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ABSTRACT

In this paper, we first extend the recent Masked Auto-Encoder (MAE) model from
a single modality to audio-visual multi-modalities. Subsequently, we propose the
Contrastive Audio-Visual Masked Auto-Encoder (CAV-MAE) by combining con-
trastive learning and masked data modeling, two major self-supervised learning
frameworks, to learn a joint and coordinated audio-visual representation.

Our experiments show that the contrastive audio-visual correspondence learning
objective not only enables the model to perform audio-visual retrieval tasks, but
also helps the model learn a better joint representation. As a result, our fully
self-supervised pretrained CAV-MAE achieves a new SOTA accuracy of 65.9% on
VGGSound, and is comparable with the previous best supervised pretrained model
on AudioSet in the audio-visual event classification task. Code and pretrained
models are at https://github.com/yuangongnd/cav—mae.

1 INTRODUCTION

Acoustic and visual modalities have different properties, yet humans are able to seamlessly connect
and integrate them to perceive the world. Developing learning algorithms to replicate these abilities,
especially for multi-modal audio-visual fusion and retrieval is of great interest. Since manually
annotating audio and video is expensive and difficult to scale, how to utilize web-scale unlabeled
video data in a self-supervised manner has become a core research question.

One major line of audio-visual self-supervised learning research is leveraging the natural audio-
visual correspondences found in videos. Among numerous ways to use such correspondences, Con-
trastive Audio-Visual Learning has shown to be a simple yet effective approach (Arandjelovic &
Zisserman, 2018 Morgado et al., 2021b; Rouditchenko et al.|[2021)). It learns coordinated repre-
sentations that are closer for paired audio and visual samples than for mismatched samples. Such
coordinated representations are particularly useful for tasks such as cross-modal retrieval.

Another vetted commonly used self-supervised learning framework is Masked Data Modeling
(MDM), which learns a meaningful representation with the pretext task of recovering the origi-
nal inputs or features from the corrupted ones (Devlin et al.,2019)). Particularly, based on the Audio
Spectrogram Transformer (Gong et al.l |2021a) and Vision Transformer (Dosovitskiy et al., 2020)
backbones, the single-modal Masked Auto-Encoder (MAE) (He et al., 2022) achieved state-of-the-
art (SOTA) performance on images and audio tasks (Huang et al.,|2022a) individually. Inspired by
these advances, we propose to extend the single-modal MAE to Audio-Visual Masked Auto-Encoder
(AV-MAE), aiming to learn a joint representation that fuses the unimodal signals.

Although these two major self-supervised frameworks have been widely used individually, to the
best of our knowledge, they have never been combined in audio-visual learning. In fact, we find they
are complementary: Contrastive audio-visual learning explicitly leverages the very useful audio-
visual pair information, but it could discard modality-unique information that is useful in down-
stream tasks; The reconstruction task of AV-MAE forces its representation to encode the majority of
the input information in the fusion, but it lacks an explicit audio-visual correspondence objective.

"Multi-modal representations can be divided into two categories: joint representations that combine the
unimodal signals into the same representation space, and coordinated representations that process unimodal
signals separately, but enforce certain similarity constraints on them. (Baltrusaitis et al.| | 2018))
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This motivates us to design the Contrastive Audio-Visual Masked Autoencoder (CAV-MAE) that
integrates contrastive learning and masked data modeling which learns a joint and coordinated
audio-visual representation with a single model. Our experiments support our design: on audio-
visual event classification, CAV-MAE significantly outperforms baseline models trained with only
contrastive or masked data modeling objectives, demonstrating that the two objectives are comple-
mentary in learning a strong joint audio-visual representation. As a result, CAV-MAE achieves a
new SOTA accuracy of 65.9% on VGGSound, and is comparable with the previous best supervised
pretrained model on AudioSet. Moreover, when it comes to audio-visual retrieval, CAV-MAE also
performs equally well or even better than models trained with only the contrastive objective, which
demonstrates that CAV-MAE can learn both a joint and coordinated representation well. Finally,
CAV-MAE multi-modal pretraining improves single-modal performance, consequently, CAV-MAE
achieves a new SOTA for audio-based event classification on AudioSet-20K and VGGSound.

In summary, our contributions are: (1) We extend the single-modal MAE to multi-modal AV-MAE,
which fuses audio-visual inputs for self-supervised learning through cross-modal masked data mod-
eling; (2) More importantly, we investigate how to best combine contrastive audio-visual learn-
ing with masked data modeling and propose CAV-MAE; (3) We demonstrate that contrastive and
masked data modeling objectives are complementary. As a result, CAV-MAE matches or outper-
forms SOTA models on audio-visual classification.

2 CONSTRASTIVE AUDIO-VISUAL MASKED AUTOENCODER

2.1 PRELIMINARIES
2.1.1 AUDIO AND IMAGE PRE-PROCESSING AND TOKENIZATION

As depicted in Figure[T](A), we follow pre-processing and tokenization in AST (Gong et al., [2021a)
and ViT (Dosovitskiy et al.| [2020) for audio and image inputs, respectively. Specifically, we use
10-second videos (with parallel audios) in AudioSet (Gemmeke et al.,|2017)) and VGGSound (Chen
et al.}2020) to pretrain and fine-tune the model. For audio, each 10-second audio waveform is first
converted to a sequence of 128-dimensional log Mel filterbank (fbank) features computed with a
25ms Hanning window every 10ms. This results in a 1024(time) x 128(frequency) spectrogram.
We then split the spectrogram into 512 16 x 16 square patches a = [a!, ..., a®'?] as the input of the
model. Processing video with Transformer models is expensive and typically requires industrial-
level computation resources. To lower the computational overhead and fit our resources, we use a
frame aggregation strategy. Specifically, we uniformly sample 10 RGB frames from each 10-second
video (i.e., 1 FPS). During training, we randomly select one RGB frame as the input; during infer-
ence, we average the model prediction of each RGB frame as the video prediction. Compare with
concatenating multiple RGB frames as the input of the Transformer that has a quadratic complexity
(e.g., in|Nagrani et al.|(2021)), frame aggregation is much more efficient with a linear complexity in
time at a cost of not considering inter-frame correlation. For each RGB frame, we resize and center
crop it to 224 x 224, and then split it into 196 16 x 16 square patches v = [v*, ..., v19F].

2.1.2 THE TRANSFORMER ARCHITECTURE

Throughout this paper, we use the standard Transformer (Vaswani et al., [2017) as our main model
component. Each Transformer layer consists of multi-headed self-attention (MSA), layer normal-
ization (LN), and multilayer perceptron (MLP) blocks with residual connections. Specifically, we
denote a Transformer layer y = Transformer(x; MSA, LN1, LN2, MLP) as:

x' = MSA(LN; (x)) + x; y = MLP(LNy(x')) +x’ (D

where MSA computes dot-product attention of each element of x and thus has a quadratic complex-
ity w.r.t. to the size of x. Please refer to|Vaswani et al.|(2017) for further details on Transformers.

2.1.3 CONTRASTIVE AUDIO-VISUAL LEARNING (CAV)

The natural pairing of audio and visual information in videos is a useful signal for learning audio-
visual representations through self-supervision. A conventional CAV model is shown in Figure [I|B
(top), for a mini-batch of N audio-visual pair samples, we first pre-process and tokenize the audios
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Figure 1: An illustration of our method. A) We tokenize audio spectrograms and RGB images into
1616 square patches and use them as the input to all models. B) Conventional contrastive audio-
visual learning model (top) and vanilla audio-visual masked auto-encoder (bottom, also novel and
first introduced in this paper). C) Our proposed contrastive audio-visual masked auto-encoder (CAV-
MAE) model. CAV-MAE integrates two major self-supervised frameworks: contrastive audio-visual
learning and cross-modal masked data modeling, which learns a joint and coordinate representations
and performs well on both multi-modal joint classification tasks and cross-modal retrieval tasks.

and images and get a sequence of audio and visual tokens {a;, v;} for each sample i. We then input
a; and v; to independent audio and visual Transformer encoders E, (-) and E, (), respectively, and
get the mean pooled audio and visual representation ¢ and ¢}, i.e., ¢! = MeanPool(E,(Proja(a;))
and ¢! = MeanPool(E, (Projy(v;)), where Proj, and Proj, are linear projections that maps each
audio and visual token to R7%%. We then apply a contrastive loss (Equation on c{ and c} .

2.1.4 SINGLE MODALITY MASKED AUTOENCODER (MAE)

Another line of major self-supervised frameworks is masked data modeling (MDM). Among numer-
ous variants of MDM (e.g., Bao et al.|(2021);|Wei et al.|(2022))), the masked auto-encoder (MAE) is
a simple yet effective approach. For an input sample x that can be tokenized as x = [z!, 22, ..., 2],
MAE masks a portion of the input X, and only inputs the unmasked tokens x \ X,k to a Trans-
former based encoder-decoder model. The model is asked to reconstruct the masked tokens with
the goal of minimizing the mean square error (MSE) loss. During this process, the model learns
a meaningful representation of the input data. The advantages of MAE are multifold. First, MAE
directly uses the original input as the prediction target, which greatly simplifies the training pipeline.
Second, MAE only inputs unmaksed tokens to the encoder, and combined with a high masking ratio,
MAE noticeably lowers the computational overhead. Third, MAE demonstrated strong performance
in single-modal tasks for both audio and visual modalities. Due to the space limitation, please refer
to|He et al.|(2022); |[Huang et al|(2022a)) for single-modal MAE:s.

2.2 VANILLA AUDIO-VISUAL MASKED AUTOENCODER (AV-MAE)

While MAE has been applied to both audio and visual modality individually, it has never been
applied to audio-visual multi-modality learning. As the first contribution of this work, we extend
MAE from a single modality to audio-visual multi-modality and build a “vanilla” audio-visual au-
toencoder (AV-MAE). As shown in Figure[I|B (bottom), for a pair of audio and image inputs, we first
tokenize them to a = [a!, ..., a®'?] and v = [v?, ..., v19¢] and project them to R7%® with two modal-

specific linear projection layer as well as add a modality type embedding E, and E,, and modality
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specific 2-D sinusoidal positional embedding EP and EP, i.e., a’ = Proj,(a) + E, + EP and
v’ = Proj,(v) + E, + EP. We concatenate a’ and v’ and construct a joint embedding x = [a’, v'].
We then mask a portion (75%) of x and only input unmasked tokens Xypmask = X \ Xmask tO an
audio-visual joint encoder E;(-) and get the output x|, .. . After that, we pad x/ ... with trainable
masked tokens at their original position as x’. Again, we also add modality type embedding E/, and
E!, and modality-specific 2-D sinusoidal positional embedding EP’ and EP’ before feeding x’ to a
joint audio-visual decoder Dj(-) to reconstruct the input, i.e., 4, v = D;(x’ + [E}, E,] + [ER’, EP'])
Finally, we minimize the mean square error (MSE) between a, v and normalized a, v.

Compared with single-modal MAEs, the AV-MAE features a cross-modal masked data modeling
objective that allows the model to reconstruct one modality based on the information of another
modality, which may help the model learn audio-visual correlation. However, without an explicit
objective of encouraging paired audio-visual correspondence, vanilla AV-MAE actually does not
effectively leverage the audio-visual pairing information (discussed in Appendix [J). Also, using
a joint encoder for two modalities allows cross-modal attention, but it also means the two very
different modalities are processed with the same weights, which could lead to a sub-optimal solution.

2.3 CONSTRASTIVE AUDIO-VISUAL MASKED AUTOENCODER (CAV-MAE)

As discussed in Section and contrastive audio-visual learning and AV-MAE each has its
advantages and disadvantages. Can we integrate the complementary advantages of CAV and AV-
MAE? With this goal, we design the Contrastive Audio-Visual Masked Autoencoder (CAV-MAE)
(shown in Figure [T|C). For a mini-batch of N audio-visual pair samples, we first pre-process and
tokenize the audios and images and get a sequence of audio and visual tokens {a;, v;} for each
sample 7 and project them to R7%® with two modal-specific linear projection layer. We also add a
modality type embedding E, and E,, and modality-specific 2-D sinusoidal positional embedding
EP and EP. After that, we uniformly mask 75% of tokens of each modality, i.e.,

a;mmask = Maskg 75 (Proja(ai) + E, + Eg) 2)
vimask — Maskg 75(Projy (vi) + Ey + EP) &

K2

We then input al™™ask and vinmask (o independent audio and visual Transformer encoders E,(+)
and E,(-) and get a} and v}, respectively. After that, we apply multi-stream forward passes to
input &, v} to a joint audio-visual encoder E;(-; MSA,LN1,LN2, MLP). Specifically, we input
audio tokens a}, video tokens v/, and concatenated audio-visual tokens [a}, v}] in three independent
forward passes to E;. For each stream, we use different layer normalization layers LN1¢, . ..} and
LN2y, v avy. all other weights (i.e., weights of the MSA and MLP) of E; are shared for all three
streams. Formally,

¢ = MeanPool(E;(E, (aj™™*)); LN1,, LN2,)) (4)
Y = MeanPool (E;(E, (vi™™k)); LN1,, LN2,)) (3)
X; = EJ ([]__-Ca(a;lnmask)7 Ev (V;lnmaskﬂ; LNlaV, LN2av) (6)

We use the output of the audio and visual single modality stream ¢ and ¢} for contrastive learning
and the output of the audio-visual multi-modal stream x; for the reconstruction task.

For contrastive audio-visual learning, we use the contrastive loss L.:

1 & exp(s;i/T)
Lo=——)>1 —~ 7
N ; ©8 2 ki €XP(Sik/T) + exp(sii /T) ™

where s; ; = [|¢/||” [|¢} || and 7 is the temperature.

For the reconstruction task, we pad x; with trainable masked tokens at their original position as x;.
We also add modality type embedding E, and E!, and modality-specific 2-D sinusoidal positional
embedding ER’ and EP’ before feeding x! to a joint audio-visual decoder Dj(-) to reconstruct the
input audio and image. D;(-) processes audio and visual tokens with a same set of weights except
the last modal-specific projection layer, it outputs &; and v;. We then apply a mean square error
reconstruction loss L,:

a;,v; = Dj(x' + [E;, E{] + [ER, EY']) (®)
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©))

IR do(aPask —norm(aj*®k))? (K — norm(v™k))?
Li=52. = + =
N i=1 |a;nab | |V§ﬂab ‘

where N is the mini-batch size; a™k, ymask gmask  gmask denote the original and predicted

masked patches (we only calculate the loss based on the masked portion of the input); |a™2%¥| and
|vask| denote the number of masked audio and visual patches, respectively.

Finally, we sum up the contrastive loss £. (multiplied by a weight A.) and the reconstruction loss
L, as the loss for CAV-MAE, i.e., Loav—MaE = Lr + Ao - Le.

After pretraining, we abandon the decoder and only keep the encoders of the model for downstream
tasks. We can use the sum of the single-modality stream output and the multi-modal modality
stream output, or just the multi-modal stream output for finetuning. They perform similarly in our
experiments.

Discussion: we next discuss the motivation of some key designs of CAV-MAE:

1. Multi-stream forward passes of the joint encoder. We find it important to restrict the represen-
tations used for contrastive audio-visual learning, so that c¢* only comes from the audio input and
¢’ only comes from the visual input, otherwise the contrastive objective will collapse. In the mean-
time, we hope the encoder fuses the audio and visual information for the reconstruction task and
downstream tasks. Therefore, we design the multi-stream forward pass strategy for CAV-MAE.

2. Modality-specific encoders and LN layers. While there are a few recent attempts (Akbari et al.,
2021; Dai et al.l [2022) to process audio and visual modalities with a unified network, due to the
very different nature of audio and visual modalities, the general conclusion is that modality-specific
networks are still optimal in terms of performance. Therefore, we choose to encode audio and visual
inputs with modality-specific encoders before the joint encoder. For the same reason, we also use
different normalization statistics for each stream of the joint encoder. Efficiency-wise, having two
modality-specific encoders increases the model size, but lowers the computation as the Transformer
has a quadratic complexity w.r.t. the input sequence length.

3. Masked contrastive audio-visual learning. Unlike single-modality contrastive learning, conven-
tional contrastive audio-visual learning does not typically apply augmentation or masking. In this
work, we propose to use masked contrastive audio-visual learning, i.e., we randomly mask a por-
tion of the input before conducting contrastive learning. This design not only allows us to combine
CAV with AV-MAE, but also helps to avoid overfitting. In practice, when the masking ratio is 75%
and the effective contrastive batch size is 27 (108 on 4 GPUs), the audio-visual matching accuracy
during pretraining on the evaluation set is about 72%, which shows the task is neither trivial nor
impossible. We discuss the impact of masking on contrastive learning in detail in Appendix [F}

2.3.1 IMPLEMENTATION DETAILS

By default, all encoder Transformer layers are 768-dimensional and have 12 attention heads. The
joint encoder of the Vanilla AV-MAE is a 12-layer Transformer; The audio and visual encoders of
CAV-MAE are 11-layer Transformers (each is 768- dimensional) and the joint encoder is a single-
layer Transformer. IL.e., we control the total number of encoder layers of all models as 12, but CAV
and CAV-MAE are larger models due to the modality-specific encoders. The decoder of AV-MAE
and CAV-MAE are 8-layer Transformers with an embedding dimension of 512 and 16 attention
heads. These settings are identical to the original vision MAE He et al.|(2022). We fix the contrastive
loss temperature 7 = 0.05. For CAV-MAE, we use A, = 0.01. Note the relatively small \. is due
to the scale of the gradient of L. being larger than £,, it does not mean the contrastive objective is
unimportant. The encoder and decoder of the default CAV-MAE model have about 164M and 27M
parameters, respectively.

Following the common practice of audio-visual learning, we initialize the weights of all models with
ImageNet pretrained weights. Specifically, we use the weights of the original vision MAE He et al.
(2022). Nevertheless, unlike previous work that uses supervised pretrained weights (e.g., Fayek
& Kumar] (2021)) and Nagrani et al.| (2021)), we only use the self-supervised pretrained weights
(i.e., without finetuning), which does not lead to the best performance but makes our whole training
pipeline self-supervised. The impact of initialization strategy is discussed in detail in Appendix [E]
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3 SELF-SUPERVISED MODEL PRETRAINING

We pretrain and compare the performance of the following models:

1. Audio-MAE/Visual-MAE: Single-modal masked auto-encoder models. The model architec-
ture is the same with Vanilla AV-MAE butthey are only pretrained with data of a single modality.
2. CAV: The contrastive audio-visual learning model that has no reconstruction objective. For a fair
comparison, we implement CAV using the same encoder architecture (modal-specific encoders +
joint encoder) with CAV-MAE but remove the reconstruction objective L,..

3.Vanilla AV-MAE: The vanilla audio-visual masked auto-encoder with a joint encoder and no
contrastive objective as described in Section [2.2]

4. AV-MAE: The audio-visual masked auto-encoder with two modal-specific encoders and a joint
encoder. It has the same architecture with CAV-MAE, but ). is set to O (no contrastive loss). We use
this model to disentangle the impact of modal-specific encoders (when compared with Vanilla
AV-MAE) and contrastive objective (when compared with CAV-MAE).

5. CAV-MAE: Our proposed contrastive masked auto-encoder as described in Section [2.3]

6. CAV-MAEScale*. The same model with CAV-MAE, but trained with a larger batch size=108
(effective contrastive batch size=27) and more epochs=25. We train this model on our best GPUs.

For a fair comparison, all models (except CAV-MAES®31e*) are pretrained with the same pipeline
with a batch size of 48 for 12 epochs on the full AudioSet-2M. During pretraining, we intentionally
do not use class balanced sampling as that implicitly leverages the label information. Our pretraining
process (including the ImageNet pretrained weight initialization) is fully self-supervised. Please
refer to Appendix [B]for all pretraining details.

4 AUDIO-VISUAL EVENT CLASSIFICATION

We evaluate the representation quality on the audio-visual event classification task, a major audio-
visual learning benchmark. Specifically, we fine-tune the pretrained models on three datasets: 1)
AudioSet-20K (20K samples, same domain as the pretraining data); 2) AudioSet-2M (2 million
samples, same with pretraining data); and 3) VGGSound (200K samples, different domain than the
pretraining data), covering various downstream data volume and domain situations.

In the fine-tuning stage, we only keep the encoder of the pretrained models and connect it to a
randomly initialized linear classification head. To avoid overriding too much of the knowledge
learned in pretraining, we use a smaller learning rate for the pretrained weights and a 10x-100x
larger learning rate for the new classification head. We use the standard training pipeline used in
prior audio-based and audio-visual event classification work |Gong et al.| (2021agb)); Nagrani et al.
(2021) with mixup Zhang et al| (2018)), balanced sampling, label smoothing, label enhancement
(only for AudioSet-20K) and random time shifts. We fine-tune the model using audio-only data
(A), video-only data (V), and audio-visual data (AV) to evaluate the single-modal and multi-modal
representation quality. We show the results in Table[I] Key findings are as follows:

1. Contrastive learning and masked data modeling are complementary. While both AV-MAE
(only with masked data modeling objective) and CAV (only with contrastive objective) perform
better than ensembling two single-modal MAEs, the proposed CAV-MAE that combines the two
objectives significantly boosts the performance (e.g., 2.0 and 3.1 mAP boost from CAV and AV-MAE
on AudioSet-20K, respectively). Note CAV-MAE, AV-MAE, and CAV have the same architecture
during fine-tuning, the only difference is the objective in the pretraining stage. This demonstrates
that the two major self-supervised learning frameworks are complementary in the context of audio-
visual learning and CAV-MAE is an effective way to combine their advantages.

2. CAV-MAE multi-modal pretraining improves single-modal performance. We find the
CAV-MAE model pretrained with paired audio-visual data, when fine-tuned with only a single
modality, performs noticeably better than Audio-MAE and Visual-MAE on single-modal clas-
sification tasks (e.g., 34.2—37.7 mAP for audio, 15.7—19.8 mAP for visual on AudioSet-20K).
Note for single-modal fine-tuning, CAV-MAE only keeps one branch and has the same architecture
with Audio-MAE and Visual-MAE, so the performance improvement can only come from the
use of multi-modal data during pretraining. We hypothesize this is due to the two modalities serving
as soft labels for each other, providing richer information than the binary human-annotated labels.
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Table 1: Comparing audio-visual classification performance on AudioSet and VGGSound.

IN SL=ImageNet supervised learning; SSL=self-supervised learning; "Industry-level computation.
“Nonstandard data split; ®*Ensemble of single-modal models. We bold the best methods without
supervised pretraining, and underline the overall best methods.

AudioSet-20K (mAP)  AudioSet-2M (mAP) VGGSound (Acc)

Pretrain
A A% A-V A v A-V A v A-V
Existing Audio-Based Models
PANNS (Kong et al.|[2020) - 27.8 - - 439 - - - - -
AST (Gong et al.[[2021a) INSL 347 - - 45.9 - - - - -
HTS-AT|Chen et al.|(2022) IN SL - - - 47.1 - - -
PaSST|Koutini et al.|(2021) IN SL - - - 47.1 - - - - -
SSAST (Gong et al.||2022) SSL 31.0 - - - - - - - -
MAE-AST (Baade et al.[|2022) SSL 30.6 - - - - - - - -
Audio-MAE' (vanilla) (Huang et al.}|2022a) SSL 36.6 - - 46.8 - - - - -
Audio-MAE' (Huang et al.[[2022a) SSL 371 - - 473 - - - -
Chen et al.|(2020) - - - - - - - 48.8 - -
AudioSlowFast (Kazakos et al.|[2021) - - - - - - - 50.1 - -
Existing Audio-Visual Models
GBlend™ (Wang et al.|[2020) - 29.1 221 37.8 324 188 41.8 - - -
Perceiver’ (Jaegle et al.|[2021) - - - - 384 258 442 - - -
Attn AV (Fayek & Kumar[2021}) IN SL - - - 384 257 46.2 - - -
MBT" (Nagrani et al.|[2021) INSL 313 277 439 443 323 52.1 523 512 64.1
Our Single-Modal MAE
Audio-MAE SSL 34.2 - ens 449 - s 97.7 - ens
Visual-MAE SSL - 15.7 367 - 24.2 469 - 45.7 631
Our Contrastive Audio-Visual Learning
CAV SSL 346 184 38.5 436 244 48.1 573 45.1 64.1
Our Multi-Modal MAE
Vanilla AV-MAE SSL 327 158 36.5 437 240 48.3 56.4 454 63.4
AV-MAE SSL 334 151 37.4 448 240 49.6 572 453 64.1
CAV-MAE SSL 36.8 187 40.5 458 256 50.5 59.2  46.6 65.4
CAV-MAES® SSL 377 198 420 466 262 512 595 470 655

As a result, CAV-MAE achieves a new SOTA performance on audio-based event classification on
AudioSet-20K (37.7 mAP) and VGGSound (59.5% accuracy), without supervised pretraining and
industry-level computational resources.

3. Fully SSL pretrained CAV-MAE matches or outperforms SOTA models with significantly
fewer computational resources. There are two major setting differences between this work and
previous SOTA works. First, our pretraining is completely self-supervised so that our model can
leverage web-scale unlabeled videos, while supervised ImageNet pretraining is commonly used
in previous audio-visual works, e.g., in MBT (Nagrani et al., 2021). ImageNet labels are strong
supervision signals that can directly impact the visual branch performance (see Table [TI). As a
result, our visual branch is worse than the SOTA models. Second, we pretrain and fine-tune the
model with 4 GPUs (which also makes our work easy to reproduce), while most SOTA models are
trained with industry-level resources (e.g., 32 TPUs for Perceiver (Jaegle et al., 2021), 64 GPUs for
Audio-MAE (Huang et al., [2022a) and MBT), which brings many benefits such as large batch size
(particularly useful for contrastive learning), multiple frames input (MBT uses 8 frames as input),
and more training epochs (Audio-MAE pretrains the model for 32 epochs).

Even with such setting differences, on the audio-visual event classification task, our CAV-MAE per-
forms better than the best existing audio-visual model MBT on VGGSound (even when CAV-MAE is
only pretrained on VGGSound, see Table and comparable on AudioSet-20K and AudioSet-2M.
On the audio-based event classification task, our CAV-MAE performs better than the best existing
audio model Audio-MAE on AudioSet-20k and comparable on AudioSet-2M.

Besides, we find modal-specific encoders are helpful as AV-MAE outperforms Vanilla AV-MAE.
Vanilla AV-MAE with only a joint encoder does not outperform the ensemble of single-modal
Audio-MAE and Visual-MAE. Scaling up the batch size and training epochs improves the per-
formance as CAV-MAES®31e* generally performs better than CAV-MAE. The performance margin
is smaller on larger fine-tuning datasets. Finally, We also evaluate the models on the audio-visual
action recognition task (Appendix [C), which leads to consistent conclusions.
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Table 2: Ablation studies on audio-visual classification. MM=multi-modal, SM=single-modal.

(a) Pretrain \. (b) Pretrain epochs (c) Pretrain batch  (d) Pretrain target (e¢) Pretrain dataset

Ae AS-20K Epochs AS-20K Size AS-20K Norm AS-20K Dataset VGGSound
0.1 393 1 37.3 48  40.5 w/o norm  40.5 AS-2M 65.5
0.01 40.5 3 39.1 108 40.8 w/morm  40.5 VS 64.2
0.001 38.6 12 40.8 AS-2M+VS 65.9
- 25 42.0
(f) Finetuning (g) SM experiment (h) Inference frame (i) Linear probe
Strategy AS-20K Setting AS- 20K Frame  AS- 20K Model  AS-20K
MM 420 AV Used VAV SMEnsemble 242
SM 41.3 Missing Modality 36.7 14.4 Middle 17.440.9 AV-MAE 24.0
MM+SM  41.7 SM Fine-tune 37.7 19.8 Aggregation 19.8 42.0 CAV-MAE 29.8

Ablation Studies: We conduct a series of ablation studies to show the impact of each design factor.
For each study, we use CAV-MAES®21e* or CAV-MAE as the base model, change one factor at a
time, and report the downstream classification performance of the model on AudioSet-20K or VG-
GSound. Our findings are as follows: the weight of the contrastive loss A, has a large impact on the
performance, too large or too small ). leads to a noticeable performance drop (Table[2a); Scaling up
the pretraining epochs and batch size consistently leads to a performance improvement (Table[2bland
[2¢); Normalizing the prediction target only leads to marginal performance improvement (Tab@@
When finetuning on VGGSound, pretraining with the larger out-of-domain AudioSet-2M is better
than pretraining with the smaller in-domain VGGSound itself, but pretraining first on AudioSet-2M
and then on VGGSound leads to the best result (Table 2¢)); During fine-tuning, using the output
of the multi-modal stream of the encoder leads to better performance than using the concatenated
single-modal stream outputs, and summing the output of two streams generally lead to similar result
(Table[2f); When only one modality is of interest, it is better to fine-tune the model with single-modal
data than fine-tune the model with audio-visual data and do single modality inference. However, the
performance gap is small for audio (Table 2g); The frame aggregation strategy boosts the perfor-
mance without the need to input multiple frames simultaneously to the model (Table 2h); In the
linear probe setting, CAV-MAE also noticeably outperform the baselines (Table [21). We also study
the impact of model initialization, masking strategy, and frame rate in Appendix [EI[FIG] respectively.

>

5 AUDIO-VISUAL RETRIEVAL

Table 3: Retrieval results on AudioSet and VGGSound. Qg“#"“;, ; pa
Visual — Audio AudioSet Eval Subset  VGGSound Eval Subset (Crgum ™ W |
R@! R@5 R@I0 R@I R@5 R@I0 ‘ } =

- - . | - Top 1 Top 2 Top 3
Audio-Visual Models with Only MDM Loss | > Video Video Video

Vanilla AV-MAE 0.1 0.3 0.8 0.2 0.7 1.4 TRy

AV-MAE 0.1 0.3 0.7 0.1 0.7 1.2 Query Video Top 1 Top 2 Top 3
Audio-Visual Models with Only Contrastive Loss Audio Audio ,AUdIO

CAV, A\, = 0.1 174  36.1 473 142 352 46.2 __

CAV, \. =0.01 146 329 428 109 287 39.8
Constrastive Audio-Visual Masked Auto-Encoders

CAV-MAE, A\, =0.1 16.1 38.6 49.3 147 353 459

CAV-MAE, \. = 0.01 123 314 419 125 286 39.1

CAV-MAES®!** X, =0.01 188 395 50.1 148 342 44.0 Figure 2: Sample retrieval results.

In the previous section, we show that CAV-MAE learns a good audio-visual joint representation that
effectively fuses the unimodal signals for the audio-visual event classification task. Next, we study
if CAV-MAE also learns a good coordinated representation that captures audio-visual correspon-
dences for audio-visual retrieval. Specifically, we uniformly sample a subset of 1,725 and 1,545
audio-visual samples from the AudioSet and VGGSound evaluation set, respectively (about 10%)
to make the similarity matrix of a reasonable size. We input audio and image to each model in two
independent forward passes and take the mean-pooled encoder outputs as the audio and visual repre-
sentation, respectively. We then calculate the retrieval recall at rank 1, 5, and 10 (R@1, R@Q5, R@10)
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based on the cosine similarity of the audio and visual representation. All models are self-supervised
pretrained but not fine-tuned. We show the quantitative results and samples of visual—audio re-
trieval in Table [3]and Figure [2] respectively. The results of audio— visual retrieval, more samples,
and additional retrieval experiments on MSR-VTT (Xu et al., 2016)) can be found in Appendix

We find a contrastive objective is necessary for the audio-visual retrieval task as the performance
of both Vanilla-MAE and AV-MAE are close to random guesses. Nevertheless, the cross-modal
masked data modeling objective does not hurt, and in many cases, improves the retrieval perfor-
mance, e.g., when A\, = 0.1, CAV-MAE generally performs better than CAV. Scaling up the batch
size and training epoch also leads to a better retrieval performance. When tested on a dataset different
from the pretraining dataset (VGGSound), the retrieval performance is still competitive, indicating
the audio-visual correspondence transfers well in addition to the audio and visual representations.
These results demonstrate that the contrastive and mask data modeling objectives do not conflict, a
single pretrained CAV-MAE can be applied to both audio-visual fusion and correspondence tasks.

6 RELATED WORK

Contrastive Audio-Visual Learning The natural pairing of audio and visual information in videos
has been a useful signal for learning audio-visual representations through self-supervision. Exist-
ing methods include knowledge distillation (Aytar et al., 2016; Owens et al., [2016), paired sample
discrimination (Arandjelovic & Zissermanl [2017; [Korbar et al., 2018 |(Owens & Efros, 2018)), and
contrastive learning (Morgado et al., 2021b). To improve contrastive learning, some recent meth-
ods sought to mine better negative samples (Ma et al.| [2020; Morgado et al., [2021a), while others
proposed additional data augmentation (Patrick et al.,[2021; Wang et al., 2021) or using global and
local video views (Zeng et al., 2021 Recasens et al., 2021)). Our approach instead combines the
contrastive loss with masked data modeling, which not only leads to an improvement in classifica-
tion performance but also maintains the compelling ability of audio-visual retrieval (Arandjelovic &
Z1sserman, 2018} IRouditchenko et al.,|2021)).

Masked Auto-Encoder. Masking data modeling has a long history (Vincent et al., 2008) and has
been applied on visual and audio domains (Baevski et al., 2020; Hsu et al., 2021} [Srivastava et al.,
2022)) Given the success of MAE in the vision domain (He et al., 2022} |Bachmann et al., 2022; \Gird-
har et al.l 2022} [Tong et al.| 2022} |[Feichtenhofer et al.| 2022)), several efforts adapt MAE for audio
with relatively minor changes to the overall pipeline (Baade et al.,|2022; Niizumi et al.,|2022; (Chong
et al.| 2022 |Huang et al.,|2022al). There are a few recent works investigating multi-modal MAE for
the vision & language multi-modal scenarios (Geng et al.,[2022; Kwon et al., 2022), which inspired
us to design an audio-visual MAE. To the best of our knowledge, our AV-MAE and CAV-MAE are
the first audio-visual masked autoencoders. One closely related concurrent work is CMAE (Huang
et al., |2022b)), which also combines MAE and contrastive loss, but only for single-modal images.
Our motivation and implementation are very different from CMAE as we aim to leverage the unique
audio-visual pair information and CAV-MAE features a multi-stream joint encoder design. Finally,
while we take a modern approach with Transformers, multi-modal autoencoders have been studied
more than a decade ago with much simpler models and datasets (Ngiam et al., 201 1}).

7 CONCLUSION

In this paper, we introduce CAV-MAE, a novel audio-visual learning model. The main idea of this
paper is simple: masked data modeling and contrastive learning are a pair of complementary frame-
works that should be used together for audio-visual self-supervised learning. Effectively combin-
ing the two frameworks and avoiding representation collapse requires some careful design such as
the multi-stream forward pass strategy, joint-specific encoder architecture, and masked contrastive
learning. From the perspective of representation learning, CAV-MAE learns a joint and coordinated
representation and can be used for both audio-visual joint event classification task as well as the
audio-visual retrieval task. As a result, on the audio-visual event classification task, CAV-MAE
matches or outperforms SOTA models with fully self-supervised pretraining and noticeably fewer
computational resources; on the retrieval task, CAV-MAE is comparable to models trained with
only the contrastive objective. Finally, CAV-MAE multi-modal pretraining also learns strong single-
modal representations, which leads to a new SOTA performance on audio-based event classification.

Acknowledgments: This research is supported by the MIT-IBM Watson Al Lab.
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ETHICS STATEMENT

The data used in this paper are publicly available YouTube videos, we do not use videos that have
been removed by the user. The proposed audio-visual model can be applied in a wide range of areas
including security-related applications. However, it can also be used for malicious purposes such as
surveillance. We are committed to distributing our code and model carefully.

REPRODUCIBILITY STATEMENT

We document all implementation details in Section and Appendix [B| Code and pretrained
models are available at https://github.com/yuangongnd/cav—mael
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A DATASET DETAILS

We use two major audio-visual datasets for our experiments: AudioSet Gemmeke et al.|(2017) and
VGGSound Chen et al.|(2020). AudioSet-2M is a collection of 2M 10-second YouTube video clips
labeled with the sounds that the clip contains from a set of 527 labels of audio events, AudioSet-
20K is a subset of AudioSet-2M with a more balanced class distribution. Due to changes in video
availability, we downloaded 1,772,023 AudioSet-2M training, 18,691 AudioSet-20K training, and
17,249 evaluation samples, respectively. VGGSound |Chen et al.| (2020) is a collection of 200K 10-
second YouTube video clips annotated with 309 classes. We download 183,727 training and 15,446
test samples. We only use the labels in the fine-tuning stage to make our pretraining pipeline fully
self-supervised. Compared with AudioSet, one advantage of VGGSound is that the sound source is
always visually evident within the video clip, which is done by filtering the videos with a pretrained
vision classifier. As discussed in[Li et al.|(2022)), different versions of dynamic datasets might cause
a performance difference, to improve the reproducibility of this work, we release the training and
test samples ids athttps://github.com/yuangongnd/cav-mael

B TRAINING DETAILS

Our training hyper-parameters are listed in Table[d] Most of our experiments are run on 4 x NVIDIA
GTX Titan X Pascal GPUs with 12GB memory, only the scaled-up CAV-MAES¢21e* ig pretrained
on 4xNVIDIA RTX A5000 GPUs with 24GB memory, making our result easier to reproduce with
reasonable resources. Pretraining CAV-MAE takes about one week with 4 GPUs.
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Our model has a similar size with “base” MAE models, i.e., the full encoder and decoder model has
~190M parameters (due to two modal-specific branches); the encoder used for audio-visual down-
stream task is ~160M parameters; the encoder used for single-modal downstream task is ~85M
parameters.

Table 4: Our pre-training and fine-tuning hyperparameters.

Pretraining Finetuning

CAV-MAESc2te*  All Other Models All Models
Dataset AS-2M AS-2M AS-20K  AS-2M VGG
Optimizer Adam, weight decay=5e-7, betas=(0.95, 0.999)
Backbone learning rate le-4 Se-5 Se-5 le-5 le-4
Classification head LR - - Se-2 Se-4 le-3
LR decay start epoch 10 10 5 2 2
LR decay rate 0.5 0.5 0.5 0.5 0.5
LR decay step 5 5 1 1 1
Epochs 25 12 15 10 10
Batch size 4x27 4x12 36 48 48
GPUs 4 A5000 4 Titan X Pascal
Class Balance Sampling No No No Yes Yes
Mixup No No Yes Yes Yes
Random Time Shifting Yes Yes Yes Yes Yes
Loss Function - BCE BCE CE
Weight Averaging No No Yes Yes Yes
Ensemble No No No No No
Input Norm Mean -5.081 -5.081 -5.081 -5.081 -5.081
Input Norm STD 4.485 4.485 4.485 4485 4485

C AUDIO-VISUAL ACTION RECOGNITION EXPERIMENTS

In addition to the audio-visual event classification task on AudioSet and VGGSound, we also test
our models on the audio-visual action recognition tasks. One problem with existing audio-visual
action recognition datasets is they are usually visual-heavy and dominated by the performance of
the visual branch. Therefore, to test our audio-visual model, we choose to conduct experiments on
Kinetics-Sounds (Arandjelovic & Zissermanl 2017)), a subset of Kinetics-400 dataset (Kay et al.,
2017) with 32E] human action classes that have been chosen to be potentially manifested visually
and aurally.

We conduct two experiments on Kinetics-Sounds:

First, we pretrain and fine-tune CAV, AV-MAE, and CAV-MAE using the Kinetics-Sounds training
set and report the Top-1 accuracy on the Kinetics-Sounds validation set (i.e., no AudioSet pretrain-
ing). This is to check if CAV-MAE still outperforms its counterparts on the audio-visual action
recognition task. As shown in Table[5] the conclusion on Kinetics-Sounds is consistent with that on
AudioSet and VGGSound, i.e., CAV-MAE performs better than both CAV and AV-MAE.

Second, we compare CAV-MAE models with SOTA MBT model (Nagrani et al., 2021) following
the protocol of MBT. Specifically, we train the model on Kinetics-400 (K400) dataset and report the
top-1 accuracy on Kinetics-Sounds. We find the label set used impacts the accuracy and this setting
is not clear in the MBT paper. Therefore, we report the results on both the Kinetics-400 label set (i.e.,
not restrict predictions in 32 Kinetics-Sounds classes) and the Kinetics-Sounds label set (i.e., restrict
predictions in 32 Kinetics-Sounds classes). As shown in Table[6] our CAV-MAE matches MBT on
Kinetics-Sounds. Please note that our CAV-MAE model is trained in a fully self-supervised manner
while MBT uses supervised ImageNet pretrained weights. For the difference between ImageNet

2The original Kinetics-Sounds dataset consists of 34 classes with an early version of Kinetics-400 label set.
‘We contact the authors and use the 32-class label set defined in (Xiao et al., 2020) for our experiments.
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supervised learning (SL) model and self-supervised learning (SSL) model initialization, please see
Table [T}

Table 5: Comparison of CAV, AV-MAE, and CAV-MAE models on Kinetics-Sounds. For each
model, we pretrain and fine-tune it using the Kinetics-Sounds training set and report the Top-1
accuracy on the Kinetics-Sounds validation set. The conclusion is consistent with our AudioSet and
VGGSound experiments that CAV-MAE outperforms both CAV and AV-MAE.

Kinetics-Sounds Accuracy

CAV 86.2
AV-MAE 88.0
CAV-MAE 88.9

Table 6: Comparison of CAV-MAE models with SOTA MBT model (Nagrani et al., 2021) on
Kinetics-Sounds. Following the protocol of MBT, we train the model on Kinetics-400 (K400)
dataset and report the top-1 accuracy on Kinetics-Sounds. We report the results on both the Kinetics-
400 label set (i.e., not restrict predictions in 32 Kinetics-Sounds classes) and the Kinetics-Sounds
label set (i.e., restrict predictions in 32 Kinetics-Sounds classes). Our CAV-MAE matches or out-
performs MBT on Kinetics-Sounds with a fully self-supervised learning (SSL) setting.

Out-of-Domain In-Domain K400 Kinetics-Sounds
Pretrain Training Label Set Label Set
MBT ImageNet SL K400 SL 85.0
CAV-MAE No K400 SSL + SL 70.6 83.3
CAV-MAE ImageNet SSL K400 SSL + SL 83.2 90.6
CAV-MAE ImageNet + AudioSet SSL. K400 SSL + SL 85.0 90.9

D ADDITIONAL AUDIO-VISUAL RETRIEVAL RESULTS.

D.1 AuDIO TO VISUAL RETRIEVAL RESULTS ON AUDIOSET AND VGGSOUND

We show audio to visual retrieval results on AudioSet and VGGSound (zero-shot) in Table

Table 7: Audio to visual retrieval results on AudioSet and VGGSound.

Audio— Visual Retrieval AudioSet Eval Subset VGGSound Eval Subset
R@]1 R@5 R@I10 R@1 R@5 R@10
Audio-Visual Models with Only MDM Loss

Vanilla AV-MAE 0.2 0.4 0.9 0.0 0.4 0.8

AV-MAE 0.2 0.4 0.9 0.0 0.2 0.6
Audio-Visual Models with Only Contrastive Loss

CAV, \. = 0.1 155 327 42.8 124 332 44.7

CAV, \. = 0.01 11.5 275 36.5 100 256 36.9
Constrastive Audio-Visual Masked Auto-Encoders

CAV-MAE, \. =0.1 13.5 325 43.2 12.1  31.6 424

CAV-MAE, )\, = 0.01 9.5 22.6 324 8.3 23.8 324

CAV-MAE(Scale), C=0.01 15.1 34.0 43.0 12.8 304 40.3

D.2 VGGSOUND RETRIEVAL SAMPLES

We show bi-directional zero-shot VGGSound retrieval samples in Figure|/|and Figure
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Table 8: Audio-visual bi-directional retrieval results on MSR-VTT dataset. All models, includ-
ing the baseline models, are initialized with ImageNet weights and trained with only MSR-VTT
data. Our CAV and CAV-MAE models outperform existing methods in both directions. In addition,
comparing CAV and CAV-MAE, we again find the MAE training objective does not hurt, or even
improve the retrieval performance.

Audio— Visual Visual—Audio
R@l R@5 R@10 R@l R@5 R@I10
Random 0.1 0.5 1 0.1 0.5 1
Boggust et al.|(2019) 1.0 3.8 7.1 1.8 4.5 8.1

Arandjelovic & Zisserman|(2018)) 1.3 4.3 8.2 0.3 2.5 6.6
AVLnet (Rouditchenko et al.,[2021)) 0.9 5.0 9.0 0.8 4.6 8.1

CAV, A\, =0.1 0.2 4.8 10.4 1.9 9.6 14.9
CAV-MAE, A\, =0.1 1.5 8.0 124 2.6 9.2 13.1

Table 9: Zero-shot audio-visual bi-directional retrieval results on MSR-VTT dataset. Existing meth-
ods are trained with the 100M HowTo100M dataset, while our models are only trained with the 2M
AudioSet dataset. With less than 2% of pretraining data, our CAV-MAE model achieves similar re-
sults for visual-audio retrieval performance with existing methods. Again, CAV-MAE models have
similar or better results compared with CAV models when ). is the same.

Pretrain Audio— Visual Visual—Audio
Dataset  p@| R@5 R@10 R@I R@5 R@I0
Boggust et al.[(2019) HowTolOOM 7.6 21.1 283 93 207 288

Arandjelovic & Zisserman| (2018)) HowTolOOM 12.6 26.3 33.7 11.9 259 347
AVLnet (Rouditchenko et al., 2021) HowTolOOM 17.8 355 436 172 26.6 46.6

CAV, A\, =0.1 AudioSet-2M 6.2 179 261 105 252 355
CAV-MAE, A\, =0.1 AudioSet-2M 7.0 187 28.6 10.0 265 38.0
CAV, A\, =0.01 AudioSet-2M 4.2 148 2277 69 225 33.1
CAV-MAE, A\, = 0.01 AudioSet-2M 49 146 219 83 235 350
CAV-MAESeet )\ = 0.01 AudioSet-2M 7.6 198 30.2 133 29.0 405

D.3 MSR-VTT DATASET RETRIEVAL EXPERIMENTS

We also conduct audio-visual retrieval experiments on MSR-VTT (Xu et al.,|2016)) and compare our
models with existing works. Specifically, we conduct two sets of experiments.

First, we train CAV and CAV-MAE models on the MSR-VTT training set and evaluate them on the
MSR-VTT test set. Note the models are not pretrained on AudioSet. We then compare the retrieval
performance with existing works in the same training setting. As shown in Table [§] our CAV and
CAV-MAE models outperform existing methods in both directions. In addition, comparing CAV and
CAV-MAE, we again find the MAE training objective does not hurt, or even improve the retrieval
performance.

Second, we conduct a zero-shot retrieval experiment on MSR-VTT. Specifically, we take the Au-
dioSet pretrained models and directly evaluate them on the MSR-VTT test set. The MSR-VTT
training set is not used. We then compare our models with existing models. As shown in Table [0}
our CAV-MAE model achieves similar results for visual-audio retrieval performance with existing
methods but worse for the audio-visual direction. However, existing methods are trained with the
100M HowTo100M dataset, while our models are only trained with the 2M AudioSet dataset. With
less than 2% of training data, our CAV-MAE model achieves similar results for visual-audio re-
trieval performance with existing methods. Again, CAV-MAE models still have similar or better
results compared with CAV models when ). is the same, demonstrating the MAE and contrastive
objective do not conflict.
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E IMPACT OF MODEL INITIALIZATION

Existing audio-visual models typically use (supervised) ImageNet pretrained weights to initialize
the model. Throughout the paper, we always initialize our models (including CAV, AV-MAE, and
CAV-MAE) with self-supervised ImageNet pretrained weights. Specifically, we use the weight
from the original vision MAE model (He et al., |2022)) (Weights from https://github.com/
facebookresearch/mae) with only self-supervised learning (SSL) pretraining for all audio,
visual, and joint encoder and the decoder. This is implemented by duplicating the weights of MAE
encoder layer 1-11 for the audio and visual encoder, respectively, and the weights of MAE encoder
layer 12 for the joint encoder.

How important is this initialization? We conduct experiments with various model initialization and
pretraining settings. As shown in Table we find that ImageNet initialization always leads to a
performance improvement, no matter in fine-tuning or linear probing test, and such improvement
decreases with a larger in-domain pretraining dataset, e.g., without ImageNet initialization, CAV-
MAE performs just 1.0% mAP lower on AudioSet-2M. Therefore, ImageNet initialization is not an
indispensable component of the proposed CAV-MAE pretraining framework.

Finally, we quantify the difference between initialing the model with ImageNet SSL pretrained
weights and ImageNet SL pretrained weights on the downstream task. As shown in Table [TT} on
AudioSet-20K, using SL weights leads to a 3.7% improvement over using SSL weights in the fine-
tuning setting (but interestingly, in the linear probing setting, SL weights lead to worse results).
Therefore, directly comparing our fully self-supervised model with existing models with a super-
vised pretraining component is not exactly fair.

Table 10: CAV-MAE model performance with various model initialization and pretraining settings
on AudioSet-20K, VGGSound, and AudioSet-2M. We report both end-to-end fine-tuning and linear
probing results. Initializing CAV-MAE with ImageNet pretrained weights consistently improves the
model performance, but is not an indispensable component. Without ImageNet initialization, CAV-
MAE performs just 1.0% mAP lower on AudioSet-2M.

Settings AudioSet-20K VGGSound (200K)  AudioSet-2M
ImageNet AudioSet Fine Linear Fine Linear Fine
Initialization  Pretraining Tuning Probing Tuning Probing Tuning
No No 8.0 24 42.4 10.3 335
SSL No 25.6 10.3 62.1 343 47.3
No SSL 37.3 29.1 62.7 53.0 49.5
SSL SSL 40.6 29.8 65.4 54.2 50.5

Table 11: Most existing audio-visual models initialize their weights with ImageNet supervise pre-
trained weights (e.g., Nagrani et al.[(2021); Rouditchenko et al.| (2021)) while we intend to build a
fully self-supervised model to avoid using any labels. Compare the AudioSet-20K performance of
models initialized with ImageNet supervised pretrained (SL) weights and ImageNet self-supervised
pretrained (SSL) weights. The SL weights and SSL weights are from the original MAE models with
and without supervised ImageNet finetuning (He et al., [2022)), respectively. Since the SL weights
only contain weights of the MAE encoder part and cannot be used for further SSL pretraining. We
directly fine-tune/linear probe the two models on AudioSet-20K (i.e., no in-domain pretraining) and
report the results to make a fair comparison. We observe that initialing the model SL weights leads
to a noticeable advantage for fine-tuning, showing the ImageNet labels are still very valuable su-
pervision signals. This also indicates that directly comparing our fully self-supervised model with
existing models with a supervised pretraining component is not exactly fair.

AudioSet-20K
Fine Tuning Linear Probing

ImageNet SSL 25.6 10.3
ImageNet SL 29.3 7.2

Initialization Weight
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F IMPACT OF MASKING STRATEGY AND MASKING RATIO

F.1 IMPACT OF TRAINING MASKING RATIO

Throughout the paper, we use a 75% masking ratio for both audio and visual input. This is mainly
due to many previous MAE works reporting a masking ratio ~75% is appropriate for both audio
and visual input |He et al.| (2022); Baade et al.| (2022); Huang et al.| (2022a)); [Niizumi et al.| (2022).
However, it is unclear if such a high masking ratio is also appropriate for the contrastive objective.
In particular, aggressive augmentation is not commonly used in audio-visual contrastive learning.
Therefore, we conduct experiments to check the impact of the training masking ratio on the audio-
visual joint event classification task and the audio-visual retrieval task.

For the audio-visual joint event classification task, as shown in Table we find the CAV model
does perform slightly better with a smaller masking ratio (50%), but the difference is minor. When
the masking ratio is 75%, CAV still performs well. This shows the audio-visual joint classification
task is not sensitive to the masking ratio.

For the audio-visual retrieval task, as shown in Table [I3} we find that the audio-visual retrieval
performance decreases with a higher masking ratio, particularly when the masking ratio is very high.
If audio-visual retrieval is the main task of interest, a lower masking ratio should be used in training,
which does not hurt the audio-visual joint event classification task, but requires more computation.
In Section [5|and Appendix [D] we show CAV-MAE is already a strong audio-visual retrieval model
when the masking ratio is 75%, the performance can be further improved by lowering the masking
ratio. Note this result does not conflict with the fact that the reconstruction objective does not hurt,
and in many cases, improves the retrieval performance.

Table 12: Audio-visual joint event classification performance of CAV, AV-MAE, and CAV-MAE
as a function of masking ratio on AudioSet-20K and VGGSound. All models are pretrained with
uniform unstructured masking. We find the contrastive learning model CAV performs slightly better
with a lower masking ratio while the AV-MAE model performs best with ~75% masking ratio.
These results show that a 65%~75% masking ratio works well for both contrastive learning and
masked data modeling frameworks for the downstream audio-visual joint event classification task.

. . AudioSet-20K VGGSound
Masking Ratio
CAV AV-MAE CAV-MAE CAV AV-MAE CAV-MAE
0.50 38.5 37.2 41.2 64.3 63.7 65.1
0.65 38.6 37.9 41.3 64.0 64.1 64.9
0.75 38.5 374 40.5 64.1 64.1 65.4
0.85 38.1 37.3 40.3 63.3 64.2 64.7

Table 13: Zero-shot audio-visual retrieval performance of CAV-MAE (A, = 0.01) as a function of
masking ratio on VGGSound evaluation subset. All models are pretrained with uniform unstructured
masking. The audio-visual retrieval performance decreases with a higher masking ratio.

. . Audio— Visual Visual—Audio
Masking Ratio
R@1 R@5 R@10 R@1 R@5 R@I10
0.50 14.8 349 45.4 152 369 48.3
0.65 11.3  28.9 39.0 142 335 45.2
0.75 8.3 23.8 324 12.5 28.6 39.1
0.85 5.6 16.0 22.7 8.7 22.6 30.6

F.2 IMPACT OF AUDIO TRAINING MASKING STRATEGY
Another key design of masking is the masking strategy. Throughout the paper, we use a uniform,

unstructured masking strategy for both audio and visual input. However, unlike visual modalities,
the two dimensions of audio spectrograms are heterogeneous. In this section, we explore the impact
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of masking strategies for audio input. Specifically, we apply time, frequency, and time-frequency
masking strategies (depicted in Figure[3) and compare them with the uniform unstructured masking
strategy (i.e., uniform masking).

For the audio-visual joint event classification task, as shown in Table[14} we find that all four training
masking strategies lead to similar performance when the training masking ratio is 75%. However, as
we show in Figure [5] structured masking strategies make reconstruction more challenging. There-
fore, we also pretrain a CAV-MAE model trained with time-frequency masking at a lower masking
ratio of 50%, which shows slightly better performance on both AudioSet-20K and VGGSound. In
general, the audio-visual joint classification task is not sensitive to the masking strategy.

For the audio-visual retrieval task, as shown in Table with the same 75% masking ratio, different
masking strategies lead to noticeably different retrieval performance. Frequency and time-frequency
masking leads to the best retrieval performance while unstructured uniform masking actually leads
to the worst retrieval performance. In Section [5]and Appendix [D} we show CAV-MAE is already a
strong audio-visual retrieval model when uniform masking is used, the performance can be further
improved by using a structured masking strategy, which also does not hurt the audio-visual joint
event classification.

To summarize, we find both the masking ratio and masking strategy have a minor impact on the
downstream audio-visual joint event classification task, but have a noticeable impact on the audio-
visual retrieval task. Specifically, there exist masking strategies that lead to better retrieval perfor-
mance than the default 75% uniform masking strategy. Finally, we also notice the training masking
strategy impacts the model reconstruction ability, which is discussed in Section

Time Time
(A) Time Masking (B) Frequency Masking Unmasked
o m = - _— » . Masked
EEHEEEIT BES:

Time Time

(C) Time-Frequency Masking (D) Uniform Masking

Frequency
(
Frequency

Frequency

Frequency

Figure 3: Tllustration of various masking strategies. We use uniform unstructured masking through-
out the paper except in Section@

Table 14: Audio-visual joint event classification performance of CAV-MAE as a function of training
masking strategy and ratio on AudioSet-20K and VGGSound. We find that all four training masking
strategies lead to similar performance when the training masking ratio is 75%. However, as we show
in Figure[5] structured masking strategies make reconstruction more challenging. Therefore, we also
pretrain a CAV-MAE model trained with time-frequency masking at a lower masking ratio of 50%,
which shows slightly better performance on both AudioSet-20K and VGGSound.

Masking AudioSet-20K  VGGSound
Strategy Ratio
Uniform 0.75 40.5 65.4
Time 0.75 40.6 64.6
Frequency 0.75 40.4 65.0
Time-Frequency  0.75 40.7 64.8
Time-Frequency  0.50 41.2 65.6
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Table 15: Zero-shot audio-visual retrieval performance of CAV-MAE (A, = 0.01) as a function of
training masking strategy on VGGSound evaluation subset. All models are trained with a masking
ratio of 75% on AudioSet. The masking strategy has a noticeable impact on retrieval performance.

. . Audio— Visual Visual—Audio
Masking Ratio
R@1 R@5 R@10 R@1 R@5 R@I0
Uniform 8.3 23.8 32.4 125 28.6 39.1
Time 10.1 26.0 35.5 12.5 30.2 40.3

Frequency 11.7 319 42.7 13.7 347 45.8
Time-Frequency 13.1  32.8 42.1 147 364 473

G IMPACT OF THE NUMBER OF FRAMES USED

In the paper, we sample 10 frames for each 10-second video clip (1 FPS). How does the frame
rate impact the performance? As shown in Figure [ on all Kinetics-Sounds, AudioSet-20K, and
VGGSound, higher FPS consistently improves the downstream classification performance, however,
the improvement saturates with the increasing of frames.

Kinetics-Sounds AudioSet-20K VGGSound
91.1
42.0

Q
2910 e 65.8
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£ 90.9
—
€908 41.6 65.6
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) 41.4 65.4
S 90.6
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}a 90.5 65.2
wn
© 90.4
o 41.0

90.3 65.0

0 5 10 15 20 25 30 2 4 6 8 10 2 4 6 8 10
# Frame Used # Frame Used # Frame Used

Figure 4: Classification performance as a function of the number of frames used on Kinetics-Sounds
(left), AudioSet-20K (middle), and VGGSound (right). Frames are uniformly sampled from each
video clip. The performance consistently improves with more frames being used, but the improve-
ment saturates with the increase of frames.

H CAV-MAE RECONSTRUCTION RESULTS

H.1 AUDIO-VISUAL RECONSTRUCTION SAMPLES

We show the CAV-MAE reconstruction samples in Figure [9] and All samples are from
VGGSound, a different dataset from the pretraining set. The CAV-MAE model is trained with a 75%
masking ratio without target normalization. As shown in Table [2d], it has a similar performance to
the default model with target normalization. CAV-MAE has strong reconstruction ability even if the
masking ratio goes to 90%, which makes it potentially can be used for in-painting and enhancement
tasks. All inference masks are sampled uniformly (i.e., unstructured masking).

H.2 AUDIO SPECTROGRAM RECONSTRUCTION UNDER VARIOUS INFERENCE MASKING
SETTINGS

Besides uniform masking samples shown in the previous section, we also show the audio spectro-

gram reconstruction samples under various structured inference masking settings in Figure[I2](75%
masking ratio) and Figure[13](90% masking ratio). We find structured masking is more challenging
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Figure 5: Audio spectrogram reconstruction mean squared error (MSE) as a function of masking
ratio under various inference masking settings (from left to right: time masking, frequency mask-
ing, time-frequency masking, and uniform unstructured masking). We compare a CAV-MAE model
trained with uniform masking (blue) and a CAV-MAE model trained with time-frequency masking
(red). Both models are trained with a 75% masking ratio. Key findings are as follows: 1) Even for
the same masking ratio, the reconstruction hardness is different for each masking strategy. On av-
erage, time masking is the most difficult, followed by frequency masking, time-frequency masking,
and uniform unstructured masking. This indicates that CAV-MAE models require local information
for the reconstruction task. However, for each specific spectrogram, the order of difficulty varies (see
Figure [I2] and [T3). Second, the CAV-MAE model trained with time-frequency masking generally
performs better than its counterpart trained with uniform masking in audio spectrogram reconstruc-
tion, particularly for the time masking and frequency masking settings, showing it is stronger in
leveraging global information. This indicates different training masking strategies do impact the
properties of the model.

for reconstruction as the mean squared errors are generally higher. On average, time masking is the
most difficult, followed by frequency masking, time-frequency masking, and uniform unstructured
masking. This also indicates that the model leverages local neighboring unmasked part information
to infer the masked part. When an entire time or frequency span is masked, the model is harder to
reconstruct (this is quantified in Figure 3)).

Finally, in Figure [12] and Figure we also compare the reconstruction ability of a CAV-MAE
model trained with uniform, unstructured masking strategy and a CAV-MAE model trained with
time-frequency masking strategy (both with 75% masking ratio). We quantify the difference in Fig-
ure[5] Interestingly, we find the CAV-MAE model trained with time-frequency masking generally
performs better than its counterpart trained with uniform masking in audio spectrogram reconstruc-
tion, particularly for the time masking and frequency masking settings, showing it is stronger in
leveraging global information. This indicates different training masking strategies do impact the
properties of the model. While the training masking strategy only minorly impacts the downstream
classification task, it has a relatively large impact on reconstruction.

I CAV-MAE VISUAL SOUND SOURCE LOCALIZATION RESULTS

We evaluate the capability of CAV-MAE (uniform masking, masking ratio = 75%, A.=0.01) on the
visual sound source localization task with a basic similarity-based method. Specifically, for each
audio-image pair, we mean pool the representations of all audio tokens as the clip-level audio rep-
resentation, and then calculate the cosine similarity between the clip-level audio representation with
all patch-level image representations as the visual sound source localization heat map. In general,
we find the CAV-MAE model is not a strong visual sound source localization model though its
audio-visual retrieval performance is good. In Figure [6] we show a successful sample (left) and a
failed sample (right). In some cases, CAV-MAE localizes the sound to the background instead of
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the main sound source object. We hypothesize that it is due to the masked contrastive learning ob-
jective. During the training process, the model needs to match positive audio-visual pairs even when
both modalities are heavily masked, in some situations, the main sound source could be completely
masked, the model thus learns to leverage the context information for the matching, which may hurt
its performance on the visual sound source localization task.

Input Heatmap Input Heatmap

. i - I

Figure 6: A successful sample (left) and a failed sample (right) of CAV-MAE on the visual sound
source localization task. In some cases, CAV-MAE localizes the sound to the background instead of
the main sound source object.

J IMPACT OF THE AUDIO-VISUAL PAIRING INFORMATION IN TRAINING
DATASET

Even without a contrastive objective, AV-MAE allows the model to reconstruct one modality based
on the information of another modality, which theoretically allows the model to learn audio-visual
correlation. However, without an explicit objective of encouraging paired audio-visual correspon-
dence, to which extent the AV-MAE leverages the audio-visual pairing information is unknown. In
this section, we evaluate this by the following experiment: we break the original audio-visual pairs
of the training set and conduct a random shuffle (i.e., randomly match audio and visual samples in
the dataset), which removes most of the audio-visual pairing information in the training data. We
train the CAV, AV-MAE, and CAV-MAE models with the shuffled training dataset, and then finetune
these models on the audio-visual joint event classification task with original unshuffled downstream
datasets. As shown in Table [T6] we find 1) the CAV model that solely relies on the audio-visual
pairing information has a significant performance drop when the training dataset is shuffled; 2) the
AV-MAE model is almost not impacted by the training set shuffle, indicating it is weak at leveraging
audio-visual pairing information in the training set and mostly relies on single-modality information;
3) CAV-MAE performs almost the same with AV-MAE with the shuffled training set, but noticeably
better with the original training set. These findings again justify the main point of this paper that
contrastive and reconstruction objectives are most effective when they are combined together. When
only the contrastive objective is used, the model performs worse and is less robust to the noise in the
training set. When only the reconstruction objective is used, the model does not effectively leverage
the audio-visual pair information.

Table 16: Comparing the audio-visual joint event classification performance of models trained with
AudioSet with original audio-visual pairs and AudioSet with randomly shuffled audio-visual pairs.

. AudioSet-20K VGGSound
Training Data
CAV AV-MAE CAV-MAE CAV AV-MAE CAV-MAE
Shuffled AudioSet-2M  1.25 374 374 7.28 64.1 64.1
Original AudioSet-2M  38.5 37.4 40.5 64.1 64.1 65.4
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Figure 7: Zero-shot audio to image retrieval results on VGGSound. Since the spectrograms are hard
to read, we show their paired images in the dashed boxes for visualization purposes, only audios are
used as queries.
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Figure 8: Zero-shot image to audio retrieval results on VGGSound. Since the spectrograms are hard
to read, we show their paired images in the dashed boxes for visualization purposes, only audios are
used as keys.
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Figure 9: CAV-MAE reconstruction samples when 50% of the input is masked. Samples are from
VGGSound, a different dataset from the pretraining dataset. The model is pretrained on AudioSet
with a 75% masking ratio without target normalization.
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Figure 10: CAV-MAE reconstruction samples when 75% of the input is masked. Samples are from
VGGSound, a different dataset from the pretraining dataset. The model is pretrained on AudioSet
with a 75% masking ratio without target normalization.
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Figure 11: CAV-MAE reconstruction samples when 90% of the input is masked. Samples are from
VGGSound, a different dataset from the pretraining dataset. The model is pretrained on AudioSet
with a 75% masking ratio without target normalization.
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Figure 12: Reconstructed audio spectrograms in various inference masking settings with a 75%
masking ratio. We compare the outputs of a CAV-MAE model trained with a uniform, unstructured
masking strategy (second column) and a CAV-MAE model trained with a time-frequency masking
strategy (third column). Both CAV-MAE models are trained with a 75% masking ratio. Reconstruc-
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Masking Ratio = 90 %

Sample 1

Sample 2

Sample 3

Sample 4

Figure 13: Reconstructed audio spectrograms in various inference masking settings with a 90%
masking ratio. We compare the outputs of a CAV-MAE model trained with a uniform, unstructured
masking strategy (second column) and a CAV-MAE model trained with a time-frequency masking
strategy (third column). Both CAV-MAE models are trained with a 75% masking ratio. Reconstruc-
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