
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CONTINUOUS DIFFUSION FOR MIXED-TYPE TABULAR
DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

Score-based generative models (or diffusion models for short) have proven
successful for generating text and image data. However, the adaption of this
model family to tabular data of mixed-type has fallen short so far. In this paper,
we propose CDTD, a Continuous Diffusion model for mixed-type Tabular Data.
Specifically, we combine score matching and score interpolation to ensure a
common continuous noise distribution for both continuous and categorical features
alike. We counteract the high heterogeneity inherent to data of mixed-type with
distinct, adaptive noise schedules per feature or per data type. The learnable noise
schedules ensure optimally allocated model capacity and balanced generative
capability. We homogenize the data types further with model-specific loss
calibration and initialization schemes tailored to mixed-type tabular data. Our
experimental results show that CDTD consistently outperforms state-of-the-art
benchmark models, captures feature correlations exceptionally well, and that
heterogeneity in the noise schedule design boosts the sample quality.

1 INTRODUCTION

Score-based generative models (Song et al., 2021), also termed diffusion models (Sohl-Dickstein
et al., 2015; Ho et al., 2020), have shown remarkable potential for the generation of images (Dhariwal
& Nichol, 2021; Rombach et al., 2022), videos (Ho et al., 2022), text (Li et al., 2022; Dieleman et al.,
2022; Wu et al., 2023), molecules (Hoogeboom et al., 2022), and many other highly complex data
structures with continuous features. The framework has since been adapted to categorical data in
various ways, including discrete diffusion processes (Austin et al., 2021; Hoogeboom et al., 2021),
diffusion in continuous embedding space (Dieleman et al., 2022; Li et al., 2022; Regol & Coates,
2023; Strudel et al., 2022), and others (Campbell et al., 2022; Meng et al., 2022; Sun et al., 2023).
Diffusion models which include both, continuous and categorical features alike, build directly on
advances from the image domain (Kim et al., 2023; Kotelnikov et al., 2023; Lee et al., 2023; Jolicoeur-
Martineau et al., 2024) and thus, are not designed to deal with challenges specific to mixed-type
tabular data: The different diffusion processes and their losses are neither aligned nor balanced across
data types, and do not scale to larger datasets and/or features with a greater number of categories.
Models that naively combine different losses to integrate distinct generative processes may suffer
from implicitly favoring the sample quality of some features or data types over others (Ma et al.,
2020). Previously proposed diffusion models for tabular data (e.g., Kotelnikov et al., 2023; Lee et al.,
2023), often use a discrete diffusion framework to model categorical features. However, this fails to
capture the full uncertainty during the denoising process, as a data sample can never be ‘in-between’
categories at any point in the reverse process.

A crucial component in score-based generative models is the noise schedule (Kingma et al., 2022;
Chen et al., 2022; Chen, 2023; Jabri et al., 2022; Wu et al., 2023). Typical noise schedules for image
and text data are designed to focus model capacity on the noise levels most important to sample
quality (Nichol & Dhariwal, 2021; Karras et al., 2022), while others attempt to learn the optimal
noise schedule (Dieleman et al., 2022; Kingma et al., 2022). For mixed-type tabular data, existing
approaches often combine distinct diffusion processes for the continuous and discrete features to
derive a joint model (Kotelnikov et al., 2023; Lee et al., 2023). However, noise schedules are not
directly transferable from one data modality to another and therefore, using specifications from
image or text domain models is not optimal: First, the inherently different diffusion processes make
it difficult to balance the noise schedules across features and feature types, and negatively affect

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

the allocation of model capacity across timesteps. For instance, both TabDDPM (Kotelnikov et al.,
2023) and CoDi (Lee et al., 2023) use the discrete multinomial diffusion framework (Hoogeboom
et al., 2021) to model categorical features. This induces different types of noise for continuous and
categorical features, making an alignment or even comparison of noise schedules impossible. Second,
and most importantly, the domain, nature and marginal distribution can vary significantly across
features (Xu et al., 2019). For instance, any two continuous features may be subject to different levels
of discretization or different bounds, even after applying common data pre-processing techniques; and
any two categorical features may differ in the number of categories, or the degree of imbalance. The
high heterogeneity and lack of balancing warrants a rethinking of fundamental parts of the diffusion
framework, including the noise schedule and the effective combination of diffusion processes for
different data types.

In this paper, we introduce Continuous Diffusion for mixed-type Tabular Data (CDTD) to address
the aforementioned shortcomings. We combine score matching (Hyvärinen, 2005) with score
interpolation (Dieleman et al., 2022) to derive a score-based model that pushes the diffusion process
for categorical data into embedding space, and uses a Gaussian diffusion process for both continuous
and categorical features. This way, the different noise processes become directly comparable, easier
to balance, and enable the application of, for instance, classifier-free guidance (Ho & Salimans, 2022),
accelerated sampling (Lu et al., 2022), and other advances, to mixed-type tabular data.

We counteract the high feature heterogeneity inherent to data of mixed-type with distinct feature or
type-specific adaptive noise schedules. The learnable noise schedules allow the model to directly take
feature or type heterogeneity into account during both training and generation, and thus avoid the
reliance on image or text-specific noise schedule designs. Moreover, we propose a diffusion-specific
loss normalization and initialization scheme to homogenize different data types and their losses
effectively. Our improvements ensure a better allocation of the model’s capacity across features,
feature types and timesteps, and yield high quality samples of tabular data. CDTD outperforms
state-of-the-art baseline models across a diverse set of sample quality metrics as well as computation
time for data sets with an arbitrary number of categories and data points. Our experiments show that
CDTD captures feature correlations exceptionally well, and that explicitly allowing for data-type
heterogeneity in the noise schedules benefits sample quality.

In sum, we make several contributions specific to diffusion probabilistic modeling of tabular data:

• We propose a joint continuous diffusion model for both continuous and categorical features such
that all noise distributions are Gaussian.

• We balance model capacity across continuous and categorical features with a novel and effective
loss calibration, an adjusted score model initialization and type or feature-specific noise schedules.

• We extend the idea of timewarping and propose a functional form to efficiently learn adaptive noise
schedules, and to allow for exact evaluation and easy incorporation of prior information on the
relative importance of noise levels.

• We drastically improve the scalability of tabular data diffusion models to features with a high number
of categories.

• We boost the quality of the generated samples with adaptive, feature or type-specific noise schedules.

• Our CDTD model allows the first-ever use of advanced techniques, like classifier-free guidance, for
mixed-type tabular data directly in data space.

2 SCORE-BASED GENERATIVE FRAMEWORK

We start with a brief outline of the score-based frameworks for continuous and categorical features.
Next, we combine these into a single diffusion model to learn the joint distribution of mixed-type data.

2.1 CONTINUOUS FEATURES

We denote x
(i)
cont ∈ R as the i-th continuous feature and x0 ≡ xcont ∈ RKcont as the stacked feature

vector. Further, let {xt}t=1
t=0 be a diffusion process that gradually adds noise in continuous time

t ∈ [0, 1] to x0, and let pt(x) denote the density function of the data at time t. Then, this process

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Retrieve
noise levels

Noisify
real data

Train
joint score model

Generate
new data

+

Score Model

Adaptive
Noise

Schedules

+

Score Matching

Score Interpolation

ODE
solver

C
at

eg
or

ic
al

 fe
at

ur
es

C
on

tin
uo

us
 fe

at
ur

es

Figure 1: CDTD framework. Adaptive noise schedules are trained to fit the (possibly aggregated)
MSE and CE losses and transform the uniform timestep t to a potentially feature-specific noise level
to diffuse (“noisify”) the scalar values (for continuous features) or the embeddings (for categorical
features). Associated sampling processes are highlighted in orange. The approximated score functions
are concatenated and passed to an ODE solver for sample generation.

transforms the real data distribution p0(x) into a terminal distribution of pure noise p1(x) from which
we can sample. Our goal is to learn the reverse process that allows us to go from noise x1 ∼ p1(x) to
a new data sample x∗

0 ∼ p0(x).

The forward-pass of this continuous-time diffusion process is formulated as the solution to a stochastic
differential equation (SDE):

dx = f(x, t)dt+ g(t)dw, (1)

where f(·, t) : RKcont → RKcont is the drift coefficient, g(·) : R → R is the diffusion coefficient, and w
is a Brownian motion (Song et al., 2021). The reversion yields the trajectory of x as t goes backwards
in time from 1 to 0, and is formulated as a probability flow ordinary differential equation (ODE):

dx =
[
f(x, t)− 1

2
g(t)2∇x log pt(x)

]
dt. (2)

We approximate the score function ∇x log pt(x), the only unknown in Equation (2), by training a
time-dependent score-based model sθ(x, t) via score matching (Hyvärinen, 2005). The parameters θ
are trained to minimize the denoising score matching objective:

Et

[
λtEx0Ext|x0

∥sθ(xt, t)−∇xt log p0t(xt|x0)∥22
]
, (3)

where λt : [0, 1] → R+ is a positive weighting function for timesteps t ∼ U[0,1], and p0t(xt|x0) is
the density of the noisy xt given the ground-truth data x0 (Vincent, 2011).

In this paper, we use the EDM formulation (Karras et al., 2022), that is, f(·, t) = 0 and

g(t) =
√
2[ddtσ(t)]σ(t) such that p0t(xt|x0) = N (xt|x0, σ

2(t)IKcont). We start the reverse process
with sampling x1 ∼ p1(x) = N (0, σ2(1)IKcont) for σ2(1) being sufficiently large and E[x0] = 0.
We then gradually guide x1 towards high density regions in the data space with sθ(x, t) replacing
the unknown, true score function in Equation (2). In practice, ODE or predictor-corrector samplers
can be used for this iterative denoising process (Song et al., 2021).

2.2 CATEGORICAL FEATURES

Let x(j)
cat denote a single observation of the j-th categorical feature which can take on any of Cj

possible classes c ∈ {1, . . . , Cj}. We learn a feature-specific encoder to represent each category c

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

as a d-dimensional vector e(j)c = Encj(x
(j)
cat). Further, let x(j)

0 ∈ {e(j)1 , . . . , e
(j)
Cj

} be the noiseless

embedding at t = 0 (to highlight e(j)c as the ground-truth in the diffusion framework). To maximize
the integrability of the diffusion frameworks for categorical and continuous data, we impose the
same Gaussian-type noise on categorical and continuous features. We thus produce a noisy embed-
ding x

(j)
t ∼ p0t(x

(j)
t |x(j)

0) = N (x
(j)
t |x(j)

0 , σ2(t)Id) such that x(j)
1 ∼ p1(x

(j)) = N (0, σ2(1)Id),
analogous to score matching.

For categorical data, denoising score matching (see Equation (3)) is not directly applicable to training
a score model to learn ∇

x
(j)
t

log p0t(x
(j)
t |x(j)

0), since the score can only take on Cj distinct values.
To proceed, we transform the score matching approach into a discrete choice problem. Note that
for a given t and x

(j)
t it is sufficient to find E

p(x
(j)
0 |x(j)

t ,t)
[∇

x
(j)
t

log p0t(x
(j)
t |x(j)

0)] as it minimizes
Equation (3). Assuming Gaussian noise, we have

E
p(x

(j)
0 |x(j)

t ,t)

[
∇

x
(j)
t

log p0t(x
(j)
t |x(j)

0)
]
=

1

σ2(t)

[
E
p(x

(j)
0 |x(j)

t ,t)
[x

(j)
0]− x

(j)
t

]
. (4)

We can thus approximate the score by computing x̂
(j)
0 = E

p(x
(j)
0 |x(j)

t ,t)
[x

(j)
0], i.e., a probability

weighted average of the Cj possible embedding vectors. Since p(x
(j)
0 = e

(j)
c |x(j)

t , t) = p(x
(j)
cat =

c|x(j)
t , t), we can estimate p(x(j)

0 |x(j)
t , t) via a classifier that predicts the Cj class probabilities and is

trained to minimize the cross-entropy (CE). This procedure interpolates between the Cj ground-truth
embeddings x(j)

0 and is therefore known as score interpolation (Dieleman et al., 2022).

This framework can easily be extended to multiple categorical features. Most importantly, Encj
is trained alongside the model such that x(j)

0 is directly optimized for denoising the data. Since
the reverse process also happens in embedding space, the model only has to commit to a category
at the final step of generation, i.e., we allow for a smooth, continuous transition between states
at intermediate timesteps. This is unlike multinomial diffusion (Hoogeboom et al., 2021), which
models categorical data based on discrete transitioning steps. By defining diffusion for categorical
data in embedding space, we allow our model to fully take uncertainty at intermediate timesteps
into account, which improves the consistency of the generated samples (Dieleman et al., 2022).
Therefore, the adaption of score interpolation allows CDTD to capture subtle dependencies both
within and across data types more accurately.

3 METHOD

In short, we combine score matching (Equation (3)) with score interpolation (Equation (4)) to model
the joint distribution of mixed-type data. Next, we discuss the important components of our method.
In particular, the combination of the different losses for score matching and score interpolation, initial-
ization and loss weighting concerns, and the adaptive type- or feature-specific noise schedule designs.

3.1 GENERAL FRAMEWORK

Figure 1 gives an overview of our Continuous Diffusion for mixed-type Tabular Data (CDTD) frame-
work. The score model is conditioned on (1) all noisy continuous features, (2) the noisy embeddings
of all categorical features in Euclidean space, and (3) the timestep t which reflects potentially feature-
specific, adaptive noise levels σcont,i and σcat,j for all i and j. Additional conditioning information,
such as the target feature for classification tasks, are straightforward to add. Note that while the
Gaussian noise process acts directly on the continuous features, it acts on the embeddings of the
categorical features. This way, we ensure a common continuous noise process for both data types.

During training, the model predicts the ground-truth value for continuous features and the class-
specific probabilities for categorical features. During generation, we concatenate the score estimates,
ŝ
(i)
cont and ŝ

(j)
cat , for all features i and j, and pass them to an ODE solver together with σcont,i and σcat,j ,

the noise levels retrieved by transforming linearly spaced timesteps with the learned adaptive noise
schedules. Further details on the implementation and sampling are provided in Appendix J and
Appendix K, respectively.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.2 HOMOGENIZATION OF DATA TYPES

Let LMSE(x
(i)
cont, t) denote the time-weighted MSE (i.e., score matching) loss of the i-th continuous

feature at a single timestep t, and LCE(x
(j)
cat , t) the CE (i.e., score interpolation) loss of the j-th cat-

egorical feature. Naturally, the two losses are defined on different scales. This leads to an unintended
importance weighting of features in the generative process (Ma et al., 2020). We assume that an
unconditional model should a priori, i.e., without having any information, be indifferent between all
features. This reflects the state of the model at the terminal timestep t = 1 in the diffusion process.

Formally, we aim to find calibrated losses, L∗
MSE and L∗

CE for all continuous features i and categorical
features j, such that

E[L∗
MSE(x

(i)
cont, 1)] = E[L∗

CE(x
(j)
cat , 1)] = 1. (5)

For continuous features, E[L∗
MSE(x

(i)
cont, 1)] = 1 follows from standardizing x

(i)
cont to zero mean and

unit variance. For categorical features, we compute the normalization constant E[LCE(x
(j)
cat , 1)]

directly as the CE of each predicted class in proportion to its empirical distribution in the train set (see
Appendix A). We then average the calibrated losses to derive the joint loss function at a given timestep:

L(t) = 1

K

[Kcont∑
i=1

L∗
MSE(x

(i)
cont, t) +

Kcat∑
j=1

L∗
CE(x

(j)
cat , t)

]
, (6)

where K = Kcont +Kcat.

The loss calibration and the multiple data modalities have implications for the optimal initialization
of the score model. We aim to initialize all feature-specific losses at one. We therefore initialize the
output layer weights to zero (like in image diffusion models) and the output biases for continuous
features to zero, and rely on the timestep weights of the EDM parameterization (Karras et al., 2022)
to achieve a unit loss for all t. For the categorical features, we initialize the biases to match the
category’s empirical probability in the training set (see Appendix B).

The initial equal importance across all timesteps will naturally change over the course of training.
We employ a normalization scheme for the average diffusion loss (Karras et al., 2023; Kingma &
Gao, 2023) to allow for changes in relative importance among features but ensure equal importance
of all timesteps throughout training. To do so, we learn the time-specific normalization term Z(t)
such that L(t)/Z(t) ≈ 1. This ensures a consistent gradient signal and can be implemented by
training a neural network to predict L(t) alongside our diffusion model (for details see Appendix C).

3.3 NOISE SCHEDULES

Since the optimal noise schedule of one feature impacts the noise schedules of other features, and
different data types have different sensitivities to additive noise, we introduce feature-specific or type-
specific noise schedules. For instance, given the same embedding dimension, more noise is needed
to remove the same amount of signal from embeddings of features with fewer classes. Likewise, a
delayed noise schedule for one feature might improve sample quality as the model can rely on other
correlated features that have been (partially) generated first. We make the noise schedules learnable,
and therewith adaptive to avoid the reliance on designs for other data modalities.

We investigate the following noise schedule variants: (1) a single adaptive noise schedule, (2) adaptive
noise schedules differentiated per data type and (3) feature-specific adaptive noise schedules. We
only introduce the feature-specific noise schedules explicitly. The other noise schedule types are
easily derived from our argument by appropriately aggregating terms across features.

Feature-specific Noise Schedules. According to Equation (1), and following the EDM parame-
terization (Karras et al., 2022), we define the diffusion process of the i-th continuous feature as

dx(i)
cont

=

√
2
[d

dt
hcont,i(t)

]
hcont,i(t)dw

(i)
t , (7)

and likewise the trajectory of the j-th categorical feature as

dx
(j)
cat =

√
2
[d

dt
hcat,j(t)

]
hcat,j(t)dw

(j)
t , (8)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0

σk

0

5

f
d
.a
.l

o
g
,k

0.0 0.5 1.0

σk

0

1

F
d
.a
.l

o
g
,k

µk = 0.1 µk = 0.2 µk = 0.3 µk = 0.4 µk = 0.5

0.0 0.5 1.0

σk

0

2

f
d
.a
.l

o
g
,k

0.0 0.5 1.0

σk

0.00

0.75

1.00

F
d
.a
.l

o
g
,k

uniform overweight low noise levels (σk < 0.5) by a factor of three

Figure 2: (Left) pdf (fd.a.log,k) and cdf (Fd.a.log,k) of the domain-adapted Logistic distribution for five
different values of the location parameter µk and for a given curve steepness νk = 3. (Right) impact
of uniform vs. adjusted timewarping initialization on the pdf (fd.a.log,k) and the cdf (Fd.a.log,k).

where x
(j)
cat is the d-dimensional embedding of x(j)

cat in Euclidean space. The feature-specific noise
schedules hcont,i(t) and hcat,j(t) represent the standard deviations of the added Gaussian noise
such that σcont,i(t) = hcont,i(t) and σcat,j(t) = hcat,j(t). Thus, each continuous feature and each
embedded categorical feature is affected by a distinct noise schedule.

Adaptive Noise Schedules. Based on Dieleman et al. (2022), we aim to learn a noise sched-
ule hk : t 7→ σ for all K = Kcont +Kcat features. Note that t ∈ [0, 1], and with pre-specified
minimum and maximum noise levels, we can scale σk to lie in [0, 1] as well, without loss of
generality. We will learn the feature-specific loss given the noise level, Fk : σk 7→ ℓk, alongside
the score model, with ℓk the relevant (not explicitly weighted) training loss for the k-th feature.
Then, our mapping of interest is hk = F̃−1

k , that is, the normalized and inverted function Fk. This
encourages the relation between t and ℓk to be linear.

Higher noise levels imply a lower signal-to-noise ratio, and therefore a larger incurred loss for the
score model. Accordingly, Fk must be a monotonically increasing and S-shaped function. We let
Fk = γkFd.a.log,k(σk) where γk > 0 is a scaling factor that at t = 1 enables fitting a loss ℓk > 1
early on in the training process, and a loss ℓk < 1 in case conditioning information is included.
Further, we use the cdf of the domain-adapted Logistic distribution Fd.a.log,k(σk), where the input is
pre-processed via a Logit function, with parameters 0 < µk < 1 (the location of the inflection point)
and νk ≥ 1 (the steepness of the curve). Figure 2 illustrates the effect of the location parameter. The
implicit importance of the noise levels is conveniently represented by the corresponding pdf fd.a.log,k.
To normalize and invert Fk, we set γk = 1 and and directly utilize the quantile function F−1

d.a.log,k.
The detailed derivation of all relevant functions is given in Appendix D.

Our functional choice has several advantages. First, each noise schedule can be evaluated exactly
without the need for approximations and only requires three parameters. Second, these parameters
are well interpretable in the diffusion context and provide information on the inner workings of
the model. For instance, for µ1 < µ2, the model starts generating feature 2 before feature 1 in the
reverse process. Third, the proposed functional form is less flexible than the original piece-wise
linear function (Dieleman et al., 2022) such that an exponential moving average on the parameters
is not necessary, and the fit is more robust to “outliers” encountered during training.

We use the adaptive noise schedules during both training and generation. We derive importance
weights from fd.a.log,k to fit hk to avoid biasing the noise schedule to timesteps that are frequently
sampled during training. Type-specific noise schedules refer to learning two functions F1 and F2

that predict the respective average loss over all features of a data type. Examples of learned noise
schedules are given in Appendix O.

3.4 ADDITIONAL CUSTOMIZATION TO TABULAR DATA

In the diffusion process, we add noise directly to the continuous features but to the embeddings of
categorical features. We generally need more noise to remove all signal from the categorical repre-
sentations. We therefore define type-specific minimum and maximum noise levels: For categorical
features, we let σcat,min = 0.1 and σcat,max = 100; for continuous features, we set σcont,min = 0.002
and σcont,max = 80 (see Karras et al., 2022).

Lastly, an uninformative initialization of the adaptive noise schedules requires to set µk = 0.5, νk ≈ 1
and γk = 1 such that Fd.a.log,k corresponds approximately to the cdf of a uniform distribution. We
can improve this with a more informative prior: In the image domain, diffusion models allocate

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

substantial capacity towards generating the high level structure before generating details at lower
noise levels. In tabular data, the location of features in the data matrix, and therefore the high
level structure, is fixed. Instead, we are interested in generating details as accurately as possible,
as these influence, for instance, subtle correlations among features. Note that the inflection point,
µk, of our adaptive noise schedule corresponds to the proportion of high (normalized) noise levels
(i.e., σk ≥ 0.5) in the distribution. Therefore, we adjust the initial noise schedules such that low noise
levels (σk < 0.5) are weighted by a factor of 3 relative to high noise levels (σk ≥ 0.5) (see Figure 2).
The proportion of high noise levels is decreased to µk = 1/4. We let νk ≈ 1 for a dispersed initial
probability mass and initialize the scaling factor to γk = 1.

4 EXPERIMENTS

We benchmark our model against several generative models across multiple datasets. Additionally, we
investigate three different noise schedule specifications: (1) a single adaptive noise schedule for both
data types (single), (2) continuous and categorical data type-specific adaptive noise schedules (per
type), and (3) feature-specific adaptive noise schedules (per feature).

Baseline models. We use a diverse benchmark set of state-of-the-art generative models for
mixed-type tabular data. This includes SMOTE (Chawla et al., 2002), ARF (Watson et al.,
2023), CTGAN (Xu et al., 2019), TVAE (Xu et al., 2019), TabDDPM (Kotelnikov et al., 2023),
CoDi (Lee et al., 2023), TabSyn (Zhang et al., 2024). Each model follows a different design and/or
modeling philosophy. Note that CoDi is an extension of STaSy (Kim et al., 2023, the same group
of authors) that has shown to be superior in performance. For scaling reasons, ForestDiffusion
(Jolicoeur-Martineau et al., 2024) is not an applicable benchmark.1 Further details on the respective
benchmark models and their implementations are provided in Appendix F and Appendix G. We
provide an in-depth comparison of CDTD to the diffusion-based baselines in Appendix N. To keep
the comparison fair, we use the same architecture for CDTD as TabDDPM (the latter has also been
adopted by TabSyn), with minor changes to accommodate the different inputs (see Appendix J).

Datasets. We systematically investigate our model on eleven publicly available datasets. The
datasets vary in size, prediction task (regression vs. binary classification2), number of continuous
and categorical features and their distributions. The number of categories for categorical features
varies significantly across datasets (for more details, see Appendix E). We remove observations
with missings in the target or any of the continuous features and encode missings in the categorical
features as a separate category. All datasets are split in train (60%), validation (20%) and test (20%)
partitions, hereinafter denoted Dtrain,Dvalid and Dtest, respectively. For classification tasks, we use
stratification with respect to the outcome, we condition the model on the outcome during training and
generation, and use the train set proportions for generation. In a last post-processing step, we round
the integer-valued continuous features after generation for all models.

4.1 EVALUATION METRICS

In our experiments, we follow conventions from previous papers and use four sample quality cri-
teria, which we assess using a comprehensive set of measures. All metrics are averaged over
five random seeds that affect the generative process, which samples synthetic data Dgen of size
min(|Dtrain|, 50 000).

Machine learning efficiency. We follow the conventional train-synthetic-test-real strategy (see,
Borisov et al., 2023; Liu et al., 2023; Kotelnikov et al., 2023; Kim et al., 2023; Xu et al., 2019;
Watson et al., 2023). Hence, we train a group of models, consisting of a (logistic/ridge) regression, a

1Jolicoeur-Martineau et al. (2024) report in the appendix that they used 10-20 CPUs with 64-256 GB of
memory for datasets with a median number of 540 observations. With the suggested hyperparameters (for
improved efficiency) and 64 CPUs, the model took approx. 500 min of training on the relatively small nmes data.
Note that the model estimates KT separate models, with K being the number of features and T the noise levels.
Therefore, we consider ForestDiffusion to be prohibitively expensive for higher-dimensional data generation.

2For ease of presentation, we only analyze binary targets. However, CDTD trivially extends to targets with
multiple classes.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Average performance rank of each generative model across eleven datasets. Per metric,
bold indicates the best, underline the second best result. We assigned the rank 10 for CoDi on
lending and diabetes, TabDDPM on acsincome and diabetes, SMOTE on acsincome
and covertype.

SMOTE ARF CTGAN TVAE TabDDPM CoDi TabSyn CDTD
(single)

CDTD
(per type)

CDTD
(per feature)

RMSE 3.400±3.382 3.800±2.482 7.800±1.470 7.800±2.227 8.200±1.470 6.800±1.939 6.800±1.720 3.000±0.632 3.400±2.059 4.200±2.227

F1 3.667±3.145 6.333±2.285 8.333±1.491 8.000±1.000 4.167±2.794 6.667±3.091 7.500±1.607 3.833±1.462 3.167±1.344 3.500±1.979

AUC 4.667±2.749 5.667±2.055 8.667±1.106 7.833±1.067 4.833±2.794 7.500±2.872 7.333±1.374 2.500±1.500 2.333±0.943 3.833±1.675

L2 dist. of corr. 4.818±2.918 5.636±1.872 8.091±1.781 7.909±1.564 7.000±3.191 6.909±2.429 6.818±1.402 2.727±1.286 2.273±0.862 3.000±1.595

Detection score 3.909±3.502 6.182±1.696 8.818±1.466 7.273±1.213 5.000±3.045 8.091±2.391 6.000±1.595 3.909±1.164 2.455±1.827 3.545±1.725

JSD 7.182±2.167 1.273±0.617 8.182±1.641 8.818±1.029 6.909±2.314 7.000±1.651 6.545±1.305 2.455±1.076 3.091±0.793 3.727±1.052

WD 3.091±3.315 5.636±1.611 7.545±1.827 8.000±1.477 6.455±3.144 8.364±1.823 5.727±2.339 4.182±1.466 3.182±1.192 3.000±1.954

DCR 6.000±2.558 6.182±2.328 8.455±1.725 6.182±3.186 4.455±3.726 6.545±2.426 5.909±1.676 4.091±2.678 3.818±2.124 3.545±1.924

random forest and a catboost model, on the data-specific prediction task (the corresponding hyperpa-
rameter settings are reported in Appendix I). We compare the model-averaged real test performance,
Perf(Dtrain,Dtest), to the performance when trained on the synthetic data, Perf(Dgen,Dtest). We sub-
sample Dtrain in case of more than 50 000 observations to upper-bound the computational load. The
results are averaged over ten different model seeds (in addition to the five random seeds that impact
the sampling process). For regression tasks, we consider the RMSE and for classification tasks, the
macro-averaged F1 and AUC scores. We only report |Perf(Dgen,Dtest)− Perf(Dtrain,Dtest)| in the
main part of this paper. An absolute difference close to zero, that is, synthetic and real data induce
the same performance, indicates that the generative model performs well.

Detection score. For each generative model, we report the accuracy of a catboost model that is
trained to distinguish between real and generated (fake) samples (Borisov et al., 2023; Liu et al., 2023;
Zhang et al., 2024). First, we subsample the real data subsets, Dtrain,Dvalid and Dtest, to a maximum
of 25 000 data samples to limit evaluation time. Then, we construct Ddetect

train ,Ddetect
valid and Ddetect

test with
equal proportions of real and fake samples. We tune each catboost model on Ddetect

valid and report the
accuracy of the best-fitting model on Ddetect

test (see Appendix H for details). A (perfect) detection score
of 0.5 indicates the model is unable distinguish fake from real samples.

Statistical similarity. We aim to assess the statistical similarity between real and generated data
at both the feature and sample levels. We largely follow Zhao et al. (2021) and compare: (1) the
Jensen-Shannon divergence (JSD; Lin, 1991) to quantify the difference in categorical distributions,
(2) the Wasserstein distance (WD; Ramdas et al., 2017) to quantify the difference in continuous
distributions, and (3) the L2 distance between pair-wise correlation matrices. We use the Pearson
correlation coefficient for two continuous features, the Theil uncertainty coefficient for two categorical
features, and the correlation ratio for mixed types. Similar metrics for the evaluation of statistical
similarity have been used by Zhang et al. (2024).

Distance to closest record. That is, the minimum Euclidean distance of a generated data point to any
observation in Dtrain (Borisov et al., 2023; Zhao et al., 2021). We one-hot encode categorical features
and standardize all features to zero mean and unit variance to ensure each feature contributes equally
to the distance. We compute the average distance to closest record (DCR) as a robust estimate. For
brevity, we report the absolute difference of the DCR of the synthetic data and the DCR of the real test
set. A good DCR value, indicating both realistic and sufficiently private data, should be close to zero.

4.2 RESULTS

Table 1 shows the average rank of each generative model across all datasets for the considered metrics.
The ranks in terms of the F1 and AUC scores are averaged over the classification task datasets.
Likewise, the RMSE rank averages include the regression task datasets. We assign the maximum
possible rank when a model could not be trained on a given dataset or could not be evaluated in
reasonable time. This includes TabDDPM, which outputs NaNs for acsincome and diabetes
and CoDi, which we consider to be prohibitively expensive to train on diabetes (estimated 14.5
hours) and lending (estimated 60 hours). Similarly, SMOTE is very inefficient in sampling for
large datasets (78 min for 1000 samples on acsincome and 182 min on covertype) and does
not finish the evaluation within 12 hours. The dataset-specific results (including standard errors)
and average metrics over all datasets are detailed in Appendix R. We provide visualizations of the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Ablation study for five CDTD configurations with progressive addition of model components.
We report the median performance metrics over acsincome, adult, beijing and churn.

Config. A B C D CDTD
(per type)

RMSE (abs. diff.; ↓) 0.041 0.042 0.043 0.037 0.033
F1 (abs. diff.; ↓) 0.012 0.013 0.012 0.016 0.015
AUC (abs. diff.; ↓) 0.004 0.005 0.005 0.004 0.004
L2 distance of corr. (↓) 0.131 0.124 0.146 0.118 0.127
Detection score (↓) 0.577 0.583 0.590 0.561 0.560
JSD (↓) 0.011 0.011 0.011 0.012 0.013
WD (↓) 0.004 0.005 0.005 0.003 0.003
DCR (abs. diff. to test; ↓) 0.405 0.361 0.386 0.299 0.372

captured correlations in the synthetic sample compared to the real training set in Appendix Q and
distribution plots for a qualitative comparison in Appendix P.

Sample quality. CDTD consistently outperforms the considered benchmark models in most sample
quality metrics. Specifically, we see a major performance edge in terms of the detection score, the L2

distance of the correlation matrices and the regression-based metrics. Only for the Jensen-Shannon
divergence ARF, a tree-based method that is expected to model categorical features particularly
well, outperforms CDTD. Interestingly, CDTD performs similar to TabDDPM on F1 scores, but
outperforms it dramatically for regression tasks. TabDDPM appears to favor modeling categorical
features accurately, thereby sacrificing continuous features, as visualized in Appendix Q. TabSyn,
a latent-space diffusion model, performs worse than CDTD and often TabDDPM, which define
diffusion in data space. In Appendix M, we further compare CDTD and TabSyn and investigate the
benefits of defining a diffusion model in data space. By utilizing score interpolation, CDTD is able
to model intricate correlation structure more accurately than other frameworks. Most importantly,
type-specific noise schedules mostly outperform the feature-specific and single noise schedule
variants. This illustrates the importance of accounting for the high heterogeneity in tabular data
on the feature type level. The different noise schedules per feature, however, appear to force too
many constraints on the model and thus, decrease sample quality. Per-feature noise schedules would
require more training steps to converge, as can be seen in Appendix O.

0 20 40

train time in min.

ARF
CTGAN

TVAE
TabDDPM

CoDi
TabSyn
CDTD

0 1 2 3

sample time in sec.
per 1000 samples

Figure 3: Average training and sampling
wall-clock time for 1000 samples (excl.
acsincome, diabetes, lending).

Training and sampling time. Figure 3 shows the
average wall-clock time over all (for all models feasible)
datasets for training as well as the time for sampling 1000
data points for each baseline model and the per feature
CDTD variant (see Appendix T for details). We exclude
SMOTE due to its considerably longer sampling with
an average of 1377 seconds for 1000 samples. CDTD’s
use of embeddings (instead of one-hot encoding) for
categorical features drastically reduces training times and
thus, improves scaling to increasing number of categories.
The ODE formulation of the diffusion process implies
competitive sampling speeds, in particular compared to the diffusion-based benchmarks CoDi,
TabDDPM and TabSyn. Despite TabSyn utilizing a separately trained encoder, this does not result
in a lower-dimensional latent space and therefore, does not speed up sampling.

Ablation study. We conduct an ablation study over four datasets to investigate the separate compo-
nents of our CDTD framework. The results are given in Table 2 (detailed results are in Appendix S).
The baseline model Config. A includes a single noise schedule with the original piece-wise linear
formulation (Dieleman et al., 2022) without loss normalization, improved model initialization or
adaptive normalization, and the CE and MSE losses are naively averaged. Note that this configuration
still is a novel contribution to the literature. Config. B adds our feature homogenization (i.e., loss
normalization, improved initialization and adaptive normalization schemes), Config. C adds our
proposed functional form for a single noise schedule with uniform initialization, and Config. D
imposes per-type noise schedules. Lastly, we add the suggested (low noise level) overweighting
timewarping initialization to arrive at the full CDTD (per type) model. We see the switch from the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

piece-wise linear functional form to our more robust noise schedule variant slightly harms sample
quality. However, the per-type variant and the more informed initialization scheme compensate for
this difference. Main differences are in the RMSE and detection score as well as training efficiency
(the loss calibration and improved initialization facilitate model convergence). The final model
especially works well on the larger datasets compared to the baseline (see Appendix S), as smaller
datasets are relatively easy to fit with 3 million parameters, even without any model improvements.
We investigate the sensitivity of CDTD to important hyperparameters in Appendix L.

5 CONCLUSION AND DISCUSSION

We propose a Continuous Diffusion model for mixed-type Tabular Data (CDTD) that combines score
matching and score interpolation and imposes Gaussian diffusion processes on both continuous and
embedded categorical features. We compared CDTD to various benchmark models and to a single
noise schedule as typically used in image diffusion models. Our results indicate that addressing the
high feature heterogeneity in tabular data on the feature type level and aligning type-specific diffusion
elements, such as the noise schedules or losses, substantially benefits sample quality. Moreover,
CDTD shows vastly improved scalability and can accommodate an arbitrary number of categories.

Our paper serves as an important step to customizing the diffusion probabilistic framework to tabular
data. In particular, the common type of noise schedules allows for an easy to extend framework that
might accelerate progress on diffusion models for tabular data. Crucially, CDTD allows the direct
application of diffusion-related advances from the image domain, like classifier-free guidance, to
tabular data without the need for a latent encoding. We leave further extensions to the tabular data
domain, e.g., the exploration of accelerated sampling, efficient score model architectures, different
forms of adaptive noise schedules, or the adaption to the data imputation task for future work.

Finally, we want to emphasize the potential misuse of synthetic data to support unwarranted claims.
Any generated data should therefore not be blindly trusted, and synthetic data based inferences should
always be compared to results from the real data. However, the correct use of generative models
enables better privacy preservation and facilitates data sharing and open science practices.

LIMITATIONS

The main limitation of CDTD is the addition of hyperparameters, and tuning hyperparameters of
a generative model can be a costly endeavor. However, our results also show that (1) a per type
schedule is most often optimal and (2) our default hyperparameters perform well across a diverse
set of datasets. Dieleman et al. (2022) show that the results of score interpolation for text data can
be sensitive to the initialization of the embeddings. We have not encountered similar problems on
tabular datasets (see Table 7). While the DCR indicates no privacy issues for the benchmark datasets
used, additional caution must be taken when generating synthetic data from privacy sensitive sources.
Lastly, for specific types of tabular data, such as time-series, our model may be outperformed by other
generative models specialized for that type. While CDTD could be directly used for imputation using
RePaint (Lugmayr et al., 2022), a separate training process is required to achieve the best results (Liu
et al., 2024). Therefore, we leave the adaption of CDTD to the imputation task for future work.

ACKNOWLEDGEMENTS

This work used the Dutch national e-infrastructure with the support of the SURF Cooperative using
grant no. EINF-7437. We would also like to thank Sander Dieleman for helpful discussions.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Structured
Denoising Diffusion Models in Discrete State-Spaces. arXiv preprint arXiv:2107.03006, 2021.

Barry Becker and Ronny Kohavi. Adult. UCI Machine Learning Repository, 1996. DOI:
https://doi.org/10.24432/C5XW20.

Jock Blackard. Covertype. UCI Machine Learning Repository, 1998. DOI:
https://doi.org/10.24432/C50K5N.

Vadim Borisov, Kathrin Seßler, Tobias Leemann, Martin Pawelczyk, and Gjergji Kasneci. Lan-
guage Models are Realistic Tabular Data Generators. In International Conference on Learning
Representations, 2023.

Andrew Campbell, Joe Benton, Valentin De Bortoli, Tom Rainforth, George Deligiannidis, and
Arnaud Doucet. A Continuous Time Framework for Discrete Denoising Models. In Advances in
Neural Information Processing Systems, volume 35, New Orleans, USA, 2022.

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. SMOTE: Synthetic Minority
Over-sampling Technique. Journal of Artificial Intelligence Research, 16:321–357, 2002. ISSN
1076-9757. doi: 10.1613/jair.953.

Song Chen. Beijing PM2.5 Data. UCI Machine Learning Repository, 2017. DOI:
https://doi.org/10.24432/C5JS49.

Ting Chen. On the Importance of Noise Scheduling for Diffusion Models. arXiv preprint
arXiv:2301.10972, 2023.

Ting Chen, Ruixiang Zhang, and Geoffrey Hinton. Analog Bits: Generating Discrete Data using
Diffusion Models with Self-Conditioning. arXiv preprint arXiv:2208.04202, 2022.

John Clore, Krzysztof Cios, Jon DeShazo, and Beata Strack. Diabetes 130-US hospitals for years
1999-2008. UCI Machine Learning Repository, 2014. DOI: https://doi.org/10.24432/C5230J.

Lending Club. Loan data from Lending Club, 2015.

Partha Deb and Pravin K. Trivedi. Demand for Medical Care by the Elderly: A Finite Mixture
Approach. Journal of Applied Econometrics, 12(3):313–336, 1997. ISSN 0883-7252, 1099-1255.
doi: 10.1002/(SICI)1099-1255(199705)12:3<313::AID-JAE440>3.0.CO;2-G.

Prafulla Dhariwal and Alex Nichol. Diffusion Models Beat GANs on Image Synthesis. In Advances
in Neural Information Processing Systems, volume 34, pp. 8780–8794. Curran Associates, Inc.,
2021.

Sander Dieleman, Laurent Sartran, Arman Roshannai, Nikolay Savinov, Yaroslav Ganin, Pierre H.
Richemond, Arnaud Doucet, Robin Strudel, Chris Dyer, Conor Durkan, Curtis Hawthorne, Rémi
Leblond, Will Grathwohl, and Jonas Adler. Continuous diffusion for categorical data. arXiv
preprint arXiv:2211.15089, 2022.

Frances Ding, Moritz Hardt, John Miller, and Ludwig Schmidt. Retiring Adult: New Datasets for
Fair Machine Learning. arXiv:2108.04884, 2021.

Kelwin Fernandes, Pedro Vinagre, Paulo Cortez, and Pedro Sernadela. Online News Popularity. UCI
Machine Learning Repository, 2015. DOI: https://doi.org/10.24432/C5NS3V.

Jonathan Ho and Tim Salimans. Classifier-Free Diffusion Guidance. arXiv preprint arXiv:2207.12598,
2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. In Advances
in Neural Information Processing Systems, volume 33, pp. 6840–6851. Curran Associates, Inc.,
2020.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J.
Fleet. Video Diffusion Models. arXiv preprint arXiv:2204.03458, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax Flows
and Multinomial Diffusion: Learning Categorical Distributions. In Advances in Neural Information
Processing Systems, volume 34, pp. 12454–12465. Curran Associates, Inc., 2021.

Emiel Hoogeboom, Victor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant Diffusion
for Molecule Generation in 3D. In Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pp. 8867–8887, Baltimore,
Maryland, USA, 2022. PMLR.

Aapo Hyvärinen. Estimation of Non-Normalized Statistical Models by Score Matching. Journal of
Machine Learning Research, 6(24):695–709, 2005.

Allan Jabri, David Fleet, and Ting Chen. Scalable Adaptive Computation for Iterative Generation.
arXiv preprint arXiv:2212.11972, 2022.

Alexia Jolicoeur-Martineau, Kilian Fatras, and Tal Kachman. Generating and Imputing Tabular Data
via Diffusion and Flow-based Gradient-Boosted Trees. In Proceedings of the 27th International
Conference on Artificial Intelligence and Statistics, volume 238, Valencia, Spain, February 2024.
PMLR.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the Design Space of Diffusion-
Based Generative Models. In Advances in Neural Information Processing Systems, volume 35, pp.
26565–26577. Curran Associates, Inc., 2022.

Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine. Analyzing
and Improving the Training Dynamics of Diffusion Models. arXiv preprint arXiv:2312.02696,
December 2023.

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-Task Learning Using Uncertainty to Weigh
Losses for Scene Geometry and Semantics. In IEEE Conference on Computer Vision and Pattern
Recognition. arXiv, April 2018.

A. Keramati, R. Jafari-Marandi, M. Aliannejadi, I. Ahmadian, M. Mozaffari, and U. Abbasi. Improved
churn prediction in telecommunication industry using data mining techniques. Applied Soft
Computing, 24:994–1012, 2014. ISSN 1568-4946. doi: https://doi.org/10.1016/j.asoc.2014.08.041.

Jayoung Kim, Chaejeong Lee, and Noseong Park. STaSy: Score-based Tabular data Synthesis. arXiv
preprint arXiv:2210.04018, 2023.

Diederik P. Kingma and Ruiqi Gao. Understanding Diffusion Objectives as the ELBO with Simple
Data Augmentation. arXiv preprint arXiv:2303.00848, September 2023.

Diederik P. Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational Diffusion Models.
arXiv preprint arXiv:2107.00630, 2022.

Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, and Artem Babenko. TabDDPM: Modelling
Tabular Data with Diffusion Models. In Proceedings of the 40th International Conference on
Machine Learning, volume 202 of Proceedings of Machine Learning Research, pp. 17564–17579.
PMLR, 2023.

Chaejeong Lee, Jayoung Kim, and Noseong Park. CoDi: Co-evolving Contrastive Diffusion Models
for Mixed-type Tabular Synthesis. In Proceedings of the 40th International Conference on Machine
Learning, volume 202, Honolulu, Hawaii, USA, 2023. PMLR.

Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy Liang, and Tatsunori B. Hashimoto. Diffusion-
LM Improves Controllable Text Generation. arXiv preprint arXiv:2205.14217, 2022.

Jianhua Lin. Divergence Measures Based on the Shannon Entropy. IEEE Transactions on Information
Theory, 37(1):145–151, 1991.

Tennison Liu, Zhaozhi Qian, Jeroen Berrevoets, and Mihaela van der Schaar. GOGGLE: Generative
Modelling for Tabular Data by Learning Relational Structure. In International Conference on
Learning Representations, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yixin Liu, Ajanthan Thalaiyasingam, Hisham Husain, and Vu Nguyen. Self-supervision improves
diffusion models for tabular data imputation. arXiv preprint arXiv:2407.18013, 2024.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. DPM-Solver: A Fast
ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps. In 36th Conference
on Neural Information Processing Systems, 2022.

Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van Gool.
RePaint: Inpainting using Denoising Diffusion Probabilistic Models. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 11451–11461, New Orleans, LA, USA,
2022. IEEE. ISBN 978-1-66546-946-3. doi: 10.1109/CVPR52688.2022.01117.

Chao Ma, Sebastian Tschiatschek, José Miguel Hernández-Lobato, Richard Turner, and Cheng Zhang.
VAEM: A Deep Generative Model for Heterogeneous Mixed Type Data. In Advances in Neural
Information Processing Systems, volume 33, pp. 11237–11247. Curran Associates, Inc., 2020.

Chenlin Meng, Kristy Choi, Jiaming Song, and Stefano Ermon. Concrete Score Matching: General-
ized Score Matching for Discrete Data. In Advances in Neural Information Processing Systems,
volume 35, pp. 34532–34545. Curran Associates, Inc., 2022.

S. Moro, P. Rita, and P. Cortez. Bank Marketing. UCI Machine Learning Repository, 2012. DOI:
https://doi.org/10.24432/C5K306.

Alex Nichol and Prafulla Dhariwal. Improved Denoising Diffusion Probabilistic Models. In Proceed-
ings of the 38th International Conference on Machine Learning, volume 139. PMLR, 2021.

Neha Patki, Roy Wedge, and Kalyan Veeramachaneni. The synthetic data vault. In IEEE International
Conference on Data Science and Advanced Analytics (DSAA), pp. 399–410, Oct 2016. doi:
10.1109/DSAA.2016.49.

Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey
Gulin. CatBoost: Unbiased boosting with categorical features. In Advances in Neural Information
Processing Systems, volume 31. Curran Associates, Inc., 2018.

Zhaozhi Qian, Bogdan-Constantin Cebere, and Mihaela van der Schaar. Synthcity: Facilitating inno-
vative use cases of synthetic data in different data modalities. In Advances in Neural Information
Processing Systems, volume 36, pp. 3173–3188. Curran Associates, Inc., January 2023.

Aaditya Ramdas, Nicolas Garcia, and Marco Cuturi. On Wasserstein Two Sample Testing and Related
Families of Nonparametric Tests. Entropy, 19(2), 2017.

Florence Regol and Mark Coates. Diffusing Gaussian Mixtures for Generating Categorical Data.
Proceedings of the AAAI Conference on Artificial Intelligence, 37(8):9570–9578, 2023. ISSN
2374-3468, 2159-5399. doi: 10.1609/aaai.v37i8.26145.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
Resolution Image Synthesis with Latent Diffusion Models. arXiv preprint arXiv:2112.10752,
2022.

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep Unsupervised
Learning using Nonequilibrium Thermodynamics. In Proceedings of the 32nd International
Conference on Machine Learning, volume 37, Lille, France, 2015. JMLR.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-Based Generative Modeling through Stochastic Differential Equations. In ICLR,
2021.

Robin Strudel, Corentin Tallec, Florent Altché, Yilun Du, Yaroslav Ganin, Arthur Mensch, Will
Grathwohl, Nikolay Savinov, Sander Dieleman, Laurent Sifre, and Rémi Leblond. Self-conditioned
Embedding Diffusion for Text Generation. arXiv preprint arXiv:2211.04236, 2022.

Haoran Sun, Lijun Yu, Bo Dai, Dale Schuurmans, and Hanjun Dai. Score-based Continuous-time
Discrete Diffusion Models. arXiv preprint arXiv:2211.16750, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Pascal Vincent. A Connection Between Score Matching and Denoising Autoencoders. Neural
Computation, 23(7):1661–1674, 2011. ISSN 0899-7667, 1530-888X. doi: 10.1162/NECO_a_
00142.

David S. Watson, Kristin Blesch, Jan Kapar, and Marvin N. Wright. Adversarial random forests for
density estimation and generative modeling. In Proceedings of the 26th International Conference
on Artificial Intelligence and Statistics, volume 206, Valencia, Spain, 2023. PMLR.

Tong Wu, Zhihao Fan, Xiao Liu, Yeyun Gong, Yelong Shen, Jian Jiao, Hai-Tao Zheng, Juntao Li,
Zhongyu Wei, Jian Guo, Nan Duan, and Weizhu Chen. AR-Diffusion: Auto-Regressive Diffusion
Model for Text Generation. arXiv preprint arXiv:2305.09515, 2023.

Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Modeling Tabular
Data using Conditional GAN. In Advances in Neural Information Processing Systems, volume 12.
Curran Associates, Inc., 2019.

I-Cheng Yeh. Default of credit card clients. UCI Machine Learning Repository, 2016. DOI:
https://doi.org/10.24432/C55S3H.

Hengrui Zhang, Jiani Zhang, Balasubramaniam Srinivasan, Zhengyuan Shen, Xiao Qin, Christos
Faloutsos, Huzefa Rangwala, and George Karypis. Mixed-Type Tabular Data Synthesis with
Score-based Diffusion in Latent Space. In International Conference on Learning Representations,
Vienna, Austria, 2024. arXiv.

Zilong Zhao, Aditya Kunar, Hiek Van der Scheer, Robert Birke, and Lydia Y. Chen. CTAB-GAN:
Effective Table Data Synthesizing. In Proceedings of the 13th Asian Conference on Machine
Learning, volume 157, pp. 97–112. PMLR, 2021.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A LOSS CALIBRATION

A priori, we let the model be indifferent between features, that is, we scale the loss of each feature such
that at the terminal timestep the same loss is attained. Here, the signal-to-noise ratio is sufficiently low
to approximate a situation in which the model has no information about the data. Thus, we are looking
for calibrated losses L∗

MSE(x
(i)
cont, 1) and L∗

CE(x
(j)
cat , 1) which at t = 1 achieve unit loss in expectation.

For a single scalar feature and a given timestep t, we can write the empirical denoising score matching
loss (Equation (3)) in the EDM parameterization (Karras et al., 2022) as:

LMSE(x
(i)
cont, t) = λ(t)

(
cskip(t)xt + cout(t)F

(i)
θ︸ ︷︷ ︸

sθ(xt,t)

−x
(i)
cont

)2

,

where F
(i)
θ denotes the neural network output for feature i that parameterizes the score model sθ.

The parameters cskip(t) = σ2
data/(σ

2(t) + σ2
data) and cout(t) = σ(t) · σdata/(

√
σ2(t) + σ2

data) depend
on σ(t) (and σdata) and therefore on timestep t. For t → 1, σ(t) approaches the maximum noise level
σcont,max and cskip(t) → 0 and cout(t) → 1 such that the score model directly predicts the data at
high noise levels. For t → 0, the model shifts increasingly towards predicting the error that has been
added to the true data. In the EDM parameterization, the explicit timestep weight (used to achieve a
unit loss across timesteps at initialization, see Appendix B) is λ(t) = 1/cout(t)

2 ≈ 1 for t = 1.

At the terminal timestep t = 1, we now have:

E
p(x

(i)
cont)

[LMSE(x
(i)
cont, 1)] = λ(1)E

p(x
(i)
cont)

(
cskip(1)x1 + cout(1)F

(i)
θ − x

(i)
cont

)2

,

≈ E
p(x

(i)
cont)

(
0 · x1 + 1 · F (i)

θ − x
(i)
cont

)2

,

= E
p(x

(i)
cont)

(
F

(i)
θ − x

(i)
cont

)2

.

Without information, it is optimal to always predict the average value E
p(x

(i)
cont)

[x
(i)
cont] and thus, the

minimum expected loss becomes:

E
p(x

(i)
cont)

[LMSE(x
(i)
cont, 1)] = E

p(x
(i)
cont)

(
E
p(x

(i)
cont)

[x
(i)
cont]− x

(i)
cont

)2

= Var[x
(i)
cont] .

Therefore, we have L∗
MSE(x

(i)
cont, 1) = LMSE(x

(i)
cont, 1) as long as we standardize x

(i)
cont to unit variance.

For a single categorical feature, x(j)
cat is distributed according to the proportions pc (for categories

c = 1, . . . , C). The denoising model for score interpolation is trained with the CE loss:

LCE(x
(j)
cat , t) = −

C∑
c=1

I(x
(j)
cat = c) logF

(j)
θ,c ,

where F
(j)
θ,c denotes the score model’s prediction of the class probability at timestep t. Without

information, it is optimal to assign the c-th category the same proportion as in the training set.
At t = 1, we thus let F (j)

θ,c = pc such that the minimum loss equals:

E
p(x

(j)
cat)

[LCE(x
(j)
cat , 1)] = −E

p(x
(j)
cat)

C∑
c=1

I(x
(j)
cat = c) logF

(j)
θ,c , (9)

= −
C∑

c=1

E
p(x

(j)
cat)

[I(x
(j)
cat = c) log pc] , (10)

= −
C∑

c=1

pc log pc. (11)

We use the training set proportions to compute the normalization constant Zj = −
∑C

c=1 pc log pc
to calibrate the loss for categorical features. Then,

E
p(x

(j)
cat)

[L∗
CE(x

(j)
cat , 1)] = E

p(x
(j)
cat)

[LCE(x
(j)
cat , 1)/Zj] = 1 .

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

We have thus achieved calibrated losses with respect to the terminal timestep t = 1, that is,
E
p(x

(i)
cont)

[L∗
MSE(x

(i)
cont, 1)] = E

p(x
(j)
cat)

[L∗
CE(x

(j)
cat , 1)] = 1 for all continuous features i and categori-

cal features j.

B OUTPUT LAYER INITIALIZATION

At initialization, we want the neural network to reflect the state of no information (see Appendix A).
Likewise, our goal is a loss of one across all features and timesteps.

For continuous features i, we initialize the output layer weights (and biases) to zero such that
the output of the score model for a single continuous feature, F (i)

θ , is also zero. Since we use
the EDM parameterization (Karras et al., 2022), we apply the associated explicit timestep weight
λ(t) =

σ2(t)+σ2
data

(σ(t)·σdata)2
. This is explicitly designed to achieve a unit loss across timesteps at initialization

and we show this analytically below. We denote the variances of the data x
(i)
cont and of the Gaussian

noise ϵ at time t as σ2
data and σ2(t), respectively.

E
p(x

(i)
cont),p(ϵ)

[L∗
MSE(x

(i)
cont, t)] = λ(t)E

p(x
(i)
cont),p(ϵ)

(
cskip(t)(x

(i)
cont + ϵ) + cout(t)F

(i)
θ − x

(i)
cont

)2

,

= λ(t)E
p(x

(i)
cont),p(ϵ)

(
cskip(t)(x

(i)
cont + ϵ)− x

(i)
cont

)2

,

=
σ2(t) + σ2

data

(σ(t) · σdata)2
E
p(x

(i)
cont),p(ϵ)

(σ2
data

σ2(t) + σ2
data

(x
(i)
cont + ϵ)− x

(i)
cont

)2

,

=
σ2(t) + σ2

data

(σ(t) · σdata)2
E
p(x

(i)
cont),p(ϵ)

(σ2
dataϵ− σ2(t)x

(i)
cont

σ2(t) + σ2
data

)2

,

=
1

σ2(t) + σ2
data

E
p(x

(i)
cont),p(ϵ)

(σdata

σ(t)
ϵ− σ(t)

σdata
x
(i)
cont

)2

,

=
1

σ2(t) + σ2
data

E
p(x

(i)
cont),p(ϵ)

(σ2
data

σ2(t)
ϵ2 +

σ2(t)

σ2
data

(x
(i)
cont)

2 − 2ϵx
(i)
cont

)
,

=
1

σ2(t) + σ2
data

(σ2
data

σ2(t)
Var(ϵ)︸ ︷︷ ︸
σ2(t)

+
σ2(t)

σ2
data

Var(x
(i)
cont)︸ ︷︷ ︸

σ2
data

−2Cov(ϵ, x
(i)
cont)︸ ︷︷ ︸

0

)
,

=
1

σ2(t) + σ2
data

(
σ2

data + σ2(t)
)
= 1.

For categorical features j, we initialize the output layer such that the model achieves the respective
losses under no information. Using the loss normalization constant Zj (see Appendix A) and dropping
the expectation over p(ϵ), we have

E
p(x

(j)
cat)

[L∗
CE(x

(j)
cat , t)] = E

p(x
(j)
cat)

[LCE(x
(j)
cat , t)/Zj] =

1

Zj
E
p(x

(j)
cat)

[LCE(x
(j)
cat , t)].

Hence, for E
p(x

(j)
cat)

[LCE(x
(j)
cat , t)] = Zj , we obtain an expected loss of one irrespective of t. The

neural network outputs a vector of logits F (j)
θ that are transformed into probabilities with a softmax

function for each categorical feature. We denote the c-th element of that vector softmax(·)c. Since
Zj is derived in Equation (11) by imposing probabilities equal to the training set proportions for that
category, pc, we have

log pc = log softmax(F
(j)
θ)c = log

exp(F
(j)
θ,c)∑C

k=1 exp(F
(j)
θ,k)

= F
(j)
θ,c − log

C∑
k=1

exp(F
(j)
θ,k).

We initialize the neural network such that F (j)
θ,c = log pc for all c. This is achieved by initializing the

output layer weights to zero and the output layer biases to the relevant training set log-proportions of

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

the corresponding class. Hence, this initialization gives us

F
(j)
θ,c − log

C∑
k=1

exp(F
(j)
θ,k) = log pc − log

C∑
k=1

pk = log pc,

which in turn leads to an initial loss of Zj for all t and therefore achieves a uniform, calibrated loss of
one at initialization similar to the continuous feature case.

C ADAPTIVE NORMALIZATION OF THE AVERAGE DIFFUSION LOSS

Both the loss calibration (see Appendix A) and output layer initialization (see Appendix B) ensure
that the losses across timesteps (and features) are equal at initialization. During training, the adaptive
noise schedules allow the model to focus automatically on the noise levels that matter most, i.e., where
the loss increase is steepest. However, the better the model becomes at a given timestep t, the lower
the loss at the respective timestep, and the lower the gradient signal relative to the signal for timesteps
t̃ > t. We counteract this with adaptive normalization of the average diffusion loss (averaged over
the features) across timesteps. Specifically, we want to weight the average diffusion loss at timestep t,
L(t) given in Equation (6), such that the normalized loss is the same (equal to one) for all t. Similar
methods have been used by Karras et al. (2023) and Kingma & Gao (2023), we follow the latter in
the setup of the corresponding network.

We train a neural network alongside our diffusion model to predict L(t) based on t and use the
MSE loss to learn this weighting. First, we compute cnoise(t) = log(t)/4 following the EDM
parameterization (Karras et al., 2022). Then, we embed cnoise in frequency space (1024-dimensional)
using Fourier features. The result is passed through a single linear layer to output a scalar value,
passed through an exponential function to ensure that the prediction L̂(t) ≥ 0. We initialize the
weights and biases to zero, to ensure that at model initialization we have a unit normalization.

D DERIVATION OF THE FUNCTIONAL TIMEWARPING FORM

Since higher noise levels, σ, imply a lower signal-to-noise ratio, and in turn a larger loss, ℓ, we know
that the loss must be a monotonically increasing and S-shaped function of the noise level. Additionally,
the function has to be easy to invert and differentiate. We incorporate this prior information in the
functional timewarping form of F : σ 7→ ℓ. A convenient choice is the cdf of the logistic distribution:

Flog(y) =
[
1 + exp

(
−ν(y − µ∗)

)]−1
, (12)

where µ∗ describes the location of the inflection point of the S-shaped function and ν ≥ 1 indicates
the steepness of the curve.

We let y = logit(σ) = log(σ/(1− σ)) to change the domain of Flog from (−∞,∞) to (0, 1). The
latter covers all possible values of the noise level σ scaled to [0, 1] with the pre-specified minimum
and maximum noise levels σmin and σmax. To define the parameter µ in the same space and ensure
that 0 < µ < 1, we also let µ∗ = logit(µ). Accordingly, we derive the cdf of the domain-adapted
Logistic distribution:

Fd.a.log(σ) =

[
1 +

(
σ

1− σ

1− µ

µ

)−ν
]−1

. (13)

Since ℓ is not bounded, we introduce a multiplicative scale parameter, γ > 0, such that for timewarp-
ing we predict the potentially feature-specific loss as ℓ̂ = F (σ) = γFd.a.log(σ). Fd.a.log can also
be initialized to the cdf of the uniform distribution with µ = 0.5, ν ≈ 1 and γ = 1 such that all
noise levels are initially equally weighted. However, an initial overweighting of lower noise levels is
beneficial for tabular data (see also Section 3.4).

Likewise, we can derive the inverse cdf F−1
d.a.log(t), that is our mapping of interest from timestep t to

noise level σ, in closed form:

σ = F−1
d.a.log(t) = sigmoid(c), with c = ln

(
µ

1− µ

)
+

1

ν
ln

(
t

1− t

)
. (14)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

When training the diffusion model, we learn the parameters of Fd.a.log as well as γ by predicting the
diffusion loss using F (σ) and the noise levels scaled to [0, 1]. At the beginning of each training step,
we then use the current state of the parameters and F−1

d.a.log, with a sampled timestep t ∼ U[0,1] as input,
to derive σ. To allow for feature-specific, adaptive noise schedules, we separately introduce Fk(σk) for
each feature k, to predict the feature-specific loss ℓk based on the feature-specific scaled noise level σk.

Note that with timewarping we create a feedback loop in which we generate more and more σs from
the region of interest, decreasing the number of observations available to learn the parameters in
different noise level regions. We thus weight the timewarping loss, ||ℓ− ℓ̂||22, when fitting F (σ) to the
data by the reciprocal of the pdf fd.a.log(σ) to mitigate this adverse effect (see Dieleman et al., 2022).
Again, this function is available to us in closed form. With Flog and flog denoting the respective cdf
and pdf of the Logistic distribution, we have

fd.a.log(σ) =
∂

∂y
Flog(y)

∣∣∣∣
y=logit(σ)

∂

∂σ
ln

σ

1− σ

= flog(logit(σ))
1

σ(1− σ)

=
ν

σ(1− σ)
· Z(σ, µ, ν)(

1 + Z(σ, µ, ν)
)2 ,

where we defined Z(σ, µ, ν) =
(

σ
1−σ

1−µ
µ

)−ν
and used the definitions of flog and the parameter µ∗.

E BENCHMARK DATASETS

Our selected benchmark datasets are highly diverse, particularly in the number of categories for
categorical features (see Table 3). For the diabetes and covertype datasets, we transform the
original multi-class classification problem into a binary classification task for ease of presentation.
For the covertype data, the task is converted into predicting whether a forest of type 2 is present
in a given 30 × 30 meter area. In the diabetes data, we convert the task by predicting whether a
patient was readmitted to a hospital. All datasets are publicly accessible and (except nmes) licensed
under creative commons.

Table 3: Overview of the selected experimental datasets. We count the outcome towards the respective
features that remain after removing continuous features with an excessive number of missings. The
minimum and maximum number of categories are taken over all categorical features.

Dataset License Prediction task Total no. No. of features No. of categories
observations categorical continuous min. max.

acsincome (Ding et al., 2021) CC0 regression 1 664 500 8 3 2 529
adult (Becker & Kohavi, 1996) CC BY 4.0 binary classification 48 842 9 6 2 42
bank (Moro et al., 2012) CC BY 4.0 binary classification 41 188 11 10 2 12
beijing (Chen, 2017) CC BY 4.0 regression 41 757 1 10 4 4
churn (Keramati et al., 2014) CC BY 4.0 binary classification. 3 150 5 9 2 5
covertype (Blackard, 1998) CC BY 4.0 binary classification 581 012 44 10 2 2
default (Yeh, 2016) CC BY 4.0 binary classification 30 000 10 14 2 11
diabetes (Clore et al., 2014) CC BY 4.0 binary classification 101 766 28 9 2 716
lending (Club, 2015) DbCL 1.0 regression 9 182 10 34 2 3151
news (Fernandes et al., 2015) CC BY 4.0 regression 39 644 14 46 2 2
nmes (Deb & Trivedi, 1997) unknown regression 4 406 8 11 2 4

F BASELINE MODELS

Below, we give a brief description of our selected generative baseline models (including code sources).

SMOTE (Chawla et al., 2002) – a technique (not a generative model) typically used to oversample
minority classes based on interpolation between ground-truth observations. We use SMOTENC
for mixed-type data from the scikit-learn package and mostly adapt the code from the TabDDPM
repository (Kotelnikov et al., 2023). For sampling, we utilize 16 CPU cores.
ARF (Watson et al., 2023) – a recent generative approach that is based on a random forest for
density estimation. The implementation is available at https://github.com/bips-hb/arfpy

18

https://fairlearn.org/main/user_guide/datasets/acs_income.html
https://www.kaggle.com/datasets/wenruliu/adult-income-dataset
https://archive.ics.uci.edu/dataset/222/bank+marketing
https://archive.ics.uci.edu/dataset/381/beijing+pm2+5+data
https://archive.ics.uci.edu/dataset/563/iranian+churn+dataset
https://archive.ics.uci.edu/dataset/31/covertype
https://archive.ics.uci.edu/dataset/350/default+of+credit+card+clients
https://archive.ics.uci.edu/dataset/296/diabetes+130-us+hospitals+for+years+1999-2008
https://www.kaggle.com/datasets/joebeachcapital/lending-club
https://archive.ics.uci.edu/dataset/332/online+news+popularity
https://vincentarelbundock.github.io/Rdatasets/doc/AER/NMES1988.html
https://github.com/bips-hb/arfpy

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

and licensed under the MIT license. We use package version 0.1.1. For training, we utilize 16 CPU
cores.

CTGAN (Xu et al., 2019) – one of the most popular Generative-Adversarial-Network-based models
for tabular data. The implementation is available as part of the Synthetic Data Vault (Patki et al.,
2016) at https://github.com/sdv-dev/CTGAN and licensed under the Business Source License
1.1. We use package version 0.9.0.

TVAE (Xu et al., 2019) – a Variational-Autoencoder-based model for tabular data. Similar to
CTGAN. The implementation is available as part of the Synthetic Data Vault (Patki et al., 2016) at
https://github.com/sdv-dev/CTGAN and licensed under the Business Source License 1.1. We
use package version 0.9.0. Note that since we only use TVAE (and CTGAN) as benchmark, and do
not provide a synthetic data creation service, the license permits the free usage.

TabDDPM (Kotelnikov et al., 2023) – a diffusion-based generative model for tabular data that
combines multinomial diffusion (Hoogeboom et al., 2021) and diffusion in continuous space. An
implementation is available as part of the synthcity package (Qian et al., 2023) at https:
//github.com/vanderschaarlab/synthcity/ and licensed under the Apache 2.0 license. We
use package version 0.2.7 with slightly adjusted code to allow for the manual specification of
categorical features.

CoDi (Lee et al., 2023) – a diffusion model trained with an additional contrastive loss, and which
factorizes the joint distribution of mixed-type tabular data into a distribution for continuous data condi-
tional on categorical features and a distribution for categorical data conditional on continuous features.
Similarly, the authors utilize the multinomial diffusion framework (Hoogeboom et al., 2021) to model
categorical data. An implementation is available at https://github.com/ChaejeongLee/CoDi
under an unknown license.

TabSyn (Zhang et al., 2024) – a diffusion-based model that first learns a tranformer-based VAE to
map mixed-type data to a continuous latent space. Then, the diffusion model is trained on that latent
space. We use the official code available at https://github.com/amazon-science/tabsyn
under the Apache 2.0 license.

G IMPLEMENTATION DETAILS

Each of the selected benchmark models requires a rather different, more specialized neural network
architecture. Imposing the same architecture across models is therefore not possible. The same
inability holds for the comparison of CDTD to other diffusion-based models: Our model is the first
to use a continuous noise distribution on both continuous and categorical features, and therefore the
alignment of important design choices, like the noise schedule, across models is not possible. In par-
ticular, the forward process of the multinomial diffusion framework (Hoogeboom et al., 2021) used in
TabDDPM and CoDi, which is based on Markov transition matrices, does not translate to our setting.

To ensure a fair comparison in terms of sampling steps, we set the steps for CDTD, TabDDPM, CoDi
and TabSyn to max(200, default). We therefore increase the default number of sampling steps for
CoDi and TabSyn (from 50 steps) and TabDDPM (from 100 steps for classification datasets). For
TabDDPM and regression datasets, we use the suggested default of 1000 sampling steps.

We adjust each architecture to a total of ±3 million trainable parameters on the adult dataset to
improve the comparability further (see Table 4) and use the same architectures for all considered
datasets. Note that the total number of parameters may vary slightly across datasets due to different
number of features and categories affecting the onehot encoding but is still comparable across models.

Table 4: Total number of trainable parameters per model on the adult dataset.

Model Trainable parameters

CTGAN 3 000 397
TVAE 2 996 408
TabDDPM 3 003 924
CoDi 2 998 043
TabSyn 3 001 646
CDTD (per type schedule, TabDDPM architecture) 2 999 721

19

https://github.com/sdv-dev/CTGAN
https://github.com/sdv-dev/CTGAN
https://github.com/vanderschaarlab/synthcity/
https://github.com/vanderschaarlab/synthcity/
https://github.com/ChaejeongLee/CoDi
https://github.com/amazon-science/tabsyn

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

We also align the embedding/bottleneck dimensions for CTGAN, TVAE, TabDDPM, TabSyn and
CDTD to 256. To align TabDDPM, TabSyn and CDTD further, we use the TabDDPM architecture
for all models, with appropriate adjustments for different input types and dimensions. If applicable,
all models are trained for 30k steps on a single RTX 4090 instance, using PyTorch version 2.2.2.

Below, we briefly discuss our model-specific hyperparameter choices.

SMOTE (Chawla et al., 2002): We use the default hyperparameters suggested for the SMOTENC
scikit-learn implementation.

ARF (Watson et al., 2023): We use the authors’s suggested default hyperparameters. In particular, we
use 20 trees, δ = 0 and a minimum node size of 5. We follow the official package implementation
and set the maximum number of iterations to 10 (see https://github.com/bips-hb/arfpy).

CTGAN (Xu et al., 2019): We follow the popular implementation in the Synthetic Data Vault package
(see https://github.com/sdv-dev/CTGAN). For this model to work, the batch size must be
divisible by 10. Therefore, we adjust the batch size if necessary. We use a 256-dimensional embedding
(instead of the default embedding dimension of 128) to better align the CTGAN architecture with
TVAE, TabDDPM, TabSyn and CDTD.

TVAE (Xu et al., 2019): We again follow the implementation in the Synthetic Data Vault. We use a
256-dimensional embedding to better align the architecture with CTGAN, TabDDPM, TabSyn and
CDTD.

TabDDPM (Kotelnikov et al., 2023): There are no general default hyperparameters provided. Hence,
we mostly adapt the papers’ tuned hyperparameters for the adult dataset (one of the few used
datasets that includes both continuous and categorical features). However, we decrease the learning
rate from 0.002 to 0.001, since most of the tuned models in the paper used learning rates around 0.001.
For regression task datasets, we use 1000 sampling steps in accordance with the author’s settings.
For classification task datasets, we use 200 sampling steps (instead of the default 100 steps), to better
align the model with CoDi and CDCD. Note also that for classification task datasets, TabDDPM
models the conditional distribution p(x|y), instead of the unconditional distribution p(x) which is
modeled for regression tasks. We adjust the dimension of the bottleneck to 256 (instead of the default
128) to also accommodate also larger datasets and align the model with CTGAN, TVAE,and CDTD.

CoDi (Lee et al., 2023): We use the default hyperparameters from the official code (see https:
//github.com/ChaejeongLee/CoDi).

TabSyn (Zhang et al., 2024): We use the default hyperparameters as suggested by the authors. The
training steps that go towards training the VAE and the denoising network follow the proportions
given in the official code (see https://github.com/amazon-science/tabsyn). To improve
comparability to TabDDPM, CoDi and CDTD, we use the same neural network architecture as
TabDDPM, which only differs slightly from the original architecture. We leave the VAE untouched.

CDTD (ours): To ensure comparability in particular to TabDDPM, CoDi and TabSyn, we use the
same neural network architecture as TabDDPM. We only change the input layers to accommodate
our embedding-based framework. In the input layer, we vectorize all embedded categorical features
and concatenate them with the scalar valued continuous features. The adjusted output layer ensures
that we predict a single value for each continuous features and set of class-specific probabilities for
each categorical feature. Since our use of embeddings introduces additional parameters, we scale the
hidden layers slightly down relative to the TabDDPM to ensure approximately 3 million trainable
parameters (instead of 808 neurons per layer we use 806) on the adult dataset. More details on the
CDTD implementation are given in Appendix J.

H TUNING OF THE DETECTION MODEL

We use a catboost model (Prokhorenkova et al., 2018) to test whether real and generated samples
can be distinguished. We generate the same number of fake observations for each of the real train,
validation and test sets. We cap the maximum size of the real data subsets to 25 000, and subsample
them if necessary, to limit the computational load. Per set, we combine real and fake observations
to Ddetect

train ,Ddetect
valid , and Ddetect

test , respectively. The catboost model is trained on Ddetect
train with the task

of predicting whether an observation is real or fake. We tune the catboost model with optuna and
for 50 trials to maximize the accuracy on Ddetect

valid . The catboost hyperparameter search space is

20

https://github.com/bips-hb/arfpy
https://github.com/sdv-dev/CTGAN
https://github.com/ChaejeongLee/CoDi
https://github.com/ChaejeongLee/CoDi
https://github.com/amazon-science/tabsyn

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

given in Table 5. Afterwards, we repeat the sampling process and the creation of Ddetect
train ,Ddetect

valid and
Ddetect

test for five different seeds. Each time, the model is trained on Ddetect
train with the previously tuned

hyperparameters, and evaluated on Ddetect
test . The average test set accuracy over the five seeds yields

the estimated detection score.
Table 5: Catboost hyperparameter space settings. The model is tuned for 50 trials.

Parameter Distribution

no. iterations = 1000
learning rate Log Uniform [0.001, 1.0]
depth Cat([3,4,5,6,7,8])
L2 regularization Uniform [0.1, 10]
bagging temperature Uniform [0, 1]
leaf estimation iters Integer Uniform [1, 10]

I MACHINE LEARNING EFFICIENCY MODELS

For the group of machine learning efficiency models, we use the scikit-learn and catboost package
implementations including the default parameter settings, if not specified otherwise below:

Logistic or Ridge Regression: max. iterations = 1000

Random Forest: max. depth = 12, no. estimators = 100

Catboost: no. iterations = 2000, early stopping rounds = 50, overfitting detector pval = 0.001

J CDTD IMPLEMENTATION DETAILS

To enable a fair comparison to the other methods, and to TabDDPM and TabSyn in particular, the
CDTD score model utilizes the exact same architecture and optimizer as Kotelnikov et al. (2023),
which was also adapted by TabSyn (Zhang et al., 2024). An overview of the score model is provided in
Figure 4: First, the noisy data, i.e., the noisy scalars for continuous features and the noisy embeddings

++

Figure 4: Overview of the CDTD architecture adapted from TabDDPM. The dimensions of the
inputs and layer outputs are stated in the lower-left hand corner for a continuous features xcont and a
categorical features xcat. Note that each categorical features can have a different number of categories
|C|, impacting the output dimension of the final layer. Scalars are colored orange, embeddings red and
linear layers blue. The positional embedding highlighted in green refers to the positional sinusoidal
embedding. CDTD only conditions on y, i.e., the target feature, for classification task datasets.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

for categorical features, are projected onto a 256-dimensional space. Similarly, timestep t and possibly
conditioning information y are embedded in the same space. Then, all 256-dimensional vectors are
added and the results is processed by a set of five fully-connected linear layers with ReLU activation
functions. Lastly, a linear projection maps the output of the fully-connected layers to the required
output dimensions, which depend on the number of features and number of categories per feature.

The only major difference to the TabDDPM setup are the inputs, as we need to embed the categorical
features in Euclidean space. The output dimensions are the same, as we need to predict a single scalar
for each xcont,i, and |Cj | values for each xcat,j , with Cj the set of categories of feature j. We change
the initialization of the output layer as described in Appendix B: To handle our inputs, we embed the
categorical features in 16-dimensional space and add a feature-specific bias of the same dimension,
which captures feature-specific information common to all categories and is initialized to zero. We
L2-normalize each embedding to prevent a degenerate embedding space in which embeddings are
pushed further and further apart (see Dieleman et al., 2022). Also, Dieleman et al. (2022) argue
that the standard deviation of the Normal distribution used to initialize the embeddings, denoted
by σinit, is an important hyperparameter. In this paper, we set σinit = 0.001 for all datasets and have
not seen detrimental effects. Table 7 indicates that CDTD is not sensitive to the choice of σinit.

Since we utilize embeddings, we have to scale the neurons per layer slightly down in the stack of
the five fully-connected layers (from 808 for TabDDPM to 806). Also, since TabDDPM samples
discrete steps from [0, T], with T ≫ 1, we scale our timesteps t ∈ [0, 1] up by 1000. We use the
same optimizer (Adam), learning rate (0.001), learning rate decay (linear), EMA decay (0.999), and
training steps (30000). However, since we work with embeddings we add a linear warmup schedule
over the first 100 steps.

Instead of using the vanilla uniform (time)step sampling as the TabDDPM, the CDTD model uses
antithetic sampling (Dieleman et al., 2022; Kingma et al., 2022). The timesteps are still uniformly dis-
tributed but spread out more evenly over the domain, which benefits the training of the adaptive noise
schedules. For generation, we use an Euler sampler with 200 steps to minimize the discretization error.

K CDTD SAMPLING

To sample from our learned distribution, we need to run the reverse process of the probability flow
ODE (Equation (2)). For example, for two different features x1 and x2, we deconstruct the ODE as:

dx = −1

2
G(t)G(t)T∇x log pt(x)dt

= −
[
σ̇1(t)σ1(t)

σ̇2(t)σ2(t)

] [x̂1−x1

σ1(t)2
x̂2−x2

σ2(t)2

]
dt

= −
[
σ̇1(t)

σ̇2(t)

] [x̂1−x1

σ1(t)
x̂2−x2

σ2(t)

]
dt

In practice, we use an Euler sampler with 200 discrete timesteps ∆t = ti+1 − ti < 0. The timesteps
are generated as a linearly spaced grid on [0, 1] and transformed afterwards into noise levels σk(t)
via the described timewarping procedure. For the discretized and simplified ODE above, this yields

xi+1 = xi −

[
∆σ1(t)

∆t
∆σ2(t)

∆t

][
x̂1−x1

σ1(t)
x̂2−x2

σ2(t)

]
∆t = xi +

[
x1−x̂1

σ1(t)
x2−x̂2

σ2(t)

]
⊙

[
∆σ1(t)
∆σ2(t)

]
.

where ⊙ denotes the element-wise product. Hence, we are effectively taking feature-specific steps
of length ∆σk(t). The adaptive noise schedules (timewarping) therefore not only affect the training
process, but also focus most work in the reverse process on the noise levels that matter most for
sample quality (i.e., where ∆σi(t) is small).

We use finite differences to approximate σ̇i, instead of the available, analytical variant, since
dσk(t)

dt → ∞ as t → 1. The step ∆t would therefore be required to decrease as t → 1 to ensure
∆t ≈ dt holds. For a large number of steps, this assumption does not hold in practice, and for
dσk(t)

dt the update of x overshoots the target drastically. Intuitively, σk(t) becomes too steep near the

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

terminal timestep t = 1 such that the step size can not sufficiently compensate for the slope increase
to turn dσk(t)

dt into a good approximation of the actual change in σk(t). Moreover, the analytical
solution would approximate dσk(t) = σ̇k(t)dt, i.e., the change in the noise level caused by a change
in t. Since we know exactly where σk(t) will end up when changing t, we are better off using that
exact value and let dσk(t) = ∆σk(t). Table 6 shows that the gains in sample quality are marginal
to non-existent after more than 500 sampling steps.

Table 6: Performance sensitivity of CDTD (per type) to increasing number of sampling steps. Each
metric is averaged over five seeds. As a robust measure, we report the median over the ablation study
datasets acsincome, adult, beijing and churn .

Steps RMSE F1 AUC L2 distance of corr. Detection score JSD WD DCR

200 (default) 0.033 0.015 0.004 0.127 0.560 0.013 0.003 0.372
500 0.028 0.018 0.005 0.130 0.565 0.012 0.003 0.372

1000 0.028 0.018 0.005 0.129 0.560 0.012 0.003 0.373
1500 0.028 0.018 0.005 0.129 0.561 0.012 0.003 0.374

L SENSITIVITY TO IMPORTANT HYPERPARAMETERS

The training and sampling processes of CDTD are affected by various novel hyperparameters.
Generally, a per-type noise schedule works best as we show in our main results in Table 1 for a
diverse set of benchmark datasets. Here, we examine the sensitivity of CDTD to two additional
important hyperparameters: (1) the standard deviation of the noise used to initialize the embeddings
(and therefore specific to score interpolation), σinit, and (2) the weight of the low noise levels used to
initialize the µk in the adaptive noise schedule parameterization.

The experiments in Dieleman et al. (2022) show that σinit is a crucial hyperparameter for score
interpolation on text data. The same sensitivity does not translate to the tabular data domain, as
shown in our results in Table 7. The much smaller embedding dimension (16 vs. 256) and the feature-
specific embeddings significantly decrease the number of distinguishable categories. Compared to
a vocabulary size of 32000 for text data (Dieleman et al., 2022), we only face a maximum of 3151
categories in the lending dataset (see Table 3). Thus, unlike other generative (diffusion) models
for tabular data, CDTD scales to a practically arbitrary number of categories.

Our proposed functional form for the adaptive noise schedules (see Appendix D) is the first to allow
for the incorporation of prior information about the importance of low vs. high (normalized) noise
levels. For this, we adjust the weight of low noise levels which directly determines the location of the
inflection point µk (see Section 3.3). The results in Table 8 indicate low sample quality sensitivity to
weight changes for a per-type noise schedule. The initialization only impacts the time to convergence
but not (much) the location of the optimum. In our experiments, the number of training steps (30000)
appears to be high enough for all model variants to converge.

Table 7: Performance sensitivity of CDTD (per type) to changes in the standard deviation σinit in
the initialization of the embeddings of categorical features. Each metric is averaged over five seeds.
As a robust measure, we report the median over the ablation study datasets acsincome, adult,
beijing and churn .

σinit RMSE F1 AUC L2 distance of corr. Detection score JSD WD DCR

1 0.032 0.017 0.006 0.126 0.564 0.011 0.004 0.311
0.1 0.035 0.016 0.004 0.128 0.570 0.012 0.004 0.358
0.01 0.032 0.017 0.005 0.131 0.566 0.011 0.004 0.369

0.001 (default) 0.033 0.015 0.004 0.127 0.560 0.013 0.003 0.372

M ADVANTAGES OF DIFFUSION IN DATA SPACE

These days, inspired from diffusion models in the image and video domains, much work relies on the
idea of latent diffusion. Here, we want to briefly discuss and emphasize that for tabular data, diffusion

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 8: Performance sensitivity of CDTD (per type) to changes in the prior weight of low noise
levels in the initialization of the adaptive noise schedules. Each metric is averaged over five seeds.
As a robust measure, we report the median over the ablation study datasets acsincome, adult,
beijing and churn .

Weight RMSE F1 AUC L2 distance of corr. Detection score JSD WD DCR

1 0.036 0.015 0.004 0.143 0.651 0.015 0.003 0.313
2 0.030 0.014 0.005 0.147 0.651 0.014 0.003 0.352

3 (default) 0.033 0.015 0.004 0.154 0.651 0.013 0.004 0.366
4 0.034 0.019 0.005 0.148 0.656 0.013 0.004 0.370

in latent space (represented by TabSyn) has important drawbacks and how CDTD, a diffusion model
defined in data space differs from that.

Latent diffusion models first encode the data and map it into a latent space. The diffusion model itself
is then trained in that latent space. Hence, the performance of the diffusion model directly depends
on a second, separate model, with a separate training procedure. TabSyn uses a VAE model to encode
mixed-type data into a common continuous space that is not lower-dimensional, so as to minimize
reconstruction errors. Any reconstruction errors caused by the incapability of the VAE in turn reduce
the sample quality of the eventually generated samples, no matter the capacity of the diffusion model.
This suggests that we would want to train a high capable encoder/decoder, which adds additional
training costs. Figure 3 shows that latent diffusion is not necessarily more efficient in the tabular data
domain. In particular, if the latent space is not lower-dimensional to minimize reconstruction error,
then sampling speed is not improved.

We further hypothesize that much tabular data, due to the lack of redundancy and spatial or sequential
correlation, is difficult to summarize efficiently in a joint latent space. Hence, compared to other
domains, larger VAEs and higher-dimensional latent spaces are required, increasing the training time.
Also, there is the risk of the VAE not picking up on subtle correlations within the data or distorting
existing correlations by mapping into the latent space. Any correlations not properly encoded in the
latent space, cannot be learned or exploited by the diffusion model. Since we optimize the VAE on
an average loss, its reconstruction and encoding performance of, for instance, minority classes or
extreme values in long-tailed distributions is likely lacking. This makes the job of the diffusion model
more difficult, if not impossible.

Lastly, we take great care in homogenizing categorical and continuous features throughout the training
process (see Appendix A and B). This is a crucial part of modeling mixed-type data. Using a VAE to
define a diffusion process in latent space only shifts the necessity for homogenization to the VAE
training process. Not balancing different feature- or data-types and their losses induces an implicit
importance weight for each feature. Thus, the VAE may sacrifice the reconstruction quality of some
features in favor of others (Kendall et al., 2018; Ma et al., 2020).

To empirically investigate the difference of diffusion in data space (CDTD) and latent diffusion
(TabSyn), we examine the worst feature-specific sample quality and other metrics that directly benefit
from the model generating all features well. Our results in Table 9 show that, latent diffusion comes
with a considerable decrease in sample quality (while imposing a similar architecture and number of
parameters as well as sampling steps, see Appendix G). In particular, the attained maximum metrics
indicate that TabSyn has issues modeling all features and their correlations sufficiently well. This
supports our argument that a homogenization of data types is of crucial importance to avoid having
the model implicitly favor one feature over another.

N COMPARISON TO RELATED WORK

Table 10 summarizes our comparison of CDTD to the selected diffusion-based benchmark models,
that is, TabSyn, TabDDPM and CoDi. Of those models, only TabSyn applies diffusion in latent space,
which comes with both advantages and costs (as discussed in Appendix M). TabSyn is the only other
model besides CDTD that avoids one-hot encoding categorical features by using embeddings. This
improves the scalability to a higher number of categories without blowing up the input dimensions.
Although both models utilize embeddings, TabSyn’s generative capabilities are more constrained by

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 9: A comparison of the CDTD model to latent diffusion (TabSyn). We average each metric over
five sampling seeds and as a robust measure report the median over the ablation datasets acsincome,
adult, beijing and churn. Abs. diff. in corr. matrices refers to the absolute differences in the
correlation matrices between ground truth and synthetic data. The maximum, minimum and mean
are taken across features.

Detection
score

L2 dist.
of corr.

JSD WD Abs. diff. in
corr. matrices

min mean max min mean max min max

TabSyn 0.772 0.479 0.005 0.018 0.046 0.003 0.006 0.017 0 0.133
CDTD (per type) 0.566 0.131 0.001 0.012 0.022 0.001 0.003 0.007 0 0.052

improvement over TabSyn 1.364 3.656 5.000 1.500 2.091 3.000 2.000 2.429 0 2.558

jointly encoding all features in a latent space. As such, it is still less flexible than CDTD, in particular
when modeling very unbalanced categorical data. Information on rare categories may easily be cut
off in favor of attributing more capacity in the latent space to more prominent categories or features.
It should also be noted that TabSyn is the only model that makes use of a Transformer architecture in
its VAE, which means that it scales quadratically in the number of features and therefore may not be
easily scaled to high-dimensional data.

The CDTD model is the first to utilize adaptive and type- or feature-specific noise schedules to
model tabular data. Further, we take great care in homogenizing categorical and continuous features
throughout the training process, including the model initialization (see Appendix A and B). No
other model attempts balancing the different features types. This is problematic as it suggests that
other models may suffer from feature-specific induced implicit importance weights that impact both
training and generation processes. Hence, the sample quality of some features may be unintentionally
sacrificed in favor of increasing the sample quality of other features (Kendall et al., 2018; Ma et al.,
2020). Note that this also applies to TabSyn: Even though their diffusion model avoids this issue by
relying on a single type of loss due to the continuous latent space, the VAE training process does
not account for any balancing issues between the two data types. Hence, the balancing issue is not
eliminated but got only shifted to the encoder VAE.

Lastly, CDTD and TabSyn are the only models that define the diffusion process in continuous space.
As such, other advanced techniques, like classifier-free guidance or ODE/SDE samplers, can be
directly applied. To accommodate categorical data, CoDi and TabDDPM make use of multinomial
diffusion (Hoogeboom et al., 2021), which is an inherently discrete process and therefore prohibits
such applications.

Table 10: Comparison of CDTD to the diffusion-based generative models CoDi, TabDDPM and
TabSyn. (∗) Note that the VAE trained as part of the TabSyn model does not balance type-specific
losses, which induces an implicit weighting among features. This can worsen the sample quality of
some features in favor of others.

defined in
feature space

avoids one-hot
encoding

balances
feature types

adaptive
noise schedule

type- or feature-
specific noise schedules

diffusion in
continuous space

CoDi ✓
TabDDPM ✓
TabSyn ✓ ∗ ✓

CDTD (ours) ✓ ✓ ✓ ✓ ✓ ✓

O EXAMPLES OF LEARNED NOISE SCHEDULES

Next, we show the learned noise schedules for the smallest (churn) and the largest (acsincome)
datasets. Additionally, we illustrate the fit of single, per type and per feature schedules to the
respective losses.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

0.0

0.2

0.4

0.6

0.8

1.0

S
in

gl
e

no
is

e
le

ve
lσ

t
sc

al
ed

to
[0

,1
]

0

5

10

15

20

p(
σ

t)

0.0

0.2

0.4

0.6

0.8

1.0

P
er

Ty
pe

no
is

e
le

ve
lσ

t
sc

al
ed

to
[0

,1
]

categorical
continuous

0

5

10

15

20

25

30

p(
σ

t)

categorical
continuous

0.0 0.2 0.4 0.6 0.8 1.0

timestep t

0.0

0.2

0.4

0.6

0.8

1.0

P
er

Fe
at

ur
e

no
is

e
le

ve
lσ

t
sc

al
ed

to
[0

,1
]

0.0 0.2 0.4 0.6 0.8 1.0

σt scaled to [0,1]

0

20

40

60
p(
σ

t)

Figure 5: (Left): Learned noise schedules for churn. This reflects F−1
d.a.log,k. (Right): Implicit

weighting of noise levels / timesteps. This visualizes fd.a.log,k.

10−4 10−3 10−2 10−1 100

σt scaled to [0,1]

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

fitted function
true diffusion loss

10−4 10−3 10−2 10−1 100

σt scaled to [0,1]

categorical
continuous
fitted function
true diffusion loss

10−4 10−3 10−2 10−1 100

σt scaled to [0,1]

fitted function
true diffusion loss

Figure 6: Illustration of the goodness of fit of the timewarping function Fk for single (left), per type
(middle) and per feature noise schedules (right) on the churn data.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

0.0

0.2

0.4

0.6

0.8

1.0

S
in

gl
e

no
is

e
le

ve
lσ

t
sc

al
ed

to
[0

,1
]

0

5

10

15

20

25

p(
σ

t)

0.0

0.2

0.4

0.6

0.8

1.0

P
er

Ty
pe

no
is

e
le

ve
lσ

t
sc

al
ed

to
[0

,1
]

categorical
continuous

0

10

20

30

40

p(
σ

t)

categorical
continuous

0.0 0.2 0.4 0.6 0.8 1.0

timestep t

0.0

0.2

0.4

0.6

0.8

1.0

P
er

Fe
at

ur
e

no
is

e
le

ve
lσ

t
sc

al
ed

to
[0

,1
]

0.0 0.2 0.4 0.6 0.8 1.0

σt scaled to [0,1]

0

20

40

60
p(
σ

t)

Figure 7: (Left): Learned noise schedules for acsincome. This reflects F−1
d.a.log,k. (Right): Implicit

weighting of noise levels / timesteps. This visualizes fd.a.log,k.

10−4 10−3 10−2 10−1 100

σt scaled to [0,1]

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

fitted function
true diffusion loss

10−4 10−3 10−2 10−1 100

σt scaled to [0,1]

categorical
continuous
fitted function
true diffusion loss

10−4 10−3 10−2 10−1 100

σt scaled to [0,1]

fitted function
true diffusion loss

Figure 8: Illustration of the goodness of fit of the timewarping function Fk for single (left), per type
(middle) and per feature noise schedules (right) on the acsincome data.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

P QUALITATIVE COMPARISONS

2.5

5.0

7.5

10.0

12.5

15.0

ed
uc

at
io

na
l-

nu
m

Real Data SMOTE ARF CTGAN TVAE

0 25 50 75

age

2.5

5.0

7.5

10.0

12.5

15.0

ed
uc

at
io

na
l-

nu
m

TabDDPM

0 25 50 75

age

CoDi

0 25 50 75

age

TabSyn

0 25 50 75

age

CDTD (per type)

0 25 50 75

age

CDTD (per feature)

Figure 9: Bivariate density for age and educational-num from the adult data.

0 10 20

educational-num

0.00

0.01

0.02

0.03

0.04

D
en

si
ty

Adult

−5 0 5

emp.var.rate

0.00

0.02

0.04

0.06

0.08

D
en

si
ty

Bank

0 20 40

Call Failure

0.000

0.002

0.004

0.006

0.008

D
en

si
ty

Churn

0 2

health

0.0

0.1

0.2

0.3

0.4

0.5

D
en

si
ty

NMES

2 540 631

marital-status

0

5000

10000

15000

C
ou

nt

0 5 62 71 3 4

education

0

2500

5000

7500

10000

12500

C
ou

nt

430 1 2

Age Group

0

200

400

600

800

1000

C
ou

nt

20 1 3

region

0

250

500

750

1000

1250

C
ou

nt

Real
SMOTE

ARF
TVAE

CTGAN
TabDDPM

CoDi
TabSyn

CDTD (per type)
CDTD (per feature)

Figure 10: Comparison of some univariate distributions for adult, bank, churn, nmes.

0 500 1000

pm2.5

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

D
en

si
ty

Beijing

0 50

AGE

0.000

0.002

0.004

0.006

D
en

si
ty

Default

0 50 100

account never delinq percent

0.000

0.005

0.010

0.015

0.020

0.025

D
en

si
ty

Lending

0.0 0.5 1.0

avg positive polarity

0.0

0.2

0.4

0.6

D
en

si
ty

News

0 1 32

cbwd

0

2500

5000

7500

10000

C
ou

nt

321 650 4

EDUCATION

0

2000

4000

6000

8000

10000

C
ou

nt

21 3 84 6 7 100 5 119

loan purpose

0

1000

2000

3000

4000

C
ou

nt

0 1

weekday is monday

0

5000

10000

15000

20000

C
ou

nt

Real
SMOTE

ARF
TVAE

CTGAN
TabDDPM

CoDi
TabSyn

CDTD (per type)
CDTD (per feature)

Figure 11: Comparison of some univariate distributions for beijing, default, lending, news.
(Note that CoDi is prohibitively expensive to train on lending and therefore excluded.)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Q VISUALIZATIONS OF CAPTURED CORRELATIONS

Cat. Cont.

ARF

Cat. Cont.

TVAE

Cat. Cont.

CTGAN

Cat. Cont.

CoDi

Cat. Cont.

C
at

.
C

on
t.

TabSyn

Cat. Cont.

CDTD
(single)

Cat. Cont.

CDTD
(per type)

Cat. Cont.

CDTD
(per feature)

Cat. Cont.

Real Test Set

0 0.02 0.04 0.06 0.08 ≥ 0.1

Figure 12: Element-wise absolute differences of the correlation matrices between the real training set
and the synthetic data for the acsincome dataset. TabDDPM generates NaNs for this dataset and is
therefore excluded. SMOTE takes too long for sampling. Continuous (cont.) and categorical (cat.)
features are indicated on the axes.

Cat. Cont.

C
at

.
C

on
t.

SMOTE

Cat. Cont.

ARF

Cat. Cont.

TVAE

Cat. Cont.

CTGAN

Cat. Cont.

TabDDPM

Cat. Cont.

CoDi

Cat. Cont.

C
at

.
C

on
t.

TabSyn

Cat. Cont.

CDTD
(single)

Cat. Cont.

CDTD
(per type)

Cat. Cont.

CDTD
(per feature)

Cat. Cont.

Real Test Set

0 0.02 0.04 0.06 0.08 ≥ 0.1

Figure 13: Element-wise absolute differences of the correlation matrices between the real training set
and the synthetic data for the adult dataset. Continuous (cont.) and categorical (cat.) features are
indicated on the axes.

Cat. Cont.

C
at

.
C

on
t.

SMOTE

Cat. Cont.

ARF

Cat. Cont.

TVAE

Cat. Cont.

CTGAN

Cat. Cont.

TabDDPM

Cat. Cont.

CoDi

Cat. Cont.

C
at

.
C

on
t.

TabSyn

Cat. Cont.

CDTD
(single)

Cat. Cont.

CDTD
(per type)

Cat. Cont.

CDTD
(per feature)

Cat. Cont.

Real Test Set

0 0.02 0.04 0.06 0.08 ≥ 0.1

Figure 14: Element-wise absolute differences of the correlation matrices between the real training set
and the synthetic data for the bank dataset. Continuous (cont.) and categorical (cat.) features are
indicated on the axes.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Cat. Cont.

C
at

.
C

on
t.

SMOTE

Cat. Cont.

ARF

Cat. Cont.

TVAE

Cat. Cont.

CTGAN

Cat. Cont.

TabDDPM

Cat. Cont.

CoDi

Cat. Cont.

C
at

.
C

on
t.

TabSyn

Cat. Cont.

CDTD
(single)

Cat. Cont.

CDTD
(per type)

Cat. Cont.

CDTD
(per feature)

Cat. Cont.

Real Test Set

0 0.02 0.04 0.06 0.08 ≥ 0.1

Figure 15: Element-wise absolute differences of the correlation matrices between the real training set
and the synthetic data for the beijing dataset. Continuous (cont.) and categorical (cat.) features
are indicated on the axes.

Cat. Cont.

C
at

.
C

on
t.

SMOTE

Cat. Cont.

ARF

Cat. Cont.

TVAE

Cat. Cont.

CTGAN

Cat. Cont.

TabDDPM

Cat. Cont.

CoDi

Cat. Cont.

C
at

.
C

on
t.

TabSyn

Cat. Cont.

CDTD
(single)

Cat. Cont.

CDTD
(per type)

Cat. Cont.

CDTD
(per feature)

Cat. Cont.

Real Test Set

0 0.02 0.04 0.06 0.08 ≥ 0.1

Figure 16: Element-wise absolute differences of the correlation matrices between the real training set
and the synthetic data for the churn dataset. Continuous (cont.) and categorical (cat.) features are
indicated on the axes.

Cat. Cont.

ARF

Cat. Cont.

TVAE

Cat. Cont.

CTGAN

Cat. Cont.

TabDDPM

Cat. Cont.

CoDi

Cat. Cont.

C
at

.
C

on
t.

TabSyn

Cat. Cont.

CDTD
(single)

Cat. Cont.

CDTD
(per type)

Cat. Cont.

CDTD
(per feature)

Cat. Cont.

Real Test Set

0 0.02 0.04 0.06 0.08 ≥ 0.1

Figure 17: Element-wise absolute differences of the correlation matrices between the real training set
and the synthetic data for the covertype dataset. SMOTE takes too long for sampling. Continuous
(cont.) and categorical (cat.) features are indicated on the axes.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Cat. Cont.

C
at

.
C

on
t.

SMOTE

Cat. Cont.

ARF

Cat. Cont.

TVAE

Cat. Cont.

CTGAN

Cat. Cont.

TabDDPM

Cat. Cont.

CoDi

Cat. Cont.

C
at

.
C

on
t.

TabSyn

Cat. Cont.

CDTD
(single)

Cat. Cont.

CDTD
(per type)

Cat. Cont.

CDTD
(per feature)

Cat. Cont.

Real Test Set

0 0.02 0.04 0.06 0.08 ≥ 0.1

Figure 18: Element-wise absolute differences of the correlation matrices between the real training set
and the synthetic data for the default dataset. Continuous (cont.) and categorical (cat.) features
are indicated on the axes.

Cat. Cont.

C
at

.
C

on
t.

SMOTE

Cat. Cont.

ARF

Cat. Cont.

TVAE

Cat. Cont.

CTGAN

Cat. Cont.

C
at

.
C

on
t.

TabSyn

Cat. Cont.

CDTD
(single)

Cat. Cont.

CDTD
(per type)

Cat. Cont.

CDTD
(per feature)

Cat. Cont.

Real Test Set

0 0.02 0.04 0.06 0.08 ≥ 0.1

Figure 19: Element-wise absolute differences of the correlation matrices between the real training set
and the synthetic data for the diabetes dataset. TabDDPM generates NaNs for this dataset and
is therefore excluded. CoDi is prohibitively expensive to train and therefore excluded. Continuous
(cont.) and categorical (cat.) features are indicated on the axes.

Cat. Cont.

C
at

.
C

on
t.

SMOTE

Cat. Cont.

ARF

Cat. Cont.

TVAE

Cat. Cont.

CTGAN

Cat. Cont.

TabDDPM

Cat. Cont.

C
at

.
C

on
t.

TabSyn

Cat. Cont.

CDTD
(single)

Cat. Cont.

CDTD
(per type)

Cat. Cont.

CDTD
(per feature)

Cat. Cont.

Real Test Set

0 0.02 0.04 0.06 0.08 ≥ 0.1

Figure 20: Element-wise absolute differences of the correlation matrices between the real training
set and the synthetic data for the lending dataset. CoDi is prohibitively expensive to train and
therefore excluded. Continuous (cont.) and categorical (cat.) features are indicated on the axes.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Cat. Cont.

C
at

.
C

on
t.

SMOTE

Cat. Cont.

ARF

Cat. Cont.

TVAE

Cat. Cont.

CTGAN

Cat. Cont.

TabDDPM

Cat. Cont.

CoDi

Cat. Cont.

C
at

.
C

on
t.

TabSyn

Cat. Cont.

CDTD
(single)

Cat. Cont.

CDTD
(per type)

Cat. Cont.

CDTD
(per feature)

Cat. Cont.

Real Test Set

0 0.02 0.04 0.06 0.08 ≥ 0.1

Figure 21: Element-wise absolute differences of the correlation matrices between the real training set
and the synthetic data for the news dataset. Continuous (cont.) and categorical (cat.) features are
indicated on the axes.

Cat. Cont.

C
at

.
C

on
t.

SMOTE

Cat. Cont.

ARF

Cat. Cont.

TVAE

Cat. Cont.

CTGAN

Cat. Cont.

TabDDPM

Cat. Cont.

CoDi

Cat. Cont.

C
at

.
C

on
t.

TabSyn

Cat. Cont.

CDTD
(single)

Cat. Cont.

CDTD
(per type)

Cat. Cont.

CDTD
(per feature)

Cat. Cont.

Real Test Set

0 0.02 0.04 0.06 0.08 ≥ 0.1

Figure 22: Element-wise absolute differences of the correlation matrices between the real training set
and the synthetic data for the nmes dataset. Continuous (cont.) and categorical (cat.) features are
indicated on the axes.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

R DETAILED RESULTS

CoDi is prohibitively expensive to train on lending and diabetes and TabDDPM produces
NaNs for acsincome and diabetes. SMOTE takes too long to sample datasets of a sufficient
size for acsincome and covertype (see Table 29). For those models, the performance metrics
on these datasets are therefore not reported. They are assigned a rank of 10 in Table 1 and are not
taken into account when forming the average metrics reported in Table 11.
Table 11: Model evaluation results averaged over 11 datasets (skipping a dataset if the model was not
trainable on it, which due to extensive sampling times for SMOTE includes two of the most complex
datasets, acsincome and covertype) for seven benchmark models and for CDTD with three
different noise schedules. Per performance metric, bold indicates the best, underline the second best
result.

SMOTE ARF CTGAN TVAE TabDDPM CoDi TabSyn CDTD
(single)

CDTD
(per type)

CDTD
(per feature)

RMSE (abs. diff.; ↓) 0.083 0.094 0.674 0.947 0.486 0.173 0.313 0.084 0.101 0.110
F1 (abs. diff.; ↓) 0.007 0.053 0.130 0.074 0.015 0.044 0.099 0.025 0.020 0.025
AUC (abs. diff.; ↓) 0.008 0.020 0.080 0.065 0.009 0.027 0.059 0.018 0.016 0.022
L2 distance of corr. (↓) 0.866 1.321 2.187 2.745 3.786 1.200 2.025 0.782 0.756 0.990
Detection score (↓) 0.661 0.934 0.986 0.976 0.769 0.936 0.877 0.796 0.768 0.783
JSD (↓) 0.055 0.011 0.114 0.152 0.051 0.038 0.048 0.015 0.016 0.018
WD (↓) 0.004 0.011 0.023 0.025 0.061 0.022 0.016 0.010 0.007 0.009
DCR (abs. diff. to test; ↓) 1.278 1.588 3.336 1.621 0.568 1.000 2.593 0.796 0.806 0.758

Table 12: L2 norm (incl. standard errors in subscripts) of the correlation matrix differences of real and
synthetic train sets for seven benchmark models and for CDTD with three different noise schedules.

SMOTE ARF CTGAN TVAE TabDDPM CoDi TabSyn CDTD
(single)

CDTD
(per type)

CDTD
(per feature)

acsincome - 0.242±0.002 1.696±0.008 1.136±0.004 - 0.517±0.006 0.524±0.010 0.141±0.003 0.129±0.003 0.119±0.002

adult 0.414±0.016 0.576±0.006 1.858±0.010 0.735±0.012 0.156±0.006 0.493±0.009 0.449±0.011 0.170±0.007 0.125±0.009 0.128±0.010

bank 0.404±0.015 0.819±0.024 0.947±0.019 2.758±0.049 0.898±0.025 0.499±0.021 0.677±0.015 0.323±0.008 0.266±0.011 0.256±0.015

beijing 0.081±0.007 0.133±0.006 1.445±0.009 1.642±0.015 1.133±0.035 0.363±0.015 0.096±0.008 0.075±0.008 0.073±0.009 0.071±0.004

churn 0.264±0.036 0.635±0.026 1.355±0.043 1.301±0.041 0.327±0.044 0.746±0.062 0.509±0.053 0.302±0.041 0.289±0.043 0.282±0.044

covertype - 1.192±0.017 3.685±0.005 4.668±0.003 1.044±0.001 1.029±0.032 3.958±0.243 2.359±0.011 2.275±0.009 2.710±0.009

default 0.709±0.048 1.228±0.021 2.697±0.021 1.564±0.029 3.408±0.105 1.672±0.061 1.121±0.042 0.627±0.068 0.652±0.102 0.737±0.033

diabetes 2.355±0.026 1.189±0.004 1.654±0.008 5.351±0.095 - - 2.381±0.026 1.201±0.020 0.803±0.032 1.345±0.016

lending 1.321±0.063 3.473±0.057 2.420±0.016 5.895±0.026 10.675±0.015 - 6.701±0.034 1.042±0.075 1.189±0.040 1.363±0.097

news 1.684±1.466 4.333±0.128 4.641±0.028 4.612±0.016 15.985±0.081 4.874±0.148 4.990±0.024 1.925±0.527 2.035±0.475 3.395±0.950

nmes 0.565±0.047 0.717±0.054 1.663±0.035 0.532±0.030 0.447±0.031 0.609±0.032 0.867±0.046 0.433±0.025 0.478±0.083 0.481±0.058

Table 13: Jensen-Shannon divergence (incl. standard errors in subscripts) for seven benchmark models
and for CDTD with three different noise schedules.

SMOTE ARF CTGAN TVAE TabDDPM CoDi TabSyn CDTD
(single)

CDTD
(per type)

CDTD
(per feature)

acsincome - 0.013±0.001 0.256±0.000 0.309±0.000 - 0.076±0.001 0.045±0.001 0.025±0.001 0.024±0.000 0.022±0.001

adult 0.064±0.001 0.007±0.001 0.112±0.001 0.113±0.001 0.034±0.001 0.045±0.001 0.020±0.001 0.010±0.001 0.013±0.001 0.016±0.000

bank 0.039±0.001 0.004±0.000 0.086±0.001 0.191±0.001 0.029±0.001 0.038±0.001 0.054±0.001 0.010±0.000 0.009±0.001 0.012±0.001

beijing 0.006±0.002 0.005±0.002 0.147±0.003 0.257±0.001 0.035±0.003 0.018±0.004 0.007±0.002 0.003±0.001 0.005±0.002 0.005±0.001

churn 0.012±0.004 0.011±0.004 0.095±0.003 0.048±0.004 0.014±0.004 0.043±0.001 0.017±0.002 0.012±0.003 0.012±0.002 0.011±0.002

covertype - 0.002±0.000 0.044±0.000 0.043±0.000 0.004±0.000 0.008±0.000 0.049±0.000 0.008±0.000 0.008±0.000 0.011±0.000

default 0.042±0.001 0.008±0.001 0.194±0.001 0.177±0.001 0.027±0.002 0.073±0.002 0.082±0.001 0.013±0.001 0.015±0.001 0.015±0.001

diabetes 0.067±0.000 0.009±0.000 0.093±0.000 0.187±0.000 - - 0.095±0.000 0.022±0.000 0.023±0.000 0.026±0.000

lending 0.143±0.001 0.049±0.002 0.092±0.001 0.188±0.001 0.243±0.002 - 0.114±0.002 0.055±0.001 0.056±0.001 0.064±0.002

news 0.063±0.001 0.002±0.001 0.022±0.001 0.128±0.001 0.046±0.000 0.012±0.001 0.016±0.001 0.003±0.001 0.003±0.001 0.003±0.001

nmes 0.060±0.001 0.008±0.002 0.117±0.002 0.029±0.003 0.028±0.004 0.027±0.003 0.026±0.001 0.008±0.001 0.009±0.001 0.013±0.003

Table 14: Wasserstein distance (incl. standard errors in subscripts) for seven benchmark models and
for CDTD with three different noise schedules.

SMOTE ARF CTGAN TVAE TabDDPM CoDi TabSyn CDTD
(single)

CDTD
(per type)

CDTD
(per feature)

acsincome - 0.007±0.000 0.037±0.000 0.021±0.000 - 0.017±0.000 0.005±0.000 0.002±0.000 0.001±0.000 0.001±0.000

adult 0.003±0.000 0.012±0.000 0.016±0.000 0.021±0.000 0.003±0.000 0.013±0.000 0.006±0.000 0.006±0.000 0.004±0.000 0.003±0.000

bank 0.002±0.001 0.012±0.000 0.021±0.000 0.040±0.001 0.011±0.000 0.030±0.001 0.005±0.000 0.006±0.001 0.004±0.000 0.004±0.000

beijing 0.002±0.000 0.009±0.000 0.021±0.000 0.058±0.001 0.011±0.000 0.019±0.000 0.004±0.000 0.004±0.000 0.003±0.000 0.002±0.000

churn 0.006±0.001 0.013±0.001 0.027±0.001 0.032±0.001 0.008±0.002 0.048±0.002 0.013±0.002 0.008±0.001 0.007±0.001 0.006±0.001

covertype - 0.006±0.000 0.041±0.000 0.022±0.000 0.003±0.000 0.012±0.000 0.017±0.000 0.017±0.000 0.015±0.000 0.012±0.000

default 0.002±0.000 0.005±0.000 0.011±0.000 0.005±0.000 0.005±0.000 0.013±0.000 0.003±0.000 0.004±0.000 0.004±0.000 0.003±0.000

diabetes 0.004±0.000 0.012±0.000 0.020±0.000 0.038±0.000 - - 0.011±0.000 0.038±0.000 0.020±0.000 0.042±0.000

lending 0.006±0.000 0.013±0.001 0.011±0.000 0.016±0.000 0.425±0.001 - 0.050±0.000 0.009±0.000 0.010±0.000 0.011±0.000

news 0.007±0.000 0.024±0.000 0.009±0.000 0.018±0.000 0.078±0.001 0.030±0.000 0.025±0.000 0.007±0.000 0.006±0.000 0.008±0.000

nmes 0.005±0.001 0.012±0.000 0.036±0.000 0.008±0.000 0.007±0.001 0.016±0.001 0.038±0.001 0.006±0.001 0.006±0.001 0.006±0.000

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Table 15: Detection score (incl. standard errors in subscripts) for seven benchmark models and for
CDTD with three different noise schedules.

SMOTE ARF CTGAN TVAE TabDDPM CoDi TabSyn CDTD
(single)

CDTD
(per type)

CDTD
(per feature)

acsincome - 0.808±0.001 0.989±0.001 0.985±0.000 - 0.825±0.002 0.680±0.002 0.540±0.003 0.532±0.004 0.526±0.002

adult 0.320±0.006 0.889±0.002 0.997±0.000 0.967±0.001 0.590±0.003 0.992±0.001 0.630±0.003 0.604±0.002 0.588±0.002 0.591±0.005

bank 0.633±0.008 0.955±0.002 1.000±0.000 0.988±0.001 0.783±0.003 1.000±0.000 0.843±0.002 0.795±0.003 0.739±0.003 0.694±0.006

beijing 0.976±0.001 0.995±0.000 0.998±0.000 0.993±0.001 0.966±0.002 0.997±0.001 0.966±0.001 0.951±0.002 0.949±0.001 0.947±0.002

churn 0.339±0.020 0.853±0.002 0.945±0.006 0.843±0.011 0.561±0.005 0.730±0.012 0.865±0.012 0.621±0.016 0.533±0.007 0.544±0.031

covertype - 0.945±0.002 0.997±0.000 0.989±0.001 0.586±0.002 0.900±0.002 0.979±0.001 0.991±0.001 0.992±0.001 0.991±0.001

default 0.493±0.009 0.991±0.001 0.998±0.001 0.997±0.001 0.821±0.002 0.995±0.000 0.902±0.001 0.827±0.004 0.802±0.003 0.871±0.001

diabetes 0.367±0.001 0.854±0.002 0.935±0.002 0.997±0.001 - - 0.940±0.001 0.858±0.001 0.780±0.002 0.866±0.002

lending 0.926±0.004 0.997±0.001 0.995±0.002 0.995±0.001 1.000±0.000 - 0.998±0.001 0.955±0.006 0.954±0.009 0.961±0.004

news 0.993±0.001 0.998±0.000 1.000±0.000 1.000±0.000 0.966±0.002 1.000±0.000 0.999±0.000 0.973±0.001 0.953±0.001 0.977±0.001

nmes 0.905±0.007 0.987±0.002 0.992±0.003 0.988±0.002 0.650±0.014 0.988±0.000 0.841±0.008 0.636±0.008 0.623±0.008 0.642±0.010

Table 16: Distance to closest record of the generated data (incl. standard errors in subscripts) for
seven benchmark models and for CDTD with three different noise schedules.

Test Set SMOTE ARF CTGAN TVAE TabDDPM CoDi TabSyn CDTD
(single)

CDTD
(per type)

CDTD
(per feature)

acsincome 7.673±0.017 - 8.637±0.027 10.758±0.054 6.652±0.032 - 10.877±0.092 10.305±0.073 8.346±0.056 8.322±0.047 8.349±0.033

adult 1.870±0.000 1.371±0.018 2.523±0.012 5.012±0.028 2.227±0.013 1.647±0.009 2.735±0.028 2.341±0.013 1.112±0.019 1.231±0.011 1.294±0.009

bank 2.369±0.000 1.369±0.011 3.025±0.017 3.840±0.014 3.136±0.007 2.327±0.010 3.062±0.012 2.973±0.012 1.828±0.008 1.943±0.007 2.062±0.008

beijing 0.385±0.000 0.139±0.003 0.735±0.003 1.004±0.006 0.926±0.003 0.739±0.006 0.610±0.002 0.626±0.001 0.490±0.002 0.489±0.001 0.477±0.002

churn 0.347±0.000 0.232±0.028 1.136±0.015 1.804±0.036 1.146±0.039 0.342±0.031 0.852±0.016 1.130±0.018 0.332±0.021 0.274±0.021 0.276±0.012

covertype 0.529±0.001 - 1.741±0.011 5.773±0.017 3.173±0.013 0.889±0.007 1.508±0.020 3.086±0.009 2.297±0.026 2.209±0.022 2.252±0.013

default 1.812±0.000 1.032±0.010 3.095±0.026 5.880±0.020 3.216±0.013 1.422±0.013 2.593±0.020 2.603±0.018 1.127±0.028 1.269±0.014 1.253±0.012

diabetes 15.608±0.055 13.909±0.050 17.736±0.107 21.935±0.046 8.214±0.022 - - 28.955±0.060 15.279±0.026 15.126±0.058 15.350±0.059

lending 11.184±0.000 17.752±0.143 17.776±0.132 20.239±0.222 10.688±0.025 12.537±0.076 - 16.222±0.092 13.775±0.147 14.162±0.188 13.966±0.282

news 3.615±0.000 3.553±0.134 6.147±0.010 4.789±0.005 5.821±0.003 4.960±0.006 4.661±0.023 5.351±0.008 3.635±0.004 3.687±0.006 3.749±0.048

nmes 1.931±0.000 1.394±0.019 2.203±0.028 2.971±0.008 1.710±0.019 0.891±0.033 1.231±0.024 2.260±0.034 0.664±0.029 0.710±0.032 0.771±0.023

Table 17: Machine learning efficiency F1 score for seven benchmark models, the real training data
and for CDTD with three different noise schedules. The standard deviation takes into account five
different sampling seeds and uses the average results of the four machine learning efficiency models
computed across ten model seeds.

Real Data SMOTE ARF CTGAN TVAE TabDDPM CoDi TabSyn CDTD
(single)

CDTD
(per type)

CDTD
(per feature)

adult 0.797±0.000 0.784±0.001 0.769±0.002 0.647±0.015 0.756±0.002 0.787±0.001 0.745±0.004 0.782±0.001 0.787±0.001 0.787±0.001 0.787±0.001

bank 0.745±0.002 0.740±0.004 0.682±0.006 0.680±0.006 0.629±0.006 0.720±0.006 0.673±0.006 0.711±0.007 0.776±0.003 0.767±0.004 0.737±0.004

churn 0.873±0.003 0.865±0.008 0.780±0.015 0.761±0.009 0.802±0.017 0.857±0.007 0.865±0.008 0.771±0.014 0.854±0.011 0.852±0.006 0.845±0.011

covertype 0.817±0.001 - 0.783±0.001 0.442±0.008 0.711±0.002 0.799±0.001 0.767±0.001 0.614±0.015 0.734±0.002 0.754±0.001 0.722±0.002

default 0.674±0.001 0.677±0.001 0.627±0.003 0.686±0.002 0.632±0.007 0.678±0.002 0.638±0.008 0.496±0.009 0.670±0.002 0.671±0.001 0.673±0.003

diabetes 0.621±0.002 0.615±0.002 0.572±0.005 0.557±0.004 0.553±0.003 - - 0.560±0.006 0.617±0.002 0.617±0.002 0.611±0.002

Table 18: Machine learning efficiency AUC score for seven benchmark models, the real training data
and for CDTD with three different noise schedules. The standard deviation takes into account five
different sampling seeds and uses the average results of the four machine learning efficiency models
computed across ten model seeds.

Real Data SMOTE ARF CTGAN TVAE TabDDPM CoDi TabSyn CDTD
(single)

CDTD
(per type)

CDTD
(per feature)

adult 0.915±0.000 0.906±0.001 0.901±0.000 0.836±0.006 0.889±0.002 0.908±0.000 0.880±0.005 0.906±0.001 0.910±0.000 0.910±0.001 0.909±0.000

bank 0.947±0.000 0.943±0.001 0.938±0.001 0.934±0.003 0.830±0.020 0.940±0.005 0.929±0.005 0.939±0.003 0.945±0.000 0.945±0.001 0.943±0.004

churn 0.964±0.001 0.961±0.002 0.939±0.007 0.882±0.006 0.948±0.004 0.957±0.004 0.961±0.001 0.919±0.006 0.962±0.001 0.962±0.001 0.959±0.003

covertype 0.892±0.000 - 0.860±0.001 0.677±0.007 0.777±0.001 0.876±0.000 0.845±0.001 0.671±0.013 0.816±0.002 0.828±0.001 0.802±0.002

default 0.768±0.000 0.759±0.003 0.754±0.002 0.744±0.002 0.751±0.004 0.763±0.002 0.739±0.008 0.746±0.011 0.762±0.003 0.765±0.002 0.765±0.002

diabetes 0.693±0.001 0.679±0.001 0.669±0.002 0.626±0.003 0.592±0.002 - - 0.645±0.002 0.675±0.001 0.673±0.001 0.667±0.001

Table 19: Machine learning efficiency RMSE for seven benchmark models, the real training data
and for CDTD with three different noise schedules. The standard deviation takes into account five
different sampling seeds and uses the average results of the four machine learning efficiency models
computed across ten model seeds.

Real Data SMOTE ARF CTGAN TVAE TabDDPM CoDi TabSyn CDTD
(single)

CDTD
(per type)

CDTD
(per feature)

acsincome 0.804±0.012 - 0.757±0.007 2.292±0.013 1.054±0.011 - 0.857±0.010 0.959±0.012 0.838±0.015 0.811±0.014 0.820±0.011

beijing 0.712±0.001 0.739±0.002 0.792±0.007 1.246±0.010 1.690±0.016 0.606±0.006 0.912±0.005 0.788±0.011 0.774±0.005 0.770±0.005 0.762±0.005

lending 0.030±0.000 0.042±0.001 0.274±0.007 0.137±0.007 0.404±0.007 0.795±0.031 - 0.268±0.004 0.061±0.001 0.060±0.001 0.066±0.002

news 1.001±0.002 1.180±0.107 0.923±0.052 1.906±0.019 3.999±0.175 0.083±0.001 1.302±0.074 0.374±0.028 0.819±0.103 0.776±0.091 0.755±0.066

nmes 1.001±0.003 1.112±0.044 0.972±0.024 1.331±0.052 1.127±0.047 1.154±0.047 1.137±0.052 0.535±0.013 1.108±0.083 1.184±0.076 1.203±0.081

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

S ABLATION STUDY DETAILS

Table 20: L2 norm (incl. standard errors in subscripts) of the correlation matrix differences of real and
synthetic train sets for five CDTD configurations with progressive addition of model components.

Configuration A B C D CDTD
(per type)

acsincome 0.131±0.003 0.119±0.004 0.124±0.006 0.129±0.004 0.129±0.003

adult 0.131±0.007 0.128±0.008 0.168±0.017 0.107±0.011 0.125±0.009

beijing 0.065±0.009 0.066±0.012 0.067±0.011 0.067±0.010 0.073±0.009

churn 0.244±0.015 0.272±0.034 0.299±0.066 0.264±0.012 0.289±0.043

Table 21: Jensen-Shannon divergence (incl. standard errors in subscripts) for five CDTD configura-
tions with progressive addition of model components.

Configuration A B C D CDTD
(per type)

acsincome 0.025±0.000 0.025±0.001 0.025±0.001 0.024±0.001 0.024±0.000

adult 0.012±0.001 0.013±0.000 0.012±0.000 0.014±0.001 0.013±0.001

beijing 0.004±0.001 0.006±0.002 0.005±0.003 0.004±0.002 0.005±0.002

churn 0.010±0.002 0.008±0.002 0.009±0.004 0.010±0.002 0.012±0.002

Table 22: Wasserstein distance (incl. standard errors in subscripts) for five CDTD configurations with
progressive addition of model components.

Configuration A B C D CDTD
(per type)

acsincome 0.002±0.000 0.002±0.000 0.002±0.000 0.001±0.000 0.001±0.000

adult 0.004±0.000 0.005±0.000 0.006±0.000 0.003±0.000 0.004±0.000

beijing 0.003±0.000 0.004±0.000 0.003±0.000 0.003±0.000 0.003±0.000

churn 0.006±0.001 0.006±0.000 0.006±0.001 0.006±0.001 0.007±0.001

Table 23: Detection score (incl. standard errors in subscripts) for five CDTD configurations with
progressive addition of model components.

Configuration A B C D CDTD
(per type)

acsincome 0.534±0.002 0.534±0.001 0.538±0.003 0.532±0.002 0.532±0.004

adult 0.597±0.002 0.593±0.001 0.615±0.003 0.580±0.003 0.588±0.002

beijing 0.953±0.002 0.959±0.001 0.952±0.003 0.953±0.001 0.949±0.001

churn 0.557±0.014 0.573±0.014 0.564±0.012 0.541±0.015 0.533±0.007

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Table 24: Distance to closest record of the generated data (incl. standard errors in subscripts) for five
CDTD configurations with progressive addition of model components.

Real Test Set A B C D CDTD
(per type)

acsincome 7.673±0.017 8.335±0.064 8.222±0.035 8.305±0.021 8.352±0.025 8.322±0.047

adult 1.870±0.000 1.221±0.018 1.294±0.015 1.252±0.014 1.427±0.008 1.231±0.011

beijing 0.385±0.000 0.545±0.001 0.559±0.002 0.539±0.003 0.541±0.002 0.489±0.001

churn 0.347±0.000 0.307±0.016 0.326±0.009 0.294±0.022 0.298±0.013 0.274±0.021

Table 25: Machine learning efficiency F1 score for five CDTD configurations with progressive
addition of model components. The standard deviation accounts for five different sampling seeds and
uses the average results of the four machine learning efficiency models across ten model seeds.

Real Data A B C D CDTD
(per type)

adult 0.797±0.000 0.788±0.001 0.788±0.001 0.787±0.001 0.788±0.002 0.787±0.001

churn 0.873±0.003 0.856±0.008 0.856±0.014 0.857±0.007 0.849±0.006 0.852±0.006

Table 26: Machine learning efficiency AUC score for five CDTD configurations with progressive
addition of model components. The standard deviation accounts for five different sampling seeds and
uses the average results of the four machine learning efficiency models across ten model seeds.

Real Data A B C D CDTD
(per type)

adult 0.915±0.000 0.909±0.000 0.910±0.000 0.909±0.000 0.910±0.000 0.910±0.001

churn 0.964±0.001 0.962±0.002 0.961±0.003 0.960±0.002 0.961±0.001 0.962±0.001

Table 27: Machine learning efficiency RMSE for five CDTD configurations with progressive addition
of model components. The standard deviation accounts for five different sampling seeds and uses the
average results of the four machine learning efficiency models across ten model seeds.

Real Data A B C D CDTD
(per type)

acsincome 0.804±0.012 0.815±0.009 0.813±0.018 0.823±0.017 0.814±0.014 0.811±0.014

beijing 0.712±0.001 0.782±0.004 0.785±0.004 0.778±0.005 0.776±0.004 0.770±0.005

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

T TRAINING AND SAMPLING TIMES DETAILS

Table 28: Training times in minutes. TabDDPM produces NaNs during training on acsincome and
diabetes, and is therefore excluded for these data. CoDi is considered prohibitively expensive to
train on diabetes and lending and we report estimated (est.) training times.

SMOTE ARF CTGAN TVAE TabDDPM CoDi TabSyn CDTD
(per feature)

acsincome - 80.3 59.9 26.0 - 231.9 13.4 5.8
adult - 7.4 36.2 23.7 38.3 48.3 32.7 6.9
bank - 11.0 37.6 24.6 40.5 42.7 48.5 26.3
beijing - 3.7 34.3 23.9 36.1 24.9 25.8 23.4
churn - 0.3 27.1 13.7 18.2 25.7 21.5 6.1
covertype - 130.2 58.0 36.5 44.9 69.2 30.7 28.2
default - 12.0 38.3 24.8 38.9 45.9 40.1 26.4
diabetes - 58.5 90.1 25.3 - 870 (est.) 34.6 26.9
lending - 5.2 157.9 36.6 48.7 3000 (est.) 42.1 25.3
news - 23.0 48.8 33.3 37.2 41.5 57.9 25.2
nmes - 0.4 32.8 17.2 24.9 30.2 31.0 6.3

Table 29: Sample times in seconds per 1000 samples.

SMOTE ARF CTGAN TVAE TabDDPM CoDi TabSyn CDTD
(per feature)

acsincome 4674.45 4.20 0.23 0.07 - 10.26 3.53 0.59
adult 10.71 1.78 0.31 0.16 0.82 3.65 0.88 0.56
bank 16.19 2.24 0.44 0.44 0.87 3.38 0.80 0.64
beijing 3.98 0.34 0.41 0.32 2.09 2.45 0.99 0.26
churn 0.52 1.00 0.40 0.24 0.95 2.78 0.80 0.39
covertype 10913.34 9.74 0.28 0.25 2.45 4.35 0.85 1.97
default 10.00 2.07 0.27 0.25 0.86 3.48 0.82 0.60
diabetes 166.75 5.87 0.53 0.15 - - 0.83 1.33
lending 4.06 2.49 0.45 0.54 4.33 - 0.85 0.69
news 66.49 3.89 0.43 0.30 5.13 2.93 0.86 0.85
nmes 0.69 1.54 0.31 0.17 4.17 2.91 0.82 0.55

37

	Introduction
	Score-based Generative Framework
	Continuous Features
	Categorical Features

	Method
	General Framework
	Homogenization of Data Types
	Noise Schedules
	Additional Customization to Tabular Data

	Experiments
	Evaluation Metrics
	Results

	Conclusion and Discussion
	Loss Calibration
	Output Layer Initialization
	Adaptive Normalization of the Average Diffusion Loss
	Derivation of the Functional Timewarping Form
	Benchmark Datasets
	Baseline Models
	Implementation Details
	Tuning of the Detection Model
	Machine Learning Efficiency Models
	CDTD Implementation Details
	CDTD Sampling
	Sensitivity to Important Hyperparameters
	Advantages of Diffusion in Data Space
	Comparison to Related Work
	Examples of Learned Noise Schedules
	Qualitative Comparisons
	Visualizations of Captured Correlations
	Detailed Results
	Ablation Study Details
	Training and Sampling Times Details

