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ABSTRACT

Score-based generative models (or diffusion models for short) have proven
successful for generating text and image data. However, the adaption of this
model family to tabular data of mixed-type has fallen short so far. In this paper,
we propose CDTD, a Continuous Diffusion model for mixed-type Tabular Data.
Specifically, we combine score matching and score interpolation to ensure a
common continuous noise distribution for both continuous and categorical features
alike. We counteract the high heterogeneity inherent to data of mixed-type with
distinct, adaptive noise schedules per feature or per data type. The learnable noise
schedules ensure optimally allocated model capacity and balanced generative
capability. We homogenize the data types further with model-specific loss
calibration and initialization schemes tailored to mixed-type tabular data. Our
experimental results show that CDTD consistently outperforms state-of-the-art
benchmark models, captures feature correlations exceptionally well, and that
heterogeneity in the noise schedule design boosts the sample quality.

1 INTRODUCTION

Score-based generative models (Song et al., 2021), also termed diffusion models (Sohl-Dickstein
et al., 2015; Ho et al., 2020), have shown remarkable potential for the generation of images (Dhariwal
& Nichol, 2021; Rombach et al., 2022), videos (Ho et al., 2022), text (Li et al., 2022; Dieleman et al.,
2022; Wu et al., 2023), molecules (Hoogeboom et al., 2022), and many other highly complex data
structures with continuous features. The framework has since been adapted to categorical data in
various ways, including discrete diffusion processes (Austin et al., 2021; Hoogeboom et al., 2021),
diffusion in continuous embedding space (Dieleman et al., 2022; Li et al., 2022; Regol & Coates,
2023; Strudel et al., 2022), and others (Campbell et al., 2022; Meng et al., 2022; Sun et al., 2023).
Diffusion models which include both, continuous and categorical features alike, build directly on
advances from the image domain (Kim et al., 2023; Kotelnikov et al., 2023; Lee et al., 2023; Jolicoeur-
Martineau et al., 2024) and thus, are not designed to deal with challenges specific to mixed-type
tabular data: The different diffusion processes and their losses are neither aligned nor balanced across
data types, and do not scale to larger datasets and/or features with a greater number of categories.
Models that naively combine different losses to integrate distinct generative processes may suffer
from implicitly favoring the sample quality of some features or data types over others (Ma et al.,
2020). Previously proposed diffusion models for tabular data (e.g., Kotelnikov et al., 2023; Lee et al.,
2023), often use a discrete diffusion framework to model categorical features. However, this fails to
capture the full uncertainty during the denoising process, as a data sample can never be ‘in-between’
categories at any point in the reverse process.

A crucial component in score-based generative models is the noise schedule (Kingma et al., 2022;
Chen et al., 2022; Chen, 2023; Jabri et al., 2022; Wu et al., 2023). Typical noise schedules for image
and text data are designed to focus model capacity on the noise levels most important to sample
quality (Nichol & Dhariwal, 2021; Karras et al., 2022), while others attempt to learn the optimal
noise schedule (Dieleman et al., 2022; Kingma et al., 2022). For mixed-type tabular data, existing
approaches often combine distinct diffusion processes for the continuous and discrete features to
derive a joint model (Kotelnikov et al., 2023; Lee et al., 2023). However, noise schedules are not
directly transferable from one data modality to another and therefore, using specifications from
image or text domain models is not optimal: First, the inherently different diffusion processes make
it difficult to balance the noise schedules across features and feature types, and negatively affect
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the allocation of model capacity across timesteps. For instance, both TabDDPM (Kotelnikov et al.,
2023) and CoDi (Lee et al., 2023) use the discrete multinomial diffusion framework (Hoogeboom
et al., 2021) to model categorical features. This induces different types of noise for continuous and
categorical features, making an alignment or even comparison of noise schedules impossible. Second,
and most importantly, the domain, nature and marginal distribution can vary significantly across
features (Xu et al., 2019). For instance, any two continuous features may be subject to different levels
of discretization or different bounds, even after applying common data pre-processing techniques; and
any two categorical features may differ in the number of categories, or the degree of imbalance. The
high heterogeneity and lack of balancing warrants a rethinking of fundamental parts of the diffusion
framework, including the noise schedule and the effective combination of diffusion processes for
different data types.

In this paper, we introduce Continuous Diffusion for mixed-type Tabular Data (CDTD) to address
the aforementioned shortcomings. We combine score matching (Hyvärinen, 2005) with score
interpolation (Dieleman et al., 2022) to derive a score-based model that pushes the diffusion process
for categorical data into embedding space, and uses a Gaussian diffusion process for both continuous
and categorical features. This way, the different noise processes become directly comparable, easier
to balance, and enable the application of, for instance, classifier-free guidance (Ho & Salimans, 2022),
accelerated sampling (Lu et al., 2022), and other advances, to mixed-type tabular data.

We counteract the high feature heterogeneity inherent to data of mixed-type with distinct feature or
type-specific adaptive noise schedules. The learnable noise schedules allow the model to directly take
feature or type heterogeneity into account during both training and generation, and thus avoid the
reliance on image or text-specific noise schedule designs. Moreover, we propose a diffusion-specific
loss normalization and initialization scheme to homogenize different data types and their losses
effectively. Our improvements ensure a better allocation of the model’s capacity across features,
feature types and timesteps, and yield high quality samples of tabular data. CDTD outperforms
state-of-the-art baseline models across a diverse set of sample quality metrics as well as computation
time for data sets with an arbitrary number of categories and data points. Our experiments show that
CDTD captures feature correlations exceptionally well, and that explicitly allowing for data-type
heterogeneity in the noise schedules benefits sample quality.

In sum, we make several contributions specific to diffusion probabilistic modeling of tabular data:

• We propose a joint continuous diffusion model for both continuous and categorical features such
that all noise distributions are Gaussian.

• We balance model capacity across continuous and categorical features with a novel and effective
loss calibration, an adjusted score model initialization and type or feature-specific noise schedules.

• We extend the idea of timewarping and propose a functional form to efficiently learn adaptive noise
schedules, and to allow for exact evaluation and easy incorporation of prior information on the
relative importance of noise levels.

• We drastically improve the scalability of tabular data diffusion models to features with a high number
of categories.

• We boost the quality of the generated samples with adaptive, feature or type-specific noise schedules.

• Our CDTD model allows the first-ever use of advanced techniques, like classifier-free guidance, for
mixed-type tabular data directly in data space.

2 SCORE-BASED GENERATIVE FRAMEWORK

We start with a brief outline of the score-based frameworks for continuous and categorical features.
Next, we combine these into a single diffusion model to learn the joint distribution of mixed-type data.

2.1 CONTINUOUS FEATURES

We denote x
(i)
cont ∈ R as the i-th continuous feature and x0 ≡ xcont ∈ RKcont as the stacked feature

vector. Further, let {xt}t=1
t=0 be a diffusion process that gradually adds noise in continuous time

t ∈ [0, 1] to x0, and let pt(x) denote the density function of the data at time t. Then, this process
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Figure 1: CDTD framework. Adaptive noise schedules are trained to fit the (possibly aggregated)
MSE and CE losses and transform the uniform timestep t to a potentially feature-specific noise level
to diffuse (“noisify”) the scalar values (for continuous features) or the embeddings (for categorical
features). Associated sampling processes are highlighted in orange. The approximated score functions
are concatenated and passed to an ODE solver for sample generation.

transforms the real data distribution p0(x) into a terminal distribution of pure noise p1(x) from which
we can sample. Our goal is to learn the reverse process that allows us to go from noise x1 ∼ p1(x) to
a new data sample x∗

0 ∼ p0(x).

The forward-pass of this continuous-time diffusion process is formulated as the solution to a stochastic
differential equation (SDE):

dx = f(x, t)dt+ g(t)dw, (1)

where f(·, t) : RKcont → RKcont is the drift coefficient, g(·) : R → R is the diffusion coefficient, and w
is a Brownian motion (Song et al., 2021). The reversion yields the trajectory of x as t goes backwards
in time from 1 to 0, and is formulated as a probability flow ordinary differential equation (ODE):

dx =
[
f(x, t)− 1

2
g(t)2∇x log pt(x)

]
dt. (2)

We approximate the score function ∇x log pt(x), the only unknown in Equation (2), by training a
time-dependent score-based model sθ(x, t) via score matching (Hyvärinen, 2005). The parameters θ
are trained to minimize the denoising score matching objective:

Et

[
λtEx0Ext|x0

∥sθ(xt, t)−∇xt log p0t(xt|x0)∥22
]
, (3)

where λt : [0, 1] → R+ is a positive weighting function for timesteps t ∼ U[0,1], and p0t(xt|x0) is
the density of the noisy xt given the ground-truth data x0 (Vincent, 2011).

In this paper, we use the EDM formulation (Karras et al., 2022), that is, f(·, t) = 0 and

g(t) =
√
2[ ddtσ(t)]σ(t) such that p0t(xt|x0) = N (xt|x0, σ

2(t)IKcont). We start the reverse process
with sampling x1 ∼ p1(x) = N (0, σ2(1)IKcont) for σ2(1) being sufficiently large and E[x0] = 0.
We then gradually guide x1 towards high density regions in the data space with sθ(x, t) replacing
the unknown, true score function in Equation (2). In practice, ODE or predictor-corrector samplers
can be used for this iterative denoising process (Song et al., 2021).

2.2 CATEGORICAL FEATURES

Let x(j)
cat denote a single observation of the j-th categorical feature which can take on any of Cj

possible classes c ∈ {1, . . . , Cj}. We learn a feature-specific encoder to represent each category c

3
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as a d-dimensional vector e(j)c = Encj(x
(j)
cat ). Further, let x(j)

0 ∈ {e(j)1 , . . . , e
(j)
Cj

} be the noiseless

embedding at t = 0 (to highlight e(j)c as the ground-truth in the diffusion framework). To maximize
the integrability of the diffusion frameworks for categorical and continuous data, we impose the
same Gaussian-type noise on categorical and continuous features. We thus produce a noisy embed-
ding x

(j)
t ∼ p0t(x

(j)
t |x(j)

0 ) = N (x
(j)
t |x(j)

0 , σ2(t)Id) such that x(j)
1 ∼ p1(x

(j)) = N (0, σ2(1)Id),
analogous to score matching.

For categorical data, denoising score matching (see Equation (3)) is not directly applicable to training
a score model to learn ∇

x
(j)
t

log p0t(x
(j)
t |x(j)

0 ), since the score can only take on Cj distinct values.
To proceed, we transform the score matching approach into a discrete choice problem. Note that
for a given t and x

(j)
t it is sufficient to find E

p(x
(j)
0 |x(j)

t ,t)
[∇

x
(j)
t

log p0t(x
(j)
t |x(j)

0 )] as it minimizes
Equation (3). Assuming Gaussian noise, we have

E
p(x

(j)
0 |x(j)

t ,t)

[
∇

x
(j)
t

log p0t(x
(j)
t |x(j)

0 )
]
=

1

σ2(t)

[
E
p(x

(j)
0 |x(j)

t ,t)
[x

(j)
0 ]− x

(j)
t

]
. (4)

We can thus approximate the score by computing x̂
(j)
0 = E

p(x
(j)
0 |x(j)

t ,t)
[x

(j)
0 ], i.e., a probability

weighted average of the Cj possible embedding vectors. Since p(x
(j)
0 = e

(j)
c |x(j)

t , t) = p(x
(j)
cat =

c|x(j)
t , t), we can estimate p(x(j)

0 |x(j)
t , t) via a classifier that predicts the Cj class probabilities and is

trained to minimize the cross-entropy (CE). This procedure interpolates between the Cj ground-truth
embeddings x(j)

0 and is therefore known as score interpolation (Dieleman et al., 2022).

This framework can easily be extended to multiple categorical features. Most importantly, Encj
is trained alongside the model such that x(j)

0 is directly optimized for denoising the data. Since
the reverse process also happens in embedding space, the model only has to commit to a category
at the final step of generation, i.e., we allow for a smooth, continuous transition between states
at intermediate timesteps. This is unlike multinomial diffusion (Hoogeboom et al., 2021), which
models categorical data based on discrete transitioning steps. By defining diffusion for categorical
data in embedding space, we allow our model to fully take uncertainty at intermediate timesteps
into account, which improves the consistency of the generated samples (Dieleman et al., 2022).
Therefore, the adaption of score interpolation allows CDTD to capture subtle dependencies both
within and across data types more accurately.

3 METHOD

In short, we combine score matching (Equation (3)) with score interpolation (Equation (4)) to model
the joint distribution of mixed-type data. Next, we discuss the important components of our method.
In particular, the combination of the different losses for score matching and score interpolation, initial-
ization and loss weighting concerns, and the adaptive type- or feature-specific noise schedule designs.

3.1 GENERAL FRAMEWORK

Figure 1 gives an overview of our Continuous Diffusion for mixed-type Tabular Data (CDTD) frame-
work. The score model is conditioned on (1) all noisy continuous features, (2) the noisy embeddings
of all categorical features in Euclidean space, and (3) the timestep t which reflects potentially feature-
specific, adaptive noise levels σcont,i and σcat,j for all i and j. Additional conditioning information,
such as the target feature for classification tasks, are straightforward to add. Note that while the
Gaussian noise process acts directly on the continuous features, it acts on the embeddings of the
categorical features. This way, we ensure a common continuous noise process for both data types.

During training, the model predicts the ground-truth value for continuous features and the class-
specific probabilities for categorical features. During generation, we concatenate the score estimates,
ŝ
(i)
cont and ŝ

(j)
cat , for all features i and j, and pass them to an ODE solver together with σcont,i and σcat,j ,

the noise levels retrieved by transforming linearly spaced timesteps with the learned adaptive noise
schedules. Further details on the implementation and sampling are provided in Appendix J and
Appendix K, respectively.
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3.2 HOMOGENIZATION OF DATA TYPES

Let LMSE(x
(i)
cont, t) denote the time-weighted MSE (i.e., score matching) loss of the i-th continuous

feature at a single timestep t, and LCE(x
(j)
cat , t) the CE (i.e., score interpolation) loss of the j-th cat-

egorical feature. Naturally, the two losses are defined on different scales. This leads to an unintended
importance weighting of features in the generative process (Ma et al., 2020). We assume that an
unconditional model should a priori, i.e., without having any information, be indifferent between all
features. This reflects the state of the model at the terminal timestep t = 1 in the diffusion process.

Formally, we aim to find calibrated losses, L∗
MSE and L∗

CE for all continuous features i and categorical
features j, such that

E[L∗
MSE(x

(i)
cont, 1)] = E[L∗

CE(x
(j)
cat , 1)] = 1. (5)

For continuous features, E[L∗
MSE(x

(i)
cont, 1)] = 1 follows from standardizing x

(i)
cont to zero mean and

unit variance. For categorical features, we compute the normalization constant E[LCE(x
(j)
cat , 1)]

directly as the CE of each predicted class in proportion to its empirical distribution in the train set (see
Appendix A). We then average the calibrated losses to derive the joint loss function at a given timestep:

L(t) = 1

K

[Kcont∑
i=1

L∗
MSE(x

(i)
cont, t) +

Kcat∑
j=1

L∗
CE(x

(j)
cat , t)

]
, (6)

where K = Kcont +Kcat.

The loss calibration and the multiple data modalities have implications for the optimal initialization
of the score model. We aim to initialize all feature-specific losses at one. We therefore initialize the
output layer weights to zero (like in image diffusion models) and the output biases for continuous
features to zero, and rely on the timestep weights of the EDM parameterization (Karras et al., 2022)
to achieve a unit loss for all t. For the categorical features, we initialize the biases to match the
category’s empirical probability in the training set (see Appendix B).

The initial equal importance across all timesteps will naturally change over the course of training.
We employ a normalization scheme for the average diffusion loss (Karras et al., 2023; Kingma &
Gao, 2023) to allow for changes in relative importance among features but ensure equal importance
of all timesteps throughout training. To do so, we learn the time-specific normalization term Z(t)
such that L(t)/Z(t) ≈ 1. This ensures a consistent gradient signal and can be implemented by
training a neural network to predict L(t) alongside our diffusion model (for details see Appendix C).

3.3 NOISE SCHEDULES

Since the optimal noise schedule of one feature impacts the noise schedules of other features, and
different data types have different sensitivities to additive noise, we introduce feature-specific or type-
specific noise schedules. For instance, given the same embedding dimension, more noise is needed
to remove the same amount of signal from embeddings of features with fewer classes. Likewise, a
delayed noise schedule for one feature might improve sample quality as the model can rely on other
correlated features that have been (partially) generated first. We make the noise schedules learnable,
and therewith adaptive to avoid the reliance on designs for other data modalities.

We investigate the following noise schedule variants: (1) a single adaptive noise schedule, (2) adaptive
noise schedules differentiated per data type and (3) feature-specific adaptive noise schedules. We
only introduce the feature-specific noise schedules explicitly. The other noise schedule types are
easily derived from our argument by appropriately aggregating terms across features.

Feature-specific Noise Schedules. According to Equation (1), and following the EDM parame-
terization (Karras et al., 2022), we define the diffusion process of the i-th continuous feature as

dx(i)
cont

=

√
2
[ d

dt
hcont,i(t)

]
hcont,i(t)dw

(i)
t , (7)

and likewise the trajectory of the j-th categorical feature as

dx
(j)
cat =

√
2
[ d

dt
hcat,j(t)

]
hcat,j(t)dw

(j)
t , (8)
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Figure 2: (Left) pdf (fd.a.log,k) and cdf (Fd.a.log,k) of the domain-adapted Logistic distribution for five
different values of the location parameter µk and for a given curve steepness νk = 3. (Right) impact
of uniform vs. adjusted timewarping initialization on the pdf (fd.a.log,k) and the cdf (Fd.a.log,k).

where x
(j)
cat is the d-dimensional embedding of x(j)

cat in Euclidean space. The feature-specific noise
schedules hcont,i(t) and hcat,j(t) represent the standard deviations of the added Gaussian noise
such that σcont,i(t) = hcont,i(t) and σcat,j(t) = hcat,j(t). Thus, each continuous feature and each
embedded categorical feature is affected by a distinct noise schedule.

Adaptive Noise Schedules. Based on Dieleman et al. (2022), we aim to learn a noise sched-
ule hk : t 7→ σ for all K = Kcont +Kcat features. Note that t ∈ [0, 1], and with pre-specified
minimum and maximum noise levels, we can scale σk to lie in [0, 1] as well, without loss of
generality. We will learn the feature-specific loss given the noise level, Fk : σk 7→ ℓk, alongside
the score model, with ℓk the relevant (not explicitly weighted) training loss for the k-th feature.
Then, our mapping of interest is hk = F̃−1

k , that is, the normalized and inverted function Fk. This
encourages the relation between t and ℓk to be linear.

Higher noise levels imply a lower signal-to-noise ratio, and therefore a larger incurred loss for the
score model. Accordingly, Fk must be a monotonically increasing and S-shaped function. We let
Fk = γkFd.a.log,k(σk) where γk > 0 is a scaling factor that at t = 1 enables fitting a loss ℓk > 1
early on in the training process, and a loss ℓk < 1 in case conditioning information is included.
Further, we use the cdf of the domain-adapted Logistic distribution Fd.a.log,k(σk), where the input is
pre-processed via a Logit function, with parameters 0 < µk < 1 (the location of the inflection point)
and νk ≥ 1 (the steepness of the curve). Figure 2 illustrates the effect of the location parameter. The
implicit importance of the noise levels is conveniently represented by the corresponding pdf fd.a.log,k.
To normalize and invert Fk, we set γk = 1 and and directly utilize the quantile function F−1

d.a.log,k.
The detailed derivation of all relevant functions is given in Appendix D.

Our functional choice has several advantages. First, each noise schedule can be evaluated exactly
without the need for approximations and only requires three parameters. Second, these parameters
are well interpretable in the diffusion context and provide information on the inner workings of
the model. For instance, for µ1 < µ2, the model starts generating feature 2 before feature 1 in the
reverse process. Third, the proposed functional form is less flexible than the original piece-wise
linear function (Dieleman et al., 2022) such that an exponential moving average on the parameters
is not necessary, and the fit is more robust to “outliers” encountered during training.

We use the adaptive noise schedules during both training and generation. We derive importance
weights from fd.a.log,k to fit hk to avoid biasing the noise schedule to timesteps that are frequently
sampled during training. Type-specific noise schedules refer to learning two functions F1 and F2

that predict the respective average loss over all features of a data type. Examples of learned noise
schedules are given in Appendix O.

3.4 ADDITIONAL CUSTOMIZATION TO TABULAR DATA

In the diffusion process, we add noise directly to the continuous features but to the embeddings of
categorical features. We generally need more noise to remove all signal from the categorical repre-
sentations. We therefore define type-specific minimum and maximum noise levels: For categorical
features, we let σcat,min = 0.1 and σcat,max = 100; for continuous features, we set σcont,min = 0.002
and σcont,max = 80 (see Karras et al., 2022).

Lastly, an uninformative initialization of the adaptive noise schedules requires to set µk = 0.5, νk ≈ 1
and γk = 1 such that Fd.a.log,k corresponds approximately to the cdf of a uniform distribution. We
can improve this with a more informative prior: In the image domain, diffusion models allocate
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substantial capacity towards generating the high level structure before generating details at lower
noise levels. In tabular data, the location of features in the data matrix, and therefore the high
level structure, is fixed. Instead, we are interested in generating details as accurately as possible,
as these influence, for instance, subtle correlations among features. Note that the inflection point,
µk, of our adaptive noise schedule corresponds to the proportion of high (normalized) noise levels
(i.e., σk ≥ 0.5) in the distribution. Therefore, we adjust the initial noise schedules such that low noise
levels (σk < 0.5) are weighted by a factor of 3 relative to high noise levels (σk ≥ 0.5) (see Figure 2).
The proportion of high noise levels is decreased to µk = 1/4. We let νk ≈ 1 for a dispersed initial
probability mass and initialize the scaling factor to γk = 1.

4 EXPERIMENTS

We benchmark our model against several generative models across multiple datasets. Additionally, we
investigate three different noise schedule specifications: (1) a single adaptive noise schedule for both
data types (single), (2) continuous and categorical data type-specific adaptive noise schedules (per
type), and (3) feature-specific adaptive noise schedules (per feature).

Baseline models. We use a diverse benchmark set of state-of-the-art generative models for
mixed-type tabular data. This includes SMOTE (Chawla et al., 2002), ARF (Watson et al.,
2023), CTGAN (Xu et al., 2019), TVAE (Xu et al., 2019), TabDDPM (Kotelnikov et al., 2023),
CoDi (Lee et al., 2023), TabSyn (Zhang et al., 2024). Each model follows a different design and/or
modeling philosophy. Note that CoDi is an extension of STaSy (Kim et al., 2023, the same group
of authors) that has shown to be superior in performance. For scaling reasons, ForestDiffusion
(Jolicoeur-Martineau et al., 2024) is not an applicable benchmark.1 Further details on the respective
benchmark models and their implementations are provided in Appendix F and Appendix G. We
provide an in-depth comparison of CDTD to the diffusion-based baselines in Appendix N. To keep
the comparison fair, we use the same architecture for CDTD as TabDDPM (the latter has also been
adopted by TabSyn), with minor changes to accommodate the different inputs (see Appendix J).

Datasets. We systematically investigate our model on eleven publicly available datasets. The
datasets vary in size, prediction task (regression vs. binary classification2), number of continuous
and categorical features and their distributions. The number of categories for categorical features
varies significantly across datasets (for more details, see Appendix E). We remove observations
with missings in the target or any of the continuous features and encode missings in the categorical
features as a separate category. All datasets are split in train (60%), validation (20%) and test (20%)
partitions, hereinafter denoted Dtrain,Dvalid and Dtest, respectively. For classification tasks, we use
stratification with respect to the outcome, we condition the model on the outcome during training and
generation, and use the train set proportions for generation. In a last post-processing step, we round
the integer-valued continuous features after generation for all models.

4.1 EVALUATION METRICS

In our experiments, we follow conventions from previous papers and use four sample quality cri-
teria, which we assess using a comprehensive set of measures. All metrics are averaged over
five random seeds that affect the generative process, which samples synthetic data Dgen of size
min(|Dtrain|, 50 000).

Machine learning efficiency. We follow the conventional train-synthetic-test-real strategy (see,
Borisov et al., 2023; Liu et al., 2023; Kotelnikov et al., 2023; Kim et al., 2023; Xu et al., 2019;
Watson et al., 2023). Hence, we train a group of models, consisting of a (logistic/ridge) regression, a

1Jolicoeur-Martineau et al. (2024) report in the appendix that they used 10-20 CPUs with 64-256 GB of
memory for datasets with a median number of 540 observations. With the suggested hyperparameters (for
improved efficiency) and 64 CPUs, the model took approx. 500 min of training on the relatively small nmes data.
Note that the model estimates KT separate models, with K being the number of features and T the noise levels.
Therefore, we consider ForestDiffusion to be prohibitively expensive for higher-dimensional data generation.

2For ease of presentation, we only analyze binary targets. However, CDTD trivially extends to targets with
multiple classes.
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Table 1: Average performance rank of each generative model across eleven datasets. Per metric,
bold indicates the best, underline the second best result. We assigned the rank 10 for CoDi on
lending and diabetes, TabDDPM on acsincome and diabetes, SMOTE on acsincome
and covertype.

SMOTE ARF CTGAN TVAE TabDDPM CoDi TabSyn CDTD
(single)

CDTD
(per type)

CDTD
(per feature)

RMSE 3.400±3.382 3.800±2.482 7.800±1.470 7.800±2.227 8.200±1.470 6.800±1.939 6.800±1.720 3.000±0.632 3.400±2.059 4.200±2.227

F1 3.667±3.145 6.333±2.285 8.333±1.491 8.000±1.000 4.167±2.794 6.667±3.091 7.500±1.607 3.833±1.462 3.167±1.344 3.500±1.979

AUC 4.667±2.749 5.667±2.055 8.667±1.106 7.833±1.067 4.833±2.794 7.500±2.872 7.333±1.374 2.500±1.500 2.333±0.943 3.833±1.675

L2 dist. of corr. 4.818±2.918 5.636±1.872 8.091±1.781 7.909±1.564 7.000±3.191 6.909±2.429 6.818±1.402 2.727±1.286 2.273±0.862 3.000±1.595

Detection score 3.909±3.502 6.182±1.696 8.818±1.466 7.273±1.213 5.000±3.045 8.091±2.391 6.000±1.595 3.909±1.164 2.455±1.827 3.545±1.725

JSD 7.182±2.167 1.273±0.617 8.182±1.641 8.818±1.029 6.909±2.314 7.000±1.651 6.545±1.305 2.455±1.076 3.091±0.793 3.727±1.052

WD 3.091±3.315 5.636±1.611 7.545±1.827 8.000±1.477 6.455±3.144 8.364±1.823 5.727±2.339 4.182±1.466 3.182±1.192 3.000±1.954

DCR 6.000±2.558 6.182±2.328 8.455±1.725 6.182±3.186 4.455±3.726 6.545±2.426 5.909±1.676 4.091±2.678 3.818±2.124 3.545±1.924

random forest and a catboost model, on the data-specific prediction task (the corresponding hyperpa-
rameter settings are reported in Appendix I). We compare the model-averaged real test performance,
Perf(Dtrain,Dtest), to the performance when trained on the synthetic data, Perf(Dgen,Dtest). We sub-
sample Dtrain in case of more than 50 000 observations to upper-bound the computational load. The
results are averaged over ten different model seeds (in addition to the five random seeds that impact
the sampling process). For regression tasks, we consider the RMSE and for classification tasks, the
macro-averaged F1 and AUC scores. We only report |Perf(Dgen,Dtest)− Perf(Dtrain,Dtest)| in the
main part of this paper. An absolute difference close to zero, that is, synthetic and real data induce
the same performance, indicates that the generative model performs well.

Detection score. For each generative model, we report the accuracy of a catboost model that is
trained to distinguish between real and generated (fake) samples (Borisov et al., 2023; Liu et al., 2023;
Zhang et al., 2024). First, we subsample the real data subsets, Dtrain,Dvalid and Dtest, to a maximum
of 25 000 data samples to limit evaluation time. Then, we construct Ddetect

train ,Ddetect
valid and Ddetect

test with
equal proportions of real and fake samples. We tune each catboost model on Ddetect

valid and report the
accuracy of the best-fitting model on Ddetect

test (see Appendix H for details). A (perfect) detection score
of 0.5 indicates the model is unable distinguish fake from real samples.

Statistical similarity. We aim to assess the statistical similarity between real and generated data
at both the feature and sample levels. We largely follow Zhao et al. (2021) and compare: (1) the
Jensen-Shannon divergence (JSD; Lin, 1991) to quantify the difference in categorical distributions,
(2) the Wasserstein distance (WD; Ramdas et al., 2017) to quantify the difference in continuous
distributions, and (3) the L2 distance between pair-wise correlation matrices. We use the Pearson
correlation coefficient for two continuous features, the Theil uncertainty coefficient for two categorical
features, and the correlation ratio for mixed types. Similar metrics for the evaluation of statistical
similarity have been used by Zhang et al. (2024).

Distance to closest record. That is, the minimum Euclidean distance of a generated data point to any
observation in Dtrain (Borisov et al., 2023; Zhao et al., 2021). We one-hot encode categorical features
and standardize all features to zero mean and unit variance to ensure each feature contributes equally
to the distance. We compute the average distance to closest record (DCR) as a robust estimate. For
brevity, we report the absolute difference of the DCR of the synthetic data and the DCR of the real test
set. A good DCR value, indicating both realistic and sufficiently private data, should be close to zero.

4.2 RESULTS

Table 1 shows the average rank of each generative model across all datasets for the considered metrics.
The ranks in terms of the F1 and AUC scores are averaged over the classification task datasets.
Likewise, the RMSE rank averages include the regression task datasets. We assign the maximum
possible rank when a model could not be trained on a given dataset or could not be evaluated in
reasonable time. This includes TabDDPM, which outputs NaNs for acsincome and diabetes
and CoDi, which we consider to be prohibitively expensive to train on diabetes (estimated 14.5
hours) and lending (estimated 60 hours). Similarly, SMOTE is very inefficient in sampling for
large datasets (78 min for 1000 samples on acsincome and 182 min on covertype) and does
not finish the evaluation within 12 hours. The dataset-specific results (including standard errors)
and average metrics over all datasets are detailed in Appendix R. We provide visualizations of the
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Table 2: Ablation study for five CDTD configurations with progressive addition of model components.
We report the median performance metrics over acsincome, adult, beijing and churn.

Config. A B C D CDTD
(per type)

RMSE (abs. diff.; ↓) 0.041 0.042 0.043 0.037 0.033
F1 (abs. diff.; ↓) 0.012 0.013 0.012 0.016 0.015
AUC (abs. diff.; ↓) 0.004 0.005 0.005 0.004 0.004
L2 distance of corr. (↓) 0.131 0.124 0.146 0.118 0.127
Detection score (↓) 0.577 0.583 0.590 0.561 0.560
JSD (↓) 0.011 0.011 0.011 0.012 0.013
WD (↓) 0.004 0.005 0.005 0.003 0.003
DCR (abs. diff. to test; ↓) 0.405 0.361 0.386 0.299 0.372

captured correlations in the synthetic sample compared to the real training set in Appendix Q and
distribution plots for a qualitative comparison in Appendix P.

Sample quality. CDTD consistently outperforms the considered benchmark models in most sample
quality metrics. Specifically, we see a major performance edge in terms of the detection score, the L2

distance of the correlation matrices and the regression-based metrics. Only for the Jensen-Shannon
divergence ARF, a tree-based method that is expected to model categorical features particularly
well, outperforms CDTD. Interestingly, CDTD performs similar to TabDDPM on F1 scores, but
outperforms it dramatically for regression tasks. TabDDPM appears to favor modeling categorical
features accurately, thereby sacrificing continuous features, as visualized in Appendix Q. TabSyn,
a latent-space diffusion model, performs worse than CDTD and often TabDDPM, which define
diffusion in data space. In Appendix M, we further compare CDTD and TabSyn and investigate the
benefits of defining a diffusion model in data space. By utilizing score interpolation, CDTD is able
to model intricate correlation structure more accurately than other frameworks. Most importantly,
type-specific noise schedules mostly outperform the feature-specific and single noise schedule
variants. This illustrates the importance of accounting for the high heterogeneity in tabular data
on the feature type level. The different noise schedules per feature, however, appear to force too
many constraints on the model and thus, decrease sample quality. Per-feature noise schedules would
require more training steps to converge, as can be seen in Appendix O.

0 20 40

train time in min.

ARF
CTGAN

TVAE
TabDDPM

CoDi
TabSyn
CDTD

0 1 2 3

sample time in sec.
per 1000 samples

Figure 3: Average training and sampling
wall-clock time for 1000 samples (excl.
acsincome, diabetes, lending).

Training and sampling time. Figure 3 shows the
average wall-clock time over all (for all models feasible)
datasets for training as well as the time for sampling 1000
data points for each baseline model and the per feature
CDTD variant (see Appendix T for details). We exclude
SMOTE due to its considerably longer sampling with
an average of 1377 seconds for 1000 samples. CDTD’s
use of embeddings (instead of one-hot encoding) for
categorical features drastically reduces training times and
thus, improves scaling to increasing number of categories.
The ODE formulation of the diffusion process implies
competitive sampling speeds, in particular compared to the diffusion-based benchmarks CoDi,
TabDDPM and TabSyn. Despite TabSyn utilizing a separately trained encoder, this does not result
in a lower-dimensional latent space and therefore, does not speed up sampling.

Ablation study. We conduct an ablation study over four datasets to investigate the separate compo-
nents of our CDTD framework. The results are given in Table 2 (detailed results are in Appendix S).
The baseline model Config. A includes a single noise schedule with the original piece-wise linear
formulation (Dieleman et al., 2022) without loss normalization, improved model initialization or
adaptive normalization, and the CE and MSE losses are naively averaged. Note that this configuration
still is a novel contribution to the literature. Config. B adds our feature homogenization (i.e., loss
normalization, improved initialization and adaptive normalization schemes), Config. C adds our
proposed functional form for a single noise schedule with uniform initialization, and Config. D
imposes per-type noise schedules. Lastly, we add the suggested (low noise level) overweighting
timewarping initialization to arrive at the full CDTD (per type) model. We see the switch from the
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piece-wise linear functional form to our more robust noise schedule variant slightly harms sample
quality. However, the per-type variant and the more informed initialization scheme compensate for
this difference. Main differences are in the RMSE and detection score as well as training efficiency
(the loss calibration and improved initialization facilitate model convergence). The final model
especially works well on the larger datasets compared to the baseline (see Appendix S), as smaller
datasets are relatively easy to fit with 3 million parameters, even without any model improvements.
We investigate the sensitivity of CDTD to important hyperparameters in Appendix L.

5 CONCLUSION AND DISCUSSION

We propose a Continuous Diffusion model for mixed-type Tabular Data (CDTD) that combines score
matching and score interpolation and imposes Gaussian diffusion processes on both continuous and
embedded categorical features. We compared CDTD to various benchmark models and to a single
noise schedule as typically used in image diffusion models. Our results indicate that addressing the
high feature heterogeneity in tabular data on the feature type level and aligning type-specific diffusion
elements, such as the noise schedules or losses, substantially benefits sample quality. Moreover,
CDTD shows vastly improved scalability and can accommodate an arbitrary number of categories.

Our paper serves as an important step to customizing the diffusion probabilistic framework to tabular
data. In particular, the common type of noise schedules allows for an easy to extend framework that
might accelerate progress on diffusion models for tabular data. Crucially, CDTD allows the direct
application of diffusion-related advances from the image domain, like classifier-free guidance, to
tabular data without the need for a latent encoding. We leave further extensions to the tabular data
domain, e.g., the exploration of accelerated sampling, efficient score model architectures, different
forms of adaptive noise schedules, or the adaption to the data imputation task for future work.

Finally, we want to emphasize the potential misuse of synthetic data to support unwarranted claims.
Any generated data should therefore not be blindly trusted, and synthetic data based inferences should
always be compared to results from the real data. However, the correct use of generative models
enables better privacy preservation and facilitates data sharing and open science practices.

LIMITATIONS

The main limitation of CDTD is the addition of hyperparameters, and tuning hyperparameters of
a generative model can be a costly endeavor. However, our results also show that (1) a per type
schedule is most often optimal and (2) our default hyperparameters perform well across a diverse
set of datasets. Dieleman et al. (2022) show that the results of score interpolation for text data can
be sensitive to the initialization of the embeddings. We have not encountered similar problems on
tabular datasets (see Table 7). While the DCR indicates no privacy issues for the benchmark datasets
used, additional caution must be taken when generating synthetic data from privacy sensitive sources.
Lastly, for specific types of tabular data, such as time-series, our model may be outperformed by other
generative models specialized for that type. While CDTD could be directly used for imputation using
RePaint (Lugmayr et al., 2022), a separate training process is required to achieve the best results (Liu
et al., 2024). Therefore, we leave the adaption of CDTD to the imputation task for future work.
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A LOSS CALIBRATION

A priori, we let the model be indifferent between features, that is, we scale the loss of each feature such
that at the terminal timestep the same loss is attained. Here, the signal-to-noise ratio is sufficiently low
to approximate a situation in which the model has no information about the data. Thus, we are looking
for calibrated losses L∗

MSE(x
(i)
cont, 1) and L∗

CE(x
(j)
cat , 1) which at t = 1 achieve unit loss in expectation.

For a single scalar feature and a given timestep t, we can write the empirical denoising score matching
loss (Equation (3)) in the EDM parameterization (Karras et al., 2022) as:

LMSE(x
(i)
cont, t) = λ(t)

(
cskip(t)xt + cout(t)F

(i)
θ︸ ︷︷ ︸

sθ(xt,t)

−x
(i)
cont

)2

,

where F
(i)
θ denotes the neural network output for feature i that parameterizes the score model sθ.

The parameters cskip(t) = σ2
data/(σ

2(t) + σ2
data) and cout(t) = σ(t) · σdata/(

√
σ2(t) + σ2

data) depend
on σ(t) (and σdata) and therefore on timestep t. For t → 1, σ(t) approaches the maximum noise level
σcont,max and cskip(t) → 0 and cout(t) → 1 such that the score model directly predicts the data at
high noise levels. For t → 0, the model shifts increasingly towards predicting the error that has been
added to the true data. In the EDM parameterization, the explicit timestep weight (used to achieve a
unit loss across timesteps at initialization, see Appendix B) is λ(t) = 1/cout(t)

2 ≈ 1 for t = 1.

At the terminal timestep t = 1, we now have:

E
p(x

(i)
cont)

[LMSE(x
(i)
cont, 1)] = λ(1)E

p(x
(i)
cont)

(
cskip(1)x1 + cout(1)F

(i)
θ − x

(i)
cont

)2

,

≈ E
p(x

(i)
cont)

(
0 · x1 + 1 · F (i)

θ − x
(i)
cont

)2

,

= E
p(x

(i)
cont)

(
F

(i)
θ − x

(i)
cont

)2

.

Without information, it is optimal to always predict the average value E
p(x

(i)
cont)

[x
(i)
cont] and thus, the

minimum expected loss becomes:

E
p(x

(i)
cont)

[LMSE(x
(i)
cont, 1)] = E

p(x
(i)
cont)

(
E
p(x

(i)
cont)

[x
(i)
cont]− x

(i)
cont

)2

= Var[x
(i)
cont] .

Therefore, we have L∗
MSE(x

(i)
cont, 1) = LMSE(x

(i)
cont, 1) as long as we standardize x

(i)
cont to unit variance.

For a single categorical feature, x(j)
cat is distributed according to the proportions pc (for categories

c = 1, . . . , C). The denoising model for score interpolation is trained with the CE loss:

LCE(x
(j)
cat , t) = −

C∑
c=1

I(x
(j)
cat = c) logF

(j)
θ,c ,

where F
(j)
θ,c denotes the score model’s prediction of the class probability at timestep t. Without

information, it is optimal to assign the c-th category the same proportion as in the training set.
At t = 1, we thus let F (j)

θ,c = pc such that the minimum loss equals:

E
p(x

(j)
cat )

[LCE(x
(j)
cat , 1)] = −E

p(x
(j)
cat )

C∑
c=1

I(x
(j)
cat = c) logF

(j)
θ,c , (9)

= −
C∑

c=1

E
p(x

(j)
cat )

[I(x
(j)
cat = c) log pc] , (10)

= −
C∑

c=1

pc log pc. (11)

We use the training set proportions to compute the normalization constant Zj = −
∑C

c=1 pc log pc
to calibrate the loss for categorical features. Then,

E
p(x

(j)
cat )

[L∗
CE(x

(j)
cat , 1)] = E

p(x
(j)
cat )

[LCE(x
(j)
cat , 1)/Zj ] = 1 .
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We have thus achieved calibrated losses with respect to the terminal timestep t = 1, that is,
E
p(x

(i)
cont)

[L∗
MSE(x

(i)
cont, 1)] = E

p(x
(j)
cat )

[L∗
CE(x

(j)
cat , 1)] = 1 for all continuous features i and categori-

cal features j.

B OUTPUT LAYER INITIALIZATION

At initialization, we want the neural network to reflect the state of no information (see Appendix A).
Likewise, our goal is a loss of one across all features and timesteps.

For continuous features i, we initialize the output layer weights (and biases) to zero such that
the output of the score model for a single continuous feature, F (i)

θ , is also zero. Since we use
the EDM parameterization (Karras et al., 2022), we apply the associated explicit timestep weight
λ(t) =

σ2(t)+σ2
data

(σ(t)·σdata)2
. This is explicitly designed to achieve a unit loss across timesteps at initialization

and we show this analytically below. We denote the variances of the data x
(i)
cont and of the Gaussian

noise ϵ at time t as σ2
data and σ2(t), respectively.

E
p(x

(i)
cont),p(ϵ)

[L∗
MSE(x

(i)
cont, t)] = λ(t)E

p(x
(i)
cont),p(ϵ)

(
cskip(t)(x

(i)
cont + ϵ) + cout(t)F

(i)
θ − x

(i)
cont

)2

,

= λ(t)E
p(x

(i)
cont),p(ϵ)

(
cskip(t)(x

(i)
cont + ϵ)− x

(i)
cont

)2

,

=
σ2(t) + σ2

data

(σ(t) · σdata)2
E
p(x

(i)
cont),p(ϵ)

( σ2
data

σ2(t) + σ2
data

(x
(i)
cont + ϵ)− x

(i)
cont

)2

,

=
σ2(t) + σ2

data

(σ(t) · σdata)2
E
p(x

(i)
cont),p(ϵ)

(σ2
dataϵ− σ2(t)x

(i)
cont

σ2(t) + σ2
data

)2

,

=
1

σ2(t) + σ2
data

E
p(x

(i)
cont),p(ϵ)

(σdata

σ(t)
ϵ− σ(t)

σdata
x
(i)
cont

)2

,

=
1

σ2(t) + σ2
data

E
p(x

(i)
cont),p(ϵ)

( σ2
data

σ2(t)
ϵ2 +

σ2(t)

σ2
data

(x
(i)
cont)

2 − 2ϵx
(i)
cont

)
,

=
1

σ2(t) + σ2
data

( σ2
data

σ2(t)
Var(ϵ)︸ ︷︷ ︸
σ2(t)

+
σ2(t)

σ2
data

Var(x
(i)
cont)︸ ︷︷ ︸

σ2
data

−2Cov(ϵ, x
(i)
cont)︸ ︷︷ ︸

0

)
,

=
1

σ2(t) + σ2
data

(
σ2

data + σ2(t)
)
= 1.

For categorical features j, we initialize the output layer such that the model achieves the respective
losses under no information. Using the loss normalization constant Zj (see Appendix A) and dropping
the expectation over p(ϵ), we have

E
p(x

(j)
cat )

[L∗
CE(x

(j)
cat , t)] = E

p(x
(j)
cat )

[LCE(x
(j)
cat , t)/Zj ] =

1

Zj
E
p(x

(j)
cat )

[LCE(x
(j)
cat , t)].

Hence, for E
p(x

(j)
cat )

[LCE(x
(j)
cat , t)] = Zj , we obtain an expected loss of one irrespective of t. The

neural network outputs a vector of logits F (j)
θ that are transformed into probabilities with a softmax

function for each categorical feature. We denote the c-th element of that vector softmax(·)c. Since
Zj is derived in Equation (11) by imposing probabilities equal to the training set proportions for that
category, pc, we have

log pc = log softmax(F
(j)
θ )c = log

exp(F
(j)
θ,c )∑C

k=1 exp(F
(j)
θ,k)

= F
(j)
θ,c − log

C∑
k=1

exp(F
(j)
θ,k).

We initialize the neural network such that F (j)
θ,c = log pc for all c. This is achieved by initializing the

output layer weights to zero and the output layer biases to the relevant training set log-proportions of
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the corresponding class. Hence, this initialization gives us

F
(j)
θ,c − log

C∑
k=1

exp(F
(j)
θ,k) = log pc − log

C∑
k=1

pk = log pc,

which in turn leads to an initial loss of Zj for all t and therefore achieves a uniform, calibrated loss of
one at initialization similar to the continuous feature case.

C ADAPTIVE NORMALIZATION OF THE AVERAGE DIFFUSION LOSS

Both the loss calibration (see Appendix A) and output layer initialization (see Appendix B) ensure
that the losses across timesteps (and features) are equal at initialization. During training, the adaptive
noise schedules allow the model to focus automatically on the noise levels that matter most, i.e., where
the loss increase is steepest. However, the better the model becomes at a given timestep t, the lower
the loss at the respective timestep, and the lower the gradient signal relative to the signal for timesteps
t̃ > t. We counteract this with adaptive normalization of the average diffusion loss (averaged over
the features) across timesteps. Specifically, we want to weight the average diffusion loss at timestep t,
L(t) given in Equation (6), such that the normalized loss is the same (equal to one) for all t. Similar
methods have been used by Karras et al. (2023) and Kingma & Gao (2023), we follow the latter in
the setup of the corresponding network.

We train a neural network alongside our diffusion model to predict L(t) based on t and use the
MSE loss to learn this weighting. First, we compute cnoise(t) = log(t)/4 following the EDM
parameterization (Karras et al., 2022). Then, we embed cnoise in frequency space (1024-dimensional)
using Fourier features. The result is passed through a single linear layer to output a scalar value,
passed through an exponential function to ensure that the prediction L̂(t) ≥ 0. We initialize the
weights and biases to zero, to ensure that at model initialization we have a unit normalization.

D DERIVATION OF THE FUNCTIONAL TIMEWARPING FORM

Since higher noise levels, σ, imply a lower signal-to-noise ratio, and in turn a larger loss, ℓ, we know
that the loss must be a monotonically increasing and S-shaped function of the noise level. Additionally,
the function has to be easy to invert and differentiate. We incorporate this prior information in the
functional timewarping form of F : σ 7→ ℓ. A convenient choice is the cdf of the logistic distribution:

Flog(y) =
[
1 + exp

(
−ν(y − µ∗)

)]−1
, (12)

where µ∗ describes the location of the inflection point of the S-shaped function and ν ≥ 1 indicates
the steepness of the curve.

We let y = logit(σ) = log(σ/(1− σ)) to change the domain of Flog from (−∞,∞) to (0, 1). The
latter covers all possible values of the noise level σ scaled to [0, 1] with the pre-specified minimum
and maximum noise levels σmin and σmax. To define the parameter µ in the same space and ensure
that 0 < µ < 1, we also let µ∗ = logit(µ). Accordingly, we derive the cdf of the domain-adapted
Logistic distribution:

Fd.a.log(σ) =

[
1 +

(
σ

1− σ

1− µ

µ

)−ν
]−1

. (13)

Since ℓ is not bounded, we introduce a multiplicative scale parameter, γ > 0, such that for timewarp-
ing we predict the potentially feature-specific loss as ℓ̂ = F (σ) = γFd.a.log(σ). Fd.a.log can also
be initialized to the cdf of the uniform distribution with µ = 0.5, ν ≈ 1 and γ = 1 such that all
noise levels are initially equally weighted. However, an initial overweighting of lower noise levels is
beneficial for tabular data (see also Section 3.4).

Likewise, we can derive the inverse cdf F−1
d.a.log(t), that is our mapping of interest from timestep t to

noise level σ, in closed form:

σ = F−1
d.a.log(t) = sigmoid(c), with c = ln

(
µ

1− µ

)
+

1

ν
ln

(
t

1− t

)
. (14)
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When training the diffusion model, we learn the parameters of Fd.a.log as well as γ by predicting the
diffusion loss using F (σ) and the noise levels scaled to [0, 1]. At the beginning of each training step,
we then use the current state of the parameters and F−1

d.a.log, with a sampled timestep t ∼ U[0,1] as input,
to derive σ. To allow for feature-specific, adaptive noise schedules, we separately introduce Fk(σk) for
each feature k, to predict the feature-specific loss ℓk based on the feature-specific scaled noise level σk.

Note that with timewarping we create a feedback loop in which we generate more and more σs from
the region of interest, decreasing the number of observations available to learn the parameters in
different noise level regions. We thus weight the timewarping loss, ||ℓ− ℓ̂||22, when fitting F (σ) to the
data by the reciprocal of the pdf fd.a.log(σ) to mitigate this adverse effect (see Dieleman et al., 2022).
Again, this function is available to us in closed form. With Flog and flog denoting the respective cdf
and pdf of the Logistic distribution, we have

fd.a.log(σ) =
∂

∂y
Flog(y)

∣∣∣∣
y=logit(σ)

∂

∂σ
ln

σ

1− σ

= flog(logit(σ))
1

σ(1− σ)

=
ν

σ(1− σ)
· Z(σ, µ, ν)(

1 + Z(σ, µ, ν)
)2 ,

where we defined Z(σ, µ, ν) =
(

σ
1−σ

1−µ
µ

)−ν
and used the definitions of flog and the parameter µ∗.

E BENCHMARK DATASETS

Our selected benchmark datasets are highly diverse, particularly in the number of categories for
categorical features (see Table 3). For the diabetes and covertype datasets, we transform the
original multi-class classification problem into a binary classification task for ease of presentation.
For the covertype data, the task is converted into predicting whether a forest of type 2 is present
in a given 30 × 30 meter area. In the diabetes data, we convert the task by predicting whether a
patient was readmitted to a hospital. All datasets are publicly accessible and (except nmes) licensed
under creative commons.

Table 3: Overview of the selected experimental datasets. We count the outcome towards the respective
features that remain after removing continuous features with an excessive number of missings. The
minimum and maximum number of categories are taken over all categorical features.

Dataset License Prediction task Total no. No. of features No. of categories
observations categorical continuous min. max.

acsincome (Ding et al., 2021) CC0 regression 1 664 500 8 3 2 529
adult (Becker & Kohavi, 1996) CC BY 4.0 binary classification 48 842 9 6 2 42
bank (Moro et al., 2012) CC BY 4.0 binary classification 41 188 11 10 2 12
beijing (Chen, 2017) CC BY 4.0 regression 41 757 1 10 4 4
churn (Keramati et al., 2014) CC BY 4.0 binary classification. 3 150 5 9 2 5
covertype (Blackard, 1998) CC BY 4.0 binary classification 581 012 44 10 2 2
default (Yeh, 2016) CC BY 4.0 binary classification 30 000 10 14 2 11
diabetes (Clore et al., 2014) CC BY 4.0 binary classification 101 766 28 9 2 716
lending (Club, 2015) DbCL 1.0 regression 9 182 10 34 2 3151
news (Fernandes et al., 2015) CC BY 4.0 regression 39 644 14 46 2 2
nmes (Deb & Trivedi, 1997) unknown regression 4 406 8 11 2 4

F BASELINE MODELS

Below, we give a brief description of our selected generative baseline models (including code sources).

SMOTE (Chawla et al., 2002) – a technique (not a generative model) typically used to oversample
minority classes based on interpolation between ground-truth observations. We use SMOTENC
for mixed-type data from the scikit-learn package and mostly adapt the code from the TabDDPM
repository (Kotelnikov et al., 2023). For sampling, we utilize 16 CPU cores.
ARF (Watson et al., 2023) – a recent generative approach that is based on a random forest for
density estimation. The implementation is available at https://github.com/bips-hb/arfpy
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and licensed under the MIT license. We use package version 0.1.1. For training, we utilize 16 CPU
cores.

CTGAN (Xu et al., 2019) – one of the most popular Generative-Adversarial-Network-based models
for tabular data. The implementation is available as part of the Synthetic Data Vault (Patki et al.,
2016) at https://github.com/sdv-dev/CTGAN and licensed under the Business Source License
1.1. We use package version 0.9.0.

TVAE (Xu et al., 2019) – a Variational-Autoencoder-based model for tabular data. Similar to
CTGAN. The implementation is available as part of the Synthetic Data Vault (Patki et al., 2016) at
https://github.com/sdv-dev/CTGAN and licensed under the Business Source License 1.1. We
use package version 0.9.0. Note that since we only use TVAE (and CTGAN) as benchmark, and do
not provide a synthetic data creation service, the license permits the free usage.

TabDDPM (Kotelnikov et al., 2023) – a diffusion-based generative model for tabular data that
combines multinomial diffusion (Hoogeboom et al., 2021) and diffusion in continuous space. An
implementation is available as part of the synthcity package (Qian et al., 2023) at https:
//github.com/vanderschaarlab/synthcity/ and licensed under the Apache 2.0 license. We
use package version 0.2.7 with slightly adjusted code to allow for the manual specification of
categorical features.

CoDi (Lee et al., 2023) – a diffusion model trained with an additional contrastive loss, and which
factorizes the joint distribution of mixed-type tabular data into a distribution for continuous data condi-
tional on categorical features and a distribution for categorical data conditional on continuous features.
Similarly, the authors utilize the multinomial diffusion framework (Hoogeboom et al., 2021) to model
categorical data. An implementation is available at https://github.com/ChaejeongLee/CoDi
under an unknown license.

TabSyn (Zhang et al., 2024) – a diffusion-based model that first learns a tranformer-based VAE to
map mixed-type data to a continuous latent space. Then, the diffusion model is trained on that latent
space. We use the official code available at https://github.com/amazon-science/tabsyn
under the Apache 2.0 license.

G IMPLEMENTATION DETAILS

Each of the selected benchmark models requires a rather different, more specialized neural network
architecture. Imposing the same architecture across models is therefore not possible. The same
inability holds for the comparison of CDTD to other diffusion-based models: Our model is the first
to use a continuous noise distribution on both continuous and categorical features, and therefore the
alignment of important design choices, like the noise schedule, across models is not possible. In par-
ticular, the forward process of the multinomial diffusion framework (Hoogeboom et al., 2021) used in
TabDDPM and CoDi, which is based on Markov transition matrices, does not translate to our setting.

To ensure a fair comparison in terms of sampling steps, we set the steps for CDTD, TabDDPM, CoDi
and TabSyn to max(200, default). We therefore increase the default number of sampling steps for
CoDi and TabSyn (from 50 steps) and TabDDPM (from 100 steps for classification datasets). For
TabDDPM and regression datasets, we use the suggested default of 1000 sampling steps.

We adjust each architecture to a total of ±3 million trainable parameters on the adult dataset to
improve the comparability further (see Table 4) and use the same architectures for all considered
datasets. Note that the total number of parameters may vary slightly across datasets due to different
number of features and categories affecting the onehot encoding but is still comparable across models.

Table 4: Total number of trainable parameters per model on the adult dataset.

Model Trainable parameters

CTGAN 3 000 397
TVAE 2 996 408
TabDDPM 3 003 924
CoDi 2 998 043
TabSyn 3 001 646
CDTD (per type schedule, TabDDPM architecture) 2 999 721
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We also align the embedding/bottleneck dimensions for CTGAN, TVAE, TabDDPM, TabSyn and
CDTD to 256. To align TabDDPM, TabSyn and CDTD further, we use the TabDDPM architecture
for all models, with appropriate adjustments for different input types and dimensions. If applicable,
all models are trained for 30k steps on a single RTX 4090 instance, using PyTorch version 2.2.2.

Below, we briefly discuss our model-specific hyperparameter choices.

SMOTE (Chawla et al., 2002): We use the default hyperparameters suggested for the SMOTENC
scikit-learn implementation.

ARF (Watson et al., 2023): We use the authors’s suggested default hyperparameters. In particular, we
use 20 trees, δ = 0 and a minimum node size of 5. We follow the official package implementation
and set the maximum number of iterations to 10 (see https://github.com/bips-hb/arfpy).

CTGAN (Xu et al., 2019): We follow the popular implementation in the Synthetic Data Vault package
(see https://github.com/sdv-dev/CTGAN). For this model to work, the batch size must be
divisible by 10. Therefore, we adjust the batch size if necessary. We use a 256-dimensional embedding
(instead of the default embedding dimension of 128) to better align the CTGAN architecture with
TVAE, TabDDPM, TabSyn and CDTD.

TVAE (Xu et al., 2019): We again follow the implementation in the Synthetic Data Vault. We use a
256-dimensional embedding to better align the architecture with CTGAN, TabDDPM, TabSyn and
CDTD.

TabDDPM (Kotelnikov et al., 2023): There are no general default hyperparameters provided. Hence,
we mostly adapt the papers’ tuned hyperparameters for the adult dataset (one of the few used
datasets that includes both continuous and categorical features). However, we decrease the learning
rate from 0.002 to 0.001, since most of the tuned models in the paper used learning rates around 0.001.
For regression task datasets, we use 1000 sampling steps in accordance with the author’s settings.
For classification task datasets, we use 200 sampling steps (instead of the default 100 steps), to better
align the model with CoDi and CDCD. Note also that for classification task datasets, TabDDPM
models the conditional distribution p(x|y), instead of the unconditional distribution p(x) which is
modeled for regression tasks. We adjust the dimension of the bottleneck to 256 (instead of the default
128) to also accommodate also larger datasets and align the model with CTGAN, TVAE,and CDTD.

CoDi (Lee et al., 2023): We use the default hyperparameters from the official code (see https:
//github.com/ChaejeongLee/CoDi).

TabSyn (Zhang et al., 2024): We use the default hyperparameters as suggested by the authors. The
training steps that go towards training the VAE and the denoising network follow the proportions
given in the official code (see https://github.com/amazon-science/tabsyn). To improve
comparability to TabDDPM, CoDi and CDTD, we use the same neural network architecture as
TabDDPM, which only differs slightly from the original architecture. We leave the VAE untouched.

CDTD (ours): To ensure comparability in particular to TabDDPM, CoDi and TabSyn, we use the
same neural network architecture as TabDDPM. We only change the input layers to accommodate
our embedding-based framework. In the input layer, we vectorize all embedded categorical features
and concatenate them with the scalar valued continuous features. The adjusted output layer ensures
that we predict a single value for each continuous features and set of class-specific probabilities for
each categorical feature. Since our use of embeddings introduces additional parameters, we scale the
hidden layers slightly down relative to the TabDDPM to ensure approximately 3 million trainable
parameters (instead of 808 neurons per layer we use 806) on the adult dataset. More details on the
CDTD implementation are given in Appendix J.

H TUNING OF THE DETECTION MODEL

We use a catboost model (Prokhorenkova et al., 2018) to test whether real and generated samples
can be distinguished. We generate the same number of fake observations for each of the real train,
validation and test sets. We cap the maximum size of the real data subsets to 25 000, and subsample
them if necessary, to limit the computational load. Per set, we combine real and fake observations
to Ddetect

train ,Ddetect
valid , and Ddetect

test , respectively. The catboost model is trained on Ddetect
train with the task

of predicting whether an observation is real or fake. We tune the catboost model with optuna and
for 50 trials to maximize the accuracy on Ddetect

valid . The catboost hyperparameter search space is
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given in Table 5. Afterwards, we repeat the sampling process and the creation of Ddetect
train ,Ddetect

valid and
Ddetect

test for five different seeds. Each time, the model is trained on Ddetect
train with the previously tuned

hyperparameters, and evaluated on Ddetect
test . The average test set accuracy over the five seeds yields

the estimated detection score.
Table 5: Catboost hyperparameter space settings. The model is tuned for 50 trials.

Parameter Distribution

no. iterations = 1000
learning rate Log Uniform [0.001, 1.0]
depth Cat([3,4,5,6,7,8])
L2 regularization Uniform [0.1, 10]
bagging temperature Uniform [0, 1]
leaf estimation iters Integer Uniform [1, 10]

I MACHINE LEARNING EFFICIENCY MODELS

For the group of machine learning efficiency models, we use the scikit-learn and catboost package
implementations including the default parameter settings, if not specified otherwise below:

Logistic or Ridge Regression: max. iterations = 1000

Random Forest: max. depth = 12, no. estimators = 100

Catboost: no. iterations = 2000, early stopping rounds = 50, overfitting detector pval = 0.001

J CDTD IMPLEMENTATION DETAILS

To enable a fair comparison to the other methods, and to TabDDPM and TabSyn in particular, the
CDTD score model utilizes the exact same architecture and optimizer as Kotelnikov et al. (2023),
which was also adapted by TabSyn (Zhang et al., 2024). An overview of the score model is provided in
Figure 4: First, the noisy data, i.e., the noisy scalars for continuous features and the noisy embeddings

++

Figure 4: Overview of the CDTD architecture adapted from TabDDPM. The dimensions of the
inputs and layer outputs are stated in the lower-left hand corner for a continuous features xcont and a
categorical features xcat. Note that each categorical features can have a different number of categories
|C|, impacting the output dimension of the final layer. Scalars are colored orange, embeddings red and
linear layers blue. The positional embedding highlighted in green refers to the positional sinusoidal
embedding. CDTD only conditions on y, i.e., the target feature, for classification task datasets.
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for categorical features, are projected onto a 256-dimensional space. Similarly, timestep t and possibly
conditioning information y are embedded in the same space. Then, all 256-dimensional vectors are
added and the results is processed by a set of five fully-connected linear layers with ReLU activation
functions. Lastly, a linear projection maps the output of the fully-connected layers to the required
output dimensions, which depend on the number of features and number of categories per feature.

The only major difference to the TabDDPM setup are the inputs, as we need to embed the categorical
features in Euclidean space. The output dimensions are the same, as we need to predict a single scalar
for each xcont,i, and |Cj | values for each xcat,j , with Cj the set of categories of feature j. We change
the initialization of the output layer as described in Appendix B: To handle our inputs, we embed the
categorical features in 16-dimensional space and add a feature-specific bias of the same dimension,
which captures feature-specific information common to all categories and is initialized to zero. We
L2-normalize each embedding to prevent a degenerate embedding space in which embeddings are
pushed further and further apart (see Dieleman et al., 2022). Also, Dieleman et al. (2022) argue
that the standard deviation of the Normal distribution used to initialize the embeddings, denoted
by σinit, is an important hyperparameter. In this paper, we set σinit = 0.001 for all datasets and have
not seen detrimental effects. Table 7 indicates that CDTD is not sensitive to the choice of σinit.

Since we utilize embeddings, we have to scale the neurons per layer slightly down in the stack of
the five fully-connected layers (from 808 for TabDDPM to 806). Also, since TabDDPM samples
discrete steps from [0, T ], with T ≫ 1, we scale our timesteps t ∈ [0, 1] up by 1000. We use the
same optimizer (Adam), learning rate (0.001), learning rate decay (linear), EMA decay (0.999), and
training steps (30000). However, since we work with embeddings we add a linear warmup schedule
over the first 100 steps.

Instead of using the vanilla uniform (time)step sampling as the TabDDPM, the CDTD model uses
antithetic sampling (Dieleman et al., 2022; Kingma et al., 2022). The timesteps are still uniformly dis-
tributed but spread out more evenly over the domain, which benefits the training of the adaptive noise
schedules. For generation, we use an Euler sampler with 200 steps to minimize the discretization error.

K CDTD SAMPLING

To sample from our learned distribution, we need to run the reverse process of the probability flow
ODE (Equation (2)). For example, for two different features x1 and x2, we deconstruct the ODE as:

dx = −1

2
G(t)G(t)T∇x log pt(x)dt

= −
[
σ̇1(t)σ1(t)

σ̇2(t)σ2(t)

] [ x̂1−x1

σ1(t)2
x̂2−x2

σ2(t)2

]
dt

= −
[
σ̇1(t)

σ̇2(t)

] [ x̂1−x1

σ1(t)
x̂2−x2

σ2(t)

]
dt

In practice, we use an Euler sampler with 200 discrete timesteps ∆t = ti+1 − ti < 0. The timesteps
are generated as a linearly spaced grid on [0, 1] and transformed afterwards into noise levels σk(t)
via the described timewarping procedure. For the discretized and simplified ODE above, this yields

xi+1 = xi −

[
∆σ1(t)

∆t
∆σ2(t)

∆t

][
x̂1−x1

σ1(t)
x̂2−x2

σ2(t)

]
∆t = xi +

[
x1−x̂1

σ1(t)
x2−x̂2

σ2(t)

]
⊙

[
∆σ1(t)
∆σ2(t)

]
.

where ⊙ denotes the element-wise product. Hence, we are effectively taking feature-specific steps
of length ∆σk(t). The adaptive noise schedules (timewarping) therefore not only affect the training
process, but also focus most work in the reverse process on the noise levels that matter most for
sample quality (i.e., where ∆σi(t) is small).

We use finite differences to approximate σ̇i, instead of the available, analytical variant, since
dσk(t)

dt → ∞ as t → 1. The step ∆t would therefore be required to decrease as t → 1 to ensure
∆t ≈ dt holds. For a large number of steps, this assumption does not hold in practice, and for
dσk(t)

dt the update of x overshoots the target drastically. Intuitively, σk(t) becomes too steep near the
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terminal timestep t = 1 such that the step size can not sufficiently compensate for the slope increase
to turn dσk(t)

dt into a good approximation of the actual change in σk(t). Moreover, the analytical
solution would approximate dσk(t) = σ̇k(t)dt, i.e., the change in the noise level caused by a change
in t. Since we know exactly where σk(t) will end up when changing t, we are better off using that
exact value and let dσk(t) = ∆σk(t). Table 6 shows that the gains in sample quality are marginal
to non-existent after more than 500 sampling steps.

Table 6: Performance sensitivity of CDTD (per type) to increasing number of sampling steps. Each
metric is averaged over five seeds. As a robust measure, we report the median over the ablation study
datasets acsincome, adult, beijing and churn .

Steps RMSE F1 AUC L2 distance of corr. Detection score JSD WD DCR

200 (default) 0.033 0.015 0.004 0.127 0.560 0.013 0.003 0.372
500 0.028 0.018 0.005 0.130 0.565 0.012 0.003 0.372

1000 0.028 0.018 0.005 0.129 0.560 0.012 0.003 0.373
1500 0.028 0.018 0.005 0.129 0.561 0.012 0.003 0.374

L SENSITIVITY TO IMPORTANT HYPERPARAMETERS

The training and sampling processes of CDTD are affected by various novel hyperparameters.
Generally, a per-type noise schedule works best as we show in our main results in Table 1 for a
diverse set of benchmark datasets. Here, we examine the sensitivity of CDTD to two additional
important hyperparameters: (1) the standard deviation of the noise used to initialize the embeddings
(and therefore specific to score interpolation), σinit, and (2) the weight of the low noise levels used to
initialize the µk in the adaptive noise schedule parameterization.

The experiments in Dieleman et al. (2022) show that σinit is a crucial hyperparameter for score
interpolation on text data. The same sensitivity does not translate to the tabular data domain, as
shown in our results in Table 7. The much smaller embedding dimension (16 vs. 256) and the feature-
specific embeddings significantly decrease the number of distinguishable categories. Compared to
a vocabulary size of 32000 for text data (Dieleman et al., 2022), we only face a maximum of 3151
categories in the lending dataset (see Table 3). Thus, unlike other generative (diffusion) models
for tabular data, CDTD scales to a practically arbitrary number of categories.

Our proposed functional form for the adaptive noise schedules (see Appendix D) is the first to allow
for the incorporation of prior information about the importance of low vs. high (normalized) noise
levels. For this, we adjust the weight of low noise levels which directly determines the location of the
inflection point µk (see Section 3.3). The results in Table 8 indicate low sample quality sensitivity to
weight changes for a per-type noise schedule. The initialization only impacts the time to convergence
but not (much) the location of the optimum. In our experiments, the number of training steps (30000)
appears to be high enough for all model variants to converge.

Table 7: Performance sensitivity of CDTD (per type) to changes in the standard deviation σinit in
the initialization of the embeddings of categorical features. Each metric is averaged over five seeds.
As a robust measure, we report the median over the ablation study datasets acsincome, adult,
beijing and churn .

σinit RMSE F1 AUC L2 distance of corr. Detection score JSD WD DCR

1 0.032 0.017 0.006 0.126 0.564 0.011 0.004 0.311
0.1 0.035 0.016 0.004 0.128 0.570 0.012 0.004 0.358
0.01 0.032 0.017 0.005 0.131 0.566 0.011 0.004 0.369

0.001 (default) 0.033 0.015 0.004 0.127 0.560 0.013 0.003 0.372

M ADVANTAGES OF DIFFUSION IN DATA SPACE

These days, inspired from diffusion models in the image and video domains, much work relies on the
idea of latent diffusion. Here, we want to briefly discuss and emphasize that for tabular data, diffusion
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Table 8: Performance sensitivity of CDTD (per type) to changes in the prior weight of low noise
levels in the initialization of the adaptive noise schedules. Each metric is averaged over five seeds.
As a robust measure, we report the median over the ablation study datasets acsincome, adult,
beijing and churn .

Weight RMSE F1 AUC L2 distance of corr. Detection score JSD WD DCR

1 0.036 0.015 0.004 0.143 0.651 0.015 0.003 0.313
2 0.030 0.014 0.005 0.147 0.651 0.014 0.003 0.352

3 (default) 0.033 0.015 0.004 0.154 0.651 0.013 0.004 0.366
4 0.034 0.019 0.005 0.148 0.656 0.013 0.004 0.370

in latent space (represented by TabSyn) has important drawbacks and how CDTD, a diffusion model
defined in data space differs from that.

Latent diffusion models first encode the data and map it into a latent space. The diffusion model itself
is then trained in that latent space. Hence, the performance of the diffusion model directly depends
on a second, separate model, with a separate training procedure. TabSyn uses a VAE model to encode
mixed-type data into a common continuous space that is not lower-dimensional, so as to minimize
reconstruction errors. Any reconstruction errors caused by the incapability of the VAE in turn reduce
the sample quality of the eventually generated samples, no matter the capacity of the diffusion model.
This suggests that we would want to train a high capable encoder/decoder, which adds additional
training costs. Figure 3 shows that latent diffusion is not necessarily more efficient in the tabular data
domain. In particular, if the latent space is not lower-dimensional to minimize reconstruction error,
then sampling speed is not improved.

We further hypothesize that much tabular data, due to the lack of redundancy and spatial or sequential
correlation, is difficult to summarize efficiently in a joint latent space. Hence, compared to other
domains, larger VAEs and higher-dimensional latent spaces are required, increasing the training time.
Also, there is the risk of the VAE not picking up on subtle correlations within the data or distorting
existing correlations by mapping into the latent space. Any correlations not properly encoded in the
latent space, cannot be learned or exploited by the diffusion model. Since we optimize the VAE on
an average loss, its reconstruction and encoding performance of, for instance, minority classes or
extreme values in long-tailed distributions is likely lacking. This makes the job of the diffusion model
more difficult, if not impossible.

Lastly, we take great care in homogenizing categorical and continuous features throughout the training
process (see Appendix A and B). This is a crucial part of modeling mixed-type data. Using a VAE to
define a diffusion process in latent space only shifts the necessity for homogenization to the VAE
training process. Not balancing different feature- or data-types and their losses induces an implicit
importance weight for each feature. Thus, the VAE may sacrifice the reconstruction quality of some
features in favor of others (Kendall et al., 2018; Ma et al., 2020).

To empirically investigate the difference of diffusion in data space (CDTD) and latent diffusion
(TabSyn), we examine the worst feature-specific sample quality and other metrics that directly benefit
from the model generating all features well. Our results in Table 9 show that, latent diffusion comes
with a considerable decrease in sample quality (while imposing a similar architecture and number of
parameters as well as sampling steps, see Appendix G). In particular, the attained maximum metrics
indicate that TabSyn has issues modeling all features and their correlations sufficiently well. This
supports our argument that a homogenization of data types is of crucial importance to avoid having
the model implicitly favor one feature over another.

N COMPARISON TO RELATED WORK

Table 10 summarizes our comparison of CDTD to the selected diffusion-based benchmark models,
that is, TabSyn, TabDDPM and CoDi. Of those models, only TabSyn applies diffusion in latent space,
which comes with both advantages and costs (as discussed in Appendix M). TabSyn is the only other
model besides CDTD that avoids one-hot encoding categorical features by using embeddings. This
improves the scalability to a higher number of categories without blowing up the input dimensions.
Although both models utilize embeddings, TabSyn’s generative capabilities are more constrained by
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Table 9: A comparison of the CDTD model to latent diffusion (TabSyn). We average each metric over
five sampling seeds and as a robust measure report the median over the ablation datasets acsincome,
adult, beijing and churn. Abs. diff. in corr. matrices refers to the absolute differences in the
correlation matrices between ground truth and synthetic data. The maximum, minimum and mean
are taken across features.

Detection
score

L2 dist.
of corr.

JSD WD Abs. diff. in
corr. matrices

min mean max min mean max min max

TabSyn 0.772 0.479 0.005 0.018 0.046 0.003 0.006 0.017 0 0.133
CDTD (per type) 0.566 0.131 0.001 0.012 0.022 0.001 0.003 0.007 0 0.052

improvement over TabSyn 1.364 3.656 5.000 1.500 2.091 3.000 2.000 2.429 0 2.558

jointly encoding all features in a latent space. As such, it is still less flexible than CDTD, in particular
when modeling very unbalanced categorical data. Information on rare categories may easily be cut
off in favor of attributing more capacity in the latent space to more prominent categories or features.
It should also be noted that TabSyn is the only model that makes use of a Transformer architecture in
its VAE, which means that it scales quadratically in the number of features and therefore may not be
easily scaled to high-dimensional data.

The CDTD model is the first to utilize adaptive and type- or feature-specific noise schedules to
model tabular data. Further, we take great care in homogenizing categorical and continuous features
throughout the training process, including the model initialization (see Appendix A and B). No
other model attempts balancing the different features types. This is problematic as it suggests that
other models may suffer from feature-specific induced implicit importance weights that impact both
training and generation processes. Hence, the sample quality of some features may be unintentionally
sacrificed in favor of increasing the sample quality of other features (Kendall et al., 2018; Ma et al.,
2020). Note that this also applies to TabSyn: Even though their diffusion model avoids this issue by
relying on a single type of loss due to the continuous latent space, the VAE training process does
not account for any balancing issues between the two data types. Hence, the balancing issue is not
eliminated but got only shifted to the encoder VAE.

Lastly, CDTD and TabSyn are the only models that define the diffusion process in continuous space.
As such, other advanced techniques, like classifier-free guidance or ODE/SDE samplers, can be
directly applied. To accommodate categorical data, CoDi and TabDDPM make use of multinomial
diffusion (Hoogeboom et al., 2021), which is an inherently discrete process and therefore prohibits
such applications.

Table 10: Comparison of CDTD to the diffusion-based generative models CoDi, TabDDPM and
TabSyn. (∗) Note that the VAE trained as part of the TabSyn model does not balance type-specific
losses, which induces an implicit weighting among features. This can worsen the sample quality of
some features in favor of others.

defined in
feature space

avoids one-hot
encoding

balances
feature types

adaptive
noise schedule

type- or feature-
specific noise schedules

diffusion in
continuous space

CoDi ✓
TabDDPM ✓
TabSyn ✓ ∗ ✓

CDTD (ours) ✓ ✓ ✓ ✓ ✓ ✓

O EXAMPLES OF LEARNED NOISE SCHEDULES

Next, we show the learned noise schedules for the smallest (churn) and the largest (acsincome)
datasets. Additionally, we illustrate the fit of single, per type and per feature schedules to the
respective losses.
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Figure 5: (Left): Learned noise schedules for churn. This reflects F−1
d.a.log,k. (Right): Implicit

weighting of noise levels / timesteps. This visualizes fd.a.log,k.
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Figure 6: Illustration of the goodness of fit of the timewarping function Fk for single (left), per type
(middle) and per feature noise schedules (right) on the churn data.
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Figure 7: (Left): Learned noise schedules for acsincome. This reflects F−1
d.a.log,k. (Right): Implicit

weighting of noise levels / timesteps. This visualizes fd.a.log,k.
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Figure 9: Bivariate density for age and educational-num from the adult data.
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Figure 10: Comparison of some univariate distributions for adult, bank, churn, nmes.
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Figure 11: Comparison of some univariate distributions for beijing, default, lending, news.
(Note that CoDi is prohibitively expensive to train on lending and therefore excluded.)
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Q VISUALIZATIONS OF CAPTURED CORRELATIONS
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Figure 12: Element-wise absolute differences of the correlation matrices between the real training set
and the synthetic data for the acsincome dataset. TabDDPM generates NaNs for this dataset and is
therefore excluded. SMOTE takes too long for sampling. Continuous (cont.) and categorical (cat.)
features are indicated on the axes.
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Figure 13: Element-wise absolute differences of the correlation matrices between the real training set
and the synthetic data for the adult dataset. Continuous (cont.) and categorical (cat.) features are
indicated on the axes.
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Figure 14: Element-wise absolute differences of the correlation matrices between the real training set
and the synthetic data for the bank dataset. Continuous (cont.) and categorical (cat.) features are
indicated on the axes.
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Figure 15: Element-wise absolute differences of the correlation matrices between the real training set
and the synthetic data for the beijing dataset. Continuous (cont.) and categorical (cat.) features
are indicated on the axes.
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Figure 16: Element-wise absolute differences of the correlation matrices between the real training set
and the synthetic data for the churn dataset. Continuous (cont.) and categorical (cat.) features are
indicated on the axes.
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Figure 17: Element-wise absolute differences of the correlation matrices between the real training set
and the synthetic data for the covertype dataset. SMOTE takes too long for sampling. Continuous
(cont.) and categorical (cat.) features are indicated on the axes.
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Figure 18: Element-wise absolute differences of the correlation matrices between the real training set
and the synthetic data for the default dataset. Continuous (cont.) and categorical (cat.) features
are indicated on the axes.
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Figure 19: Element-wise absolute differences of the correlation matrices between the real training set
and the synthetic data for the diabetes dataset. TabDDPM generates NaNs for this dataset and
is therefore excluded. CoDi is prohibitively expensive to train and therefore excluded. Continuous
(cont.) and categorical (cat.) features are indicated on the axes.
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Figure 20: Element-wise absolute differences of the correlation matrices between the real training
set and the synthetic data for the lending dataset. CoDi is prohibitively expensive to train and
therefore excluded. Continuous (cont.) and categorical (cat.) features are indicated on the axes.
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Figure 21: Element-wise absolute differences of the correlation matrices between the real training set
and the synthetic data for the news dataset. Continuous (cont.) and categorical (cat.) features are
indicated on the axes.
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Figure 22: Element-wise absolute differences of the correlation matrices between the real training set
and the synthetic data for the nmes dataset. Continuous (cont.) and categorical (cat.) features are
indicated on the axes.
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R DETAILED RESULTS

CoDi is prohibitively expensive to train on lending and diabetes and TabDDPM produces
NaNs for acsincome and diabetes. SMOTE takes too long to sample datasets of a sufficient
size for acsincome and covertype (see Table 29). For those models, the performance metrics
on these datasets are therefore not reported. They are assigned a rank of 10 in Table 1 and are not
taken into account when forming the average metrics reported in Table 11.
Table 11: Model evaluation results averaged over 11 datasets (skipping a dataset if the model was not
trainable on it, which due to extensive sampling times for SMOTE includes two of the most complex
datasets, acsincome and covertype) for seven benchmark models and for CDTD with three
different noise schedules. Per performance metric, bold indicates the best, underline the second best
result.

SMOTE ARF CTGAN TVAE TabDDPM CoDi TabSyn CDTD
(single)

CDTD
(per type)

CDTD
(per feature)

RMSE (abs. diff.; ↓) 0.083 0.094 0.674 0.947 0.486 0.173 0.313 0.084 0.101 0.110
F1 (abs. diff.; ↓) 0.007 0.053 0.130 0.074 0.015 0.044 0.099 0.025 0.020 0.025
AUC (abs. diff.; ↓) 0.008 0.020 0.080 0.065 0.009 0.027 0.059 0.018 0.016 0.022
L2 distance of corr. (↓) 0.866 1.321 2.187 2.745 3.786 1.200 2.025 0.782 0.756 0.990
Detection score (↓) 0.661 0.934 0.986 0.976 0.769 0.936 0.877 0.796 0.768 0.783
JSD (↓) 0.055 0.011 0.114 0.152 0.051 0.038 0.048 0.015 0.016 0.018
WD (↓) 0.004 0.011 0.023 0.025 0.061 0.022 0.016 0.010 0.007 0.009
DCR (abs. diff. to test; ↓) 1.278 1.588 3.336 1.621 0.568 1.000 2.593 0.796 0.806 0.758

Table 12: L2 norm (incl. standard errors in subscripts) of the correlation matrix differences of real and
synthetic train sets for seven benchmark models and for CDTD with three different noise schedules.

SMOTE ARF CTGAN TVAE TabDDPM CoDi TabSyn CDTD
(single)

CDTD
(per type)

CDTD
(per feature)

acsincome - 0.242±0.002 1.696±0.008 1.136±0.004 - 0.517±0.006 0.524±0.010 0.141±0.003 0.129±0.003 0.119±0.002

adult 0.414±0.016 0.576±0.006 1.858±0.010 0.735±0.012 0.156±0.006 0.493±0.009 0.449±0.011 0.170±0.007 0.125±0.009 0.128±0.010

bank 0.404±0.015 0.819±0.024 0.947±0.019 2.758±0.049 0.898±0.025 0.499±0.021 0.677±0.015 0.323±0.008 0.266±0.011 0.256±0.015

beijing 0.081±0.007 0.133±0.006 1.445±0.009 1.642±0.015 1.133±0.035 0.363±0.015 0.096±0.008 0.075±0.008 0.073±0.009 0.071±0.004

churn 0.264±0.036 0.635±0.026 1.355±0.043 1.301±0.041 0.327±0.044 0.746±0.062 0.509±0.053 0.302±0.041 0.289±0.043 0.282±0.044

covertype - 1.192±0.017 3.685±0.005 4.668±0.003 1.044±0.001 1.029±0.032 3.958±0.243 2.359±0.011 2.275±0.009 2.710±0.009

default 0.709±0.048 1.228±0.021 2.697±0.021 1.564±0.029 3.408±0.105 1.672±0.061 1.121±0.042 0.627±0.068 0.652±0.102 0.737±0.033

diabetes 2.355±0.026 1.189±0.004 1.654±0.008 5.351±0.095 - - 2.381±0.026 1.201±0.020 0.803±0.032 1.345±0.016

lending 1.321±0.063 3.473±0.057 2.420±0.016 5.895±0.026 10.675±0.015 - 6.701±0.034 1.042±0.075 1.189±0.040 1.363±0.097

news 1.684±1.466 4.333±0.128 4.641±0.028 4.612±0.016 15.985±0.081 4.874±0.148 4.990±0.024 1.925±0.527 2.035±0.475 3.395±0.950

nmes 0.565±0.047 0.717±0.054 1.663±0.035 0.532±0.030 0.447±0.031 0.609±0.032 0.867±0.046 0.433±0.025 0.478±0.083 0.481±0.058

Table 13: Jensen-Shannon divergence (incl. standard errors in subscripts) for seven benchmark models
and for CDTD with three different noise schedules.

SMOTE ARF CTGAN TVAE TabDDPM CoDi TabSyn CDTD
(single)

CDTD
(per type)

CDTD
(per feature)

acsincome - 0.013±0.001 0.256±0.000 0.309±0.000 - 0.076±0.001 0.045±0.001 0.025±0.001 0.024±0.000 0.022±0.001

adult 0.064±0.001 0.007±0.001 0.112±0.001 0.113±0.001 0.034±0.001 0.045±0.001 0.020±0.001 0.010±0.001 0.013±0.001 0.016±0.000

bank 0.039±0.001 0.004±0.000 0.086±0.001 0.191±0.001 0.029±0.001 0.038±0.001 0.054±0.001 0.010±0.000 0.009±0.001 0.012±0.001

beijing 0.006±0.002 0.005±0.002 0.147±0.003 0.257±0.001 0.035±0.003 0.018±0.004 0.007±0.002 0.003±0.001 0.005±0.002 0.005±0.001

churn 0.012±0.004 0.011±0.004 0.095±0.003 0.048±0.004 0.014±0.004 0.043±0.001 0.017±0.002 0.012±0.003 0.012±0.002 0.011±0.002

covertype - 0.002±0.000 0.044±0.000 0.043±0.000 0.004±0.000 0.008±0.000 0.049±0.000 0.008±0.000 0.008±0.000 0.011±0.000

default 0.042±0.001 0.008±0.001 0.194±0.001 0.177±0.001 0.027±0.002 0.073±0.002 0.082±0.001 0.013±0.001 0.015±0.001 0.015±0.001

diabetes 0.067±0.000 0.009±0.000 0.093±0.000 0.187±0.000 - - 0.095±0.000 0.022±0.000 0.023±0.000 0.026±0.000

lending 0.143±0.001 0.049±0.002 0.092±0.001 0.188±0.001 0.243±0.002 - 0.114±0.002 0.055±0.001 0.056±0.001 0.064±0.002

news 0.063±0.001 0.002±0.001 0.022±0.001 0.128±0.001 0.046±0.000 0.012±0.001 0.016±0.001 0.003±0.001 0.003±0.001 0.003±0.001

nmes 0.060±0.001 0.008±0.002 0.117±0.002 0.029±0.003 0.028±0.004 0.027±0.003 0.026±0.001 0.008±0.001 0.009±0.001 0.013±0.003

Table 14: Wasserstein distance (incl. standard errors in subscripts) for seven benchmark models and
for CDTD with three different noise schedules.

SMOTE ARF CTGAN TVAE TabDDPM CoDi TabSyn CDTD
(single)

CDTD
(per type)

CDTD
(per feature)

acsincome - 0.007±0.000 0.037±0.000 0.021±0.000 - 0.017±0.000 0.005±0.000 0.002±0.000 0.001±0.000 0.001±0.000

adult 0.003±0.000 0.012±0.000 0.016±0.000 0.021±0.000 0.003±0.000 0.013±0.000 0.006±0.000 0.006±0.000 0.004±0.000 0.003±0.000

bank 0.002±0.001 0.012±0.000 0.021±0.000 0.040±0.001 0.011±0.000 0.030±0.001 0.005±0.000 0.006±0.001 0.004±0.000 0.004±0.000

beijing 0.002±0.000 0.009±0.000 0.021±0.000 0.058±0.001 0.011±0.000 0.019±0.000 0.004±0.000 0.004±0.000 0.003±0.000 0.002±0.000

churn 0.006±0.001 0.013±0.001 0.027±0.001 0.032±0.001 0.008±0.002 0.048±0.002 0.013±0.002 0.008±0.001 0.007±0.001 0.006±0.001

covertype - 0.006±0.000 0.041±0.000 0.022±0.000 0.003±0.000 0.012±0.000 0.017±0.000 0.017±0.000 0.015±0.000 0.012±0.000

default 0.002±0.000 0.005±0.000 0.011±0.000 0.005±0.000 0.005±0.000 0.013±0.000 0.003±0.000 0.004±0.000 0.004±0.000 0.003±0.000

diabetes 0.004±0.000 0.012±0.000 0.020±0.000 0.038±0.000 - - 0.011±0.000 0.038±0.000 0.020±0.000 0.042±0.000

lending 0.006±0.000 0.013±0.001 0.011±0.000 0.016±0.000 0.425±0.001 - 0.050±0.000 0.009±0.000 0.010±0.000 0.011±0.000

news 0.007±0.000 0.024±0.000 0.009±0.000 0.018±0.000 0.078±0.001 0.030±0.000 0.025±0.000 0.007±0.000 0.006±0.000 0.008±0.000

nmes 0.005±0.001 0.012±0.000 0.036±0.000 0.008±0.000 0.007±0.001 0.016±0.001 0.038±0.001 0.006±0.001 0.006±0.001 0.006±0.000
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Table 15: Detection score (incl. standard errors in subscripts) for seven benchmark models and for
CDTD with three different noise schedules.

SMOTE ARF CTGAN TVAE TabDDPM CoDi TabSyn CDTD
(single)

CDTD
(per type)

CDTD
(per feature)

acsincome - 0.808±0.001 0.989±0.001 0.985±0.000 - 0.825±0.002 0.680±0.002 0.540±0.003 0.532±0.004 0.526±0.002

adult 0.320±0.006 0.889±0.002 0.997±0.000 0.967±0.001 0.590±0.003 0.992±0.001 0.630±0.003 0.604±0.002 0.588±0.002 0.591±0.005

bank 0.633±0.008 0.955±0.002 1.000±0.000 0.988±0.001 0.783±0.003 1.000±0.000 0.843±0.002 0.795±0.003 0.739±0.003 0.694±0.006

beijing 0.976±0.001 0.995±0.000 0.998±0.000 0.993±0.001 0.966±0.002 0.997±0.001 0.966±0.001 0.951±0.002 0.949±0.001 0.947±0.002

churn 0.339±0.020 0.853±0.002 0.945±0.006 0.843±0.011 0.561±0.005 0.730±0.012 0.865±0.012 0.621±0.016 0.533±0.007 0.544±0.031

covertype - 0.945±0.002 0.997±0.000 0.989±0.001 0.586±0.002 0.900±0.002 0.979±0.001 0.991±0.001 0.992±0.001 0.991±0.001

default 0.493±0.009 0.991±0.001 0.998±0.001 0.997±0.001 0.821±0.002 0.995±0.000 0.902±0.001 0.827±0.004 0.802±0.003 0.871±0.001

diabetes 0.367±0.001 0.854±0.002 0.935±0.002 0.997±0.001 - - 0.940±0.001 0.858±0.001 0.780±0.002 0.866±0.002

lending 0.926±0.004 0.997±0.001 0.995±0.002 0.995±0.001 1.000±0.000 - 0.998±0.001 0.955±0.006 0.954±0.009 0.961±0.004

news 0.993±0.001 0.998±0.000 1.000±0.000 1.000±0.000 0.966±0.002 1.000±0.000 0.999±0.000 0.973±0.001 0.953±0.001 0.977±0.001

nmes 0.905±0.007 0.987±0.002 0.992±0.003 0.988±0.002 0.650±0.014 0.988±0.000 0.841±0.008 0.636±0.008 0.623±0.008 0.642±0.010

Table 16: Distance to closest record of the generated data (incl. standard errors in subscripts) for
seven benchmark models and for CDTD with three different noise schedules.

Test Set SMOTE ARF CTGAN TVAE TabDDPM CoDi TabSyn CDTD
(single)

CDTD
(per type)

CDTD
(per feature)

acsincome 7.673±0.017 - 8.637±0.027 10.758±0.054 6.652±0.032 - 10.877±0.092 10.305±0.073 8.346±0.056 8.322±0.047 8.349±0.033

adult 1.870±0.000 1.371±0.018 2.523±0.012 5.012±0.028 2.227±0.013 1.647±0.009 2.735±0.028 2.341±0.013 1.112±0.019 1.231±0.011 1.294±0.009

bank 2.369±0.000 1.369±0.011 3.025±0.017 3.840±0.014 3.136±0.007 2.327±0.010 3.062±0.012 2.973±0.012 1.828±0.008 1.943±0.007 2.062±0.008

beijing 0.385±0.000 0.139±0.003 0.735±0.003 1.004±0.006 0.926±0.003 0.739±0.006 0.610±0.002 0.626±0.001 0.490±0.002 0.489±0.001 0.477±0.002

churn 0.347±0.000 0.232±0.028 1.136±0.015 1.804±0.036 1.146±0.039 0.342±0.031 0.852±0.016 1.130±0.018 0.332±0.021 0.274±0.021 0.276±0.012

covertype 0.529±0.001 - 1.741±0.011 5.773±0.017 3.173±0.013 0.889±0.007 1.508±0.020 3.086±0.009 2.297±0.026 2.209±0.022 2.252±0.013

default 1.812±0.000 1.032±0.010 3.095±0.026 5.880±0.020 3.216±0.013 1.422±0.013 2.593±0.020 2.603±0.018 1.127±0.028 1.269±0.014 1.253±0.012

diabetes 15.608±0.055 13.909±0.050 17.736±0.107 21.935±0.046 8.214±0.022 - - 28.955±0.060 15.279±0.026 15.126±0.058 15.350±0.059

lending 11.184±0.000 17.752±0.143 17.776±0.132 20.239±0.222 10.688±0.025 12.537±0.076 - 16.222±0.092 13.775±0.147 14.162±0.188 13.966±0.282

news 3.615±0.000 3.553±0.134 6.147±0.010 4.789±0.005 5.821±0.003 4.960±0.006 4.661±0.023 5.351±0.008 3.635±0.004 3.687±0.006 3.749±0.048

nmes 1.931±0.000 1.394±0.019 2.203±0.028 2.971±0.008 1.710±0.019 0.891±0.033 1.231±0.024 2.260±0.034 0.664±0.029 0.710±0.032 0.771±0.023

Table 17: Machine learning efficiency F1 score for seven benchmark models, the real training data
and for CDTD with three different noise schedules. The standard deviation takes into account five
different sampling seeds and uses the average results of the four machine learning efficiency models
computed across ten model seeds.

Real Data SMOTE ARF CTGAN TVAE TabDDPM CoDi TabSyn CDTD
(single)

CDTD
(per type)

CDTD
(per feature)

adult 0.797±0.000 0.784±0.001 0.769±0.002 0.647±0.015 0.756±0.002 0.787±0.001 0.745±0.004 0.782±0.001 0.787±0.001 0.787±0.001 0.787±0.001

bank 0.745±0.002 0.740±0.004 0.682±0.006 0.680±0.006 0.629±0.006 0.720±0.006 0.673±0.006 0.711±0.007 0.776±0.003 0.767±0.004 0.737±0.004

churn 0.873±0.003 0.865±0.008 0.780±0.015 0.761±0.009 0.802±0.017 0.857±0.007 0.865±0.008 0.771±0.014 0.854±0.011 0.852±0.006 0.845±0.011

covertype 0.817±0.001 - 0.783±0.001 0.442±0.008 0.711±0.002 0.799±0.001 0.767±0.001 0.614±0.015 0.734±0.002 0.754±0.001 0.722±0.002

default 0.674±0.001 0.677±0.001 0.627±0.003 0.686±0.002 0.632±0.007 0.678±0.002 0.638±0.008 0.496±0.009 0.670±0.002 0.671±0.001 0.673±0.003

diabetes 0.621±0.002 0.615±0.002 0.572±0.005 0.557±0.004 0.553±0.003 - - 0.560±0.006 0.617±0.002 0.617±0.002 0.611±0.002

Table 18: Machine learning efficiency AUC score for seven benchmark models, the real training data
and for CDTD with three different noise schedules. The standard deviation takes into account five
different sampling seeds and uses the average results of the four machine learning efficiency models
computed across ten model seeds.

Real Data SMOTE ARF CTGAN TVAE TabDDPM CoDi TabSyn CDTD
(single)

CDTD
(per type)

CDTD
(per feature)

adult 0.915±0.000 0.906±0.001 0.901±0.000 0.836±0.006 0.889±0.002 0.908±0.000 0.880±0.005 0.906±0.001 0.910±0.000 0.910±0.001 0.909±0.000

bank 0.947±0.000 0.943±0.001 0.938±0.001 0.934±0.003 0.830±0.020 0.940±0.005 0.929±0.005 0.939±0.003 0.945±0.000 0.945±0.001 0.943±0.004

churn 0.964±0.001 0.961±0.002 0.939±0.007 0.882±0.006 0.948±0.004 0.957±0.004 0.961±0.001 0.919±0.006 0.962±0.001 0.962±0.001 0.959±0.003

covertype 0.892±0.000 - 0.860±0.001 0.677±0.007 0.777±0.001 0.876±0.000 0.845±0.001 0.671±0.013 0.816±0.002 0.828±0.001 0.802±0.002

default 0.768±0.000 0.759±0.003 0.754±0.002 0.744±0.002 0.751±0.004 0.763±0.002 0.739±0.008 0.746±0.011 0.762±0.003 0.765±0.002 0.765±0.002

diabetes 0.693±0.001 0.679±0.001 0.669±0.002 0.626±0.003 0.592±0.002 - - 0.645±0.002 0.675±0.001 0.673±0.001 0.667±0.001

Table 19: Machine learning efficiency RMSE for seven benchmark models, the real training data
and for CDTD with three different noise schedules. The standard deviation takes into account five
different sampling seeds and uses the average results of the four machine learning efficiency models
computed across ten model seeds.

Real Data SMOTE ARF CTGAN TVAE TabDDPM CoDi TabSyn CDTD
(single)

CDTD
(per type)

CDTD
(per feature)

acsincome 0.804±0.012 - 0.757±0.007 2.292±0.013 1.054±0.011 - 0.857±0.010 0.959±0.012 0.838±0.015 0.811±0.014 0.820±0.011

beijing 0.712±0.001 0.739±0.002 0.792±0.007 1.246±0.010 1.690±0.016 0.606±0.006 0.912±0.005 0.788±0.011 0.774±0.005 0.770±0.005 0.762±0.005

lending 0.030±0.000 0.042±0.001 0.274±0.007 0.137±0.007 0.404±0.007 0.795±0.031 - 0.268±0.004 0.061±0.001 0.060±0.001 0.066±0.002

news 1.001±0.002 1.180±0.107 0.923±0.052 1.906±0.019 3.999±0.175 0.083±0.001 1.302±0.074 0.374±0.028 0.819±0.103 0.776±0.091 0.755±0.066

nmes 1.001±0.003 1.112±0.044 0.972±0.024 1.331±0.052 1.127±0.047 1.154±0.047 1.137±0.052 0.535±0.013 1.108±0.083 1.184±0.076 1.203±0.081
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S ABLATION STUDY DETAILS

Table 20: L2 norm (incl. standard errors in subscripts) of the correlation matrix differences of real and
synthetic train sets for five CDTD configurations with progressive addition of model components.

Configuration A B C D CDTD
(per type)

acsincome 0.131±0.003 0.119±0.004 0.124±0.006 0.129±0.004 0.129±0.003

adult 0.131±0.007 0.128±0.008 0.168±0.017 0.107±0.011 0.125±0.009

beijing 0.065±0.009 0.066±0.012 0.067±0.011 0.067±0.010 0.073±0.009

churn 0.244±0.015 0.272±0.034 0.299±0.066 0.264±0.012 0.289±0.043

Table 21: Jensen-Shannon divergence (incl. standard errors in subscripts) for five CDTD configura-
tions with progressive addition of model components.

Configuration A B C D CDTD
(per type)

acsincome 0.025±0.000 0.025±0.001 0.025±0.001 0.024±0.001 0.024±0.000

adult 0.012±0.001 0.013±0.000 0.012±0.000 0.014±0.001 0.013±0.001

beijing 0.004±0.001 0.006±0.002 0.005±0.003 0.004±0.002 0.005±0.002

churn 0.010±0.002 0.008±0.002 0.009±0.004 0.010±0.002 0.012±0.002

Table 22: Wasserstein distance (incl. standard errors in subscripts) for five CDTD configurations with
progressive addition of model components.

Configuration A B C D CDTD
(per type)

acsincome 0.002±0.000 0.002±0.000 0.002±0.000 0.001±0.000 0.001±0.000

adult 0.004±0.000 0.005±0.000 0.006±0.000 0.003±0.000 0.004±0.000

beijing 0.003±0.000 0.004±0.000 0.003±0.000 0.003±0.000 0.003±0.000

churn 0.006±0.001 0.006±0.000 0.006±0.001 0.006±0.001 0.007±0.001

Table 23: Detection score (incl. standard errors in subscripts) for five CDTD configurations with
progressive addition of model components.

Configuration A B C D CDTD
(per type)

acsincome 0.534±0.002 0.534±0.001 0.538±0.003 0.532±0.002 0.532±0.004

adult 0.597±0.002 0.593±0.001 0.615±0.003 0.580±0.003 0.588±0.002

beijing 0.953±0.002 0.959±0.001 0.952±0.003 0.953±0.001 0.949±0.001

churn 0.557±0.014 0.573±0.014 0.564±0.012 0.541±0.015 0.533±0.007
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Table 24: Distance to closest record of the generated data (incl. standard errors in subscripts) for five
CDTD configurations with progressive addition of model components.

Real Test Set A B C D CDTD
(per type)

acsincome 7.673±0.017 8.335±0.064 8.222±0.035 8.305±0.021 8.352±0.025 8.322±0.047

adult 1.870±0.000 1.221±0.018 1.294±0.015 1.252±0.014 1.427±0.008 1.231±0.011

beijing 0.385±0.000 0.545±0.001 0.559±0.002 0.539±0.003 0.541±0.002 0.489±0.001

churn 0.347±0.000 0.307±0.016 0.326±0.009 0.294±0.022 0.298±0.013 0.274±0.021

Table 25: Machine learning efficiency F1 score for five CDTD configurations with progressive
addition of model components. The standard deviation accounts for five different sampling seeds and
uses the average results of the four machine learning efficiency models across ten model seeds.

Real Data A B C D CDTD
(per type)

adult 0.797±0.000 0.788±0.001 0.788±0.001 0.787±0.001 0.788±0.002 0.787±0.001

churn 0.873±0.003 0.856±0.008 0.856±0.014 0.857±0.007 0.849±0.006 0.852±0.006

Table 26: Machine learning efficiency AUC score for five CDTD configurations with progressive
addition of model components. The standard deviation accounts for five different sampling seeds and
uses the average results of the four machine learning efficiency models across ten model seeds.

Real Data A B C D CDTD
(per type)

adult 0.915±0.000 0.909±0.000 0.910±0.000 0.909±0.000 0.910±0.000 0.910±0.001

churn 0.964±0.001 0.962±0.002 0.961±0.003 0.960±0.002 0.961±0.001 0.962±0.001

Table 27: Machine learning efficiency RMSE for five CDTD configurations with progressive addition
of model components. The standard deviation accounts for five different sampling seeds and uses the
average results of the four machine learning efficiency models across ten model seeds.

Real Data A B C D CDTD
(per type)

acsincome 0.804±0.012 0.815±0.009 0.813±0.018 0.823±0.017 0.814±0.014 0.811±0.014

beijing 0.712±0.001 0.782±0.004 0.785±0.004 0.778±0.005 0.776±0.004 0.770±0.005
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T TRAINING AND SAMPLING TIMES DETAILS

Table 28: Training times in minutes. TabDDPM produces NaNs during training on acsincome and
diabetes, and is therefore excluded for these data. CoDi is considered prohibitively expensive to
train on diabetes and lending and we report estimated (est.) training times.

SMOTE ARF CTGAN TVAE TabDDPM CoDi TabSyn CDTD
(per feature)

acsincome - 80.3 59.9 26.0 - 231.9 13.4 5.8
adult - 7.4 36.2 23.7 38.3 48.3 32.7 6.9
bank - 11.0 37.6 24.6 40.5 42.7 48.5 26.3
beijing - 3.7 34.3 23.9 36.1 24.9 25.8 23.4
churn - 0.3 27.1 13.7 18.2 25.7 21.5 6.1
covertype - 130.2 58.0 36.5 44.9 69.2 30.7 28.2
default - 12.0 38.3 24.8 38.9 45.9 40.1 26.4
diabetes - 58.5 90.1 25.3 - 870 (est.) 34.6 26.9
lending - 5.2 157.9 36.6 48.7 3000 (est.) 42.1 25.3
news - 23.0 48.8 33.3 37.2 41.5 57.9 25.2
nmes - 0.4 32.8 17.2 24.9 30.2 31.0 6.3

Table 29: Sample times in seconds per 1000 samples.

SMOTE ARF CTGAN TVAE TabDDPM CoDi TabSyn CDTD
(per feature)

acsincome 4674.45 4.20 0.23 0.07 - 10.26 3.53 0.59
adult 10.71 1.78 0.31 0.16 0.82 3.65 0.88 0.56
bank 16.19 2.24 0.44 0.44 0.87 3.38 0.80 0.64
beijing 3.98 0.34 0.41 0.32 2.09 2.45 0.99 0.26
churn 0.52 1.00 0.40 0.24 0.95 2.78 0.80 0.39
covertype 10913.34 9.74 0.28 0.25 2.45 4.35 0.85 1.97
default 10.00 2.07 0.27 0.25 0.86 3.48 0.82 0.60
diabetes 166.75 5.87 0.53 0.15 - - 0.83 1.33
lending 4.06 2.49 0.45 0.54 4.33 - 0.85 0.69
news 66.49 3.89 0.43 0.30 5.13 2.93 0.86 0.85
nmes 0.69 1.54 0.31 0.17 4.17 2.91 0.82 0.55
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