

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 FOURIERRoFORMER: LEARNED FOURIER ATTENTION FOR VISION TRANSFORMERS

005 **Anonymous authors**

006 Paper under double-blind review

009 ABSTRACT

011 Vision Transformers (ViTs) excel at long-range reasoning but lack principled
 012 mechanisms for modeling spatial frequencies and controlling how attention de-
 013 cays with distance. We propose FourierRoFormer, a frequency-aware Trans-
 014 former that augments rotary positional embeddings with learnable Fourier com-
 015 ponents. This enables explicit modeling of multi-scale visual patterns and adaptive
 016 distance-dependent modulation of attention. Our analysis shows that FourierRo-
 017 Former produces attention hierarchies aligned with object boundaries (correla-
 018 tion $r = 0.85$) and distinct specialization across attention heads. On ImageNet-
 019 1K, FourierRoFormer achieves 84.1% top-1 accuracy (+1.8pp over RoFormer-
 020 B) and outperforms non-hierarchical spectral methods, including SpectFormer-B
 021 (+1.98pp) and GFNet-B (+3.4pp), while maintaining comparable parameter effi-
 022 ciency. Our hierarchical variant, FourierRoFormer-H-B, achieves 85.3% top-1 ac-
 023 curacy, demonstrating compatibility with hierarchical architectures. The method
 024 improves transfer to dense prediction tasks, yielding +2.6 mAP on COCO de-
 025 tection and +2.2 mAP on instance segmentation. Ablation studies highlight the
 026 complementary roles of frequency modulation (+4.43pp) and adaptive damping
 027 (+2.09pp). The approach introduces only 0.04% additional parameters and $\sim 3\%$
 028 computational overhead.

029 1 INTRODUCTION

031 Transformer architectures have become the dominant paradigm across vision, language, and mul-
 032 timodal learning (Vaswani et al., 2017; Dosovitskiy et al., 2020; Brown et al., 2020). In computer
 033 vision, Vision Transformers (ViTs) (Dosovitskiy et al., 2020) have achieved consistent improve-
 034 ments in recognition tasks by treating images as sequences of patches and applying self-attention to
 035 capture global dependencies.

036 However, standard attention mechanisms face key limitations when processing structured visual
 037 data: (1) they lack inductive bias about spatial relationships, (2) they are frequency-blind to the
 038 multi-scale nature of visual patterns, and (3) they provide limited control over how attention decays
 039 across token distances (Park & Kim, 2022; Raghu et al., 2021; Rao et al., 2021; Press et al., 2021).
 040 Recent approaches such as relative positional encodings (Shaw et al., 2018), rotary embeddings (Su
 041 et al., 2024), and windowed attention (Liu et al., 2021) improve spatial awareness but still fall short
 042 of explicitly modeling frequency relationships.

043 We address these challenges by drawing on principles from signal processing and propose Fourier-
 044 RoFormer. Our method integrates learnable Fourier components into the transformer attention
 045 mechanism, enabling frequency-aware modulation of attention scores as a function of token dis-
 046 tance. Unlike prior rotary or Fourier-based models, FourierRoFormer adaptively learns which fre-
 047 quency bands are most relevant for visual understanding. Figure 1 illustrates how Fourier modula-
 048 tion reshapes attention to emphasize multi-scale structures, and Figure 4 demonstrates the resulting
 049 structured attention patterns. This perspective provides a principled way to control information
 050 propagation across scales, bridging the gap between spectral theory and transformer design.

051 By incorporating a learnable mixture of sinusoidal components with frequencies, amplitudes, and
 052 phases, FourierRoFormer adaptively modulates attention based on token distances (Section 3). Our
 053 unified framework combines Fourier modulation with rotary positional embeddings and optional
 exponential damping. Crucially, this mechanism is architecture-agnostic: it enhances both stan-

054 standard Vision Transformers and hierarchical architectures (e.g., Swin-style), as demonstrated by our
 055 FourierRoFormer-H variants that achieve 85.3% on ImageNet-1K, competitive with state-of-the-art
 056 hierarchical spectral methods. Theoretical analysis explains how these components influence attention
 057 gradients and feature propagation (Appendix A). Extensive experiments demonstrate that FourierRoFormer
 058 consistently outperforms ViT, DeiT, and RoFormer baselines, while ablations highlight the complementary
 059 effects of frequency modulation and damping, providing insights into how
 060 frequency-aware attention improves multiscale feature capture (Section 4, Figure 3). These contribu-
 061 tions establish FourierRoFormer as a principled framework for frequency-aware Transformers.

062 2 RELATED WORK

063 The Vision Transformer (ViT) (Dosovitskiy et al., 2020) was the first to show that the transformer
 064 architecture—originally designed for language—can excel at image classification by cutting images
 065 into fixed-size patches and treating each as a token for self-attention. Although ViT achieves strong
 066 accuracy on large datasets, it requires much more training data than traditional convolutional net-
 067 works. Follow-up work like DeiT (Touvron et al., 2021) addressed this data-hunger with distillation
 068 and augmentation, while Swin (Liu et al., 2021) and PVT (Wang et al., 2021) introduced hierar-
 069 chical, multi-scale designs (shifted windows in Swin; a pyramid with spatial-reduction attention in
 070 PVT). In parallel, spectral token-mixing approaches leverage fixed transforms in the frequency do-
 071 main—Fourier, wavelet, or scattering—either to replace or to augment attention (e.g., GFNet, Wave-
 072 ViT, SpectFormer, SVT) (Rao et al., 2021; Yao et al., 2022; Patro et al., 2025; Patro & Agneeswaran,
 073 2023). While standard dot-product attention is not explicitly frequency-aware, spectral components
 074 inject frequency-selective inductive bias that is complementary to hierarchical and locality biases.
 075 In this work, we introduce *FourierRoFormer*, which aims to address this frequency-blindness by
 076 embedding frequency-aware modulation directly into the attention scores. Figure 2 conceptually il-
 077 lustrates how this approach produces structured, boundary-aligned attention compared to the diffuse
 078 patterns of standard ViT and the smoother but less precise patterns of RoFormer.

079 Beyond the challenge of frequency awareness, transformers face another fundamental limitation:
 080 self-attention is permutation-invariant, so transformers need an additional signal to recover token
 081 order (Vaswani et al., 2017). RoPE (Su et al., 2024) rotates query and key vectors, so their inner
 082 product encodes relative distance, but still treats all frequencies uniformly with no control over
 083 attention decay. FourierRoFormer extends RoPE by learning sinusoid mixtures whose parameters
 084 are data-optimized, providing interpretable frequency-selective attention decay.

085 Several studies speed up attention by approximating its $\mathcal{O}(n^2)$ complexity. Performer (Choromanski
 086 et al., 2020) and Linformer (Wang et al., 2020) use low-rank projections; EfficientFormer (Li et al.,
 087 2022b) and MobileViT (Mehta & Rastegari, 2021) redesign the backbone for mobile deployment.
 088 These methods mainly target runtime and memory, leaving the *frequency content* of attention un-
 089 touched. In contrast, FourierRoFormer focuses on richer signal modeling while retaining a compute
 090 profile comparable to standard RoPE attention.

091 Complementing these efficiency-focused approaches, there is growing interest in incorporating fre-
 092 quency analysis principles into neural networks. Frequency analysis has deep roots in signal pro-
 093 cessing and is increasingly common in modern networks.

094 3 METHODOLOGY

095 In this section, we introduce the FourierRoFormer architecture, which injects Fourier components
 096 and exponential damping into the attention mechanism and deploys the resulting module within a
 097 Vision Transformer backbone (Figure 1). Detailed mathematical analyses, proofs, and additional
 098 properties are deferred to the appendices.

099 We briefly recall standard transformer self-attention (Vaswani et al., 2017). Given query, key, and
 100 value matrices $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{n \times d}$, the attention scores are $\mathbf{A} = \text{softmax}(\mathbf{Q}\mathbf{K}^\top) / (\sqrt{d})$, and
 101 the output is $\text{Attention}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \mathbf{A}\mathbf{V}$. This formulation treats all token pairs uniformly and
 102 has no explicit notion of spatial scale, which is limiting for visual data with multi-scale struc-
 103 ture. RoPE (Su et al., 2024) partially addresses this by encoding relative positions via rotations,
 104 $\langle \mathbf{q}_m^{\text{RoPE}}, \mathbf{k}_n^{\text{RoPE}} \rangle = \langle \mathbf{R}_{\theta, m}\mathbf{q}_m, \mathbf{R}_{\theta, n}\mathbf{k}_n \rangle$, but still lacks explicit frequency awareness (further analysis
 105 is in Appendix D). Building upon RoPE’s relative positioning capabilities, FourierRoFormer intro-
 106 107

108 duces a learnable Fourier modulation function and an optional exponential damping term applied to
 109 distance-aware scores, as illustrated in Figure 1.

118 Figure 1: FourierRoFormer architecture for Vision Transformers. **Left:** The pipeline from input
 119 image to classification head (patch and position embeddings, Transformer encoder). **Right:** The
 120 attention module with RoPE, attention scores, Fourier modulation $\mathcal{M}(d)$, and exponential damping
 121 $D(d)$ for distance-based decay.

122 3.1 FOURIER MODULATION FUNCTION

123 The Fourier modulation function $\mathcal{M}(d)$ acts as a learnable, distance-dependent gate on attention
 124 scores. It is defined as a weighted sum of cosine functions with learnable frequencies, amplitudes,
 125 and phases:

$$126 \quad 127 \quad 128 \quad \mathcal{M}(d) = \frac{1}{2} \left(\tanh \left(\sum_{k=1}^K a_k \cos(\omega_k d + \phi_k) \right) + 1 \right), \quad (1)$$

129 where K is the number of Fourier components, a_k are amplitudes, ω_k are frequencies, and ϕ_k are
 130 phase shifts. The outer tanh and scaling ensure $\mathcal{M}(d) \in (0, 1)$ for all d , allowing continuous
 131 attenuation of attention as a function of token distance.

132 **Proposition 1** (Interpretability of Fourier Components). *For each basis element in modulation function $\mathcal{M}(d)$, amplitude a_k dictates how the k -th cosine term contributes—the larger $|a_k|$, the greater its influence. Frequency ω_k sets the spatial oscillation rate; higher values produce finer-grained overall variation as distance d changes. Finally, phase shift ϕ_k translates the component horizontally along the distance axis, relocating attention peaks and troughs while leaving frequency intact.*

151 Figure 2: Conceptual illustration of attention pattern differences across model variants on synthetic
 152 examples. **Rows** show two synthetic samples with geometric shapes. **Columns** (left to right): Stan-
 153 dard ViT produces diffuse, noisy attention; RoFormer shows soft Gaussian-like attention; Fourier-
 154 RoFormer exhibits structured, frequency-aware attention with sharp geometric patterns and bound-
 155 ary alignment. These synthetic examples illustrate the theoretical distinctions in how each architec-
 156 ture processes spatial relationships.

157 This formulation lets the model learn periodic distance-dependent modulation of attention. By mix-
 158 ing sinusoidal components, it captures multi-scale relationships, with high frequencies modeling
 159 fine details and low frequencies encoding global context.

160 **Theorem 1** (Properties of Fourier Modulation Function). *Let $\mathcal{M} : \mathbb{R} \rightarrow (0, 1)$ be the Fourier
 161 modulation function defined in equation 1, where $a_k \in \mathbb{R}$ are learnable amplitudes, $\omega_k > 0$ are
 162 learnable frequencies, and $\phi_k \in [0, 2\pi)$ are learnable phase shifts for $k = 1, \dots, K$. Then*

162 $\mathcal{M}(d)$ is a smooth function with $\mathcal{M}(d) \in (0, 1)$ for all $d \in \mathbb{R}$. For any continuous function
 163 $f : [0, L] \rightarrow (0, 1)$ and any $\varepsilon > 0$, there exists an integer K and parameters $\{a_k, \omega_k, \phi_k\}_{k=1}^K$
 164 such that $\sup_{d \in [0, L]} |\mathcal{M}(d) - f(d)| < \varepsilon$. If the set of frequencies $\{\omega_k\}_{k=1}^K$ consists of rational mul-
 165 tiples of each other, then $\mathcal{M}(d)$ is periodic with period $P = \text{lcm} \{2\pi/\omega_k\}_{k=1}^K$. Moreover, if the ω_k
 166 are not rational multiples, $\mathcal{M}(d)$ exhibits quasiperiodic behavior.
 167

168 Theorem 1 shows that \mathcal{M} can approximate any continuous distance-to-weight mapping on a com-
 169 pact interval while remaining bounded and interpretable through its Fourier coefficients. Additional
 170 approximation and interpretability results appear in Appendix A.

171 3.2 EXPONENTIAL DAMPING AND BOUNDED ATTENTION

173 We optionally apply an exponential damping function $\mathcal{D}(d) = \exp(-\gamma d)$, with learnable $\gamma \geq 0$, to
 174 further control long-range interactions. Larger γ values promote localized attention, while smaller
 175 values permit long-range interactions. Combined with $\mathcal{M}(d)$, this yields the modulated score

$$176 \quad \mathbf{S}_{ij} = \frac{\langle \mathbf{q}_i^{\text{RoPE}}, \mathbf{k}_j^{\text{RoPE}} \rangle}{\sqrt{d}} \mathcal{M}(d_{ij}) e^{-\gamma d_{ij}}, \quad d_{ij} = |i - j|. \quad (2)$$

179 **Theorem 2** (Boundedness and Convergence of Modulated Attention). *Let \mathbf{S}_{ij} be the attention score
 180 between tokens i and j in FourierRoFormer defined in equation 2,*

181 *where $\mathcal{M}(d)$ is the Fourier modulation function, $\gamma > 0$ is the damping factor, and
 182 $\|\mathbf{q}_i^{\text{RoPE}}\|, \|\mathbf{k}_j^{\text{RoPE}}\| \leq M$ for some finite $M > 0$. First, these scores are uniformly bounded, since
 183 $|\mathbf{S}_{ij}| \leq M^2 e^{-\gamma d_{ij}} / \sqrt{d}$. Second, for any fixed token i , the exponential series of scores converges as
 184 the sequence length $N \rightarrow \infty$, we have $\sum_{j=1}^N e^{\mathbf{S}_{ij}} < \infty$. Finally, the corresponding normalized
 185 attention weights $A_{ij} = e^{\mathbf{S}_{ij}} / \sum_{k=1}^N e^{\mathbf{S}_{ik}}$ lie strictly between 0 and 1 for every pair of tokens (i, j) ,
 186 ensuring well-defined probabilistic attention.*
 187

188 Theorem 2 implies that attention scores decay exponentially with distance, so distant tokens have
 189 negligible contribution to the softmax. Lemma 1 in Appendix B further characterizes the effective
 190 attention range. Theoretical analysis in Appendix C shows that the gradients of \mathbf{S}_{ij} with respect to
 191 Fourier and damping parameters also decay with d_{ij} , yielding stable training dynamics.

192 3.3 INTEGRATION WITH RoPE AND ViT ARCHITECTURE

194 We now describe how Fourier modulation and damping integrate with RoPE and the overall Vi-
 195 sion Transformer architecture. In FourierRoFormer, the RoPE-enhanced attention score is further
 196 modulated by the distance-dependent factor $\mathcal{M}(|m - n|) e^{-\gamma|m - n|}$:

$$198 \quad \mathbf{S}_{mn} = \frac{\langle \mathbf{R}_{\theta,m} \mathbf{q}_m, \mathbf{R}_{\theta,n} \mathbf{k}_n \rangle}{\sqrt{d}} \cdot \mathcal{M}(|m - n|) \cdot e^{-\gamma|m - n|}. \quad (3)$$

200 **Theorem 3** (RoPE-Fourier Compatibility). *In FourierRoFormer, the modulated RoPE attention
 201 score as defined in 3, is translation equivariant, depends only on relative positions, and admits
 202 a multiplicative decomposition. Specifically, for any shift $\tau \in \mathbb{Z}$, we have $\mathbf{S}_{(m+\tau)(n+\tau)} = \mathbf{S}_{mn}$, and
 203 \mathbf{S}_{mn} can be expressed as $\mathbf{S}_{mn} = f(m - n, \mathbf{q}_m, \mathbf{k}_n)$ for some function f independent of absolute
 204 positions. Moreover, the score factorizes as $\mathbf{S}_{mn} = \mathbf{S}_{mn}^{\text{RoPE}} \cdot \mathbf{S}_{mn}^{\text{Fourier}}$, where $\mathbf{S}_{mn}^{\text{RoPE}}$ is the standard
 205 RoPE attention score and $\mathbf{S}_{mn}^{\text{Fourier}} = \mathcal{M}(|m - n|) \cdot e^{-\gamma|m - n|}$.*

206 Thus, Fourier modulation preserves RoPE’s geometric properties—translation equivariance, purely
 207 relative dependence, and multiplicative separability—within the combined attention mechanism.
 208 Appendix D provides a detailed proof and explains how local-global balance arises from mix-
 209 ing low- and high-frequency components (Corollary 1). FourierRoFormer follows a standard ViT
 210 pipeline: images are split into patches, embedded, prepended with a learnable CLS token and po-
 211 sitional embeddings, then processed by Transformer encoder layers. Each encoder replaces vanilla
 212 multi-head self-attention with a FourierRoFormer attention module with RoPE, followed by a feed-
 213 forward block with residual connections and layer normalization; the final CLS token goes to a
 214 linear classifier. To isolate attention effects, all other architectural details match the baselines (ViT,
 215 DeiT, RoFormer); FourierRoFormer simply adds learnable Fourier modulation and optional damp-
 ing, preserving asymptotic complexity while adding few parameters and increasing flexibility.

216

4 EXPERIMENTAL EVALUATION

219 We evaluate FourierRoFormer across image classification (CIFAR, ImageNet), object detection and
 220 segmentation (COCO), and analyses of learned frequency patterns, assessing both performance
 221 gains and the theoretical insights developed in the methodology section.

222 **Experimental Setup.** We evaluate FourierRoFormer on classification (CIFAR-10/100, ImageNet-
 223 1K, Oxford-Flowers102) and dense prediction (COCO detection/segmentation) with a shared training
 224 protocol, reporting mean accuracy over five seeds with significance testing ($p < 0.05$). Small
 225 datasets use 4×4 patches, while ImageNet and COCO use 16×16 . We test three model sizes—*small*
 226 (192d, 6h, 6l), *medium* (384d, 6h, 12l), and *large* (576d, 12h, 12l)—and initialize FourierRoFormer
 227 with four learnable Fourier components (frequencies in $[0.1, 2.0]$, amplitude 0.1, zero phase, damp-
 228 ing coefficient $\gamma = 0.01$).

229 **ImageNet-1K Results.** Table 1 reports ImageNet-1K performance for non-hierarchical and hi-
 230 erarchical models. In the non-hierarchical group, FourierRoFormer yields consistent gains of
 231 $+1.5\text{--}1.8\text{pp}$ Top-1 over RoFormer; FourierRoFormer-M reaches 83.4% with 24.76M parame-
 232 ters and 4.63 GFLOPs, outperforming SpectFormer-B ($+1.28\text{pp}$), GFNet-B ($+2.7\text{pp}$), and SVT-
 233 B ($+1.4\text{pp}$), and improving over DeiT/ViT-B (81.8%) under similar architectures. In hierarchical
 234 settings, FourierRoFormer-H-B attains 85.3% with 35.2M parameters, matching SpectFormer-H-B
 235 (85.05%) and SVT-H-B (85.2%) while preserving architectural simplicity. FourierRoFormer-H-
 236 M (84.9%, 30.5M) slightly outperforms WaveViT-B (84.8%, 33.5M), and FourierRoFormer-H-S
 237 (83.8%, 25.2M) surpasses Swin-S (83.0%, 50M) and MViTv2-S (83.6%, 35M) with fewer par-
 238 ameters. All improvements are statistically significant ($p < 0.01$, 5 seeds), showing that frequency-
 239 aware attention provides robust benefits across both standard and hierarchical architectures.

240 Table 1: ImageNet-1K classification. FourierRoFormer shows gains across model scales and offers
 241 a competitive performance-parameter trade-off within hierarchical and non-hierarchical architectures.

Method	Params (M)	GFLOPs	Top-1 (%)	Top-5 (%)
<i>Non-Hierarchical Methods</i>				
ViT-B Dosovitskiy et al. (2020)	86.6	17.6	81.8	95.8
DeiT-B Touvron et al. (2021)	86.6	17.6	81.8	95.6
RoFormer-S Su et al. (2024)	22.01	4.60	78.9	94.2
RoFormer-M Su et al. (2024)	24.75	4.60	81.9	95.7
RoFormer-Bv Su et al. (2024)	86.4	17.5	82.3	95.9
GFNet-B Rao et al. (2021)	43.0	7.9	80.7	95.1
SpectFormer-B Patro et al. (2025)	57.15	11.5	82.12	95.75
SVT-B Patro & Agneeswaran (2023)	57.6	11.8	82.0	95.6
FourierRoFormer-S (Ours)	22.01	4.61	80.4	95.1
FourierRoFormer-M (Ours)	24.76	4.63	83.4	96.5
FourierRoFormer-B (Ours)	86.41	17.53	84.1	96.9
<i>Hierarchical Methods</i>				
GFNet-H-B Rao et al. (2021)	54.0	8.6	82.9	96.2
SpectFormer-H-B Patro et al. (2025)	33.05	6.3	85.05	97.3
SVT-H-B Patro & Agneeswaran (2023)	32.8	6.5	85.2	97.3
WaveViT-B Yao et al. (2022)	33.5	7.2	84.8	97.1
MViTv2-S Li et al. (2022a)	35.0	7.0	83.6	-
MViTv2-B Li et al. (2022a)	52.0	10.2	84.4	-
Swin-S Liu et al. (2021)	50.0	8.7	83.0	-
Swin-B Liu et al. (2021)	88.0	15.4	83.5	-
PVTv2-B5 Wang et al. (2022)	82.0	11.8	83.8	-
FourierRoFormer-H-S (Ours)	25.2	5.1	83.8	96.4
FourierRoFormer-H-M (Ours)	30.5	6.8	84.9	97.0
FourierRoFormer-H-B (Ours)	35.2	7.5	85.3	97.4

266 **Small-Scale Dataset Results.** Table 2 presents comprehensive results on CIFAR and Oxford-
 267 Flowers102 in multiple model sizes. The greatest improvements occur in CIFAR-100 ($+5.84\text{pp}$
 268 over RoFormer), demonstrating the value of frequency awareness for fine-grained classification
 269 tasks with many classes. These consistent improvements across datasets suggest that the learned
 frequency patterns capture fundamental aspects of visual processing.

270

271 Table 2: Classification results on small-scale datasets. Numbers show mean \pm standard deviation
272 over 5 independent runs.

273	Model	CIFAR-10	CIFAR-100	Oxford-Flowers102
274	Standard ViT	93.21 \pm 0.14	77.79 \pm 0.21	93.68 \pm 0.18
275	DeiT	94.58 \pm 0.12	79.55 \pm 0.18	94.75 \pm 0.15
276	RoFormer	94.63 \pm 0.11	78.42 \pm 0.19	94.23 \pm 0.16
277	FourierRoFormer	96.28 \pm 0.10	84.26 \pm 0.15	96.04 \pm 0.13

278 Table 3: Top-1 accuracy on CIFAR-100 across model sizes showing consistent improvements and
279 parameter efficiency.

280	Model	Small (192d, 6h, 6l)	Medium (384d, 6h, 12l)	Large (576d, 12h, 12l)	Avg
282	ViT	73.62 \pm 0.25	77.79 \pm 0.21	81.54 \pm 0.17	-
283	DeiT	75.28 \pm 0.23	79.55 \pm 0.18	82.86 \pm 0.16	-
284	RoFormer	76.04 \pm 0.22	78.42 \pm 0.19	82.97 \pm 0.15	-
285	FourierRoFormer	80.39 \pm 0.19	84.26 \pm 0.15	86.52 \pm 0.13	+4.8pp
286	Improvement	+4.35pp	+5.84pp	+3.55pp	-

287 **Model Size Scaling Analysis.** To understand how our frequency-aware attention scales with model
288 capacity, Table 3 analyzes performance across different model sizes on CIFAR-100. Notably,
289 our medium-sized FourierRoFormer (84.26%) surpasses even large-sized ViT (81.54%) and DeiT
290 (82.86%), demonstrating superior parameter utilization through frequency-aware attention.291 **Object Detection and Segmentation Results.** We evaluate on COCO using Mask R-CNN with
292 FourierRoFormer as the backbone, expecting larger improvements due to the multi-scale nature of
293 detection tasks (Table 4). The largest improvements occur on medium-scale objects (+5.1pp) where
294 frequency awareness provides maximum benefit, confirming multi-scale reasoning advantages.295 **Comprehensive Ablation Studies.** Fourier modulation yields a larger gain (+4.43pp) than damping
296 (+2.09pp), and together they provide +5.84pp over the baseline, with the best setting using 4–8
297 Fourier components and moderate damping ($\gamma = 0.01$); see Appendix F, Table 18. For frequency
298 initialization, logarithmic spacing slightly outperforms linear (+0.36pp) by covering the spectrum
299 more effectively (Appendix F, Table 19).300 **Multi-Head Frequency Specialization Analysis.** One of our key findings is that different attention
301 heads learn distance-based attention patterns when given independent parameters. To analyze
302 the relationship between learned frequencies and visual patterns, we compute attention maps for
303 1,000 randomly sampled validation images. For each attention head, we: (1) extract the dominant
304 frequency component based on amplitude, (2) segment images using ground-truth masks when
305 available or edge detection (Canny) otherwise, (3) compute Pearson correlation between attention
306 weights and masks for boundaries/textures/global regions. The reported correlations represent
307 averages across the validation sample. Our analysis shows that heads 1–2 predominantly use low
308 frequencies (0.2–0.6 Hz) with attention spanning approximately 89 tokens, while heads 3–4 employ
309 mid frequencies (0.6–1.4 Hz) with attention focused on approximately 43 tokens. Finally, heads
310 5–6 utilize high frequencies (1.4–3.2 Hz) to handle fine details within 21 tokens. This specialization
311 emerges after 35 epochs and stabilizes by epoch 100, providing evidence of learned frequency-
312 based division of labor. Figure 3 illustrates this emergent specialization and its correlation with
313 visual patterns. Complete quantitative results are presented in Appendix F in Table 16.314 **Training Dynamics and Frequency Learning Validation.** We validate our frequency-learning
315 theory by analyzing training dynamics and Fourier component evolution. We track all component
316 parameters every 10 epochs over 5 runs, measuring amplitude coefficient of variation (CV),
317318 Table 4: COCO object detection and instance segmentation results showing FourierRoFormer’s
319 advantages for multi-scale tasks.

320	Backbone	Detection mAP	Segmentation mAP	Medium Objects	Small Objects
321	RoFormer	41.2	37.9	22.4	15.8
322	FourierRoFormer	43.8	40.1	27.5	18.9
323	Improvement	+2.6pp	+2.2pp	+5.1pp	+3.1pp

Figure 3: Multi-head frequency specialization in FourierRoFormer. **Left:** Head groups specialize by frequency: low-frequency heads (1–2) capture global context over 89 tokens, mid-frequency heads (3–4) emphasize boundaries over 43 tokens, and high-frequency heads (5–6) focus on details within 21 tokens. **Right:** Learned frequencies align with visual patterns, with strongest correlation ($r = 0.85$) between mid-frequency components (1.1 Hz) and boundaries, indicating semantically meaningful frequency specialization.

Table 5: Three-phase frequency learning progression with quantitative specialization metrics demonstrating evolution from uniform exploration to structured hierarchy.

Phase	Epochs	Coeff. Var.	Entropy	Stability	Freq. Variance	Corr.	Convergence
Exploration	0-40	0.12	3.41 ± 0.18	< 30%	0.08	0.34	Unstable
Specialization	40-120	0.68	3.38 ± 0.12	70%	0.31	0.67	Progressing
Convergence	120+	0.91	3.35 ± 0.08	> 95%	0.42	0.84	Stable

ℓ_2 update magnitude, and attention entropy. Phase boundaries follow Exploration: $CV < 0.3$, Specialization: $0.3 \leq CV < 0.7$, and Convergence: $CV \geq 0.7$:

- Phase 1 (Epochs 0–40): Exploration. Amplitudes are nearly uniform ($CV = 0.12$), so all components contribute $\approx 25\%$ each. Attention is high-entropy (3.41 ± 0.18) with $< 30\%$ parameter stability and weak pattern correlation ($r = 0.34$), indicating largely random behavior.
- Phase 2 (Epochs 40–120): Specialization. CV rises to 0.68 with an emergent frequency hierarchy and $\sim 70\%$ stability. Attention becomes more structured (entropy 3.38 ± 0.12), correlations strengthen ($r = 0.67$), and frequency variance reaches 0.31.
- Phase 3 (Epochs 120+): Convergence. Specialization is strongest ($CV = 0.91$), parameter stability exceeds 95%, and pattern–frequency correlation reaches $r = 0.84$. Entropy is lowest (3.35 ± 0.08) and variance peaks at 0.42, reflecting semantically aligned differentiation.

We quantify specialization using three metrics: the coefficient of variation ($CV = \sigma/\mu$) to measure amplitude dispersion, where higher values indicate stronger differentiation among components; a stability percentage that tracks parameter convergence over training; and pattern correlation, which measures alignment between attention patterns and ground-truth visual structures. As summarized in Table 6, different frequency components specialize over time to capture complementary visual patterns, with the strongest correlation ($r = 0.85$) observed for object boundary detection at 1.1 Hz.

Comprehensive Efficiency Analysis. Table 7 reports efficiency using $Efficiency Score = (\text{Top-1 Accuracy}) / (\log(\text{Params}) \sqrt{\text{Training Time}})$ to capture performance–complexity tradeoffs. FourierRoFormer improves parameter efficiency with only 0.04% parameter overhead for a 1.5pp accuracy gain, adds just 0.6% memory, and preserves training time while improving convergence, yielding a 17% better score than RoFormer. Table 8 compares recent positional encodings, highlighting FourierRoFormer’s key advantage: learning adaptive frequency patterns rather than relying on fixed biases or interpolation, motivating our analysis of the mechanisms behind these gains.

Resolution Extrapolation Analysis. To test whether FourierRoFormer preserves RoPE’s extrapolation capabilities (Theorem 3), we train at 224×224 and evaluate at higher resolutions without re-

Table 6: Quantitative frequency specialization during ImageNet-1K training showing component evolution and learned correlations with visual patterns.

Component	Initial Amp	Final Amp	Learned Freq	Visual Pattern	Correlation
k=1	0.10 ± 0.02	0.43	0.3 Hz	Global shape	$r = 0.78$
k=2	0.10 ± 0.02	0.31	1.1 Hz	Object boundaries	$r = 0.85$
k=3	0.10 ± 0.02	0.18	2.4 Hz	Fine textures	$r = 0.71$
k=4	0.10 ± 0.02	0.08	3.2 Hz	Noise/artifacts	$r = 0.34$

378
 379 Table 7: Comprehensive efficiency analysis showing FourierRoFormer’s minimal overhead for
 380 significant accuracy gains. FourierRoFormer-M (non-hierarchical) is compared against both non-
 381 hierarchical (RoFormer-M) and hierarchical spectral methods (GFNet-H-B, SpectFormer-H-B),
 382 demonstrating competitive efficiency even against more complex architectures.

Method	Params (M)	Memory (GB)	Throughput (img/s)	Training Time (h)	Top-1 (%)	Efficiency Score
<i>Non-Hierarchical</i>						
RoFormer-M	24.75	18.0	220	12.0	81.9	3.33
FourierRoFormer-M	24.76	18.1	215	12.3	83.4	3.91
<i>Hierarchical (for context)</i>						
GFNet-H-B	54.0	21.5	185	16.8	82.9	2.41
SpectFormer-H-B	33.1	19.2	195	14.5	85.1	3.21
<i>Overhead vs RoFormer-M</i>	+0.04%	+0.6%	-2.3%	+2.5%	+1.5pp	+17%

392
 393 Table 8: Comparison with recent positional encoding methods on ImageNet-1K showing advantages
 394 of learnable frequency patterns.

Method	Description	Top-1 (%)	Key Characteristic
ALiBi	Linear bias attention	82.7	Fixed linear decay
Context-aware Biases	Length extrapolation focus	83.1	Limited frequency awareness
Functional Interpolation	RoPE interpolation	83.4	No adaptive patterns
RoFormer	Rotary embeddings	82.3	Uniform frequency treatment
FourierRoFormer	Learnable frequency patterns	84.1	Adaptive learning

401 training (Table 9). FourierRoFormer shows degradation comparable to RoFormer (2.8pp vs. 2.7pp at
 402 384×384 ; 5.1pp vs. 4.9pp at 448×448), indicating that it maintains RoPE’s translation equivariance
 403 and generalization to longer sequences, without undermining fundamental positional properties.
 404

405 Table 9: Resolution extrapolation results on ImageNet-1K. Models trained at 224×224 and tested at
 406 higher resolutions. Degradation measured relative to 224×224 performance.

Method	224x224 (Train Acc)	224x224 (Test)	288x288 (Test)	384x384 (Test)	448x448 (Test)
RoFormer-M	81.9	81.9	80.1 (-1.8)	79.2 (-2.7)	77.0 (-4.9)
FourierRoFormer-M	83.4	83.4	81.5 (-1.9)	80.6 (-2.8)	78.3 (-5.1)
<i>Relative Degradation</i>	-	-	+0.1pp	+0.1pp	+0.2pp

5 ANALYSIS AND DISCUSSION

414 Having established FourierRoFormer’s advantages, we now turn to understanding the mechanisms
 415 behind these improvements and analyzing how the model leverages frequency information.

416 **Frequency Learning Mechanism Understanding.** Our approach enables the model to learn opti-
 417 mal frequencies that align with natural image statistics (Figure 3), automatically discovering domi-
 418 nant bands (e.g., 0.3, 1.1, 2.4 Hz) corresponding to global structure, object boundaries, and details.
 419 The resulting attention patterns correlate strongly with ground-truth boundaries ($r = 0.85$), indi-
 420 cating semantic alignment between frequencies and visual features. Low frequencies (0.3 Hz) span
 421 broad context (up to 89 tokens), while high frequencies (2.4 Hz) concentrate on local regions (around
 422 21 tokens), yielding a natural hierarchy of attention without additional architectural constraints.

423 **Post-Attention Modulation Design Justification.** We apply Fourier modulation after attention
 424 for both theoretical and empirical reasons. Theoretically, post-attention modulation preserves the
 425 semantic query–key geometry while adding frequency awareness, whereas pre-attention perturba-
 426 tions distort the embedding space encoding similarity. Empirically, post-attention achieves 84.1%
 427 vs 82.3% for pre-attention (-1.8pp) and yields more stable gradients ($\sigma = 0.12$ vs 0.41), with 34%
 428 lower gradient variance across layers, reducing training instability and performance loss.

429 **Architectural Compatibility: Hierarchical vs Non-Hierarchical.** FourierRoFormer is architec-
 430 turally agnostic: its frequency-aware attention boosts both standard and hierarchical ViTs (Table 1).
 431 On ImageNet-1K, the non-hierarchical variant reaches 83.4% vs. SpectFormer-B 82.12% (+1.28pp)
 while retaining a vanilla ViT-style design. In hierarchical form, FourierRoFormer-H attains 85.3%

432 vs. SVT-H-B 85.2% and SpectFormer-H-B 85.05%, and FourierRoFormer-H-S (83.8%, 25.2M) out-
 433 performs Swin-S (83.0%, 50M) with about half the parameters. The model thus offers easy inte-
 434 gration, interpretable frequency patterns ($r = 0.85$ with object boundaries), and theoretical stability
 435 guarantees, providing a principled and flexible alternative to bespoke hierarchical designs.

436 **Comparison with Spectral Transformer Methods.** As summarized in Table 10, FourierRoFormer
 437 offers key advantages over prior spectral transformers. Unlike fixed Fourier (GFNet) or wavelet
 438 (WaveViT) transforms, it learns data-specific frequency patterns via adaptive modulation while pre-
 439 serving the standard transformer architecture, avoiding major structural changes. It also comes with
 440 formal guarantees on boundedness, convergence, and interpretability (Theorems 1, 2, 3), and attains
 441 competitive accuracy with substantially fewer parameters (24.76M vs 33.1M for SpectFormer).

442
 443 **Table 10:** Detailed comparison with spectral transformer methods showing FourierRoFormer’s
 444 unique advantages.

Feature	GFNet	WaveViT	SpectFormer	SVT	FourierRoFormer
Adaptive frequency selection	✗	✓(wavelet)	✓(limited)	✓(wavelet)	✓(learned)
Interpretable modulation	✗	✗	✗	✗	✓
Learnable damping & stability	✗	✗	✗	✗	✓
Theoretical guarantees	✗	✗	✗	✗	✓
Architecture compatibility	✗	Moderate	Moderate	✗	✓
Parameter efficiency	Moderate	Moderate	Good	Good	Excellent

452 **Attention Pattern Visualization and Analysis.** Our visualizations reveal that FourierRoFormer
 453 produces highly structured attention patterns that align with semantic image content. Standard ViT
 454 yields diffuse, weakly organized attention, and RoFormer improves spatial awareness via relative po-
 455 sitions but still spreads focus broadly. In contrast, FourierRoFormer concentrates attention on object
 456 boundaries and key semantic regions, with frequency-aware modulation inducing natural multi-scale
 457 hierarchies where different components emphasize complementary spatial scales. Figure 4 provides
 458 visual evidence of these distinct attention patterns across architectures.

479 **Figure 4:** Attention pattern comparison across architectures. Each row shows a CIFAR-10 image
 480 (left) followed by attention maps from Standard ViT, RoFormer, and FourierRoFormer. FourierRo-
 481 Former produces more structured attention that aligns with object boundaries and semantic regions,
 482 while Standard ViT shows diffuse patterns and RoFormer exhibits intermediate structure. Attention
 483 maps show CLS token attention to image patches, with warmer colors indicating stronger attention.

484 **Implications for Transformer Design.** These results suggest broader design principles for trans-
 485 formers: learned frequency modulation shows that domain-specific inductive biases, grounded in
 mathematical structure, can boost performance while preserving interpretability. Our approach

486 bridges data-driven learning with frequency-based priors, providing a principled way to embed
 487 multi-scale spatial awareness into transformer architectures.
 488

489 6 LIMITATIONS AND FUTURE DIRECTIONS

490
 491 A key limitation of our study is dataset scale. While we observe clear benefits of explicit frequency-
 492 based inductive bias up to ImageNet-1K (1.28M images), its advantages in web-scale regimes (hun-
 493 dreds of millions of images) remain unclear. The original ViT work (Dosovitskiy et al., 2020)
 494 showed that Transformers can implicitly learn sinusoidal positional patterns; at massive scales, mod-
 495 ells may similarly discover useful frequency structure without explicit parametrization, potentially
 496 reducing the need for hand-crafted inductive bias. Frequency-aware structure offers benefits be-
 497 yond raw accuracy that remain valuable at scale. Explicit frequency parameters make attention
 498 patterns interpretable ($r = 0.85$ with semantic boundaries) and give direct control over multi-scale
 499 interactions, enabling targeted adjustments without retraining. Structured spatial priors can also aid
 500 few-shot adaptation and domain transfer in low-data regimes, while interpretable components help
 501 diagnose failures in safety-critical settings. In line with mechanistic interpretability work (Olah
 502 et al., 2020), the key question is how these benefits evolve with scale.

503 Understanding scale-dependent tradeoffs and architectural benefits requires systematic evaluation.
 504 On the scale side, ImageNet-21K (14M images) and web-scale LAION subsets (100M–400M) can
 505 test whether FourierRoFormer’s gains persist with 10 \times more data and when explicit frequency
 506 structure becomes redundant. Domain adaptation and few-shot benchmarks will quantify the value
 507 of structured priors for cross-domain transfer, while mechanistic interpretability comparisons be-
 508 tween explicit (FourierRoFormer) and purely learned frequency representations could reveal how
 509 frequency patterns emerge and stabilize in large models. Architecturally, head-specific frequency
 510 parameters already yield a +0.5pp gain (Table 16), motivating layer- and resolution-dependent fre-
 511 quency profiles, reusing learned patterns for downstream tasks, and extending frequency-aware at-
 512 tention to multi-scale vision domains (e.g., medical, 3D). The resulting interpretability is important
 513 in safety-critical settings where model behavior must be understood.

514 Our method adds minimal overhead (0.04% parameters, $\sim 3\%$ FLOPs) but still inherits $\mathcal{O}(n^2)$ com-
 515 plexity. Combining frequency-aware mechanisms with efficient attention approximations (e.g., lin-
 516 ear attention (Katharopoulos et al., 2020), sparse patterns (Child et al., 2019)) is a promising direc-
 517 tion. Preliminary analysis indicates that Fourier modulation can be applied after such approxima-
 518 tions, achieving $\mathcal{O}(n)$ complexity while retaining frequency awareness.

519 7 CONCLUSION

520 We introduced FourierRoFormer, a transformer architecture that incorporates learnable Fourier com-
 521 ponents to bring frequency awareness into the attention mechanism. This enables adaptive capture
 522 of multi-scale visual patterns while preserving theoretical rigor and architectural flexibility. Com-
 523 prehensive experiments show consistent gains: FourierRoFormer reaches 84.1% top-1 accuracy
 524 on ImageNet-1K (+1.8pp over RoFormer-B) and outperforms non-hierarchical spectral methods
 525 (SpectFormer-B +1.28pp, GFNet-B +2.7pp). The hierarchical variant FourierRoFormer-H-B attains
 526 85.3%, demonstrating compatibility with hierarchical designs and competitive performance with
 527 specialized spectral backbones.

528 Our main contributions are: (1) a mechanism for learning adaptive frequency patterns directly in at-
 529 tention scores, applicable to both standard and hierarchical architectures; (2) theoretical guarantees
 530 for expressivity, stability, and interpretability, including preservation of RoPE’s translation equiv-
 531 ariance; (3) empirical evidence that learned frequencies align with semantic structure ($r = 0.85$
 532 with object boundaries); and (4) resolution extrapolation results confirming that Fourier modulation
 533 maintains RoPE’s extrapolation properties. Head-specific frequency parameters yield additional
 534 gains (+0.5pp, Table 16), indicating emergent specialization. While the method inherits attention’s
 535 $\mathcal{O}(n^2)$ complexity, it adds only 0.04% parameter overhead. Future work will study scaling on larger
 536 datasets (ImageNet-21K, LAION), integration with efficient attention mechanisms, and extensions
 537 to video and multimodal domains. FourierRoFormer thus bridges data-driven learning with prin-
 538 cipled frequency-based inductive biases, offering an interpretable and architecturally flexible approach
 539 to multi-scale visual understanding.

540 REFERENCES
541

542 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
543 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
544 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

545 Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
546 transformers. *arXiv preprint arXiv:1904.10509*, 2019.

547 Krzysztof Choromanski, Valerii Likhoshesterov, David Dohan, Xingyou Song, Andreea Gane, Tamas
548 Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
549 with performers. *arXiv preprint arXiv:2009.14794*, 2020.

550 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
551 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
552 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint
553 arXiv:2010.11929*, 2020.

554 Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
555 rnns: Fast autoregressive transformers with linear attention. In *International conference on
556 machine learning*, pp. 5156–5165. PMLR, 2020.

557 Yanghao Li, Chao-Yuan Wu, Haoqi Fan, Karttikeya Mangalam, Bo Xiong, Jitendra Malik, and
558 Christoph Feichtenhofer. Mvitv2: Improved multiscale vision transformers for classification and
559 detection. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
560 tion*, pp. 4804–4814, 2022a.

561 Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang,
562 and Jian Ren. Efficientformer: Vision transformers at mobilenet speed. *Advances in Neural
563 Information Processing Systems*, 35:12934–12949, 2022b.

564 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
565 Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceedings of the
566 IEEE/CVF international conference on computer vision*, pp. 10012–10022, 2021.

567 Sachin Mehta and Mohammad Rastegari. Mobilevit: light-weight, general-purpose, and mobile-
568 friendly vision transformer. *arXiv preprint arXiv:2110.02178*, 2021.

569 Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
570 Zoom in: An introduction to circuits. *Distill*, 5(3):e00024–001, 2020.

571 Namuk Park and Songkuk Kim. How do vision transformers work? In *International Confer-
572 ence on Learning Representations*, 2022. URL <https://openreview.net/forum?id=D78Go4hVcxO>.

573 Badri Patro and Vijay Agnieszwaran. Scattering vision transformer: Spectral mixing matters. *Ad-
574 vances in Neural Information Processing Systems*, 36:54152–54166, 2023.

575 Badri N Patro, Vinay P Namboodiri, and Vijay S Agnieszwaran. Spectformer: Frequency and at-
576 tention is what you need in a vision transformer. In *2025 IEEE/CVF Winter Conference on
577 Applications of Computer Vision (WACV)*, pp. 9543–9554. IEEE, 2025.

578 Allan Pinkus. Approximation theory of the mlp model in neural networks. *Acta Numerica*, 8:
579 143–195, 1999. doi:10.1017/S0962492900002937.

580 Ofir Press, Noah A Smith, and Mike Lewis. Train short, test long: Attention with linear biases
581 enables input length extrapolation. *arXiv preprint arXiv:2108.12409*, 2021.

582 Maithra Raghu, Thomas Unterthiner, Simon Kornblith, Chiyuan Zhang, and Alexey Dosovitskiy.
583 Do vision transformers see like convolutional neural networks? *Advances in neural information
584 processing systems*, 34:12116–12128, 2021.

594 Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In
 595 John C. Platt, Daphne Koller, Yoram Singer, and Sam T. Roweis (eds.), *Advances in*
 596 *Neural Information Processing Systems*, volume 20, pp. 1177–1184. Curran Associates,
 597 Inc., 2008. URL https://papers.nips.cc/paper_files/paper/2007/file/013a006f03dbc5392effeb8f18fda755-Paper.pdf.

599 Yongming Rao, Wenliang Zhao, Zheng Zhu, Jiwen Lu, and Jie Zhou. Global filter networks for
 600 image classification. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2021.

601

602 Walter Rudin. *Principles of Mathematical Analysis*. McGraw-Hill, New York, 3rd edition, 1976.

603

604 Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representa-
 605 tions. *arXiv preprint arXiv:1803.02155*, 2018.

606 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
 607 hanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.

608

609 Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghava-
 610 van, Utkarsh Singhal, Ravi Ramamoorthi, Ren Ng, and Jonathan T. Barron. Fourier fea-
 611 tures let networks learn high frequency functions in low dimensional domains. In *Ad-
 612 vances in Neural Information Processing Systems*, volume 33, pp. 7537–7547. Curran Asso-
 613 ciates, Inc., 2020. URL <https://proceedings.neurips.cc/paper/2020/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf>.

614

615 Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
 616 Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
 617 *International conference on machine learning*, pp. 10347–10357. PMLR, 2021.

618

619 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 620 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-
 621 tion processing systems*, 30, 2017.

622

623 Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
 624 with linear complexity, 2020.

625

626 Wenhui Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo,
 627 and Ling Shao. Pyramid vision transformer: A versatile backbone for dense prediction without
 628 convolutions. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp.
 568–578, 2021.

629

630 Wenhui Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo,
 631 and Ling Shao. Pvt v2: Improved baselines with pyramid vision transformer. *Computational
 632 visual media*, 8(3):415–424, 2022.

633

634 Ting Yao, Yingwei Pan, Yehao Li, Chong-Wah Ngo, and Tao Mei. Wave-vit: Unifying wavelet
 635 and transformers for visual representation learning. In Shai Avidan, Gabriel Brostow, Moustapha
 636 Cissé, Giovanni Maria Farinella, and Tal Hassner (eds.), *Computer Vision – ECCV 2022*, pp.
 328–345, Cham, 2022. Springer Nature Switzerland. ISBN 978-3-031-19806-9.

636 A ANALYSIS OF FOURIER MODULATION FUNCTION

637 The FourierRoFormer introduces a learned mixture of sinusoidal components to modulate attention
 638 based on token distances. We first analyze the properties of this modulation function and establish
 639 its theoretical guarantees.

640 **Theorem 1** (Properties of Fourier Modulation Function). *Let $\mathcal{M} : \mathbb{R} \rightarrow (0, 1)$ be the Fourier
 641 modulation function defined as*

$$642 \mathcal{M}(d) = \frac{1}{2} \left(\tanh \left(\sum_{k=1}^K a_k \cos(\omega_k d + \phi_k) \right) + 1 \right)$$

643 where $a_k \in \mathbb{R}$ are learnable amplitudes, $\omega_k > 0$ are learnable frequencies, and $\phi_k \in [0, 2\pi)$ are
 644 learnable phase shifts for $k = 1, \dots, K$. Then $\mathcal{M}(d)$ is a smooth function with $\mathcal{M}(d) \in (0, 1)$ for

648 all $d \in \mathbb{R}$. For any continuous function $f : [0, L] \rightarrow (0, 1)$ and any $\varepsilon > 0$, there exists an integer K
 649 and parameters $\{a_k, \omega_k, \phi_k\}_{k=1}^K$ such that

$$650 \sup_{d \in [0, L]} |\mathcal{M}(d) - f(d)| < \varepsilon$$

651 If the set of frequencies $\{\omega_k\}_{k=1}^K$ consists of rational multiples of each other, then $\mathcal{M}(d)$ is periodic
 652 with period

$$653 P = \text{lcm} \left\{ \frac{2\pi}{\omega_k} \right\}_{k=1}^K$$

654 Moreover, if the ω_k are not rational multiples, $\mathcal{M}(d)$ exhibits quasiperiodic behavior.

655 *Proof.* We prove each part in turn. For any $x \in \mathbb{R}$, it holds that $\tanh(x) \in (-1, 1)$. Consider the
 656 inner sum:

$$657 S(d) = \sum_{k=1}^K a_k \cos(\omega_k d + \phi_k)$$

658 Since $\cos(\theta) \in [-1, 1]$ for all $\theta \in \mathbb{R}$, we have:

$$659 |S(d)| \leq \sum_{k=1}^K |a_k|$$

660 Thus, $\tanh(S(d)) \in (-1, 1)$ for all $d \in \mathbb{R}$. Applying the affine transformation $x \mapsto \frac{1}{2}x + \frac{1}{2}$ maps
 661 $(-1, 1)$ to $(0, 1)$:

$$662 \mathcal{M}(d) = \frac{1}{2}(\tanh(S(d)) + 1) \in (0, 1)$$

663 Furthermore, since \cos , \tanh , and affine transformations are smooth functions, $\mathcal{M}(d)$ is infinitely
 664 differentiable, i.e., $\mathcal{M} \in C^\infty(\mathbb{R})$. Let $f : [0, L] \rightarrow (0, 1)$ be continuous. Define the lifted function:

$$665 g(d) = \tanh^{-1}(2f(d) - 1)$$

666 Note that since $f(d) \in (0, 1)$, we have $2f(d) - 1 \in (-1, 1)$, and thus $g(d)$ is well-defined and
 667 continuous on $[0, L]$. By the Stone–Weierstrass theorem, the algebra of trigonometric polynomials is
 668 dense in the space of continuous real-valued functions on $[0, L]$ (see, e.g., Rudin (1976)). Moreover,
 669 the use of nonlinear activation functions applied to sinusoidal expansions falls within the scope of
 670 classical approximation theory for neural networks Pinkus (1999). Therefore, for any $\varepsilon' > 0$, there
 671 exist parameters $\{a_k, \omega_k, \phi_k\}_{k=1}^K$ such that

$$672 \sup_{d \in [0, L]} \left| g(d) - \sum_{k=1}^K a_k \cos(\omega_k d + \phi_k) \right| < \varepsilon'$$

673 Since \tanh is continuous and Lipschitz on compact sets, there exists a constant L_{\tanh} such that:
 674 $|\tanh(x) - \tanh(y)| \leq L_{\tanh}|x - y|$ for all x, y in the image of $g(d)$ and its approximation. Thus,
 675 we have:

$$676 \sup_{d \in [0, L]} \left| \tanh(g(d)) - \tanh \left(\sum_{k=1}^K a_k \cos(\omega_k d + \phi_k) \right) \right| < L_{\tanh} \varepsilon'$$

677 Multiplying by $\frac{1}{2}$ and adding $\frac{1}{2}$ preserves the approximation margin. By choosing $\varepsilon' = \frac{\varepsilon}{L_{\tanh}}$, we
 678 ensure:

$$679 \sup_{d \in [0, L]} |f(d) - \mathcal{M}(d)| < \varepsilon$$

680 Thus, $\mathcal{M}(d)$ uniformly approximates any continuous function f on $[0, L]$ to arbitrary precision.
 681 Each term $\cos(\omega_k d + \phi_k)$ is periodic with period $\frac{2\pi}{\omega_k}$. If all frequencies ω_k are rational multiples of
 682 each other, there exists a common period:

$$683 P = \text{lcm} \left\{ \frac{2\pi}{\omega_k} \right\}_{k=1}^K$$

684 Thus, the finite sum $S(d)$ is periodic with period P . Since \tanh and affine transformations are
 685 applied pointwise and preserve periodicity, $\mathcal{M}(d)$ is also periodic with period P .

686 \square

In addition to the approximation and periodicity properties established above, the form of $\mathcal{M}(d)$ provides clear interpretability of the roles played by its parameters, as summarized in the following corollary.

Proposition 2 (Interpretability of Fourier Components). *The learned parameters $\{a_k, \omega_k, \phi_k\}_{k=1}^K$ in the modulation function $\mathcal{M}(d)$ admit the following interpretations:*

- *Amplitude (a_k) controls the contribution strength of the k -th frequency component to the overall modulation pattern. Larger $|a_k|$ values amplify the influence of the corresponding cosine term.*
- *Frequency (ω_k) determines the spatial frequency of the oscillations, i.e., how rapidly the attention modulation varies with respect to token distance d . Higher ω_k yields finer-grained, higher-frequency patterns.*
- *Phase shift (ϕ_k) specifies the horizontal displacement of the k -th component along the distance axis, enabling translation of attention peaks and troughs without altering their frequency.*

The interpretability of $\{a_k, \omega_k, \phi_k\}_{k=1}^K$ facilitates analysis of learned attention patterns and enables explicit control over the modulation behavior. For example, sparsity-promoting regularization on $\{a_k\}$ can encourage parsimonious attention structures.

Proof. We examine the modulation function:

$$\mathcal{M}(d) = \frac{1}{2} \left(\tanh \left(\sum_{k=1}^K a_k \cos(\omega_k d + \phi_k) \right) + 1 \right)$$

and analyze the role of each parameter $\{a_k, \omega_k, \phi_k\}$ in shaping $\mathcal{M}(d)$. Consider the inner argument of the \tanh function:

$$S(d) = \sum_{k=1}^K a_k \cos(\omega_k d + \phi_k)$$

This is a finite sum of cosine functions, each parameterized by amplitude, frequency, and phase shift. The amplitude a_k scales the contribution of the k -th component: increasing $|a_k|$ amplifies its oscillatory magnitude, while the sign determines whether it reinforces or counteracts other terms. The frequency ω_k controls the spatial scale, with the component completing one full oscillation over $T_k = \frac{2\pi}{\omega_k}$; larger ω_k produces finer, more rapid oscillations over token distance d . The phase shift ϕ_k translates the cosine along the d -axis, corresponding to a horizontal displacement of $\Delta d = -\phi_k/\omega_k$, which adjusts the positions of peaks and troughs without affecting amplitude or frequency.

Finally, observe that the outer \tanh function is a smooth, monotonically increasing function applied pointwise to $S(d)$. While \tanh compresses the range of $S(d)$ into $(-1, 1)$, it preserves the relative locations of maxima, minima, and zero crossings of $S(d)$, thereby maintaining the interpretability of the underlying sinusoidal components. The subsequent affine transformation maps this range to $(0, 1)$ without altering these relationships. Thus, the parameters $\{a_k, \omega_k, \phi_k\}_{k=1}^K$ maintain clear and interpretable roles in controlling the shape and characteristics of $\mathcal{M}(d)$. \square

B CONVERGENCE ANALYSIS OF MODULATED ATTENTION

We now analyze how the Fourier modulation influences attention scores and their convergence behavior, particularly focusing on the boundedness of scores, the normalization of attention weights, and their behavior as the sequence length grows. The following theorem establishes uniform bounds and guarantees well-posedness of the attention mechanism in FourierRoFormer.

Theorem 2 (Boundedness and Convergence of Modulated Attention). *Let \mathbf{S}_{ij} denote the attention score between tokens i and j in FourierRoFormer, defined as*

$$\mathbf{S}_{ij} = \frac{\langle \mathbf{q}_i^{RoPE}, \mathbf{k}_j^{RoPE} \rangle}{\sqrt{d}} \cdot \mathcal{M}(d_{ij}) \cdot e^{-\gamma d_{ij}}$$

where $d_{ij} = |i - j|$, $\mathcal{M}(d)$ is the Fourier modulation function, $\gamma > 0$ is the damping factor, and $\|\mathbf{q}_i^{RoPE}\|, \|\mathbf{k}_j^{RoPE}\| \leq M$ for some finite constant $M > 0$. Then, the following properties hold:

756 1. The attention scores are bounded:

757

$$758 \quad |\mathbf{S}_{ij}| \leq \frac{M^2}{\sqrt{d}} e^{-\gamma d_{ij}}$$

759

760 2. For any fixed token i , as sequence length $N \rightarrow \infty$,

761

$$762 \quad \sum_{j=1}^N e^{\mathbf{S}_{ij}} < \infty$$

763

764 3. For all pairs (i, j) , the normalized attention satisfies

765

$$766 \quad A_{ij} = \frac{e^{\mathbf{S}_{ij}}}{\sum_{k=1}^N e^{\mathbf{S}_{ik}}} \in (0, 1).$$

767

768 *Proof.* We prove each part in turn. First, by the Cauchy–Schwarz inequality, and under the assumption $\|\mathbf{q}_i^{\text{RoPE}}\|, \|\mathbf{k}_j^{\text{RoPE}}\| \leq M$, we have:

769

$$770 \quad |\langle \mathbf{q}_i^{\text{RoPE}}, \mathbf{k}_j^{\text{RoPE}} \rangle| \leq M^2$$

771

772 From Theorem 1, $\mathcal{M}(d_{ij}) \in (0, 1)$ for all d_{ij} , and by definition, the damping factor is $\mathcal{D}(d_{ij}) = e^{-\gamma d_{ij}}$. Hence:

773

$$774 \quad |\mathbf{S}_{ij}| \leq \frac{M^2}{\sqrt{d}} e^{-\gamma d_{ij}}$$

775

776 To show the convergence of the normalization sum, we use the below estimate:

777

$$778 \quad \sum_{j=1}^N e^{\mathbf{S}_{ij}} \leq \sum_{j=1}^N \exp\left(\frac{M^2}{\sqrt{d}} e^{-\gamma|i-j|}\right)$$

779

780 Since $e^{-\gamma|i-j|} \rightarrow 0$ exponentially as $|i-j| \rightarrow \infty$, and $\exp(c e^{-\gamma|i-j|}) \rightarrow 1$, the summand behaves like a constant for small $|i-j|$ and decays exponentially for large $|i-j|$. Thus, the sum can be split:

781

$$782 \quad \sum_{j \leq i} \exp\left(\frac{M^2}{\sqrt{d}} e^{-\gamma(i-j)}\right) + \sum_{j > i} \exp\left(\frac{M^2}{\sqrt{d}} e^{-\gamma(j-i)}\right)$$

783

784 Each term is a convergent exponential series, as $e^{-\gamma n}$ decays exponentially and $\exp(c e^{-\gamma n})$ remains summable for $c > 0$. This follows from standard results on the convergence of rapidly decreasing exponential series (Rudin, 1976, p. 5). Therefore, the total sum converges as $N \rightarrow \infty$. The denominator of the attention weights is strictly positive and finite. Moreover, since the numerator $e^{\mathbf{S}_{ij}} > 0$, it follows that:

785

$$786 \quad A_{ij} = \frac{e^{\mathbf{S}_{ij}}}{\sum_{k=1}^N e^{\mathbf{S}_{ik}}} \in (0, 1)$$

787

788 for all i and j . This ensures that attention weights are well-defined probability distributions over tokens. \square

789 Building on the boundedness of attention weights, we now characterize the effective receptive field of FourierRoFormer, showing that attention to distant tokens decays below any desired threshold.

800 **Lemma 1** (Effective Attention Range). *For any $\epsilon > 0$, there exists a distance R_ϵ such that for all $d_{ij} > R_\epsilon$:*

801

$$A_{ij} < \epsilon$$

802

803 where R_ϵ depends on the model parameters $\{M, d, \gamma, \{a_k, \omega_k, \phi_k\}_{k=1}^K\}$.

804 *Proof.* From the bound in Theorem 2(a):

805

$$806 \quad \mathbf{S}_{ij} \leq \frac{M^2}{\sqrt{d}} \cdot \exp(-\gamma d_{ij})$$

807

810 The attention weight A_{ij} is bounded by:
 811

$$812 A_{ij} \leq \frac{\exp\left(\frac{M^2}{\sqrt{d}} \cdot \exp(-\gamma d_{ij})\right)}{\exp\left(\frac{M^2}{\sqrt{d}}\right)} = \exp\left(\frac{M^2}{\sqrt{d}}(\exp(-\gamma d_{ij}) - 1)\right)$$

$$813$$

$$814$$

$$815$$

816 For any $\epsilon > 0$, we can solve:
 817

$$818 \exp\left(\frac{M^2}{\sqrt{d}}(\exp(-\gamma R_\epsilon) - 1)\right) = \epsilon$$

$$819$$

$$820$$

821 This yields:
 822

$$823 R_\epsilon = -\frac{1}{\gamma} \ln\left(1 + \frac{\sqrt{d}}{M^2} \ln(\epsilon)\right)$$

$$824$$

$$825$$

826 For $d_{ij} > R_\epsilon$, we have $A_{ij} < \epsilon$ by monotonicity. \square
 827

828 The decomposition of the attention modulation into distinct frequency components, together with
 829 exponential damping, enables FourierRoFormer to simultaneously capture both fine-grained local
 830 patterns and broad global context, as formalized in the following corollary.
 831

Corollary 1 (Local-Global Balance). *The FourierRoFormer attention mechanism balances local and global dependencies through its modulation design: high-frequency Fourier components capture local patterns, low-frequency components preserve global context, and the exponential damping term $\exp(-\gamma d_{ij})$ ensures smooth decay of attention with distance.*
 832

833 *Proof.* The result follows from the structure of the attention score \mathbf{S}_{ij} , which combines Fourier
 834 modulation and exponential damping. First, the high-frequency components with $\omega_k \gg 1$ induce
 835 rapid oscillations in $\mathcal{M}(d_{ij})$, enhancing sensitivity to local variations in token distance. Conversely,
 836 low-frequency components with $\omega_k \approx 1$ produce slowly varying modulation, preserving global
 837 contextual information. Additionally, the damping factor $\exp(-\gamma d_{ij})$ enforces an overall decay
 838 of attention scores with distance, ensuring that contributions from distant tokens diminish smoothly.
 839 Together, these elements balance fine-grained local interactions and long-range global dependencies,
 840 while keeping attention scores bounded. \square
 841

842 In summary, Theorems 2, Lemma 1, and Corollary 1 establish that FourierRoFormer’s attention
 843 is bounded, localized, and balances local and global context via its modulation structure. These
 844 properties ensure scalability and stability, especially for long sequences.
 845

846 C GRADIENT ANALYSIS

$$847$$

848 In this section we characterize the gradient behavior of the FourierRoFormer modulation parameters,
 849 deriving uniform bounds that govern the learning dynamics and inform convergence properties.
 850

Proposition 3 (Gradient Bounds for Modulation Parameters). *Let $\theta = \{a_k, \omega_k, \phi_k\}_{k=1}^K$ denote the Fourier modulation parameters, and let \mathbf{S}_{ij} be the attention score between tokens i and j , associated with distance d_{ij} . Assume the modulation output is scaled by a constant $M > 0$, and let $\gamma > 0$ be the effective decay rate. Then, the following gradient bounds hold for all $k = 1, \dots, K$:*
 851

852 (a) *Amplitude gradients*
 853

$$854 \left\| \frac{\partial \mathbf{S}_{ij}}{\partial a_k} \right\| \leq \frac{M^2}{2\sqrt{d}} e^{-\gamma d_{ij}}$$

$$855$$

$$856$$

857 (b) *Frequency gradients*
 858

$$859 \left\| \frac{\partial \mathbf{S}_{ij}}{\partial \omega_k} \right\| \leq \frac{M^2}{2\sqrt{d}} \cdot d_{ij} e^{-\gamma d_{ij}}$$

$$860$$

$$861$$

$$862$$

$$863$$

864 (c) *Phase gradients*
 865

$$866 \quad 867 \quad \left\| \frac{\partial \mathbf{S}_{ij}}{\partial \phi_k} \right\| \leq \frac{M^2}{2\sqrt{d}} e^{-\gamma d_{ij}} \\ 868$$

869 *Proof.* We analyze each gradient component individually.
 870

871 Let \mathbf{S}_{ij} denote the attention score between tokens i and j , with d_{ij} their distance. Recall:
 872

$$873 \quad \mathbf{S}_{ij} = \frac{\langle \mathbf{q}_i^{\text{RoPE}}, \mathbf{k}_j^{\text{RoPE}} \rangle}{\sqrt{d}} \cdot \mathcal{D}(d_{ij}) \cdot \mathcal{M}(d_{ij}) \\ 874$$

875 where $\mathcal{D}(d_{ij})$ is a distance-dependent decay term, and $\mathcal{M}(d_{ij})$ is the Fourier modulation function.
 876

877 For all cases, we use the bound:
 878

$$879 \quad \left| \frac{\langle \mathbf{q}_i^{\text{RoPE}}, \mathbf{k}_j^{\text{RoPE}} \rangle}{\sqrt{d}} \cdot \mathcal{D}(d_{ij}) \right| \leq \frac{M^2}{\sqrt{d}} \cdot e^{-\gamma d_{ij}} \\ 880$$

881 where $M > 0$ bounds the norm of query and key vectors, and $\gamma > 0$ controls the decay. We compute
 882 derivatives of \mathcal{M} , recalling:
 883

$$884 \quad \mathcal{M}(d) = \frac{1}{2} (\tanh(x) + 1), \quad x = \sum_{l=1}^K a_l \cos(\omega_l d + \phi_l) \\ 885$$

886 Noting that $\tanh'(x) = 1 - \tanh^2(x)$, and $|\tanh'(x)| \leq 1$, we proceed with the amplitude gradients:
 887

$$888 \quad \frac{\partial \mathcal{M}}{\partial a_k} = \frac{1}{2} \cdot (1 - \tanh^2(x)) \cdot \cos(\omega_k d + \phi_k) \\ 889$$

890 Since $|\cos(\cdot)| \leq 1$, we have:
 891

$$892 \quad \left\| \frac{\partial \mathbf{S}_{ij}}{\partial a_k} \right\| \leq \frac{M^2}{2\sqrt{d}} \cdot e^{-\gamma d_{ij}} \\ 893$$

894 Next we look evaluate the frequency gradients:
 895

$$896 \quad \frac{\partial \mathcal{M}}{\partial \omega_k} = -\frac{1}{2} \cdot (1 - \tanh^2(x)) \cdot a_k d \sin(\omega_k d + \phi_k) \\ 897$$

898 Using $|\sin(\cdot)| \leq 1$, we obtain:
 899

$$900 \quad \left\| \frac{\partial \mathbf{S}_{ij}}{\partial \omega_k} \right\| \leq \frac{M^2}{2\sqrt{d}} \cdot d_{ij} \cdot e^{-\gamma d_{ij}} \\ 901$$

902 Finally we estimate the phase gradients:
 903

$$904 \quad \frac{\partial \mathcal{M}}{\partial \phi_k} = -\frac{1}{2} \cdot (1 - \tanh^2(x)) \cdot a_k \sin(\omega_k d + \phi_k) \\ 905$$

906 Thus,
 907

$$908 \quad \left\| \frac{\partial \mathbf{S}_{ij}}{\partial \phi_k} \right\| \leq \frac{M^2}{2\sqrt{d}} \cdot e^{-\gamma d_{ij}} \\ 909$$

910 This completes the proof. \square
 911

912 Building on the component-wise gradient bounds established in Theorem 3, we now state a general
 913 decay property that holds uniformly for all modulation parameters.
 914

Lemma 2 (Gradient Decay). *The gradients of attention scores with respect to Fourier parameters
 915 decay exponentially with token distance:*

$$916 \quad \left\| \frac{\partial \mathbf{S}_{ij}}{\partial \theta} \right\| \leq C_\theta \cdot \exp(-\gamma d_{ij}) \\ 917$$

918 where C_θ is a constant depending on the parameter type $\theta \in \{a_k, \omega_k, \phi_k\}$.
 919

918 *Proof.* The result follows directly from Theorem 3. For amplitude and phase parameters, we set
 919 $C_\theta = \frac{M^2}{2\sqrt{d}}$. For frequency parameters, observe that the term $d_{ij} \cdot e^{-\gamma d_{ij}}$ attains its maximum at
 920 $d_{ij} = 1/\gamma$, giving $C_\theta = \frac{M^2}{2\gamma e\sqrt{d}}$. \square
 921
 922

923 The exponential gradient decay established in Lemma 2 directly implies desirable properties for the
 924 learning dynamics of FourierRoFormer, summarized in the following corollary.
 925

926 **Corollary 2** (Training Stability). *Under the exponential gradient decay established in Lemma 2, the
 927 training dynamics of FourierRoFormer exhibit the following properties: the magnitude of parameter
 928 updates remains bounded throughout training, ensuring stability. The impact of distant tokens on
 929 parameter gradients diminishes exponentially with token distance, promoting localized learning.
 930 Backpropagation through attention layers remains well-conditioned, preventing gradient explosion
 931 or vanishing.*

932 *Proof.* By Lemma 2, the gradient of the attention score with respect to any Fourier parameter θ
 933 satisfies

$$\left\| \frac{\partial \mathbf{S}_{ij}}{\partial \theta} \right\| \leq C_\theta \cdot e^{-\gamma d_{ij}}$$

934 for some constant $C_\theta > 0$.
 935

936 Summing over all token pairs (i, j) , the total gradient norm satisfies:
 937

$$\|\nabla_\theta \mathcal{L}\| \leq C_\theta \sum_{i,j} e^{-\gamma d_{ij}}$$

938 Since $e^{-\gamma d_{ij}}$ decays exponentially with d_{ij} , the sum is dominated by token pairs with small d_{ij} ,
 939 corresponding to local interactions. Moreover, as the exponential decay ensures convergence of
 940 the sum, the total gradient norm remains bounded independently of sequence length. Consequently,
 941 parameter updates are primarily influenced by local token neighborhoods, contributions from distant
 942 tokens diminish exponentially, limiting their impact on parameter updates, and the bounded total
 943 gradient norm prevents gradient explosion, ensuring stable optimization dynamics. \square
 944

945 In conclusion, our analysis of FourierRoFormer reveals its ability to approximate and interpret
 946 learned parameters. Our gradient analysis confirmed exponential decay with token distance, en-
 947 suring stable and localized training dynamics. These findings provide theoretical backing for the
 948 design of FourierRoFormer and its scalability to longer sequences.

949 D ROPE COMPATIBILITY ANALYSIS

950 In this section we examine how the Fourier modulation in FourierRoFormer interacts with Rotary
 951 Position Embeddings (RoPE), and demonstrate that the combined attention mechanism retains key
 952 geometric properties of RoPE, including translation equivariance, relative position dependence, and
 953 structural decomposition.

954 **Theorem 3** (RoPE-Fourier Compatibility). *In FourierRoFormer, the modulated RoPE attention
 955 score*

$$\mathbf{S}_{mn} = \frac{\langle \mathbf{R}_{\theta,m} \mathbf{q}_m, \mathbf{R}_{\theta,n} \mathbf{k}_n \rangle}{\sqrt{d}} \cdot \mathcal{M}(|m - n|) \cdot e^{-\gamma|m - n|}$$

956 *is translation equivariant, depends only on relative positions, and admits a multiplicative decom-
 957 position. Specifically, for any shift $\tau \in \mathbb{Z}$, we have $\mathbf{S}_{(m+\tau)(n+\tau)} = \mathbf{S}_{mn}$, and \mathbf{S}_{mn} can be expressed
 958 as $\mathbf{S}_{mn} = f(m - n, \mathbf{q}_m, \mathbf{k}_n)$ for some function f independent of absolute positions. Moreover, the
 959 score factorizes as $\mathbf{S}_{mn} = \mathbf{S}_{mn}^{\text{RoPE}} \cdot \mathbf{S}_{mn}^{\text{Fourier}}$, where $\mathbf{S}_{mn}^{\text{RoPE}}$ is the standard RoPE attention score and
 960 $\mathbf{S}_{mn}^{\text{Fourier}} = \mathcal{M}(|m - n|) \cdot e^{-\gamma|m - n|}$.*

961
 962
 963 *Proof.* We verify each property in turn. For translation equivariance, observe:
 964

$$\mathbf{S}_{(m+\tau)(n+\tau)} = \frac{\langle \mathbf{R}_{\theta,m+\tau} \mathbf{q}_{m+\tau}, \mathbf{R}_{\theta,n+\tau} \mathbf{k}_{n+\tau} \rangle}{\sqrt{d}} \cdot \mathcal{M}(|m - n|) \cdot \mathcal{D}(|m - n|)$$

972 using $|(m + \tau) - (n + \tau)| = |m - n|$, and the RoPE invariance $\mathbf{R}_{\theta, p+\tau} \mathbf{x}_{p+\tau} = \mathbf{R}_{\theta, p} \mathbf{x}_p$. Hence,
 973 $\mathbf{S}_{(m+\tau)(n+\tau)} = \mathbf{S}_{mn}$. For relative position dependence, the RoPE inner product depends only on
 974 relative positions $\langle \mathbf{R}_{\theta, m} \mathbf{q}_m, \mathbf{R}_{\theta, n} \mathbf{k}_n \rangle = g(m - n, \mathbf{q}_m, \mathbf{k}_n)$ for some function g . Since \mathcal{M} and \mathcal{D}
 975 depend only on $|m - n|$, it follows that:

$$977 \quad \mathbf{S}_{mn} = \frac{g(m - n, \mathbf{q}_m, \mathbf{k}_n)}{\sqrt{d}} \cdot \mathcal{M}(|m - n|) \cdot \mathcal{D}(|m - n|) = f(m - n, \mathbf{q}_m, \mathbf{k}_n)$$

979 For the decomposition, define:

$$981 \quad \mathbf{S}_{mn}^{\text{RoPE}} = \frac{\langle \mathbf{R}_{\theta, m} \mathbf{q}_m, \mathbf{R}_{\theta, n} \mathbf{k}_n \rangle}{\sqrt{d}}, \quad \mathbf{S}_{mn}^{\text{Fourier}} = \mathcal{M}(|m - n|) \cdot \mathcal{D}(|m - n|)$$

984 Thus, by construction, $\mathbf{S}_{mn} = \mathbf{S}_{mn}^{\text{RoPE}} \cdot \mathbf{S}_{mn}^{\text{Fourier}}$. \square

985 To further understand the role of Fourier modulation, we observe that in the absence of learned
 986 Fourier components, FourierRoFormer simplifies to standard RoPE attention, as formalized below.

988 **Lemma 3** (RoPE Recovery). *When all Fourier amplitudes $a_k = 0$ or $K = 0$, FourierRoFormer
 989 reduces to standard RoPE attention with uniform modulation $\mathcal{M}(d) = 0.5$.*

990 *Proof.* If $a_k = 0$ for all k or equivalently $K = 0$, the modulation function simplifies to

$$992 \quad \mathcal{M}(d) = \tanh(0) \cdot 0.5 + 0.5 = 0.5$$

994 Substituting into the attention score expression, we obtain

$$995 \quad \mathbf{S}_{mn} = \frac{\langle \mathbf{R}_{\theta, m} \mathbf{q}_m, \mathbf{R}_{\theta, n} \mathbf{k}_n \rangle}{\sqrt{d}} \cdot 0.5 \cdot \mathcal{D}(|m - n|)$$

997 This corresponds to the standard RoPE attention, scaled by a constant factor and modulated by the
 998 damping function $\mathcal{D}(|m - n|)$. The structure of RoPE is thus preserved in the absence of active
 999 Fourier components. \square

1001 Building on the compatibility and recovery properties established earlier, we conclude that FourierRoFormer
 1002 extends RoPE by introducing learnable modulation while preserving its core structural
 1003 advantages, as summarized in the following corollary.

1004 **Corollary 3** (Enhanced Position Encoding). *FourierRoFormer strictly enhances RoPE by preserving
 1005 all of its beneficial properties, while introducing learnable frequency-based attention modulation
 1006 and maintaining stable gradients through multiplicative interactions between the RoPE and Fourier
 1007 components.*

1009 *Proof.* By Theorem 3, FourierRoFormer preserves the translation equivariance and relative position
 1010 dependence of RoPE, ensuring that attention scores remain functions of relative positions only. Fur-
 1011 thermore, the multiplicative decomposition of the attention score into a RoPE term and a Fourier
 1012 modulation term preserves the structural properties of RoPE while introducing additional expressiv-
 1013 ity. Specifically, the Fourier modulation term $\mathcal{M}(|m - n|)$ augments the standard RoPE attention
 1014 with learnable, frequency-based modulation over token distances, enabling the model to adaptively
 1015 emphasize or attenuate specific distance patterns. By Lemma 3, in the limiting case where $a_k = 0$
 1016 for all k , FourierRoFormer recovers standard RoPE attention, confirming that RoPE is a special case
 1017 within this generalized framework. Finally, the multiplicative interaction between the RoPE and Fourier
 1018 terms maintains well-behaved gradients, as each component is bounded and differentiable,
 1019 ensuring stable optimization. Therefore, FourierRoFormer strictly extends RoPE by preserving its
 1020 key properties while enhancing its expressivity through learnable frequency modulation and main-
 1021 taining stable training dynamics. \square

1022 Building on Theorem 3, Lemma 3, and Corollary 3, FourierRoFormer generalizes RoPE by em-
 1023 bedding its geometric properties within a learnable modulation framework. It preserves translation
 1024 equivariance and relative position encoding, while enhancing expressivity through frequency-based
 1025 modulation. This theoretical foundation highlights both the model’s gradient stability and its adapt-
 1026 ability to complex positional patterns.

1026
1027

E EXPERIMENTAL SETUP

1028
1029
1030
1031
1032
1033

All experiments are implemented in PYTORCH and executed on NVIDIA A40 GPUs with 48GB memory. To ensure fair comparison, we adopt a uniform training protocol, varying only key architectural hyperparameters. The *small*, *medium*, and *large* variants have embedding dimensions of 192, 384, and 576, respectively. The small and medium models use six attention heads, while the large model uses twelve. Transformer depth is six layers for the small model and twelve for the others.

1034
1035
1036
1037
1038

Given the limited number of runs ($n=5$) and multiple comparisons across datasets, we adopt conservative statistical practices. We report confidence intervals alongside means and standard deviations. For significance testing, we use paired t-tests with Bonferroni correction across the 4 datasets tested, requiring $p < 0.0125$ for significance. We acknowledge that with 5 runs, detecting small effect sizes reliably is challenging, and focus our claims on improvements exceeding 2 percentage points.

1039
1040
1041
1042

Baseline Methods and Comparisons: We evaluate against three categories of methods: (1) Standard vision transformers (ViT, DeiT, RoFormer), (2) Recent positional encoding methods (ALiBi, Context-aware Biases, Functional Interpolation), and (3) Spectral transformer methods (GFNet, WaveViT, SpectFormer, SVT).

1043
1044
1045

Relationship to Fourier Features. Our approach differs fundamentally from coordinate-based Fourier features (Tancik et al., 2020), as detailed in table 11.

1046
1047

Table 11: Detailed comparison with Tancik et al. Fourier Features [26] highlighting fundamental differences in approach, application, and technical mechanism.

Aspect	Tancik et al. [26]	FourierRoFormer
Application Domain	Coordinate networks (NeRF, etc.)	Vision transformer attention
Target Problem	High-frequency function learning	Multi-scale attention modulation
Input Type	Continuous coordinates (x,y,z)	Discrete token sequences
Frequency Selection	Fixed random frequencies	Learnable adaptive frequencies
Parameter Learning	Static random γ , fixed ω	End-to-end learned $\{a_k, \omega_k, \phi_k\}$
Architecture Role	Input feature enhancement	Attention mechanism modulation
Optimization Target	Coordinate-to-value mapping	Token-to-token attention patterns
Data Dependency	Task-independent frequencies	Dataset-specific specialization
Interpretability	Fixed spectral bias	Learned frequency-pattern alignment
Scalability	Limited to coord. resolution	Scales with sequence length
Evaluation Domain	3D reconstruction, view synthesis	Image classification, detection
Core Innovation	Random Fourier input mapping	Learnable attention modulation

1061
1062
1063
1064
1065

Key Technical Distinctions: Tancik et al. use fixed random frequencies for coordinate mapping, while we learn adaptive frequencies that specialize during training. Their method targets continuous coordinate functions, while ours operates on discrete token interactions. They enhance input representations, while we modulate attention mechanisms. Their approach uses static spectral bias, while ours learns dynamic patterns aligned with visual semantics.

1066
1067
1068

Both methods leverage Fourier analysis but address fundamentally different problems: coordinate-based function approximation versus attention-based visual understanding.

1069
1070
1071
1072
1073

Spectral Transformer Baselines: We include comprehensive comparisons with recent spectral methods: GFNet (Rao et al., 2021) uses fixed Fourier transforms for token mixing, while WaveViT (Yao et al., 2022) employs fixed wavelet transforms for multi-scale processing. SpectFormer (Patro et al., 2025) provides a hybrid frequency-domain transformer with limited adaptability, and SVT (Patro & Agneeswaran, 2023) uses scattering-based spectral filtering with fixed wavelets.

1074
1075
1076
1077

Key Differentiator: Unlike these methods using fixed spectral transforms, FourierRoFormer learns adaptive frequency patterns $\{a_k, \omega_k, \phi_k\}$ that specialize during training to capture dataset-specific visual patterns.

1078
1079

Memory requirements scaled with model complexity: small models required 11GB of GPU memory per run, medium models 18GB, and large models 32GB. Training times varied by dataset size and model scale: small models trained for approximately 5 hours on CIFAR-100, medium models for 12

1080 hours, and large models for 22 hours. For ImageNet-subset, training times increased to 14, 28, and
 1081 48 hours respectively, while Oxford-Flowers102 required approximately 4, 9, and 17 hours for the
 1082 three model sizes. The total compute for all experiments, including ablation studies and the 5 runs
 1083 per configuration for statistical validation, amounted to approximately 2,100 GPU-hours. Inference
 1084 overhead remains minimal, with the medium-sized FourierRoFormer processing 215 images/second
 1085 on CIFAR-100 versus 220 for RoFormer on identical hardware. A detailed analysis of computational
 1086 requirements for each dataset and model configuration is provided in Appendix E.1.

1087 For CIFAR datasets, we use 4×4 image patches, while Oxford-Flowers102 and ImageNet use
 1088 16×16 patches. All models are trained with a batch size of 128 and optimized using AdamW
 1089 with weight decay of 0.05. Learning rates follow a cosine decay schedule starting at 5×10^{-4} , and
 1090 models are trained for 20021 epochs. For ImageNet, standard data augmentation is used, including
 1091 random resized crops and horizontal flips during training, and center cropping for evaluation.

1092 Our DeiT implementation preserves the core architecture while adapting several components for
 1093 fair comparison. We retain DeiT’s training improvements such as strong regularization techniques
 1094 but standardize the training duration to 200 epochs across all models rather than using the original
 1095 300+ epoch schedule. While maintaining the distillation token approach, we use a consistent teacher
 1096 model across experiments. All optimization hyperparameters are aligned with our unified training
 1097 protocol as described above, ensuring that performance differences arise primarily from architectural
 1098 innovations rather than variations in training procedures.

1099 Unless noted otherwise, FOURIERROFORMER is initialized with four learnable Fourier components,
 1100 with frequencies linearly spaced between 0.1 and 2.0, an amplitude of 0.1, zero phase, and a damping
 1101 coefficient of $\gamma = 0.01$. This configuration ensures consistency across ablation studies, allowing
 1102 performance differences to be directly attributed to the architectural choices under investigation.

1103 E.1 COMPUTATIONAL RESOURCES

1104 Our experimental framework was implemented in PyTorch and executed on NVIDIA A40 GPUs
 1105 with 48GB of VRAM. Memory requirements scaled with model size: small models (192d, 6h, 6l)
 1106 required 11GB memory with batch size 128, medium models (384d, 6h, 12l) used 18GB, and large
 1107 models (576d, 12h, 12l) used 32GB. For the largest models on ImageNet-subset, we reduced the
 1108 batch size to 64 to fit within memory constraints.

1109 **Spectral Method Resource Comparison.** We conducted comprehensive resource analysis comparing
 1110 FourierRoFormer with spectral transformer methods:

1111 Table 12: Detailed resource comparison showing FourierRoFormer’s superior resource efficiency
 1112 compared to spectral transformer baselines.

Method	Memory	Peak Memory	Training Time	Energy (kWh)	CO ₂ (kg)	Efficiency
RoFormer-M	18.0 GB	19.2 GB	12.0h	28.8	11.5	6.83
GFNet-H-B	21.5 GB	24.1 GB	16.8h	40.3	16.1	4.12
WaveViT-B	19.8 GB	22.4 GB	15.2h	36.5	14.6	5.46
SpectFormer-H-B	19.2 GB	21.8 GB	14.5h	34.8	13.9	5.89
SVT-H-B	19.5 GB	22.1 GB	15.8h	37.9	15.2	5.39
FourierRoFormer-M	18.1 GB	19.4 GB	12.3h	29.5	11.8	7.21
<i>vs Best Spectral</i>	-6.1%	-11.0%	-15.2%	-15.2%	-15.2%	+22.4%

1123 **Resource Efficiency Metric:** $\frac{\text{Top-1 Accuracy}^2}{\text{Training Time (h)} \times \text{Peak Memory (GB)}}$ captures accuracy-resource tradeoff.

1124 F ABLATION STUDIES

1125 We conduct comprehensive ablation studies to understand the contribution of each component in
 1126 FourierRoFormer. All experiments in this section use the medium-sized model (384d, 6h, 12l) on
 1127 CIFAR-100 unless otherwise specified.

1128 **Quantitative Frequency Learning Validation.** We provide concrete empirical evidence that FourierRoFormer
 1129 learns distinct frequency specialization during training. Table 13 shows quantitative
 1130 tracking of frequency component evolution during ImageNet-1K training:

1134

1135 Table 13: Quantitative validation of frequency learning showing component specialization and cor-
1136 relation with visual patterns during ImageNet-1K training.

Component	Initial Amp	Final Amp	Learned Freq (Hz)	Visual Pattern	Correlation
k=1	0.10 ± 0.02	0.43	0.3	Global object shape	$r = 0.78$
k=2	0.10 ± 0.02	0.31	1.1	Object boundaries	$r = 0.85$
k=3	0.10 ± 0.02	0.18	2.4	Fine textures	$r = 0.71$
k=4	0.10 ± 0.02	0.08	3.2	Noise/artifacts	$r = 0.34$

1142

1143 **Three-Phase Training Dynamics.** Our analysis reveals distinct learning phases with measurable
1144 specialization metrics:

1145

1146 Table 14: Three-phase frequency learning progression with quantitative specialization metrics show-
1147 ing evolution from uniform exploration to structured hierarchy.

Phase	Epochs	Specialization σ	Coefficient Variation	Attention Entropy	Stability
Exploration	0-40	0.02	0.12	3.41 ± 0.18	< 30%
Specialization	40-120	0.12	0.68	3.38 ± 0.12	70%
Convergence	120+	0.31	0.91	3.35 ± 0.08	> 95%

1152 This quantitative analysis confirms that different frequency components learn to capture complemen-
1153 tary visual patterns, with the strongest correlation ($r = 0.85$) achieved for object boundary detection
1154 at 1.1 Hz.

1155

1156 **Post-Attention vs Pre-Attention Modulation.** We provide comprehensive empirical validation for
1157 our design choice:

1158

1159 Table 15: Comprehensive comparison of modulation placement showing superior performance and
stability of post-attention design.

Modulation	ImageNet Top-1	CIFAR -100	Gradient σ	Convergence	Semantic Preservation	Training Stability
Pre-attention	82.3%	82.8%	0.41	Epoch 145	0.72	Unstable
Post-attention	84.1%	84.26%	0.12	Epoch 128	0.89	Stable
Improvement	+1.8pp	+1.46pp	-71%	-12%	+24%	Qualitative

1166 **Multi-Head Frequency Specialization.** When allowing head-specific frequency parameters, we
1167 observe emergent specialization:

1168

1169 **Head-Specific Parameter Overhead Analysis.** When enabling head-specific Fourier parameters,
1170 each attention head learns independent frequency components $\{a_k^{(h)}, \omega_k^{(h)}, \phi_k^{(h)}\}$ and damping coef-
1171 ficient $\gamma^{(h)}$. For a model with H heads and K Fourier components, this increases parameters from
1172 $3K + 1$ (shared) to $H \times (3K + 1)$ (head-specific).

1173

1174 The overhead is negligible (0.0003% of model parameters) while providing measurable accuracy
1175 improvement (+0.5pp). This demonstrates that frequency specialization across heads is highly
1176 parameter-efficient. The per-head frequency distributions show clear differentiation (Table 16):
1177 heads naturally divide into low-frequency (global context), mid-frequency (object boundaries), and
1178 high-frequency (fine details) groups, with specialization coefficient increasing from 0.31 (shared) to
0.42 (head-specific), indicating stronger differentiation.

1179

1180 **Fourier Components and Damping.** We analyze the impact of each component by selective ab-
1181 lation, as shown in Table 18. Fourier modulation alone provides improvement (+4.43pp) over the
1182 RoFormer baseline, while damping alone contributes +2.09pp. When combined, these components
1183 achieve a complementary effect, yielding +5.84pp total improvement. Our experiments with varying
1184 the number of Fourier components (K) show that 4-8 components provides the optimal balance be-
1185 tween expressivity and overfitting, with $K = 8$ achieving the best performance (+6.53pp). Similarly,
1186 moderate damping ($\gamma=0.01$) yields the best results among the damping coefficients tested.

1187

1188 **Frequency Initialization Strategies.** We also investigate different approaches for initializing the
Fourier component frequencies, as shown in Table 19. Logarithmic spacing achieves the best per-
1189 formance (84.62%), providing better coverage across the frequency spectrum compared to linear

1188

1189 Table 16: Multi-head frequency specialization showing automatic division of labor across attention
1190 heads with quantitative metrics.

1191 Configuration	1192 ImageNet 1193 Top-1	1194 Head 1195 Group	1196 Freq Range (Hz)	1197 Attention Range	1198 Energy % 1199 Energy %	1200 Specialization Timeline
1193 Uniform	1194 84.1%	1195 All heads	1196 0.5-1.5	1197 45 tokens	1198 100%	1199 None
1195 Head-specific	1196 84.6%	1197 Heads 1-2	1198 0.2-0.6	1199 89 tokens	1200 35%	1201 Epoch 35
		1202 Heads 3-4	1203 0.6-1.4	1204 43 tokens	1205 40%	1206 Epoch 42
		1207 Heads 5-6	1208 1.4-3.2	1209 21 tokens	1210 25%	1211 Epoch 38

1200 Table 17: Head-specific parameter analysis showing modest overhead for improved specialization.

1201 Configuration	1202 Additional Params	1203 Total Model Params	1204 ImageNet Top-1	1205 Improvement
1202 Shared (baseline)	1203 13 (4 components)	1204 24.76M	1205 83.4%	1206 -
1203 Head-specific (6 heads)	1204 78 (4 comp \times 6 heads)	1205 24.76M (+0.0003M)	1206 83.9%	1207 +0.5pp
1204 Overhead	1205 65 params	1206 +0.0003%	1207 +0.5pp	1208 0.77M params/pp

1209 spacing. Random initialization performs worse (83.91%), suggesting that a structured approach to
1210 frequency initialization aids optimization. Low-frequency bias initialization shows moderate performance,
1211 indicating that while low frequencies are important, a balanced coverage across the spectrum
1212 is more effective.

1213 G COMPUTATIONAL COMPLEXITY ANALYSIS

1214 For completeness, we analyze the computational overhead introduced by the Fourier modulation
1215 components in FourierRoFormer. Let n denote the input sequence length, d the feature dimension,
1216 and κ the number of Fourier components. The computation of the Fourier modulation function
1217 requires evaluating κ cosine terms for each token pair, computing the modulation, and applying
1218 non-linear scaling. Since there are $\mathcal{O}(n^2)$ token pairs in the attention mechanism Vaswani et al.
1219 (2017), this results in an overall computational cost of $\mathcal{O}(\kappa n^2)$ operations Rahimi & Recht (2008);
1220 Tancik et al. (2020).

1221 **Comprehensive Efficiency Comparison with Spectral Methods.** We provide detailed efficiency
1222 analysis comparing FourierRoFormer with spectral transformer baselines:

1223 Efficiency Metrics Defined:

- 1224 • **Efficiency Score** = $\frac{\text{Top-1 Accuracy}}{\log(\text{Params}) \times \sqrt{\text{Training Time}}}$ (higher is better)
- 1225 • **Parameter Efficiency** = $\frac{\text{Top-1 Accuracy}}{\text{Params (M)}}$ (accuracy per million parameters)
- 1226 • **Computational Efficiency** = $\frac{\text{Top-1 Accuracy}}{\text{FLOPs (G)}}$ (accuracy per GFLOP)

1227 **Key Findings:** The approach introduces minimal overhead with only 0.04% parameter increase and
1228 0.7% FLOPs increase over RoFormer. It achieves a superior tradeoff with 23% better efficiency
1229 score than the best spectral baseline while using 25% fewer parameters. The method provides practical
1230 advantage by maintaining standard transformer architecture compatibility unlike spectral methods
1231 requiring architectural overhaul.

1232 The additional computational cost of FourierRoFormer compared to standard ViT or RoFormer is
1233 minimal, with only 0.01M additional parameters (0.04%) from the learnable Fourier components.
1234 During inference, FourierRoFormer processes approximately 215 images/second on our medium
1235 model configuration for CIFAR-100, compared to 220 images/second for RoFormer and 218 images/second
1236 for standard ViT on identical hardware, demonstrating negligible runtime overhead for
1237 improved accuracy gains.

1238

1239

1240

1241

1242
1243
1244
1245
1246 Table 18: Comprehensive ablation study on CIFAR-100 showing complementary benefits of com-
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
ponents.
Configuration Accuracy (%) Δ vs RoFormer Params (M) GFLOPs
RoFormer (baseline) 78.42 - 24.75 4.60
+ Fourier only 82.85 +4.43 24.75 4.61
+ Damping only 80.51 +2.09 24.75 4.60
+ Both (Full model) 84.26 +5.84 24.76 4.63
Fourier Component Variations
K=2 components 82.54 +4.12 24.75 4.61
K=4 components 84.26 +5.84 24.76 4.63
K=8 components 84.95 +6.53 24.76 4.63
K=16 components 84.72 +6.30 24.77 4.64
Damping Coefficient Analysis
 $\gamma = 0.001$ 83.45 +5.03 24.76 4.63
 $\gamma = 0.01$ 84.26 +5.84 24.76 4.63
 $\gamma = 0.05$ 83.87 +5.45 24.76 4.63
 $\gamma = 0.1$ 82.93 +4.51 24.76 4.63
Table 19: Comparison of frequency initialization strategies on CIFAR-100.
Strategy Accuracy (%) Description
Linear spacing 84.26 Frequencies evenly spaced 0.1-2.0
Logarithmic spacing **84.62** Log-spaced frequencies
Random initialization 83.91 Random frequencies 0.1-2.0
Low-frequency bias 84.08 Emphasis on low frequencies
Table 20: Comprehensive efficiency analysis showing FourierRoFormer achieves optimal accuracy-efficiency tradeoff compared to spectral transformer methods.
Method Params (M) Memory (GB) Throughput (img/s) Training Time (h) FLOPs (G) Top-1 (%) Efficiency Score Parameter Efficiency
RoFormer-M 24.75 18.0 220 12.0 4.60 81.9 3.33 3.31
GFNet-H-B 54.0 21.5 185 16.8 8.6 82.9 2.41 1.54
WaveViT-B 33.5 19.8 195 15.2 6.8 84.8 2.98 2.53
SpectFormer-H-B 33.1 19.2 195 14.5 6.3 85.1 3.21 2.57
SVT-H-B 32.8 19.5 190 15.8 6.5 85.2 3.18 2.60
FourierRoFormer-M 24.76 18.1 215 12.3 4.63 84.1 **3.91** **3.40**
Efficiency Advantage vs Best Spectral Baseline (SVT-H-B)
Relative Advantage **-24.5%** **-7.2%** **+13.2%** **-22.2%** **-28.8%** **-1.1pp** **+23%** **+31%**