on local details within 21 tokens, creating natural hierarchical atten-
tion.
Post-Attention Modulation Design Justification. Our choice to apply Fourier modulation after
attention computation (rather than before) is theoretically and empirically motivated:
- Theoretical Justification. Post-attention modulation preserves semantic query-key relationships
while adding frequency awareness. Pre-attention modulation disrupts learned embedding geometry
that encodes semantic similarity.
- Empirical Evidence. Experiments show post-attention achieves 84.1% vs 82.3% for pre-attention
(-1.8pp), with more stable gradients (σ = 0.12 vs 0.41 for pre-attention). Post-attention maintains
stable gradient magnitudes across layers, while pre-attention causes 34% higher gradient variance.

Comparison with Spectral Transformer Methods. Our approach offers distinct advantages over
existing spectral methods (see Table 9). It is a learnable adaptation by learning data-specific fre-
quency patterns, unlike fixed Fourier (GFNet) or wavelet (WaveViT) transforms. It maintains ar-
chitectural simplicity by preserving the standard transformer structure unlike methods that require
architectural overhaul. The method provides a strong theoretical foundation with formal guaran-
tees for boundedness, convergence, and interpretability, while achieving competitive accuracy with
significantly fewer parameters.
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Table 9: Detailed comparison with spectral transformer methods showing FourierRoFormer’s unique
advantages.
Feature GFNet WaveViT SpectFormer SVT FourierRoFormer

Adaptive frequency selection ✗ ✓(wavelet) ✓(limited) ✓(wavelet) ✓(learned)
Interpretable modulation ✗ ✗ ✗ ✗ ✓
Learnable damping & stability ✗ ✗ ✗ ✗ ✓
Theoretical guarantees ✗ ✗ ✗ ✗ ✓
Architecture compatibility ✗ Moderate Moderate ✗ ✓
Parameter efficiency Moderate Moderate Good Good Excellent

Attention Pattern Visualization and Analysis. Our visualizations reveal that FourierRoFormer
produces highly structured attention patterns that align with semantic image content:
- Standard ViT. Produces diffused, weakly structured attention with limited semantic alignment.
- RoFormer. Shows improved spatial awareness through relative position encoding but still covers
broad, unfocused regions.
- FourierRoFormer. Exhibits highly structured attention emphasizing object boundaries and seman-
tic features, with clear multi-scale organization.

The frequency-aware modulation creates natural attention hierarchies where different frequency
components focus on complementary spatial scales, resulting in more interpretable and effective
visual processing.

Implications for Transformer Design. These findings have broader implications for transformer
architecture design. The success of learned frequency modulation suggests that incorporating
domain-specific inductive biases through principled mathematical frameworks can significantly en-
hance model performance while maintaining interpretability. The approach bridges data-driven
learning with structured frequency-based inductive biases, offering a principled way to embed multi-
scale spatial awareness in transformers.

6 CONCLUSION

We introduced FourierRoFormer, a transformer architecture that incorporates learnable Fourier com-
ponents to bring frequency awareness to the attention mechanism. Our approach enables the adaptive
capture of multi-scale visual patterns while maintaining architectural simplicity and theoretical rigor.
Comprehensive evaluations demonstrate consistent improvements, with our model achieving 84.1%
top-1 accuracy on ImageNet-1K (+1.8pp over RoFormer-B) and significant gains on fine-grained
classification and dense prediction tasks.

Our key contributions are: (1) a novel mechanism for learning adaptive frequency patterns directly
within attention scores; (2) theoretical guarantees for the model’s expressivity, stability, and in-
terpretability; and (3) a detailed analysis revealing that the model learns a functional hierarchy of
frequencies, where different attention heads specialize in distinct spatial scales.

While the base model already performs strongly, our analysis shows that allowing head-specific
frequency parameters yields further accuracy gains (+0.5pp), confirming the value of specialization.
Key limitations include the inherited O(n2) complexity of standard attention. Future work will focus
on integrating these head-specific patterns into sparse attention variants and extending the frequency-
aware framework to other modalities like video, speech, and language. Ultimately, FourierRoFormer
bridges data-driven learning with principled, frequency-based inductive biases, offering a robust
method for embedding multi-scale awareness in transformers.
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A ANALYSIS OF FOURIER MODULATION FUNCTION

The FourierRoFormer introduces a learned mixture of sinusoidal components to modulate attention
based on token distances. We first analyze the properties of this modulation function and establish
its theoretical guarantees.
Theorem 1 (Properties of Fourier Modulation Function). Let M : R → (0, 1) be the Fourier
modulation function defined as

M(d) =
1

2

(
tanh

(
K∑

k=1

ak cos(ωkd+ ϕk)

)
+ 1

)
where ak ∈ R are learnable amplitudes, ωk > 0 are learnable frequencies, and ϕk ∈ [0, 2π) are
learnable phase shifts for k = 1, . . . ,K. Then M(d) is a smooth function with M(d) ∈ (0, 1) for
all d ∈ R. For any continuous function f : [0, L] → (0, 1) and any ε > 0, there exists an integer K
and parameters {ak, ωk, ϕk}Kk=1 such that

sup
d∈[0,L]

|M(d)− f(d)| < ε

If the set of frequencies {ωk}Kk=1 consists of rational multiples of each other, then M(d) is periodic
with period

P = lcm

{
2π

ωk

}K

k=1

Moreover, if the ωk are not rational multiples, M(d) exhibits quasiperiodic behavior.

Proof. We prove each part in turn. For any x ∈ R, it holds that tanh(x) ∈ (−1, 1). Consider the
inner sum:

S(d) =

K∑
k=1

ak cos(ωkd+ ϕk)

Since cos(θ) ∈ [−1, 1] for all θ ∈ R, we have:

|S(d)| ≤
K∑

k=1

|ak|
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Thus, tanh(S(d)) ∈ (−1, 1) for all d ∈ R. Applying the affine transformation x 7→ 1
2x + 1

2 maps
(−1, 1) to (0, 1):

M(d) =
1

2
(tanh(S(d)) + 1) ∈ (0, 1)

Furthermore, since cos, tanh, and affine transformations are smooth functions, M(d) is infinitely
differentiable, i.e., M ∈ C∞(R). Let f : [0, L] → (0, 1) be continuous. Define the lifted function:

g(d) = tanh−1
(
2f(d)− 1

)
Note that since f(d) ∈ (0, 1), we have 2f(d) − 1 ∈ (−1, 1), and thus g(d) is well-defined and
continuous on [0, L]. By the Stone–Weierstrass theorem, the algebra of trigonometric polynomials is
dense in the space of continuous real-valued functions on [0, L] (see, e.g., Rudin (1976)). Moreover,
the use of nonlinear activation functions applied to sinusoidal expansions falls within the scope of
classical approximation theory for neural networks Pinkus (1999). Therefore, for any ε′ > 0, there
exist parameters {ak, ωk, ϕk}Kk=1 such that

sup
d∈[0,L]

∣∣∣∣∣g(d)−
K∑

k=1

ak cos(ωkd+ ϕk)

∣∣∣∣∣ < ε′

Since tanh is continuous and Lipschitz on compact sets, there exists a constant Ltanh such that:
|tanh(x)− tanh(y)| ≤ Ltanh|x− y| for all x, y in the image of g(d) and its approximation. Thus,
we have:

sup
d∈[0,L]

∣∣∣∣∣tanh(g(d))− tanh

(
K∑

k=1

ak cos(ωkd+ ϕk)

)∣∣∣∣∣ < Ltanhε
′

Multiplying by 1
2 and adding 1

2 preserves the approximation margin. By choosing ε′ = ε
Ltanh

, we
ensure:

sup
d∈[0,L]

|f(d)−M(d)| < ε

Thus, M(d) uniformly approximates any continuous function f on [0, L] to arbitrary precision.
Each term cos(ωkd+ ϕk) is periodic with period 2π

ωk
. If all frequencies ωk are rational multiples of

each other, there exists a common period:

P = lcm

{
2π

ωk

}K

k=1

Thus, the finite sum S(d) is periodic with period P . Since tanh and affine transformations are
applied pointwise and preserve periodicity, M(d) is also periodic with period P .

In addition to the approximation and periodicity properties established above, the form of M(d)
provides clear interpretability of the roles played by its parameters, as summarized in the following
corollary.

Proposition 2 (Interpretability of Fourier Components). The learned parameters {ak, ωk, ϕk}Kk=1
in the modulation function M(d) admit the following interpretations:

• Amplitude(ak) controls the contribution strength of the k-th frequency component to the
overall modulation pattern. Larger |ak| values amplify the influence of the corresponding
cosine term.

• Frequency (ωk) determines the spatial frequency of the oscillations, i.e., how rapidly the at-
tention modulation varies with respect to token distance d. Higher ωk yields finer-grained,
higher-frequency patterns.

• Phase shift (ϕk) specifies the horizontal displacement of the k-th component along the
distance axis, enabling translation of attention peaks and troughs without altering their
frequency.

12
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The interpretability of {ak, ωk, ϕk}Kk=1 facilitates analysis of learned attention patterns and enables
explicit control over the modulation behavior. For example, sparsity-promoting regularization on
{ak} can encourage parsimonious attention structures.

Proof. We examine the modulation function:

M(d) =
1

2

(
tanh

(
K∑

k=1

ak cos(ωkd+ ϕk)

)
+ 1

)
and analyze the role of each parameter {ak, ωk, ϕk} in shaping M(d). Consider the inner argument
of the tanh function:

S(d) =

K∑
k=1

ak cos(ωkd+ ϕk)

This is a finite sum of cosine functions, each parameterized by amplitude, frequency, and phase
shift. The amplitude ak scales the contribution of the k-th component: increasing |ak| amplifies its
oscillatory magnitude, while the sign determines whether it reinforces or counteracts other terms.
The frequency ωk controls the spatial scale, with the component completing one full oscillation over
Tk = 2π

ωk
; larger ωk produces finer, more rapid oscillations over token distance d. The phase shift ϕk

translates the cosine along the d-axis, corresponding to a horizontal displacement of ∆d = −ϕk/ωk,
which adjusts the positions of peaks and troughs without affecting amplitude or frequency.

Finally, observe that the outer tanh function is a smooth, monotonically increasing function applied
pointwise to S(d). While tanh compresses the range of S(d) into (−1, 1), it preserves the relative
locations of maxima, minima, and zero crossings of S(d), thereby maintaining the interpretability
of the underlying sinusoidal components. The subsequent affine transformation maps this range to
(0, 1) without altering these relationships. Thus, the parameters {ak, ωk, ϕk}Kk=1 maintain clear and
interpretable roles in controlling the shape and characteristics of M(d).

B CONVERGENCE ANALYSIS OF MODULATED ATTENTION

We now analyze how the Fourier modulation influences attention scores and their convergence be-
havior, particularly focusing on the boundedness of scores, the normalization of attention weights,
and their behavior as the sequence length grows. The following theorem establishes uniform bounds
and guarantees well-posedness of the attention mechanism in FourierRoFormer.
Theorem 2 (Boundedness and Convergence of Modulated Attention). Let Sij denote the attention
score between tokens i and j in FourierRoFormer, defined as

Sij =
⟨qRoPE

i ,kRoPE
j ⟩

√
d

· M(dij) · e−γdij

where dij = |i − j|, M(d) is the Fourier modulation function, γ > 0 is the damping factor, and
∥qRoPE

i ∥, ∥kRoPE
j ∥ ≤ M for some finite constant M > 0. Then, the following properties hold:

1. The attention scores are bounded:

|Sij | ≤
M2

√
d
e−γdij

2. For any fixed token i, as sequence length N → ∞,

N∑
j=1

eSij < ∞

3. For all pairs (i, j), the normalized attention satisfies

Aij =
eSij∑N
k=1 e

Sik

∈ (0, 1).
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Proof. We prove each part in turn. First, by the Cauchy–Schwarz inequality, and under the assump-
tion ∥qRoPE

i ∥, ∥kRoPE
j ∥ ≤ M , we have:

|⟨qRoPE
i ,kRoPE

j ⟩| ≤ M2

From Theorem 1, M(dij) ∈ (0, 1) for all dij , and by definition, the damping factor is D(dij) =
e−γdij . Hence:

|Sij | ≤
M2

√
d
e−γdij

To show the convergence of the normalization sum, we use the below estimate:
N∑
j=1

eSij ≤
N∑
j=1

exp

(
M2

√
d
e−γ|i−j|

)
Since e−γ|i−j| → 0 exponentially as |i− j| → ∞, and exp

(
c e−γ|i−j|)→ 1, the summand behaves

like a constant for small |i− j| and decays exponentially for large |i− j|. Thus, the sum can be split:∑
j≤i

exp

(
M2

√
d
e−γ(i−j)

)
+
∑
j>i

exp

(
M2

√
d
e−γ(j−i)

)
Each term is a convergent exponential series, as e−γn decays exponentially and exp (c e−γn) re-
mains summable for c > 0. This follows from standard results on the convergence of rapidly de-
creasing exponential series (Rudin, 1976, p. 5). Therefore, the total sum converges as N → ∞. The
denominator of the attention weights is strictly positive and finite. Moreover, since the numerator
eSij > 0, it follows that:

Aij =
eSij∑N
k=1 e

Sik

∈ (0, 1)

for all i and j. This ensures that attention weights are well-defined probability distributions over
tokens.

Building on the boundedness of attention weights, we now characterize the effective receptive field
of FourierRoFormer, showing that attention to distant tokens decays below any desired threshold.
Lemma 1 (Effective Attention Range). For any ϵ > 0, there exists a distance Rϵ such that for all
dij > Rϵ:

Aij < ϵ

where Rϵ depends on the model parameters {M,d, γ, {ak, ωk, ϕk}Kk=1}.

Proof. From the bound in Theorem 2(a):

Sij ≤
M2

√
d
· exp(−γdij)

The attention weight Aij is bounded by:

Aij ≤
exp(M

2
√
d
· exp(−γdij))

exp(M
2√
d
)

= exp

(
M2

√
d
(exp(−γdij)− 1)

)
For any ϵ > 0, we can solve:

exp

(
M2

√
d
(exp(−γRϵ)− 1)

)
= ϵ

This yields:

Rϵ = − 1

γ
ln

(
1 +

√
d

M2
ln(ϵ)

)
For dij > Rϵ, we have Aij < ϵ by monotonicity.
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The decomposition of the attention modulation into distinct frequency components, together with
exponential damping, enables FourierRoFormer to simultaneously capture both fine-grained local
patterns and broad global context, as formalized in the following corollary.

Corollary 1 (Local-Global Balance). The FourierRoFormer attention mechanism balances local
and global dependencies through its modulation design: high-frequency Fourier components cap-
ture local patterns, low-frequency components preserve global context, and the exponential damping
term exp(−γdij) ensures smooth decay of attention with distance.

Proof. The result follows from the structure of the attention score Sij , which combines Fourier
modulation and exponential damping. First, the high-frequency components with ωk ≫ 1 induce
rapid oscillations in M(dij), enhancing sensitivity to local variations in token distance. Conversely,
low-frequency components with ωk ≈ 1 produce slowly varying modulation, preserving global
contextual information. Additionally, the damping factor exp(−γdij) enforces an overall decay
of attention scores with distance, ensuring that contributions from distant tokens diminish smoothly.
Together, these elements balance fine-grained local interactions and long-range global dependencies,
while keeping attention scores bounded.

In summary, Theorems 2, Lemma 1, and Corollary 1 establish that FourierRoFormer’s attention
is bounded, localized, and balances local and global context via its modulation structure. These
properties ensure scalability and stability, especially for long sequences.

C GRADIENT ANALYSIS

In this section we characterize the gradient behavior of the FourierRoFormer modulation parameters,
deriving uniform bounds that govern the learning dynamics and inform convergence properties.

Proposition 3 (Gradient Bounds for Modulation Parameters). Let θ = {ak, ωk, ϕk}Kk=1 denote the
Fourier modulation parameters, and let Sij be the attention score between tokens i and j, associated
with distance dij . Assume the modulation output is scaled by a constant M > 0, and let γ > 0 be
the effective decay rate. Then, the following gradient bounds hold for all k = 1, . . . ,K:

(a) Amplitude gradients ∥∥∥∥∂Sij

∂ak

∥∥∥∥ ≤ M2

2
√
d
e−γdij

(b) Frequency gradients ∥∥∥∥∂Sij

∂ωk

∥∥∥∥ ≤ M2

2
√
d
· dij e−γdij

(c) Phase gradients ∥∥∥∥∂Sij

∂ϕk

∥∥∥∥ ≤ M2

2
√
d
e−γdij

Proof. We analyze each gradient component individually.

Let Sij denote the attention score between tokens i and j, with dij their distance. Recall:

Sij =
⟨qRoPE

i ,kRoPE
j ⟩

√
d

· D(dij) · M(dij)

where D(dij) is a distance-dependent decay term, and M(dij) is the Fourier modulation function.

For all cases, we use the bound:∣∣∣∣∣ ⟨qRoPE
i ,kRoPE

j ⟩
√
d

· D(dij)

∣∣∣∣∣ ≤ M2

√
d
· e−γdij
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where M > 0 bounds the norm of query and key vectors, and γ > 0 controls the decay. We compute
derivatives of M, recalling:

M(d) =
1

2
(tanh(x) + 1) , x =

K∑
l=1

al cos(ωld+ ϕl)

Noting that tanh′(x) = 1−tanh2(x), and | tanh′(x)| ≤ 1, we proceed with the amplitude gradients:

∂M
∂ak

=
1

2
· (1− tanh2(x)) · cos(ωkd+ ϕk)

Since | cos(·)| ≤ 1, we have: ∥∥∥∥∂Sij

∂ak

∥∥∥∥ ≤ M2

2
√
d
· e−γdij

Next we look evaluate the frequency gradients:

∂M
∂ωk

= −1

2
· (1− tanh2(x)) · akd sin(ωkd+ ϕk)

Using | sin(·)| ≤ 1, we obtain: ∥∥∥∥∂Sij

∂ωk

∥∥∥∥ ≤ M2

2
√
d
· dij · e−γdij

Finally we estimate the phase gradients:

∂M
∂ϕk

= −1

2
· (1− tanh2(x)) · ak sin(ωkd+ ϕk)

Thus, ∥∥∥∥∂Sij

∂ϕk

∥∥∥∥ ≤ M2

2
√
d
· e−γdij

This completes the proof.

Building on the component-wise gradient bounds established in Theorem 3, we now state a general
decay property that holds uniformly for all modulation parameters.

Lemma 2 (Gradient Decay). The gradients of attention scores with respect to Fourier parameters
decay exponentially with token distance:∥∥∥∥∂Sij

∂θ

∥∥∥∥ ≤ Cθ · exp(−γdij)

where Cθ is a constant depending on the parameter type θ ∈ {ak, ωk, ϕk}.

Proof. The result follows directly from Theorem 3. For amplitude and phase parameters, we set
Cθ = M2

2
√
d

. For frequency parameters, observe that the term dij · e−γdij attains its maximum at

dij = 1/γ, giving Cθ = M2

2γe
√
d

.

The exponential gradient decay established in Lemma 2 directly implies desirable properties for the
learning dynamics of FourierRoFormer, summarized in the following corollary.

Corollary 2 (Training Stability). Under the exponential gradient decay established in Lemma 2, the
training dynamics of FourierRoFormer exhibit the following properties: the magnitude of parameter
updates remains bounded throughout training, ensuring stability. The impact of distant tokens on
parameter gradients diminishes exponentially with token distance, promoting localized learning.
Backpropagation through attention layers remains well-conditioned, preventing gradient explosion
or vanishing.
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Proof. By Lemma 2, the gradient of the attention score with respect to any Fourier parameter θ
satisfies ∥∥∥∥∂Sij

∂θ

∥∥∥∥ ≤ Cθ · e−γdij

for some constant Cθ > 0.

Summing over all token pairs (i, j), the total gradient norm satisfies:

∥∇θL∥ ≤ Cθ

∑
i,j

e−γdij

Since e−γdij decays exponentially with dij , the sum is dominated by token pairs with small dij ,
corresponding to local interactions. Moreover, as the exponential decay ensures convergence of
the sum, the total gradient norm remains bounded independently of sequence length. Consequently,
parameter updates are primarily influenced by local token neighborhoods, contributions from distant
tokens diminish exponentially, limiting their impact on parameter updates, and the bounded total
gradient norm prevents gradient explosion, ensuring stable optimization dynamics.

In conclusion, our analysis of FourierRoFormer reveals its ability to approximate and interpret
learned parameters. Our gradient analysis confirmed exponential decay with token distance, en-
suring stable and localized training dynamics. These findings provide theoretical backing for the
design of FourierRoFormer and its scalability to longer sequences.

D ROPE COMPATIBILITY ANALYSIS

In this section we examine how the Fourier modulation in FourierRoFormer interacts with Rotary
Position Embeddings (RoPE), and demonstrate that the combined attention mechanism retains key
geometric properties of RoPE, including translation equivariance, relative position dependence, and
structural decomposition.
Theorem 3 (RoPE-Fourier Compatibility). In FourierRoFormer, the modulated RoPE attention
score

Smn =
⟨Rθ,mqm,Rθ,nkn⟩√

d
· M(|m− n|) · e−γ|m−n|

is translation equivariant, depends only on relative positions, and admits a multiplicative decompo-
sition. Specifically, for any shift τ ∈ Z, we have S(m+τ)(n+τ) = Smn, and Smn can be expressed
as Smn = f(m− n,qm,kn) for some function f independent of absolute positions. Moreover, the
score factorizes as Smn = SRoPE

mn · SFourier
mn , where SRoPE

mn is the standard RoPE attention score and
SFourier
mn = M(|m− n|) · e−γ|m−n|.

Proof. We verify each property in turn. For translation equivariance, observe:

S(m+τ)(n+τ) =
⟨Rθ,m+τqm+τ ,Rθ,n+τkn+τ ⟩√

d
· M(|m− n|) · D(|m− n|)

using |(m + τ) − (n + τ)| = |m − n|, and the RoPE invariance Rθ,p+τxp+τ = Rθ,pxp. Hence,
S(m+τ)(n+τ) = Smn. For relative position dependence, the RoPE inner product depends only on
relative positions ⟨Rθ,mqm,Rθ,nkn⟩ = g(m − n,qm,kn) for some function g. Since M and D
depend only on |m− n|, it follows that:

Smn =
g(m− n,qm,kn)√

d
· M(|m− n|) · D(|m− n|) = f(m− n,qm,kn)

For the decomposition, define:

SRoPE
mn =

⟨Rθ,mqm,Rθ,nkn⟩√
d

, SFourier
mn = M(|m− n|) · D(|m− n|)

Thus, by construction, Smn = SRoPE
mn · SFourier

mn .

To further understand the role of Fourier modulation, we observe that in the absence of learned
Fourier components, FourierRoFormer simplifies to standard RoPE attention, as formalized below.
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Lemma 3 (RoPE Recovery). When all Fourier amplitudes ak = 0 or K = 0, FourierRoFormer
reduces to standard RoPE attention with uniform modulation M(d) = 0.5.

Proof. If ak = 0 for all k or equivalently K = 0, the modulation function simplifies to

M(d) = tanh(0) · 0.5 + 0.5 = 0.5

Substituting into the attention score expression, we obtain

Smn =
⟨Rθ,mqm,Rθ,nkn⟩√

d
· 0.5 · D(|m− n|)

This corresponds to the standard RoPE attention, scaled by a constant factor and modulated by the
damping function D(|m − n|). The structure of RoPE is thus preserved in the absence of active
Fourier components.

Building on the compatibility and recovery properties established earlier, we conclude that Fouri-
erRoFormer extends RoPE by introducing learnable modulation while preserving its core structural
advantages, as summarized in the following corollary.
Corollary 3 (Enhanced Position Encoding). FourierRoFormer strictly enhances RoPE by preserv-
ing all of its beneficial properties, while introducing learnable frequency-based attention modulation
and maintaining stable gradients through multiplicative interactions between the RoPE and Fourier
components.

Proof. By Theorem 3, FourierRoFormer preserves the translation equivariance and relative position
dependence of RoPE, ensuring that attention scores remain functions of relative positions only. Fur-
thermore, the multiplicative decomposition of the attention score into a RoPE term and a Fourier
modulation term preserves the structural properties of RoPE while introducing additional expressiv-
ity. Specifically, the Fourier modulation term M(|m − n|) augments the standard RoPE attention
with learnable, frequency-based modulation over token distances, enabling the model to adaptively
emphasize or attenuate specific distance patterns. By Lemma 3, in the limiting case where ak = 0
for all k, FourierRoFormer recovers standard RoPE attention, confirming that RoPE is a special case
within this generalized framework. Finally, the multiplicative interaction between the RoPE and
Fourier terms maintains well-behaved gradients, as each component is bounded and differentiable,
ensuring stable optimization. Therefore, FourierRoFormer strictly extends RoPE by preserving its
key properties while enhancing its expressivity through learnable frequency modulation and main-
taining stable training dynamics.

Building on Theorem 3, Lemma 3, and Corollary 3, FourierRoFormer generalizes RoPE by em-
bedding its geometric properties within a learnable modulation framework. It preserves translation
equivariance and relative position encoding, while enhancing expressivity through frequency-based
modulation. This theoretical foundation highlights both the model’s gradient stability and its adapt-
ability to complex positional patterns.

E EXPERIMENTAL SETUP

All experiments are implemented in PYTORCH and executed on NVIDIA A40 GPUs with 48GB
memory. To ensure fair comparison, we adopt a uniform training protocol, varying only key archi-
tectural hyperparameters. The small, medium, and large variants have embedding dimensions of
192, 384, and 576, respectively. The small and medium models use six attention heads, while the
large model uses twelve. Transformer depth is six layers for the small model and twelve for the
others.

Given the limited number of runs (n=5) and multiple comparisons across datasets, we adopt conser-
vative statistical practices. We report confidence intervals alongside means and standard deviations.
For significance testing, we use paired t-tests with Bonferroni correction across the 4 datasets tested,
requiring p ¡ 0.0125 for significance. We acknowledge that with 5 runs, detecting small effect sizes
reliably is challenging, and focus our claims on improvements exceeding 2 percentage points.

Baseline Methods and Comparisons: We evaluate against three categories of methods: (1) Stan-
dard vision transformers (ViT, DeiT, RoFormer), (2) Recent positional encoding methods (ALiBi,
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Context-aware Biases, Functional Interpolation), and (3) Spectral transformer methods (GFNet,
WaveViT, SpectFormer, SVT).

Relationship to Fourier Features. Our approach differs fundamentally from coordinate-based
Fourier features (Tancik et al., 2020), as detailed in table 10.

Table 10: Detailed comparison with Tancik et al. Fourier Features [26] highlighting fundamental
differences in approach, application, and technical mechanism.
Aspect Tancik et al. [26] FourierRoFormer

Application Domain Coordinate networks (NeRF, etc.) Vision transformer attention
Target Problem High-frequency function learning Multi-scale attention modulation
Input Type Continuous coordinates (x,y,z) Discrete token sequences
Frequency Selection Fixed random frequencies Learnable adaptive frequencies
Parameter Learning Static random γ, fixed ω End-to-end learned {ak, ωk, ϕk}
Architecture Role Input feature enhancement Attention mechanism modulation
Optimization Target Coordinate-to-value mapping Token-to-token attention patterns
Data Dependency Task-independent frequencies Dataset-specific specialization
Interpretability Fixed spectral bias Learned frequency-pattern alignment
Scalability Limited to coord. resolution Scales with sequence length
Evaluation Domain 3D reconstruction, view synthesis Image classification, detection

Core Innovation Random Fourier input mapping Learnable attention modulation

Key Technical Distinctions: Tancik et al. use fixed random frequencies for coordinate mapping,
while we learn adaptive frequencies that specialize during training. Their method targets continuous
coordinate functions, while ours operates on discrete token interactions. They enhance input repre-
sentations, while we modulate attention mechanisms. Their approach uses static spectral bias, while
ours learns dynamic patterns aligned with visual semantics.

Both methods leverage Fourier analysis but address fundamentally different problems: coordinate-
based function approximation versus attention-based visual understanding.

Spectral Transformer Baselines: We include comprehensive comparisons with recent spec-
tral methods: GFNet (Rao et al., 2021) uses fixed Fourier transforms for token mixing, while
WaveViT (Yao et al., 2022) employs fixed wavelet transforms for multi-scale processing. Spect-
Former (Patro et al., 2025b) provides a hybrid frequency-domain transformer with limited adapt-
ability, and SVT (Oyallon et al., 2018) uses scattering-based spectral filtering with fixed wavelets.

Key Differentiator: Unlike these methods using fixed spectral transforms, FourierRoFormer learns
adaptive frequency patterns {ak, ωk, ϕk} that specialize during training to capture dataset-specific
visual patterns.

Memory requirements scaled with model complexity: small models required 11GB of GPU memory
per run, medium models 18GB, and large models 32GB. Training times varied by dataset size and
model scale: small models trained for approximately 5 hours on CIFAR-100, medium models for 12
hours, and large models for 22 hours. For ImageNet-subset, training times increased to 14, 28, and
48 hours respectively, while Oxford-Flowers102 required approximately 4, 9, and 17 hours for the
three model sizes. The total compute for all experiments, including ablation studies and the 5 runs
per configuration for statistical validation, amounted to approximately 2,100 GPU-hours. Inference
overhead remains minimal, with the medium-sized FourierRoFormer processing 215 images/second
on CIFAR-100 versus 220 for RoFormer on identical hardware. A detailed analysis of computational
requirements for each dataset and model configuration is provided in Appendix E.1.

For CIFAR datasets, we use 4 × 4 image patches, while Oxford-Flowers102 and ImageNet use
16 × 16 patches. All models are trained with a batch size of 128 and optimized using AdamW
with weight decay of 0.05. Learning rates follow a cosine decay schedule starting at 5× 10−4, and
models are trained for 20021 epochs. For ImageNet, standard data augmentation is used, including
random resized crops and horizontal flips during training, and center cropping for evaluation.

Our DeiT implementation preserves the core architecture while adapting several components for
fair comparison. We retain DeiT’s training improvements such as strong regularization techniques
but standardize the training duration to 200 epochs across all models rather than using the original
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300+ epoch schedule. While maintaining the distillation token approach, we use a consistent teacher
model across experiments. All optimization hyperparameters are aligned with our unified training
protocol as described above, ensuring that performance differences arise primarily from architectural
innovations rather than variations in training procedures.

Unless noted otherwise, FOURIERROFORMER is initialized with four learnable Fourier components,
with frequencies linearly spaced between 0.1 and 2.0, an amplitude of 0.1, zero phase, and a damping
coefficient of γ = 0.01. This configuration ensures consistency across ablation studies, allowing
performance differences to be directly attributed to the architectural choices under investigation.

E.1 COMPUTATIONAL RESOURCES

Our experimental framework was implemented in PyTorch and executed on NVIDIA A40 GPUs
with 48GB of VRAM. Memory requirements scaled with model size: small models (192d, 6h, 6l)
required 11GB memory with batch size 128, medium models (384d, 6h, 12l) used 18GB, and large
models (576d, 12h, 12l) used 32GB. For the largest models on ImageNet-subset, we reduced the
batch size to 64 to fit within memory constraints.

Spectral Method Resource Comparison. We conducted comprehensive resource analysis compar-
ing FourierRoFormer with spectral transformer methods:

Table 11: Detailed resource comparison showing FourierRoFormer’s superior resource efficiency
compared to spectral transformer baselines.
Method Memory Peak Memory Training Time Energy (kWh) CO2 (kg) Efficiency

RoFormer-M 18.0 GB 19.2 GB 12.0h 28.8 11.5 6.83
GFNet-H-B 21.5 GB 24.1 GB 16.8h 40.3 16.1 4.12
WaveViT-B 19.8 GB 22.4 GB 15.2h 36.5 14.6 5.46
SpectFormer-H-B 19.2 GB 21.8 GB 14.5h 34.8 13.9 5.89
SVT-H-B 19.5 GB 22.1 GB 15.8h 37.9 15.2 5.39
FourierRoFormer-M 18.1 GB 19.4 GB 12.3h 29.5 11.8 7.21

vs Best Spectral -6.1% -11.0% -15.2% -15.2% -15.2% +22.4%

Resource Efficiency Metric: Top-1 Accuracy2

Training Time (h)×Peak Memory (GB) captures accuracy-resource tradeoff.

F ABLATION STUDIES

We conduct comprehensive ablation studies to understand the contribution of each component in
FourierRoFormer. All experiments in this section use the medium-sized model (384d, 6h, 12l) on
CIFAR-100 unless otherwise specified.

Quantitative Frequency Learning Validation. We provide concrete empirical evidence that Fouri-
erRoFormer learns distinct frequency specialization during training. Table 12 shows quantitative
tracking of frequency component evolution during ImageNet-1K training:

Table 12: Quantitative validation of frequency learning showing component specialization and cor-
relation with visual patterns during ImageNet-1K training.
Component Initial Amp Final Amp Learned Freq (Hz) Visual Pattern Correlation

k=1 0.10 ± 0.02 0.43 0.3 Global object shape r = 0.78
k=2 0.10 ± 0.02 0.31 1.1 Object boundaries r = 0.85
k=3 0.10 ± 0.02 0.18 2.4 Fine textures r = 0.71
k=4 0.10 ± 0.02 0.08 3.2 Noise/artifacts r = 0.34

Three-Phase Training Dynamics. Our analysis reveals distinct learning phases with measurable
specialization metrics:

This quantitative analysis confirms that different frequency components learn to capture complemen-
tary visual patterns, with the strongest correlation (r = 0.85) achieved for object boundary detection
at 1.1 Hz.

Post-Attention vs Pre-Attention Modulation. We provide comprehensive empirical validation for
our design choice:
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Table 13: Three-phase frequency learning progression with quantitative specialization metrics show-
ing evolution from uniform exploration to structured hierarchy.
Phase Epochs Specialization σ Coefficient Variation Attention Entropy Stability

Exploration 0-40 0.02 0.12 3.41 ± 0.18 < 30%
Specialization 40-120 0.12 0.68 3.38 ± 0.12 70%
Convergence 120+ 0.31 0.91 3.35 ± 0.08 > 95%

Table 14: Comprehensive comparison of modulation placement showing superior performance and
stability of post-attention design.

Modulation ImageNet CIFAR Gradient Convergence Semantic Training
Top-1 -100 σ Preservation Stability

Pre-attention 82.3% 82.8% 0.41 Epoch 145 0.72 Unstable
Post-attention 84.1% 84.26% 0.12 Epoch 128 0.89 Stable
Improvement +1.8pp +1.46pp -71% -12% +24% Qualitative

Multi-Head Frequency Specialization. When allowing head-specific frequency parameters, we
observe emergent specialization:

Table 15: Multi-head frequency specialization showing automatic division of labor across attention
heads with quantitative metrics.

Configuration ImageNet Head Freq Range Attention Energy % Specialization
Top-1 Group (Hz) Range Energy % Timeline

Uniform 84.1% All heads 0.5-1.5 45 tokens 100% None

Head-specific 84.6%
Heads 1-2 0.2-0.6 89 tokens 35% Epoch 35
Heads 3-4 0.6-1.4 43 tokens 40% Epoch 42
Heads 5-6 1.4-3.2 21 tokens 25% Epoch 38

Fourier Components and Damping. We analyze the impact of each component by selective abla-
tion, as shown in Table 16.

Fourier Components and Damping. We analyze the impact of each component by selective ab-
lation, as shown in Table 16. Fourier modulation alone provides improvement (+4.43pp) over the
RoFormer baseline, while damping alone contributes +2.09pp. When combined, these components
achieve a complementary effect, yielding +5.84pp total improvement. Our experiments with varying
the number of Fourier components (K) show that 4-8 components provides the optimal balance be-
tween expressivity and overfitting, with K = 8 achieving the best performance (+6.53pp). Similarly,
moderate damping (γ=0.01) yields the best results among the damping coefficients tested.

Frequency Initialization Strategies. We also investigate different approaches for initializing the
Fourier component frequencies, as shown in Table 17. Logarithmic spacing achieves the best per-
formance (84.62%), providing better coverage across the frequency spectrum compared to linear
spacing. Random initialization performs worse (83.91%), suggesting that a structured approach to
frequency initialization aids optimization. Low-frequency bias initialization shows moderate perfor-
mance, indicating that while low frequencies are important, a balanced coverage across the spectrum
is more effective.

G COMPUTATIONAL COMPLEXITY ANALYSIS

For completeness, we analyze the computational overhead introduced by the Fourier modulation
components in FourierRoFormer. Let n denote the input sequence length, d the feature dimension,
and κ the number of Fourier components. The computation of the Fourier modulation function
requires evaluating κ cosine terms for each token pair, computing the modulation, and applying
non-linear scaling. Since there are O(n2) token pairs in the attention mechanism Vaswani et al.
(2017), this results in an overall computational cost of O(κn2) operations Rahimi & Recht (2008);
Tancik et al. (2020).

Comprehensive Efficiency Comparison with Spectral Methods. We provide detailed efficiency
analysis comparing FourierRoFormer with spectral transformer baselines:
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Table 16: Comprehensive ablation study on CIFAR-100 showing complementary benefits of com-
ponents.

Configuration Accuracy (%) ∆ vs RoFormer Params (M) GFLOPs

RoFormer (baseline) 78.42 - 24.75 4.60
+ Fourier only 82.85 +4.43 24.75 4.61
+ Damping only 80.51 +2.09 24.75 4.60
+ Both (Full model) 84.26 +5.84 24.76 4.63

Fourier Component Variations
K=2 components 82.54 +4.12 24.75 4.61
K=4 components 84.26 +5.84 24.76 4.63
K=8 components 84.95 +6.53 24.76 4.63
K=16 components 84.72 +6.30 24.77 4.64

Damping Coefficient Analysis
γ = 0.001 83.45 +5.03 24.76 4.63
γ = 0.01 84.26 +5.84 24.76 4.63
γ = 0.05 83.87 +5.45 24.76 4.63
γ = 0.1 82.93 +4.51 24.76 4.63

Table 17: Comparison of frequency initialization strategies on CIFAR-100.
Strategy Accuracy (%) Description

Linear spacing 84.26 Frequencies evenly spaced 0.1-2.0
Logarithmic spacing 84.62 Log-spaced frequencies
Random initialization 83.91 Random frequencies 0.1-2.0
Low-frequency bias 84.08 Emphasis on low frequencies

Efficiency Metrics Defined:

• Efficiency Score = Top-1 Accuracy
log(Params)×

√
Training Time

(higher is better)

• Parameter Efficiency = Top-1 Accuracy
Params (M) (accuracy per million parameters)

• Computational Efficiency = Top-1 Accuracy
FLOPs (G) (accuracy per GFLOP)

Key Findings: The approach introduces minimal overhead with only 0.04% parameter increase and
0.7% FLOPs increase over RoFormer. It achieves a superior tradeoff with 23% better efficiency
score than the best spectral baseline while using 25% fewer parameters. The method provides prac-
tical advantage by maintaining standard transformer architecture compatibility unlike spectral meth-
ods requiring architectural overhaul.

The additional computational cost of FourierRoFormer compared to standard ViT or RoFormer is
minimal, with only 0.01M additional parameters (0.04%) from the learnable Fourier components.
During inference, FourierRoFormer processes approximately 215 images/second on our medium
model configuration for CIFAR-100, compared to 220 images/second for RoFormer and 218 im-
ages/second for standard ViT on identical hardware, demonstrating negligible runtime overhead for
improved accuracy gains.
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Table 18: Comprehensive efficiency analysis showing FourierRoFormer achieves optimal accuracy-
efficiency tradeoff compared to spectral transformer methods.

Method Params Memory Throughput Training FLOPs Top-1 Efficiency Parameter
(M) (GB) (img/s) Time (h) (G) (%) Score Efficiency

RoFormer-M 24.75 18.0 220 12.0 4.60 81.9 3.33 3.31
GFNet-H-B 54.0 21.5 185 16.8 8.6 82.9 2.41 1.54
WaveViT-B 33.5 19.8 195 15.2 6.8 84.8 2.98 2.53
SpectFormer-H-B 33.1 19.2 195 14.5 6.3 85.1 3.21 2.57
SVT-H-B 32.8 19.5 190 15.8 6.5 85.2 3.18 2.60
FourierRoFormer-M 24.76 18.1 215 12.3 4.63 84.1 3.91 3.40

Efficiency Advantage vs Best Spectral Baseline (SVT-H-B)
Relative Advantage -24.5% -7.2% +13.2% -22.2% -28.8% -1.1pp +23% +31%
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