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Abstract

Multiset functions, which are functions that map multisets to vectors, are a fun-
damental tool in the construction of neural networks for multisets and graphs.
To guarantee that the vector representation of the multiset is faithful, it is often
desirable to have multiset mappings that are both injective and bi-Lipschitz. Cur-
rently, there are several constructions of multiset functions achieving both these
guarantees, leading to improved performance in some tasks but often also to higher
compute time than standard constructions. Accordingly, it is natural to inquire
whether simpler multiset functions achieving the same guarantees are available. In
this paper, we make a large step towards giving a negative answer to this question.
We consider the family of k-ary Janossy pooling, which includes many of the
most popular multiset models, and prove that no piecewise linear Janossy pooling
function can be injective. On the positive side, we show that when restricted to
multisets without multiplicities, even simple deep-sets models suffice for injectivity
and bi-Lipschitzness.

1 Introduction

A natural requirement of machine learning models for graphs and point clouds is that they respect the
permutation symmetries of the data. A key tool to achieve this is the process of mapping multisets,
which are unordered collections of vectors, to a single (ordered) vector which faithfully represents
the multiset.

The celebrated deep-sets paper [Zaheer et al., 2017] proposed a simple and popular method to map
multisets to vectors via elementwise application of a function f , followed by sum pooling, namely

F ({x1, . . . ,xn}) =
n∑

j=1

f(xj). (1)

Another popular alternative, which is more computationally demanding but also more expressive
[Zweig and Bruna, 2022], sums a function f(xi, xj) over all pairs of points

F ({x1, . . . ,xn}) =
n∑

i,j=1

f(xi,xj) (2)

This type of pairwise summation allows incorporation of relational pooling [Santoro et al., 2017], or
attention mechanisms as proposed in the set-transformer paper [Lee et al., 2019].

A natural generalization of both these models is the notion of k-ary Janossy pooling, where a function
f is applied to all k-tuples of the multiset and then summation is applied to all these k-tuples. Deep
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sets models correspond to the case k = 1 while set transformers correspond to k = 2. Janossy
pooling for general k was successfully used in Murphy et al. [2019].

To ensure the quality of the vector representation of the multiset, a common requirement is that the
function F is injective. This requirement enables construction of maximally expressive message
passing neural networks [Xu et al., 2018, Morris et al., 2019], and is exploited in a variety of other
scenarios where expressivity of graph neural networks is analyzed[Maron et al., 2019, Hordan et al.,
2024a, Sverdlov and Dym, 2025, Zhang et al., 2024].

The injectivity requirement can be satisfied even by deepsets models, providing that the function
f : Rd → Rm in (1) is defined correctly, and the embedding dimension m is large enough. The
various aspects of this question are discussed in Wagstaff et al. [2022], Zaheer et al. [2017], Xu
et al. [2018], Amir et al. [2023], Tabaghi and Wang [2024], Wang et al. [2024]. Most relevant to our
discussion are the recent results [Amir et al., 2023] which show that (1) can be injective when f is a
neural network with smooth activations, but can never be injective when f is a Continuous Piecewise
Linear (CPwL) function (as is the case when f is a neural network with ReLU activations).

While these theoretical results seem to indicate an advantage of smooth functions f over CPwL ones,
empirical evidence indicates that the separation between multisets via smooth activations can be very
weak [Bravo et al., 2024, Hordan et al., 2024b], and that empirically the separation obtained even by
non-injective CPwL deep sets model is often preferable. Thus, recent papers have argued that a more
refined notion of separation is necessary, via the notion of bi-Lipschitz stability [Davidson and Dym,
2025, Amir and Dym, 2025, Balan et al., 2022]. In this notion, multisets are required not only to be
mapped to distinct vectors, but we also require that the distance between the vector representations
resembles the natural Wasserstein distance between the multisets.

In the lens of bi-Lipschitz stability, the ranking of CPwL and smooth multiset functions are reversed.
In fact, Amir et al. [2023] and Cahill et al. [2024] showed that smooth multiset functions can never be
bi-Lipschitz. In contrast, while CPwL deepsets functions are not injective (or bi-Lipschitz), several
recent papers have suggested new CPwL multiset-to-vector mappings based on sorting [Balan et al.,
2022, Dym and Gortler, 2024, Balan and Tsoukanis, 2023], Fourier sampling of the quantile function
[Amir and Dym, 2025], or max filters [Cahill et al., 2022], and showed that they are both injective
and bi-Lipschitz. In fact, Sverdlov et al. [2024] showed that CPwL multiset functions which are
injective are automatically also bi-Lipschitz.

Experimentally, it was shown that these CPwL bi-Lipschitz multiset mappings have significant
advantages over standard methods, for tasks like learning Wasserstein distances or learning in a low
parameter regime [Amir and Dym, 2025] and for graph learning tasks [Davidson and Dym, 2025]
including reduction of oversquashing [Sverdlov et al., 2024]. On the other hand, these methods are
typically more time consuming than standard methods, and at least at the time this paper is written
they are not as prevalent as deepsets and set transformers. Thus, we would like to seek for simpler
CPwL mappings on multisets which are injective, and hence bi-Lipschitz. A natural direction to do
this is via k-ary pooling. Accordingly, the goal of this paper is to address the following question

Main Question: Is it possible to construct CPwL injective (and bi-Lipschitz) functions via k-ary
pooling?

Currently, we have a negative answer to this question only in the special case where k = 1 (deepsets),
but for k ≥ 2 (e.g. set transformers) the answer is unknown. A positive answer to this question
would potentially lead to new bi-Lipschitz models which are closer to established models like set
transformers, and potentially would have better performance. A negative answer would indicate that
bi-Lipschitz models do require different types of multiset functions, such as the sort based functions
currenly suggested in the literature.

In this paper we will prove two results: (i) we will show that in general CPwL Janossy pooling cannot
be injective and (ii) we will show that, if we restrict the domain to multisets whose points are at least
ϵ away from each other, even 1-ary Janossy pooling (deepsets) is injective. We will now give a more
formal and detailed account of these results, with the full details appearing in the appendix.
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2 Problem Statement

We begin by formally stating the notions necessary to define our problem. For arbitrary sets C, Y , we
say that a function F : Cn → Y is permutation invariant if F (w1, . . . ,wn) = F (wπ(1), . . . ,wπ(n))
for every permutation π of the coordinates of w ∈ Cn.

The notion of permutation invariant functions is closely linked to the notion of functions on multisets.
A multiset {w1, . . . ,wn} is a collection of elements which is unordered (like sets), but where
repetitions are allowed (unlike sets). We denote the space of multisets by Mn(C).

If F is permutation invariant, we can identify it with a function on multisets in Mn(C) via

F ({w1, . . . ,wn}) = F (w1, . . . ,wn)

Since F is permutation invariant, this expression is well defined and does not depend on the ordering.
Conversely, any multiset function F on Mn(C) can be used to define a permutation invariant function
on Cn. Due to this identification, we will use the term ’multiset function’ and ’permutation invariant
function’ alternatingly, according to convenience.

In this paper, our main focus is on permutation invariant functions defined by k-ary Janossy pooling.
Namely, for some natural numbers k ≤ n, and a function f : Ck → Y , we define a permutation
invariant function F : Cn → Y via

F (x1, . . . ,xn) =
1

(n− k)!

∑
π∈Sn

f
(
xπ(1), . . . ,xπ(k)

)
(3)

As mentioned above, special cases of Janossy pooling include the deep sets model in (1), which
corresponds to the case k = 1, and set transformer models which correspond to the case k = 2 (2).

As discussed in the introduction, we will focus on the case where the function f used to define the
Janossy pooling is Continuous Piecewise Linear (CPwL). To define this, we recall that a (closed,
convex) polytope P is a subset of Rd defined by a finite number of weak inequalities

P = {x ∈ Rd|aj · x+ bj ≥ 0,∀j = 1, . . . , J}
A partition of Rd is a finite collection of polytopes with non-empty interior, whose union covers
Rd and whose interiors do not intersect. A CPwL function f : Rd → Rm is a continuous function
satisfying that, for some partition P = {P1, . . . , Pk}, the restriction of f to each polytope Pj in the
partition is an affine function. The polytopes Pj are called linear regions of f . Neural networks
defined by piecewise linear activations like ReLU or leaky ReLU are important examples of CPwL
functions.

Finally, a multiset function F : Mn(C) → Y is injective if it is injective in the standard sense: for
all distinct multisets W,W ′ ∈ Mn(C) we have F (W ) ̸= F (W ′). As discussed in the introduction,
the question we discuss in this paper is the injectivity of F induced from Janossy pooling of a CPwL
function f .

3 Non-injectivity of Janossy Pooling for general domains

Now we can state our main theorem:
Theorem 3.1. [Non-Injectivity of k-ary Janossy Pooling of CPwL functions] Let C be a subset of
Rd that contains a line segment (usually this will be [0, 1]d or Rd itself). Let f : (Rd)k → Rm be
a continuous piecewise linear (CPwL) function. Let n > k, and let F : (Rd)n → Rm be the k-ary
Janossy pooling of f . Then F is not injective on Mn(C).

To provide intuition for the theorem, we recall the simple proof for the simple case k = 1, d = 1,
provided in Amir et al. [2023]. In this case, we find a pair of distinct points x, y which are in the
same linear region of f . In this case, the average of x and y is also in the same linear region, and we
can use this to obtain a contradiction to injectivity

F (x, y) = f(x) + f(y) = f(
x+ y

2
) + f(

x+ y

2
) = F (

x+ y

2
,
x+ y

2
).

The proof of the case k = 1, d = 1 relies on the trivial observation that we can always find a pair of
numbers (x, y) ∈ R2 (or more generally in Rn) whose elements are distinct, but come from the same
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Figure 1: Visualization of the prop-
erty from Theorem 3.2 for a poly-
tope partition of [0, 1]2. The point
w = (0.75, 0.5, 0.25) fulfills the
conditions of the proposition, as all
three 2 dimensional ordered sub-
vectors are in the same linear re-
gion (see green dots). The vector
(0.9, 0.6, 0.1) does not fulfill the con-
dition (see red dots).

partition which the CPwL function f : R → Rm is subordinate to. To generalize this result to k-ary
pooling, we will need to show a similar but much stronger property: for any polytope partition of
Rk, one can only find a vector in Rn of distinct monotonely decreasing elements, such that all k-ary
montonely ordered subvectors belong to a single polytope from the partition:

Theorem 3.2. For every polytope partition P of Rk, there exists a polytope P0 ∈ P and a point
w = (w1, . . . , wn) ∈ (0, 1)n such that w1 > · · · > wn and, for any ascending k-tuple of indices
i1 < · · · < ik in [n], the point (wi1 , . . . , wik) is in int(P0).

A visualization of the property described in the theorem is provided in Figure 1 for the special case
k = 2, n = 3.

To the best of our knowledge, Theorem 3.2 has not previously been known. The proof of this result is
technical and non-trivial and it is given in the Appendix.

We now explain how this proposition can be used to prove Theorem 3.1.

Proof of Theorem 3.1. For the sake of simplicity we first prove the theorem in the case d = 1. We
assume WLOG that C = [0, 1].

Let f : Rk → Rm be a CPwL function. Let F : Rn → Rm be its k-ary Janossy pooling as in (3).
Our goal is to prove that F is not injective on multisets Mn([0, 1]).

The first step is to show that F can be defined alternatively by applying Janossy pooling to the
permutation invariant function f̂ : Rk → Rm defined by

f̂(x1, . . . , xk) =
∑
π∈Sk

f
(
xπ(1), . . . , xπ(k)

)

Note that f̂ is a permutation-invariant function and that we can equivalently write

F (x1, . . . , xn) =
∑

1≤i1<···<ik≤n

f̂ (xi1 , . . . , xik)

Summing over all
(
n
k

)
subsets of [n] of size k.

Note that f̂ is the sum of finitely many CPwL functions; therefore, it is itself a CPwL function. Let P
be a finite polytope covering of [0, 1]k such that for all polytopes P ∈ P , f̂

∣∣
P

is an affine function.
Let P0 be as promised from Theorem 3.2, and let A ∈ Rm×k,b ∈ Rm such that f̂

∣∣
P0
(z) = Az+ b.

The properties of the point w in the theorem are preserved under small perturbations. Namely, for
some r > 0, we have that for all vectors δ ∈ Rn with norm bounded by r, we will have both
w1 + δ1 > w2 + δ2 > . . . > wn + δn, and that all k vectors obtained from w + δ by choosing k
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𝑖≠𝑗

|𝑥𝑖−𝑥𝑗|

max
𝑖≠𝑗

|𝑥𝑖−𝑥𝑗|
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Figure 2: This figure illustrates that
the assumption that multisets do not
have (near)-repeated points is realis-
tic for small molecule datasets. (a) An
example multiset from the QM9 [Rud-
digkeit et al., 2012, Ramakrishnan
et al., 2014] small molecule dataset.
This example shows visually that dif-
ferent set elements are not very close
together. (b) Histogram of the min-
imal distance within each multiset
(normalized by the maximal distance),
over 1,000 representative samples
from QM9. In all these instances,
the minimal distance was never lower
than 0.1.

different ascending indices will be in the same polytope P0. It follows that for all such δ

F (w + δ) =
∑

1≤i1<···<ik≤n

f̂ (wi1 + δi1 , . . . , wik + δik)

=

(
n

k

)
b+

∑
1≤i1<···<ik≤n

A (wi1 + δi1 , . . . , wik + δik)
⊤

=

(
n

k

)
b+A

 ∑
1≤i1<···<ik≤n

(wi1 + δi1 , . . . , wik + δik)
⊤


To contradict injectivity we will want to obtain F (w) = F (w + δ), which will hold if∑

1≤i1<···<ik≤n

(δi1 , . . . , δik) = (0, . . . , 0)

Indeed, these are k linear homogeneous equations in n > k variables, and they have a non zero
solution δ. We can scale this δ by a sufficient small number to guarantee that ∥δ∥ < r. We then
have that F (w) = F (w + δ), that w + δ ̸= w, and moreover, since both w and w + δ are sorted
from small to large, that w is not a permutation of w+ δ. Thus F is not injective, and we proved the
theorem in the case where d = 1.

A generalization to the general case d > 1 and a discussion on the degenerate case k = n are given
in appendix A.

4 Injectivity under restricted domains

Our second result shows that the obstruction to injectivity is only the existence of multisets with
repeated (or nearly-repeated) points: on a compact domain D of multisets where all multisets have
distinct points, even the 1-ary CPwL Janossy pooling (deepsets) can be injective and bi-Lipschitz.
Our proof is by construction. The computational burden of this construction strongly depends on
a constant R(D) which measures how close multisets in D are to have repeated points. This result
suggests that the advantages provided by sort-based methods may only be relevant in datasets where
(near) point multiplicity occurs (e.g. point cloud samples of surfaces where points are very close
together), and not in datasets where points are typically fairly far away, such as multisets which
describe small molecules. In figure 2 we show that this property is indeed apparent in the QM9 small
molecule datasets. A formal discussion and a proof of this result are given in Appendix B.

5 Conclusion, limitations and future Work

In this paper we showed two main results (a) continuous piecewise linear Janossy pooling is not
injective, when considering general domain, and (b) on compact domains with non-repeated points,
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even 1-ary continuous piecewise linear Janossy pooling can be injective. These results suggest that
deepsets models may be sufficient for tasks where multisets do not have multiplicities (so that they
are sets), and the margin between closest points is significant. At the same time, when this margin is
small it strengthens the case for using injective and bi-Lipschitz CPwL models such as Davidson and
Dym [2025], Amir and Dym [2025], since we show that alternative natural methods cannot attain
similar theoretical guarantees.

Building upon our positive result for 1-ary CPwL Janossy pooling on domains of sets (i.e., multisets
with point multiplicities of at most one), a natural direction for future work is to explore the capacity
of higher-order pooling. We conjecture that for a given integer k ≥ 1, k-ary CPwL Janossy pooling
can be injective on compact domains of multisets where the multiplicity of any individual element is
at most k.

A limitation of this work is that we only analyze the injectivity of CPwL Janossy pooling. Our
focus on these functions stems from the fact that CPwL injectivity implies bi-Lipschitzness, while
smooth multiset functions, which can be injective via Janossy pooling, cannot be bi-Lipschitz [Amir
et al., 2023, Cahill et al., 2024]. However, there are many functions which are neither CPwL nor
smooth. An interesting avenue for future work is investigating whether such functions can be used to
construct injective and bi-Lipschitz multiset functions via k-ary pooling, and whether these can lead
to multiset models with good empirical performance. This question is most interesting for k = 2 as
2-ary Janossy pooling has reasonable complexity, and as for k = 1 such a function can only exist if it
is not differentiable at any point Amir et al. [2023].
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A Proofs of non-injectivity theorems

A.1 Proof of Theorem 3.2

We first establish the following supporting result:

Let v ∈ [0, 1]k. We define POLY(v) = {P ∈ P | v ∈ P} to be the set of polytopes in the covering
P that contain the point v.
Lemma A.1. Let v ∈ Rk. Let P be a finite polytope covering of Rk. There exists ϵ > 0 such that the
ϵ-ball around v w.r.t. the ℓ1 metric, denoted by Bℓ1(v, ϵ) = {x ∈ [0, 1]k : ∥x− v∥1 < ϵ}, does not
intersect any polytope that does not contain v:

Bℓ1(v, ϵ) ∩
⋃

(P \ POLY(v)) = ∅

Proof of Lemma A.1. Let P ∈ P \ POLY (v). Since P is closed,

dist(v, P ) = inf
x∈P

∥x− v∥ > 0

Let
ϵ =

1

2
min

P∈P\POLY(v)
(dist(v, P ))

Since P is finite, ϵ is well defined and positive. For this choice of ϵ, we have

Bℓ1(v, ϵ) ∩
⋃

(P \ POLY(v)) = ∅

Proof of Theorem 3.2. Fix some x ∈ (0, 1) and let v0 = (x, . . . , x) ∈ (0, 1)k.

Using Lemma A.1, let ϵ1 > 0 such that Bℓ1(v0, ϵ1) ⊂
⋃

POLY(v0) and Bℓ1(v0, ϵ1) ⊂ (0, 1)k.

Let v1 = v0 +
ϵ1
2 e1 = (x+ ϵ1

2 , x, . . . , x).

We continue this construction by an inductive process. For all 1 < i ≤ k:

Let ϵi > 0 such that Bℓ1(vi−1, ϵi) ⊂
⋃

POLY(vi−1) and ϵi <
ϵi−1

2 .

Let vi = vi−1 + ei
ϵi
2 = (x+ ϵ1

2 , . . . , x+ ϵi
2 , x, . . . , x).

In the end of this process we get a sequence of k + 1 vectors v0, . . . ,vk which are all in Rk
sorted :=

{y ∈ Rk| y1 ≥ y2 ≥ . . . ≥ yk}.

Proposition A.2. POLY(vk) ⊂ · · · ⊂ POLY(v0)

Proof. Let i ∈ [k]. Note that vi − vi−1 = ϵi
2 ei ⇒ vi ∈ Bℓ1(vi−1, ϵi). Assume, for the sake of

contradiction, that there exists P ̸∈ POLY(vi−1) such that vi ∈ P . Then:

vi ∈ Bℓ1(vi−1, ϵi) ∩
⋃

(P \ POLY(vi−1)) = ∅

Which is a contradiction.

Proposition A.3. There exists a single polytope P0 ∈ P such that vk ∈ P0; in particular, vk lies in
the interior of this polytope.

Proof. Assume, for the sake of contradiction, that |POLY(vk)| > 1. Let P0, P1 ∈ POLY(vk) be
two different polytopes. Convexity is preserved under intersection, therefore P0 ∩ P1 is a convex set.
Under the assumption that the interiors of polytopes in P do not intersect, we see that P0 ∩ P1 has an
empty interior; therefore, there exists a hyperplane H ⊂ Rk such that P0 ∩ P1 ⊂ H (see [Boyd and
Vandenberghe, 2004, 2.5.2]).

By Proposition A.2, we have v0, . . . ,vk ∈ P0 ∩ P1 ⊂ H; however, it is easy to see that v0, . . . ,vk

are k+1 affinely independent vectors in Rk, and therefore do not all lie in the same hyperplane. This
is a contradiction.
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We have proved that vk lies on a single polytope P0, therefore it can either lie in the interior of P0 or
on the boundary of [0, 1]k; however, by the construction of each ϵi, and by the triangle inequality, it
is easy to see that vk ∈ Bℓ1(v0, ϵ1) ⊂ (0, 1)k = int([0, 1]k). We conclude that vk ∈ int(P0).

Let δ = min
1<i≤k

(
ϵi

ϵi−1

)
< 1.

Proposition A.4. The interior of P0 contains all points of the form (x+ y1, . . . , x+ yk) for which:

(a) All yi are positive, and are smaller than ϵ1
2 .

(b) The ratio between yi+1 and yi is smaller than or equal to δ.

Moreover, each such point is in Rk
sorted.

Proof. By Proposition A.2, v0, . . . ,vk ∈ P0. We will show that (x+ y1, . . . , x+ yk) is a convex
combination of the points v0, . . . , vk by finding appropriate coefficients.

Let

α0 = 1− 2y1
ϵ1

αi =
2yi
ϵi

− 2yi+1

ϵi+1
for 1 ≤ i < k

αk =
2yk
ϵk

First, we show that the sum of these coefficients equals 1:
k∑

i=0

αi =

(
1− 2y1

ϵ1

)
+

k−1∑
i=1

(
2yi
ϵi

− 2yi+1

ϵi+1

)
+

2yk
ϵk

Notice that the terms in the summation telescope, as each − 2yi+1

ϵi+1
cancels with the corresponding 2yi

ϵi
from the next term. After cancellation, we are left with:

1− 2y1
ϵ1

+
2y1
ϵ1

− 2yk
ϵk

+
2yk
ϵk

= 1

Second, we show that all these coefficients are nonnegative. Clearly α0, αk > 0. For 1 ≤ i < k, we
have:

ϵi+1

ϵi
≥ δ ≥ yi+1

yi
Where the RHS holds due to condition (b) on yi, yi+1, and the LHS holds from the definition of δ.
Consequently,

αi =
2yi
ϵi

− 2yi+1

ϵi+1
≥ 0

Third, we show that:
k∑

i=0

αivi = (x+ y1, . . . , x+ yk)

Let’s fix any coordinate 1 ≤ j ≤ k. Then we obtain〈
ej ,

k∑
i=0

αivi

〉
=

k∑
i=0

αi⟨ej ,vi⟩ =
k∑

i=0

αix+

k∑
i=j

αi
ϵj
2

= x+

k−1∑
i=j

[(
2yi
ϵi

− 2yi+1

ϵi+1

)
ϵj
2

]
+

(
2yk
ϵk

)
ϵj
2

= x+ yj
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We have proved that (x + y1, . . . , x + yk) is a convex combination of v0, . . . ,vk ∈ P0. By
Proposition A.3, vk ∈ int(P0). Since the coefficient of vk in this convex combination is αk > 0, it
follows from [Rockafellar, 1970, Theorem 6.1], often referred to as the Accessibility Lemma, that
(x+ y1, . . . , x+ yk) ∈ int(P0).

Finally, the fact that (x+ y1, . . . , x+ yk) ∈ Rk
sorted follows immediately from the fact that all yi are

positive and yi+1

yi
≤ δ < 1.

Let w = (x + y1, x + y2, . . . , x + yn) ∈ Rn, where yi satisfy the conditions in Proposition A.4.
Consider any k ascending indices r1 < · · · < rk from [n]. Construct the point z = (wr1 , . . . , wrk) =
(x + yr1 , . . . , x + yrk) ∈ Rk. This point will also satisfy the conditions of Proposition A.4, and
therefore z ∈ int(P0). This concludes the proof of Theorem 3.2.

A.2 Proof of Theorem 3.1, case d > 1

We now prove the general case d > 1 by a reduction to the case d = 1. Let us assume by contradiction
that C ⊆ Rd contains the line segment between some (non-identical) points α and β, that f is some
CPwL function and that the function F obtained by k-ary Janossy pooling on f is injective.

Let g : [0, 1] → C be the affine function g(t) = (1− t)α+ tβ. For any natural s, we can extend g to
a mapping g(s) : [0, 1]s → (Rd)s by applying g to each coordinate, i.e., for t = (t1, . . . , ts) ∈ [0, 1]s,
g(s)(t) = (g(t1), . . . , g(ts)). The function g(s) is affine and injective. Accordingly, the function
F ◦ g(n) : Cn → Rm is injective, and we note that it is the Janossy pooling of f ◦ g(k) which is
a CPwL function as the composition of a CPwL function and an affine function. This leads to a
contradiction to our proof for the case d = 1.

A.3 Janossy pooling when k = n

In the degenerate case where we use n-ary pooling for multisets of cardinality n, an expensive
averaging over all permutations is necessary. In this case we can choose the initial f we use to
be a CPwL multiset injective function, such as the sorting based functions constructed in Balan
et al. [2022] and mentioned earlier. Since the initial f is already permutation invariant, and n = k,
we would obtain F (x1, . . . ,xn) = f(x1, . . . ,xn) in this case, and so Janossy pooling of CPwL
functions can be injective in this degenerate case.

B Injectivity under restricted domains: a formal discussion

To state this result formally, we define the natural Wasserstein metric on the space of multisets, and
then the notion of a compact set in multiset-space:

Definition B.1. Given two multisets A,B ∈ Mn(Rd), the Wasserstein metric dW (A,B) is defined
as

dW (A,B) = min
σ∈Sn

n∑
i=1

∥ai − bσ(i)∥

where A = {a1,a2, . . . ,an}, B = {b1,b2, . . . ,bn}, Sn is the set of all permutations of [n], and
∥ · ∥ denotes the ℓ∞ norm. Note that the expression above is permutation invariant, and therefore
well-defined independently of the order of the elements of A,B.

Definition B.2. Let C ⊂ Rd. We say that D ⊂ Mn(C) is compact if every sequence of multisets
{Aj}∞j=1 in D has a subsequence that converges to a multiset in D with respect to the Wasserstein
metric dW . This is the standard definition of compactness in a metric space.

We can now state our second main result: in the absence of multisets with repeated elements, even
1-ary pooling is injective:

Theorem B.3. Let D ⊂ Mn(C) be a compact set of multisets where each multiset has n distinct
elements. Then there exists some m = m(D) and a continuous piecewise linear function f : Rd →
Rm such that its 1-ary Janossy pooling F (A) =

∑
a∈A f(a) is injective on D, and bi-Lipschitz with

respect to the Wasserstein distance.
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We will prove this theorem by construction. We begin with some preliminaries: we first introduce the
minimal separation function r : D → R≥0 via

r(A) = min
ai,aj∈A

i ̸=j

∥ai − aj∥

for any multiset A = {a1,a2, ...,an} ∈ D, where ∥ · ∥ denotes the ℓ∞ norm. We note that by our
theorem’s assumptions, r(A) > 0 for all A ∈ D. We next define R(D) to be the minimal separation
obtained on all of D, namely

R(D) = inf
A∈D

r(A) = inf
A∈D

min
ai,aj∈A

i̸=j

∥ai − aj∥

We next show that, due to the compactness of D, the infimum in the definition of R(D) is obtained
and R(D) is always strictly positive.
Proposition B.4. If D ⊂ Mn(C) is a compact set of multisets, where each multiset A ∈ D consists
of n distinct elements, then its minimum separation R(D) is positive.

Proof. Assume, for the sake of contradiction, that R(D) = 0. By the definition of the infimum, this
implies that there exists a sequence of multisets {Aj}∞j=1 in D such that r(Aj) → 0 as j → ∞. Each

Aj = {a(j)1 , . . . ,a
(j)
n } consists of n distinct points.

Since D is compact, the sequence {Aj}∞j=1 has a subsequence {Ajl}∞l=1 that converges to a multiset
A∗ ∈ D with respect to the Wasserstein metric dW . Let A∗ = {a∗1, . . . ,a∗n}. By definition of D, we
have r(A∗) > 0.

Let ϵ = r(A∗)
2 . From the convergence of r(Ajl) and Ajl , there exists an l such that r(Ajl) < ϵ and

dw(Ajl , A
∗) < ϵ. For this l, we deduce there are at least two distinct points, WLOG a

(jl)
1 , a

(jl)
2 ∈ Ajl ,

such that ∥a(jl)1 − a
(jl)
2 ∥ < ϵ. Next, let σ ∈ Sn be the permutation such that the minimum in the

definition of the Wasserstein distance between A∗, Ajl is attained. Then, applying the triangle
inequality twice, we get:

r(A∗)

2
= ϵ > dw(Ajl , A

∗)

=

n∑
i=1

∥a(jl)i − a∗σ(i)∥

≥ ∥a(jl)1 − a∗σ(1)∥+ ∥a(jl)2 − a∗σ(2)∥

≥ ∥a∗σ(1) − a∗σ(2) + a
(jl)
2 − a

(jl)
1 ∥

≥ ∥a∗σ(1) − a∗σ(2)∥ − ∥a(jl)1 − a
(jl)
2 ∥

≥ r(A∗)− ϵ =
r(A∗)

2

This is a contradiction. We conclude that R(D) > 0.

We now provide the construction of the function f . Tessellate Rd with a grid of non-overlapping,
adjacent d-dimensional hypercubes Qk, each with side length s = R(D)

2 .

We define a δ-margin around each hypercube Qk using the ℓ∞ distance. For any point x, its ℓ∞
distance to the hypercube Qk is given by d∞(x, Qk) = miny∈Qk

||x− y||∞. The δ-margin of Qk is
then the set of points {x ∈ Rd \Qk | d∞(x, Qk) < δ}.

Let δ be a margin width chosen such that 0 < δ < R(D)
4 . This ensures that the equation (s+ 2δ) <

R(D) is satisfied. This implies that if a hypercube Qk together with its δ-margin contains a point
a ∈ A (for A ∈ D), it cannot contain any other point a′ ∈ A \ {a}. In particular, Qk itself, can
contain at most one point from A.

Let I be the finite set of indices of hypercubes Qk that intersect C ′ =
⋃

A∈D A ⊆ C. Since D is
compact, C ′ is bounded, ensuring I is finite.
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For each hypercube Q ∈ {Qk}k∈I , we define a local (d + 1)-dimensional feature vector fQ(x),
consisting of two components:

Indicator Component fQ,ind(x) ∈ [0, 1]: fQ,ind(x) = 1 if x ∈ Q, and fQ,ind(x) = max(0, 1 −
d∞(x, Q)/δ) elsewhere. This ensures fQ,ind(x) = 1 ⇐⇒ x ∈ Q, and that the support of fQ,ind is
precisely Q together with its δ-margin. Note that this component is CPwL.

Relative Coordinate Component (fQ,coords(x) ∈ Rd): This is a CPwL function defined by the
following properties:

• If x ∈ Q, then fQ,coords(x) = x.
• If x is located outside Q and its δ-margin (i.e., d∞(x, Q) ≥ δ), then fQ,coords(x) = 0.
• In the δ-margin (i.e., for x such that 0 < d∞(x, Q) < δ), fQ,coords(x) interpolates continu-

ously and piecewise linearly between the values at ∂Q, and 0 at the outer boundary of the
margin.

We shall now demonstrate how a function satisfying the third condition can be constructed. By
Goodman and Pach [1988], the δ-margin can be triangulated without introducing new vertices such
that each simplex of the triangulation contains vertices belonging to both Q and the outer border of
the margin.

It is well known that given a simplex in Rd defined by d+ 1 affinely independent points p0, . . . , pd,
and corresponding values y0, . . . , yd, there exists a unique affine function h such that h(xi) = yi for
all i.

Applying this to our triangulated δ-margin, we define f piecewise over each simplex by assigning the
known values of f at its vertices—values from Q and zeros from the outer border. The unique affine
interpolation over each simplex ensures that f transitions continuously between the identity on Q
and zero on the outer region, satisfying the desired conditions.

Constructions of this sort are standard in numerical analysis and finite element methods. For instance,
in the context of simplicial finite elements, the P1 interpolant of a function v is the unique piecewise
affine function that coincides with v at the mesh vertices (see, e.g., [Brenner and Scott, 2008, 3.3]).

The function fQ(x) = (fQ,ind(x), fQ,coords(x)) is therefore CPwL.

The overall function f : Rd → Rm is the concatenation f(x) = (. . . , fQk
(x), . . . )k∈I . The output

dimension is m = |I| · (d+ 1).

Now that we have defined the CPwL function f we will use for the proof, we formally conclude the
proof:

Proof of Theorem B.3. Let A ∈ D be a multiset {a1, . . . ,an}. The 1-ary Janossy pooling is F (A) =∑n
j=1 f(aj). We show A can be uniquely recovered from F (A). Let FQk,ind and FQk,coords be the

components of F (A) corresponding to Qk. We first prove two simple lemmas

Lemma B.5. FQk,ind(A) = 1 if and only if there exists a unique a ∈ A such that a ∈ Qk.

Proof. (⇒) Suppose FQk,ind(A) = 1. Assume for the sake of contradiction that there is no a ∈ A
such that a ∈ Qk. The support of fQ,ind is Qk together with its δ-margin. For all a in this margin,
0 < fQ,ind(a) < 1. However,

FQk,ind(A) =

n∑
j=1

fQk,ind(aj) = 1

This implies that at least two elements of A lie in the δ-margin of Qk, which is a contradiction to the
separation condition that δ was constructed to satisfy.

(⇐) Suppose there exists a ∈ A such that a ∈ Qk. By construction of s and δ, no other element of A
lies in the support of fQ,ind. Therefore,

FQk,ind(A) = fQk,ind(a) = 1
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Lemma B.6. If a ∈ A lies in a hypercube Qk, then

FQk,coords(A) = fQk,coords(a) = a

Proof. The proof is similar to the direction (⇐) in the proof of B.5.

We now prove that A can be recovered uniquely from F (A). We do this using the following procedure.
We go over all hypercubes Qk. We then check whether FQk,ind(A) = 1. By Lemma B.5 we know
that this is the case if and only if A contained an element in Qk, and in this case the element is unique.
We can now recover this element from FQk,coords using Lemma B.6. We have thus uniquely recovered
all elements of A. We note that if A contains elements which are in the intersection of several
hypercubes, this reconstruction procedure will give us the same elements of A from several different
hypercubes. This does not cause any issues since we know that A does not contain multiplicities.

Finally, to prove the bi-Lipschitzness of the construction: we note that the set D could be covered by
a finite union of polytopes (e.g. hypercubes) so that the union of all these hypercubes D̂ contains D
but still does not contain multisets with repeated elments. As we now proved, we can construct a
CPwL function f so that the resulting F obtained from 1-ary Janossy pooling will be injective on
D̂. Since F and the 1-Wasserstein distance are both CPwL functions which attain the same zeros on
D̂ × D̂, and D̂ × D̂ can be written a a finite union of compact polytopes, We can apply [Sverdlov
et al., 2024, Lemma 3.4] to show that F is bi-Lipschitz on each polytope separately, and therefore
also on the union which gives us D̂ × D̂.

B.1 Dependence on separation

We note that the dimension m which F, f map to in the construction, depends strongly on the
separation R(D) and the dimension d. If we add the assumption that all elements of multisets A
are in the unit cube [0, 1]d, then a tesselation of side length ∼ R(D) would require an embedding
dimension of m ∼ (1/R(D))d. This suggests that when D contains elements which are ’almost
identical’, so that R(D) is small, then 1-ary pooling may not really be enough to get a good embedding
with an affordable function f .

As shortly discussed in section 4, one possible example where the separation R(D) is reasonably
large is small molecules. To examine this, we randomly chose 1000 molecules from the QM9
[Ruddigkeit et al., 2012, Ramakrishnan et al., 2014] small molecule datasets. Each molecule is
represented as a multiset of vectors residing in R3. For each of these multisets, we computed the
minimum distance between multiset elements, and normalized it by the maximal distance between
elements. A histogram of the results is shown in Figure2(b). We see that in all instances the ratio was
not larger than 1/10, so we can estimate that a ratio of R(D) ≈ 1/10 could be reasonable for this
type of problem.
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