
Published as a conference paper at ICLR 2025

CONTINUOUS DIFFUSION FOR MIXED-TYPE TABULAR
DATA

Markus Mueller1
mueller@ese.eur.nl

Kathrin Gruber1
gruber@ese.eur.nl

Dennis Fok1

dfok@ese.eur.nl

1Econometric Institute, Erasmus University Rotterdam

ABSTRACT

Score-based generative models, commonly referred to as diffusion models, have
proven to be successful at generating text and image data. However, their adaptation
to mixed-type tabular data remains underexplored. In this work, we propose CDTD,
a Continuous Diffusion model for mixed-type Tabular Data. CDTD is based on
a novel combination of score matching and score interpolation to enforce a unified
continuous noise distribution for both continuous and categorical features. We
explicitly acknowledge the necessity of homogenizing distinct data types by relying
on model-specific loss calibration and initialization schemes. To further address
the high heterogeneity in mixed-type tabular data, we introduce adaptive feature-
or type-specific noise schedules. These ensure balanced generative performance
across features and optimize the allocation of model capacity across features and
diffusion time. Our experimental results show that CDTD consistently outperforms
state-of-the-art benchmark models, captures feature correlations exceptionally
well, and that heterogeneity in the noise schedule design boosts sample quality.
Replication code is available at https://github.com/muellermarkus/cdtd.

1 INTRODUCTION

Score-based generative models (Song et al., 2021), also termed diffusion models (Sohl-Dickstein
et al., 2015; Ho et al., 2020), have shown remarkable potential for the generation of images (Dhariwal
& Nichol, 2021; Rombach et al., 2022), videos (Ho et al., 2022), text (Li et al., 2022; Dieleman et al.,
2022; Wu et al., 2023), molecules (Hoogeboom et al., 2022), and other highly complex data structures
with continuous features. The framework has since been adapted to categorical data in various ways,
including discrete diffusion processes (Austin et al., 2021; Hoogeboom et al., 2021), diffusion in
continuous embedding space (Dieleman et al., 2022; Li et al., 2022; Regol & Coates, 2023; Strudel
et al., 2022), and others (Campbell et al., 2022; Meng et al., 2022; Sun et al., 2023). However,
their adaptation to mixed-type tabular data, which includes both continuous and categorical features,
remains under explored. Existing models build directly on advances from the image domain (Kim
et al., 2023; Kotelnikov et al., 2023; Lee et al., 2023; Jolicoeur-Martineau et al., 2024) and, therefore,
are not designed to deal with challenges specific to mixed-type tabular data: The type-specific
diffusion processes and their losses are neither aligned nor balanced. A naive combination of different
losses can cause the generative model to favor the sample quality of some features or data types
over others (Ma et al., 2020). Furthermore, tabular data often includes categorical features of high
cardinality. However, existing diffusion models for tabular data typically rely on a discrete diffusion
framework to model one-hot-encoded categorical features (e.g., Kotelnikov et al., 2023; Lee et al.,
2023). As a consequence, these models do not scale well and fail to capture the full uncertainty
during the denoising process, as a data sample can never be ‘in-between’ categories.

Noise schedules determine the amount of noise at each diffusion timestep and are typically defined
manually (Nichol & Dhariwal, 2021; Karras et al., 2022), but can also be learned (Dieleman et al.,
2022; Kingma et al., 2021). They are a crucial component in score-based generative models (Kingma

1

https://github.com/muellermarkus/cdtd

Published as a conference paper at ICLR 2025

et al., 2021; Chen et al., 2023; Chen, 2023; Jabri et al., 2023; Wu et al., 2023) as they aim to focus
the model capacity on the noise levels most important to sample quality. However, despite their
importance, previous work on diffusion models for tabular data simply adopted noise schedules
from the image domain, which is not optimal. First, diffusion models for mixed-type tabular data
inherently rely on combining type-specific diffusion processes. This makes it important, but difficult,
to balance noise schedules across feature types. Unbalanced noise schedules negatively affect the
allocation of model capacity. For instance, both TabDDPM (Kotelnikov et al., 2023) and CoDi (Lee
et al., 2023) use the discrete multinomial diffusion framework (Hoogeboom et al., 2021) to model
categorical features. This induces different types of noise for continuous and categorical features,
making alignment or comparison of noise schedules impossible. Second, the domain, nature, and
marginal distribution can vary significantly across features (Xu et al., 2019). For instance, any
two continuous features may be subject to different levels of discretization or skewness, even after
applying common data preprocessing techniques; and any two categorical features may differ in the
number of categories, or the degree of imbalance. The high heterogeneity and lack of balance warrant
a rethinking of fundamental parts of the diffusion framework, including the noise schedule and the
effective combination of diffusion processes for different data types, rather than simply copying what
has been working for images.

In this paper, we introduce Continuous Diffusion for mixed-type Tabular Data (CDTD) to address
the aforementioned shortcomings. We combine score matching (Hyvärinen, 2005) with score inter-
polation (Dieleman et al., 2022) to derive a score-based model that pushes the diffusion process for
categorical data into embedding space, and thus enables a Gaussian diffusion process for both contin-
uous and categorical features. This way, the different noise processes become directly comparable,
easier to balance, and enable the application of, for instance, classifier-free guidance (Ho & Salimans,
2022), accelerated sampling (Lu et al., 2022), and other advances to mixed-type tabular data.

We counteract the high feature heterogeneity inherent to mixed-type tabular data with distinct feature-
or type-specific adaptive noise schedules. The learnable noise schedules allow the model to directly
take feature or type heterogeneity into account during both training and generation, and thus avoid the
reliance on image-specific noise schedule designs. Likewise, Shi et al. (2024) also propose the use of
feature-specific noise schedules for tabular data but do not account for the necessity of homogenizing
different data types. In contrast, we propose a diffusion-specific loss calibration and initialization
scheme for effective data type homogenization. These improvements ensure a better allocation of
our model’s capacity across features, feature types and timesteps, and yield high quality samples.
CDTD outperforms state-of-the-art baseline models across a diverse set of sample quality metrics and
datasets as well as computation time. Our experiments show that CDTD captures feature correlations
exceptionally well, and that explicitly allowing for data-type heterogeneity in the noise schedules
benefits sample quality.

In sum, we make several contributions specific to score-based modeling of tabular data:

• We propose a unified continuous diffusion model for both continuous and categorical features such
that all noise distributions are Gaussian.

• We balance model capacity across continuous and categorical features with a novel loss calibration,
an adjusted score model initialization and adaptive type- or feature-specific noise schedules.

• We suggest a novel functional form to efficiently learn adaptive noise schedules, and to allow for an
exact evaluation and incorporation of prior information on the relative importance of noise levels.

• We drastically improve the scalability of tabular data diffusion models to high-cardinality features.

• We are the first to enable the use of advanced techniques, like classifier-free guidance, for mixed-type
tabular data directly in data space as opposed to a latent space.

2 SCORE-BASED GENERATIVE FRAMEWORK

We start with outlining the score-based frameworks for continuous and categorical features. Next, we
combine these into a single, unified model to learn the joint distribution of mixed-type tabular data.

2

Published as a conference paper at ICLR 2025

Retrieve
noise levels

Noisify
real data

Train
joint score model

Generate
new data

+

Score Model

Adaptive
Noise

Schedules

+

Score Matching

Score Interpolation

ODE
solver

C
at

eg
or

ic
al

 fe
at

ur
es

C
on

tin
uo

us
 fe

at
ur

es

Figure 1: CDTD framework. Adaptive noise schedules are trained to fit the (possibly aggregated)
MSE and CE losses and transform the uniform timestep t to a potentially feature-specific noise level
to diffuse (“noisify”) the scalar values (for continuous features) or the embeddings (for categorical
features). Associated sampling processes are highlighted in orange. The approximated score functions
are concatenated and passed to an ODE solver for sample generation.

2.1 CONTINUOUS FEATURES

We denote x
(i)
cont ∈ R as the i-th continuous feature and x0 ≡ xcont ∈ RKcont as the stacked feature

vector. Further, let {xt}t=1
t=0 be a diffusion process that gradually adds noise in continuous time

t ∈ [0, 1] to x0, and let pt(x) denote the density function of the data at time t. Then, this process
transforms the real data distribution p0(x) into a terminal distribution of pure noise p1(x) from which
we can sample. Our goal is to learn the reverse process that allows us to go from noise x1 ∼ p1(x) to
a new data sample x∗

0 ∼ p0(x).

The forward-pass of this continuous-time diffusion process is formulated as the solution to a stochastic
differential equation (SDE):

dx = f(x, t)dt+ g(t)dw, (1)
where f(·, t) : RKcont → RKcont is the drift coefficient, g(·) : R→ R is the diffusion coefficient, and w
is a Brownian motion (Song et al., 2021). The reversion yields the trajectory of x as t goes backwards
in time from 1 to 0, and is formulated as a probability flow ordinary differential equation (ODE):

dx =
[
f(x, t)− 1

2
g(t)2∇x log pt(x)

]
dt. (2)

We approximate the score function ∇x log pt(x), the only unknown in Equation (2), by training a
time-dependent score-based model sθ(x, t) via score matching (Hyvärinen, 2005). The parameters θ
are trained to minimize the denoising score matching objective:

Et

[
λtEx0

Ext|x0
∥sθ(xt, t)−∇xt

log p0t(xt|x0)∥22
]
, (3)

where λt : [0, 1]→ R+ is a positive weighting function for timesteps t ∼ U[0,1], and p0t(xt|x0) is
the density of the noisy xt given the ground-truth data x0 (Vincent, 2011).

In this paper, we use the EDM formulation (Karras et al., 2022), that is, f(·, t) = 0 and

g(t) =
√
2[ddtσ(t)]σ(t) such that p0t(xt|x0) = N (xt|x0, σ

2(t)IKcont). We standardize x0 to zero
mean and unit variance. Then, for a sufficiently large σ2(1), we can start the reverse process with
sampling x1 ∼ p1(x) = N (0, σ2(1)IKcont). We then gradually guide x1 towards high density regions
in the data space with sθ(x, t) replacing the unknown, true score function in Equation (2).

2.2 CATEGORICAL FEATURES

Let x(j)
cat ∈ {1, . . . , Cj} be the j-th categorical feature with Cj distinct classes. We learn a feature-

specific encoder to represent each category c as a d-dimensional vector e(j)xcat = Encj(x
(j)
cat). Further,

3

Published as a conference paper at ICLR 2025

let x(j)
0 ∈ {e

(j)
1 , . . . , e

(j)
Cj
} be the noiseless embedding at t = 0. To unify the diffusion frameworks for

categorical and continuous data as much as possible, we base both on the same Gaussian-type noise.
Thus, instead of adding noise to the categorical variable directly, we add noise to the embedding
x
(j)
t ∼ p0t(x

(j)
t |x

(j)
0) = N (x

(j)
t |x

(j)
0 , σ2(t)Id) such that x(j)

1 ∼ p1(x
(j)) = N (0, σ2(1)Id), analo-

gous to score matching.

For categorical data, denoising score matching (Equation (3)) is not directly applicable to learn
∇

x
(j)
t

log p0t(x
(j)
t |x

(j)
0), since the score can only take on Cj distinct values. To proceed, we transform

the score matching approach into a discrete choice problem. Note that for a given t and x
(j)
t it is

sufficient to find E
P(x

(j)
0 |x(j)

t ,t)
[∇

x
(j)
t

log p0t(x
(j)
t |x

(j)
0)] as it minimizes Equation (3). Presuming

Gaussian noise, we have

E
P(x

(j)
0 |x(j)

t ,t)

[
∇

x
(j)
t

log p0t(x
(j)
t |x

(j)
0)

]
=

1

σ2(t)

[
E
P(x

(j)
0 |x(j)

t ,t)
[x

(j)
0]− x

(j)
t

]
. (4)

We can thus approximate the score by computing the probability-weighted aver-
age of the Cj possible embedding vectors, that is, x̂

(j)
0 = E

P(x
(j)
0 |x(j)

t ,t)
[x

(j)
0]. Since

P(x
(j)
0 = e

(j)
xcat |x

(j)
t , t) = P(x

(j)
cat = c|x(j)

t , t), we can estimate P(x
(j)
0 |x

(j)
t , t) via a classifier

that predicts the Cj class probabilities and is trained to minimize the cross-entropy (CE). This
procedure effectively interpolates between the Cj ground-truth embeddings x

(j)
0 and is therefore

known as score interpolation (Dieleman et al., 2022).

This framework easily extends to multiple features. Most importantly, Encj is trained alongside the
model such that x(j)

0 is directly optimized for denoising the data. During sampling, the model only
has to commit to a category at the final step of generation, i.e., we allow for a smooth, continuous
transition between states. This is unlike multinomial diffusion (Hoogeboom et al., 2021), which
imposes discrete transitioning steps and is the framework used by several existing diffusion models
for tabular data (Kotelnikov et al., 2023; Lee et al., 2023). By defining diffusion for categorical data
in embedding space, we allow our model to take uncertainty at intermediate timesteps fully into
account, which improves the consistency of the generated samples (Dieleman et al., 2022). Thus,
CDTD can more accurately capture subtile dependencies both within and across data types.

3 METHOD

To model the joint distribution of mixed-type data, we combine score matching (Equation (3)) with
score interpolation (Equation (4)). Next, we discuss the important components of our method. In par-
ticular, the combination of the different losses for score matching and score interpolation, initialization
and loss weighting concerns, and the adaptive type- or feature-specific noise schedule designs.

3.1 GENERAL FRAMEWORK

Figure 1 gives an overview of our Continuous Diffusion for mixed-type Tabular Data (CDTD)
framework. The score model is conditioned on (1) the noisy continuous features, (2) the noisy
embeddings of categorical features, and (3) the timestep t. It predicts the ground-truth value x

(i)
cont

for continuous features and the class-specific probabilities P(x
(j)
cat = c) for categorical features.

Additional conditioning information is straightforward to add. Note that while the Gaussian noise
process acts directly on continuous features, it acts on the embedded categorical features x(j)

0 . This
way, we ensure a unified continuous noise process for both data types. Further details on the
implementation are provided in Appendix K. During generation, we concatenate the score estimates,
ŝ
(i)
cont and ŝ

(j)
cat , for all features i and j before passing them to an ODE solver. Our model is the first

to utilize feature- or type-specific noise schedules also during the generation of tabular data, which
allows the sampler to take feature- or type-specific steps. Details on the sampling process and the
algorithm are given in Appendix L.

4

Published as a conference paper at ICLR 2025

3.2 HOMOGENIZATION OF DATA TYPES

Let LMSE(x
(i)
cont, t) be the time-weighted MSE (i.e., score matching) loss of the i-th continuous feature

at a single timestep t, and LCE(x
(j)
cat , t) the CE (i.e., score interpolation) loss of the j-th categorical

feature. Naturally, the two losses are defined on different scales. This leads to an unintended
importance weighting of features in the generative process (Ma et al., 2020). To solve this, we
observe that an unconditional generative model should a priori, i.e., without having any information,
be indifferent between all features. For diffusion models this reflects the state of the model at the
terminal timestep t = 1.

Definition 1 (Calibrated losses). Scaled losses L∗
MSE and L∗

CE are called calibrated if

E[L∗
MSE(x

(i)
cont, 1)] = E[L∗

CE(x
(j)
cat , 1)] = 1,

for all continuous features i and categorical features j.

Assumption 1 (No information at t = 1). The noise level σ(1) is high enough such that the input to
the score model cannot be distinguished from noise, i.e., the model has no information.

Proposition 1 (Homogenization of feature-specific losses). Under Assumption 1, if each x
(i)
cont has unit

variance and Zj is the feature-specific entropy of categorical feature j, then the losses L∗
MSE = LMSE

and L∗
CE = LCE(x

(j)
cat , 1)/Zj are calibrated for all continuous features i and categorical features j.

See Appendix B for a detailed proof.

Given Assumption 1 and Proposition 1, we can derive a joint loss function without unintended
importance weighting by averaging the K = Kcont +Kcat calibrated losses at a given t:

L(t) = 1

K

[Kcont∑
i=1

L∗
MSE(x

(i)
cont, t) +

Kcat∑
j=1

L∗
CE(x

(j)
cat , t)

]
. (5)

Implications for the score model initialization. The loss calibration and the multi-modality of the
data have implications for the optimal initialization of the score model. To match the loss calibration,
we aim to initialize the model such that all feature-specific losses are one. We therefore initialize the
output layer weights and biases for continuous features to zero and rely on the timestep weights of
the EDM parameterization (Karras et al., 2022) to achieve a unit loss for all t. For the categorical
features, we initialize the biases to match each category’s empirical log probability in the training set
(see Appendix C for details).

Weighting across time. The initial equal importance across all t will change over the course of
training. To allow for changes in the relative importance among features but ensure equal importance
of all timesteps throughout training, we employ a normalization scheme for the average diffusion loss
(Karras et al., 2024; Kingma & Gao, 2023). Specifically, we learn the time-dependent normalization
Z(t) such that L(t)/Z(t) ≈ 1. This ensures a consistent gradient signal and can be implemented by
training a neural network to predict L(t) alongside our diffusion model (see Appendix D for details).

3.3 NOISE SCHEDULES

Evidently, the noise schedule of one feature impacts the optimality of noise schedules for other
features, and different data types have different sensitivities to additive noise. For instance, given the
same embedding dimension, more noise may be needed to remove the same amount of signal from
embeddings of features with fewer classes (see Appendix A). Likewise, a delayed noise schedule
for one feature might improve sample quality as the model can rely on other correlated features that
have been (partially) generated first. Therefore, we introduce feature-specific or type-specific noise
schedules. We make the noise schedules learnable, and therewith adaptive to avoid the reliance on
designs for other data modalities.

We investigate the following noise schedule variants: (1) a single adaptive noise schedule, (2) adaptive
noise schedules differentiated per data type and (3) feature-specific adaptive noise schedules. We
only introduce the feature-specific noise schedules explicitly. The other noise schedule types are
easily derived from our argument by appropriately aggregating terms across features.

5

Published as a conference paper at ICLR 2025

0.0 0.5 1.0

σk scaled to [0,1]

0

5

f
d
.a
.l

o
g
,k

0.0 0.5 1.0

σk scaled to [0,1]

0

1

F
d
.a
.l

o
g
,k

µk = 0.1 µk = 0.2 µk = 0.3 µk = 0.4 µk = 0.5

0.0 0.5 1.0

σk scaled to [0,1]

0

2

f
d
.a
.l

o
g
,k

0.0 0.5 1.0

σk scaled to [0,1]

0.00

0.75

1.00

F
d
.a
.l

o
g
,k

uniform overweight low noise levels (σk < 0.5) by a factor of three

Figure 2: (Left) pdf (fd.a.log,k) and cdf (Fd.a.log,k) of the domain-adapted Logistic distribution for five
different values of the location parameter µk and for a given curve steepness νk = 3. (Right) impact
of uniform vs. adjusted timewarping initialization on the pdf (fd.a.log,k) and the cdf (Fd.a.log,k).

Feature-specific noise schedules. Following Equation (1), we define the diffusion process of x(i)
cont

as

dx(i)
cont

=

√
2
[d

dt
hcont,i(t)

]
hcont,i(t)dw

(i)
t , (6)

and likewise the trajectory of x(j)
cat as

dx
(j)
cat =

√
2
[d

dt
hcat,j(t)

]
hcat,j(t)dw

(j)
t , (7)

where x
(j)
cat ∈ Rd is the embedding of x

(j)
cat in Euclidean space. The noise schedules hcont,i(t)

and hcat,j(t) represent the feature-specific standard deviations σcont,i(t) and σcat,j(t) of the added
Gaussian noise, respectively. Thus, each feature is affected by a distinct adaptive noise schedule.
On the other hand, type-specific noise schedules involve only two functions, hcat(t) and hcont(t), such
that all features of the same type are affected by the same noise schedule.

Adaptive noise schedules. We aim to learn a noise schedule hk : t 7→ σk for each feature k.
Inspired by Dieleman et al. (2022), we learn a function Fk that predicts the feature-specific (not
explicitly weighted) loss ℓk given the noise level σk. By normalizing and inverting Fk, we achieve
the mapping of interest hk = F̃−1

k . This encourages the relation between t and ℓk to be linear.

Higher noise levels imply a lower signal-to-noise ratio and therefore a larger incurred loss for the
score model. Accordingly, Fk must be a monotonically increasing and S-shaped function. We let
Fk = γkFd.a.log,k(σk) where γk > 0 is a scaling factor that enables fitting a loss ℓk > 1 at t = 1 near
the start of training, and a loss ℓk < 1 in case conditioning information is included. Further, we use
the cdf of the domain-adapted Logistic distribution Fd.a.log,k(σk), where the input is pre-processed
via a Logit function, with parameters 0 < µk < 1 (the location of the inflection point) and νk ≥ 1
(the steepness of the curve). Note that with pre-specified minimum and maximum noise levels, we can
always scale σk to lie in [0, 1]. Figure 2 illustrates the effect of the location parameter. The implicit
importance of the noise levels is conveniently represented by the pdf fd.a.log,k. To normalize and
invert Fk, we set γk = 1 and directly use the closed-form quantile function F−1

d.a.log,k. The detailed
derivation of all relevant functions is given in Appendix E. To avoid biasing the noise schedule to
frequently sampled timesteps during training, we derive importance weights from fd.a.log,k when
fitting hk. We use the adaptive noise schedules during both training and generation, and give examples
of learned noise schedules in Appendix P.

Our functional choice has several advantages. First, each noise schedule can be evaluated exactly
without the need for approximations and only requires three parameters. Second, these parameters
are well interpretable in the diffusion context and provide information on the inner workings of the
model. For instance, for µ1 < µ2, the model starts generating feature 2 before feature 1 in the reverse
process. Third, the proposed functional form is less flexible than the original piece-wise linear
function (Dieleman et al., 2022) such that an EMA on the parameters is not necessary, and the fit
is more robust to “outliers” encountered during training. This is crucial when using a feature-specific
specification as opposed to a single noise schedule.

3.4 ADDITIONAL CUSTOMIZATION TO TABULAR DATA

In the diffusion process, we add noise directly to the continuous features but to the embeddings of
categorical features. We generally need more noise to remove all the signal from the categorical rep-
resentations. We therefore define type-specific minimum and maximum noise levels: For categorical

6

Published as a conference paper at ICLR 2025

features, we let σcat,min = 0 and σcat,max = 100; for continuous features, we set σcont,min = 0 and
σcont,max = 80.

Lastly, an uninformative initialization of the adaptive noise schedules requires µk = 0.5, νk ≈ 1 and
γk = 1 such that Fd.a.log,k corresponds approximately to the cdf of a uniform distribution. We can
improve upon this with a more informative prior: As opposed to images, in tabular data the location of
features in the data matrix, and therefore the high-level structure, is fixed. Instead, we are interested
in generating details as accurately as possible. Note that the inflection point, µk, corresponds to the
proportion of high noise levels (i.e., σk ≥ 0.5 · (σmax + σmin)) in the distribution. Therefore, we
empirically choose µk = 1/4 such that low noise levels (i.e., σk < 0.5 · (σmax + σmin)) are initially
presumed to be three times more important than high noise levels (see Figure 2). We let νk ≈ 1 for a
dispersed initial probability mass and initialize the scaling factor to γk = 1.

4 EXPERIMENTS

We benchmark our model against several generative models across multiple datasets. Additionally, we
investigate three different noise schedule specifications: (1) a single adaptive noise schedule for both
data types (single), (2) continuous and categorical data type-specific adaptive noise schedules (per
type), and (3) feature-specific adaptive noise schedules (per feature).

Baseline models. We use a diverse benchmark set of state-of-the-art generative models for
mixed-type tabular data. This includes SMOTE (Chawla et al., 2002), ARF (Watson et al., 2023),
CTGAN (Xu et al., 2019), TVAE (Xu et al., 2019), TabDDPM (Kotelnikov et al., 2023), CoDi (Lee
et al., 2023) and TabSyn (Zhang et al., 2024). Each model follows a different design and/or modeling
philosophy. Note that CoDi is an extension of STaSy (Kim et al., 2023, the same group of authors) that
has shown to be superior in performance. For scaling reasons, ForestDiffusion (Jolicoeur-Martineau
et al., 2024) is not an applicable benchmark.1 Further details on the respective benchmark models
and their implementations are provided in Appendix G and Appendix H, respectively. We provide
an in-depth comparison of CDTD to the diffusion-based baselines in Appendix O. To keep the
comparison fair, we use the same internal architecture for CDTD as TabDDPM (which was also
adopted by TabSyn), with minor changes to accommodate the different inputs (see Appendix K).

Datasets. We systematically investigate our model on 10 publicly available datasets (see Appendix F
for details). The datasets vary in size, prediction task (regression vs. binary classification2), number of
continuous and categorical features and their distributions. The number of categories for categorical
features varies significantly across datasets. We remove observations with missings in the target or
any of the continuous features and encode missings in the categorical features as a separate category.
All datasets are split in train (60%), validation (20%) and test (20%) partitions, hereinafter denoted
Dtrain,Dvalid and Dtest, respectively. For classification tasks, we use stratification with respect to the
outcome. We round the integer-valued continuous features after generation.

4.1 EVALUATION METRICS

In our experiments, we follow conventions from previous papers and use four sample quality criteria,
which we assess using a comprehensive set of measures. All metrics are averaged over five random
seeds that affect the sampling process of synthetic data Dgen of size min(|Dtrain|, 50 000).

Machine learning efficiency. We follow the conventional train-synthetic-test-real strategy (see,
Borisov et al., 2023; Liu et al., 2023; Kotelnikov et al., 2023; Kim et al., 2023; Xu et al., 2019;
Watson et al., 2023). We train a logistic/ridge regression, a random forest and a catboost model, on
the data-specific prediction task (see Appendix J for details) and then compare the model-averaged

1Jolicoeur-Martineau et al. (2024) report that they used 10-20 CPUs with 64-256 GB of memory for datasets
with a median number of 540 observations. With the suggested hyperparameters (for improved efficiency) and
64 CPUs, the model took approx. 500 min of training on the small nmes data. Note that the model estimates
KT separate models, with K being the number of features and T the noise levels. Therefore, we consider
ForestDiffusion to be prohibitively expensive for higher-dimensional data generation.

2For ease of presentation, we only analyze binary targets. However, CDTD trivially extends to targets with
multiple classes.

7

Published as a conference paper at ICLR 2025

real test performance, Perf(Dtrain,Dtest), to the performance when trained on the synthetic data,
Perf(Dgen,Dtest). The results are averaged over ten different model seeds (in addition to the five
seeds for the sampling). For regression tasks, we consider the RMSE and for classification tasks, the
macro-averaged F1 and AUC scores. We report |Perf(Dgen,Dtest)− Perf(Dtrain,Dtest)|. An absolute
difference close to zero is preferable since then synthetic and real data induce the same performance.

Detection score. For each generative model, we report the accuracy of a catboost model that is
trained to distinguish between real and generated (fake) samples (Borisov et al., 2023; Liu et al., 2023;
Zhang et al., 2024). First, we subsample the real data subsets, Dtrain,Dvalid and Dtest, to a maximum
of 25 000 data samples to limit evaluation time. Then, we construct Ddetect

train ,Ddetect
valid and Ddetect

test with
equal proportions of real and fake samples. We tune each catboost model on Ddetect

valid and report the
accuracy of the best-fitting model on Ddetect

test (see Appendix I for details). A (perfect) detection score
of 0.5 indicates that the model is unable to distinguish fake from real samples.

Statistical similarity. Similar to Zhang et al. (2024), we assess the statistical similarity between
real and generated data at both the feature and sample levels. We largely follow Zhao et al. (2021) and
compare: (1) the Jensen-Shannon divergence (JSD; Lin, 1991) to quantify the difference in categorical
distributions, (2) the Wasserstein distance (WD; Ramdas et al., 2017) to quantify the difference in
continuous distributions, and (3) the L2 distance between pairwise correlation matrices. We use the
Pearson correlation coefficient for two continuous features, the Theil uncertainty coefficient for two
categorical features, and the correlation ratio for mixed types.

Privacy. We compute the distance to closest record (DCR) as the minimum Euclidean distance of a
generated data point to any observation in Dtrain (Borisov et al., 2023; Zhao et al., 2021). We one-hot
encode categorical features and standardize all features to zero mean and unit variance to ensure each
feature contributes equally to the distance. We compute the average DCR as a robust estimate. For
brevity, we report the absolute difference of the DCR of the synthetic data and the DCR of the real test
set. A good DCR value, indicating both realistic and sufficiently private data, should be close to zero.

4.2 RESULTS

Table 1: Average performance rank of each generative model across eleven datasets. Per metric,
bold indicates the best, underline the second best result. We assigned the rank 10 for CoDi on
lending and diabetes, TabDDPM on acsincome and diabetes, SMOTE on acsincome
and covertype. RMSE, F1, AUC and DCR are measured in abs. differences to the real test set.

SMOTE ARF CTGAN TVAE TabDDPM CoDi TabSyn CDTD
(single)

CDTD
(per type)

CDTD
(per feature)

RMSE 3.6±3.3 3.4±2.1 8.0±1.6 7.8±2.2 8.4±1.0 7.0±1.8 7.2±1.5 4.0±1.7 2.6±1.0 3.2±1.5

F1 4.2±2.9 6.2±2.3 8.0±1.4 8.0±1.0 4.3±3.1 6.5±3.0 8.2±1.7 4.0±1.1 2.3±1.4 3.5±1.4

AUC 4.3±3.0 5.7±1.9 8.3±1.2 7.8±1.1 4.3±3.1 6.8±3.1 8.2±1.6 3.3±1.1 2.7±1.5 3.7±1.2

L2 dist. of corr. 5.0±2.8 5.7±2.2 8.3±1.9 7.9±1.4 6.0±3.3 7.0±2.5 7.1±1.2 3.4±1.1 2.0±0.8 2.8±1.5

Detection score 5.7±2.5 6.1±1.7 8.8±1.5 7.6±1.1 4.8±3.2 7.9±2.4 6.2±1.6 3.1±1.5 1.6±1.0 3.3±1.1

JSD 7.2±2.2 1.2±0.4 7.6±2.4 8.8±1.0 6.9±2.1 7.2±1.5 6.8±1.3 2.5±0.7 2.8±1.1 4.1±0.9

WD 3.2±3.3 5.8±1.8 7.4±2.4 7.9±1.6 5.6±3.5 8.4±1.8 5.8±2.0 4.5±1.6 3.2±1.5 3.4±1.9

DCR 5.8±2.7 6.5±2.1 8.4±1.7 6.1±2.9 4.5±3.4 6.6±2.4 6.3±2.0 4.1±2.5 3.9±2.3 3.0±2.0

Table 1 shows the average rank of each generative model across all datasets for the considered metrics.
Detailed results (including standard errors) for each model and dataset are reported in Appendix S.
The ranks in terms of the F1 and AUC scores are averaged over the classification task datasets.
Likewise, the RMSE rank averages include the regression task datasets. We assign the maximum
possible rank when a model could not be trained on a given dataset or could not be evaluated in
reasonable time. This includes TabDDPM, which outputs NaNs for acsincome and diabetes
and CoDi, which we consider to be prohibitively expensive to train on diabetes (estimated 14.5
hours) and lending (estimated 60 hours). Similarly, SMOTE is very inefficient in sampling for
large datasets (78 min for 1000 samples on acsincome and 182 min on covertype) and does
not finish the evaluation within 12 hours. We provide visualizations of the captured correlations in
the synthetic sample compared to the real training set in Appendix R and distribution plots for a
qualitative comparison in Appendix Q.

8

Published as a conference paper at ICLR 2025

Table 2: Ablation study for five CDTD configurations. We report the median performance. The grey
column depicts the impact of our data type homogenization.

Config. A B C D CDTD
(per type)

RMSE (abs. diff.; ↓) 0.090 0.069 0.060 0.058 0.055
F1 (abs. diff.; ↓) 0.015 0.011 0.010 0.006 0.009
AUC (abs. diff.; ↓) 0.008 0.005 0.005 0.005 0.006
L2 distance of corr. (↓) 0.483 0.421 0.457 0.450 0.444
Detection score (↓) 0.762 0.739 0.774 0.662 0.701
JSD (↓) 0.010 0.013 0.011 0.011 0.011
WD (↓) 0.008 0.006 0.007 0.005 0.006
DCR (abs. diff. to test; ↓) 0.639 0.552 0.574 0.350 0.544

Sample quality. CDTD consistently outperforms the considered benchmark models in most sample
quality metrics. Specifically, we see a major performance edge in terms of the detection score, the L2

distance of the correlation matrices and the ML efficiency metrics. Using score interpolation, CDTD
is able to model the intricate correlation structure more accurately than other frameworks. Due to their
inductive biases, SMOTE and ARF perform very well in terms of univariate distribution fit for con-
tinuous features (as measured by WD) and categorical (as measured by JSD), respectively. However,
in both of those cases, CDTD performs competitively, in particular when compared to the diffusion-
based models. Interestingly, TabSyn, a latent space diffusion model, performs considerably worse
than CDTD and often TabDDPM, which define diffusion in data space. In Appendix N, we further
compare CDTD and TabSyn and investigate the benefits of defining a diffusion model in data space.

Most importantly, type-specific noise schedules mostly outperform the feature-specific and single
noise schedule variants. This illustrates the necessity to account for the high heterogeneity in tabular
data on the feature-type level. Having distinct noise schedules per feature instead appears to force too
many constraints on the model and, thus, decreases sample quality. Per-feature noise schedules would
also require more training steps to fully converge, as can be seen in Appendix P. We investigate the
sensitivity of CDTD to important hyperparameters in Appendix M.

0 20 40

train time in min.

ARF
CTGAN

TVAE
TabDDPM

CoDi
TabSyn
CDTD

0 1 2 3

sample time in sec.
per 1000 samples

Figure 3: Average training and sam-
pling wall-clock times (excl. SMOTE,
acsincome, diabetes, lending).

Training and sampling time. Figure 3 shows the
average training and sampling wall-clock times (for
all feasible models) over all datasets (see Appendix U
for details on sample quality as a function of sampling
time). We exclude SMOTE due to its considerably longer
sampling times with an average of 1377 seconds for 1000
samples. CDTD’s use of embeddings (instead of one-hot
encoding) for categorical features improves its scaling
to increasing number of categories and thus, drastically
reduces training times. The sampling speed of CDTD is
competitive, in particular compared to the diffusion-based benchmarks CoDi, TabDDPM and TabSyn.

Ablation study. We investigate the separate components of our CDTD framework. The summarized
results are given in Table 2 and the detailed results in Appendix T. The baseline model Config. A
includes a single noise schedule with the original piece-wise linear functional form (Dieleman et al.,
2022) and the CE and MSE losses are naively averaged. Note that this configuration is still a novel con-
tribution. Config. B adds our data type homogenization (i.e., loss calibration, improved initialization
and time-dependent normalization schemes), Config. C adds our proposed functional form for a single
noise schedule with uniform initialization, and Config. D imposes per-type noise schedules. Lastly, we
increase the importance of low noise levels at initialization to arrive at the full CDTD (per type) model.

The results show that data type homogenization benefits sample quality significantly. Metrics
associated with continuous features, i.e., RMSE and WD, as well as those relying on all features
being generated well, i.e., the detection score, L2 distance of corr. matrices and DCR, improve
dramatically. Switching from the piecewise linear noise schedule to our more robust functional form
slightly harms sample quality. However, the per-type variant and the improved initialization more
than compensate for this. The latter appears to trade-off some sample quality for faster convergence
during training.

9

Published as a conference paper at ICLR 2025

5 CONCLUSION AND DISCUSSION

In this paper, we introduce a Continuous Diffusion model for mixed-type Tabular Data (CDTD) that
combines score matching and score interpolation and imposes Gaussian diffusion processes on both
continuous and embedded categorical features. Our results indicate that addressing the high feature
heterogeneity in tabular data on the feature type level by aligning type-specific diffusion elements,
such as the noise schedules or losses, substantially benefits sample quality. Moreover, CDTD shows
vastly improved scalability and can accommodate an arbitrary number of categories.

Our paper serves as an important step to customizing score-based models to tabular data. The
common type of noise schedules allows for an easy to extend framework. Crucially, CDTD allows the
direct application of diffusion-related advances from the image domain, like classifier-free guidance,
to tabular data without the need for a latent encoding. We leave further extensions to the tabular
data domain, e.g., the exploration of accelerated sampling, efficient score model architectures, or the
adaptation to the data imputation task for future work.

Finally, we want to warn against the potential misuse of synthetic data to support unwarranted claims.
Any generated data should not be blindly trusted, and synthetic data based inferences should always
be compared to results from the real data. However, the correct use of generative models for tabular
data enables better privacy preservation and facilitates data sharing and open science practices.

LIMITATIONS

The main limitation of CDTD is the addition of hyperparameters, and tuning hyperparameters of
a generative model can be a costly endeavor. However, our results also show that (1) a per type
schedule is most often optimal and (2) our default hyperparameters perform well across a diverse
set of datasets. Dieleman et al. (2022) show that the results of score interpolation for text data can
be sensitive to the initialization of the embeddings. We have not encountered similar problems on
tabular datasets (see Table 7). While the DCR indicates no privacy issues for the benchmark datasets
used, additional caution must be taken when generating synthetic data from privacy sensitive sources.
Lastly, for specific types of tabular data, such as time-series, our model may be outperformed by other
generative models specialized for that type. While CDTD could be directly used for imputation using
RePaint (Lugmayr et al., 2022), a separate training process is required to achieve the best results (Liu
et al., 2024). Therefore, we leave the adaptation of CDTD to the imputation task for future work.

ACKNOWLEDGEMENTS

This work used the Dutch national e-infrastructure with the support of the SURF Cooperative using
grant no. EINF-7437. We also thank Sander Dieleman for helpful discussions.

10

Published as a conference paper at ICLR 2025

REFERENCES

Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Struc-
tured Denoising Diffusion Models in Discrete State-Spaces. In Advances in Neural Information
Processing Systems, volume 34, pp. 17981–17993, 2021.

Barry Becker and Ronny Kohavi. Adult, 1996.

Jock Blackard. Covertype, 1998.

Vadim Borisov, Kathrin Seßler, Tobias Leemann, Martin Pawelczyk, and Gjergji Kasneci. Lan-
guage Models are Realistic Tabular Data Generators. In International Conference on Learning
Representations, 2023.

Andrew Campbell, Joe Benton, Valentin De Bortoli, Tom Rainforth, George Deligiannidis, and
Arnaud Doucet. A Continuous Time Framework for Discrete Denoising Models. In Advances in
Neural Information Processing Systems, volume 35, pp. 28266–28279, 2022.

Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. SMOTE:
Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16:
321–357, 2002.

Song Chen. Beijing PM2.5, 2015.

Ting Chen. On the Importance of Noise Scheduling for Diffusion Models. arXiv preprint
arXiv:2301.10972, 2023.

Ting Chen, Ruixiang Zhang, and Geoffrey Hinton. Analog Bits: Generating Discrete Data using Dif-
fusion Models with Self-Conditioning. In International Conference on Learning Representations,
2023.

John Clore, Krzysztof Cios, Jon DeShazo, and Beata Strack. Diabetes 130-US Hospitals for Years
1999-2008, 2014.

Partha Deb and Pravin K. Trivedi. Demand for Medical Care by the Elderly: A Finite Mixture
Approach. Journal of Applied Econometrics, 12(3):313–336, 1997.

Prafulla Dhariwal and Alex Nichol. Diffusion Models Beat GANs on Image Synthesis. In Advances
in Neural Information Processing Systems, volume 34, pp. 8780–8794, 2021.

Sander Dieleman, Laurent Sartran, Arman Roshannai, Nikolay Savinov, Yaroslav Ganin, Pierre H.
Richemond, Arnaud Doucet, Robin Strudel, Chris Dyer, Conor Durkan, Curtis Hawthorne, Rémi
Leblond, Will Grathwohl, and Jonas Adler. Continuous diffusion for categorical data. arXiv
preprint arXiv:2211.15089, 2022.

Frances Ding, Moritz Hardt, John Miller, and Ludwig Schmidt. Retiring Adult: New Datasets for
Fair Machine Learning. In Advances in Neural Information Processing Systems, volume 34, pp.
6478–6490, 2021.

Kelwin Fernandes, Pedro Vinagre, Paulo Cortez, and Pedro Sernadela. Online News Popularity,
2015.

Jonathan Ho and Tim Salimans. Classifier-Free Diffusion Guidance. arXiv preprint arXiv:2207.12598,
2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. In Advances
in Neural Information Processing Systems, volume 33, pp. 6840–6851, 2020.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J.
Fleet. Video Diffusion Models. arXiv preprint arXiv:2204.03458, 2022.

Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax Flows
and Multinomial Diffusion: Learning Categorical Distributions. In Advances in Neural Information
Processing Systems, volume 34, pp. 12454–12465, 2021.

11

Published as a conference paper at ICLR 2025

Emiel Hoogeboom, Victor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant Diffusion
for Molecule Generation in 3D. In International Conference on Machine Learning, pp. 8867–8887,
2022.

Aapo Hyvärinen. Estimation of Non-Normalized Statistical Models by Score Matching. Journal of
Machine Learning Research, 6(24):695–709, 2005.

Allan Jabri, David Fleet, and Ting Chen. Scalable Adaptive Computation for Iterative Generation. In
International Conference on Machine Learning, pp. 14569–14589, 2023.

Alexia Jolicoeur-Martineau, Kilian Fatras, and Tal Kachman. Generating and Imputing Tabular Data
via Diffusion and Flow-based Gradient-Boosted Trees. In International Conference on Artificial
Intelligence and Statistics, pp. 1288–1296, 2024.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the Design Space of Diffusion-
Based Generative Models. In Advances in Neural Information Processing Systems, volume 35, pp.
26565–26577, 2022.

Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine. Analyzing
and Improving the Training Dynamics of Diffusion Models. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 24174–24184, 2024.

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-Task Learning Using Uncertainty to Weigh
Losses for Scene Geometry and Semantics. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 7482–7491, April 2018.

A. Keramati, R. Jafari-Marandi, M. Aliannejadi, I. Ahmadian, M. Mozaffari, and U. Abbasi. Improved
churn prediction in telecommunication industry using data mining techniques. Applied Soft
Computing, 24:994–1012, 2014.

Jayoung Kim, Chaejeong Lee, and Noseong Park. STaSy: Score-based Tabular data Synthesis. In
International Conference on Learning Representations, 2023.

Diederik P. Kingma and Ruiqi Gao. Understanding Diffusion Objectives as the ELBO with Simple
Data Augmentation. In Advances in Neural Information Processing Systems, volume 36, pp.
65484–65516, 2023.

Diederik P. Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational Diffusion Models. In
Advances in Neural Information Processing Systems, volume 34, pp. 21696–21707, 2021.

Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, and Artem Babenko. TabDDPM: Modelling
Tabular Data with Diffusion Models. In International Conference on Machine Learning, pp.
17564–17579, 2023.

Chaejeong Lee, Jayoung Kim, and Noseong Park. CoDi: Co-evolving Contrastive Diffusion Models
for Mixed-type Tabular Synthesis. In International Conference on Machine Learning, pp. 18940–
18956, 2023.

Lending Club. Loan data from Lending Club, 2015.

Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy Liang, and Tatsunori B. Hashimoto. Diffusion-
LM Improves Controllable Text Generation. In Advances in Neural Information Processing Systems,
volume 35, pp. 4328–4343, 2022.

Jianhua Lin. Divergence Measures Based on the Shannon Entropy. IEEE Transactions on Information
Theory, 37(1):145–151, 1991.

Tennison Liu, Zhaozhi Qian, Jeroen Berrevoets, and Mihaela van der Schaar. GOGGLE: Generative
Modelling for Tabular Data by Learning Relational Structure. In International Conference on
Learning Representations, 2023.

Yixin Liu, Ajanthan Thalaiyasingam, Hisham Husain, and Vu Nguyen. Self-supervision improves
diffusion models for tabular data imputation. In ACM International Conference on Information
and Knowledge Management, pp. 1513–1522, 2024.

12

Published as a conference paper at ICLR 2025

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. DPM-Solver: A Fast
ODE Solver for Diffusion Probabilistic Model Sampling in Around 10 Steps. In Advances in
Neural Information Processing Systems, volume 35, pp. 5775–5787, 2022.

Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van Gool.
RePaint: Inpainting using Denoising Diffusion Probabilistic Models. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 11451–11461, 2022.

Chao Ma, Sebastian Tschiatschek, José Miguel Hernández-Lobato, Richard Turner, and Cheng Zhang.
VAEM: A Deep Generative Model for Heterogeneous Mixed Type Data. In Advances in Neural
Information Processing Systems, volume 33, pp. 11237–11247, 2020.

Chenlin Meng, Kristy Choi, Jiaming Song, and Stefano Ermon. Concrete Score Matching: General-
ized Score Matching for Discrete Data. In Advances in Neural Information Processing Systems,
volume 35, pp. 34532–34545, 2022.

Sérgio Moro, Paulo Rita, and Paulo Cortez. Bank Marketing, 2014.

Alex Nichol and Prafulla Dhariwal. Improved Denoising Diffusion Probabilistic Models. In Interna-
tional Conference on Machine Learning, pp. 8162–8171, 2021.

Neha Patki, Roy Wedge, and Kalyan Veeramachaneni. The Synthetic Data Vault. In IEEE Interna-
tional Conference on Data Science and Advanced Analytics, pp. 399–410, 2016.

Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey
Gulin. CatBoost: Unbiased boosting with categorical features. In Advances in Neural Information
Processing Systems, volume 31, pp. 6638–6648, 2018.

Zhaozhi Qian, Bogdan-Constantin Cebere, and Mihaela van der Schaar. Synthcity: Facilitating inno-
vative use cases of synthetic data in different data modalities. In Advances in Neural Information
Processing Systems, volume 36, pp. 3173–3188, 2023.

Aaditya Ramdas, Nicolas Garcia, and Marco Cuturi. On Wasserstein Two Sample Testing and Related
Families of Nonparametric Tests. Entropy, 19(2), 2017.

Florence Regol and Mark Coates. Diffusing Gaussian Mixtures for Generating Categorical Data. In
AAAI Conference on Artificial Intelligence, volume 37, pp. 9570–9578, 2023.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
Resolution Image Synthesis with Latent Diffusion Models. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10674–10685, 2022.

Juntong Shi, Minkai Xu, Harper Hua, Hengrui Zhang, Stefano Ermon, and Jure Leskovec. TabDiff:
A Multi-Modal Diffusion Model for Tabular Data Generation. arXiv preprint arXiv:2410.20626,
2024.

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep Unsupervised
Learning using Nonequilibrium Thermodynamics. In International Conference on Machine
Learning, pp. 2256–2265, 2015.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-Based Generative Modeling through Stochastic Differential Equations. In
International Conference on Learning Representations, 2021.

Robin Strudel, Corentin Tallec, Florent Altché, Yilun Du, Yaroslav Ganin, Arthur Mensch, Will
Grathwohl, Nikolay Savinov, Sander Dieleman, Laurent Sifre, and Rémi Leblond. Self-conditioned
Embedding Diffusion for Text Generation. arXiv preprint arXiv:2211.04236, 2022.

Haoran Sun, Lijun Yu, Bo Dai, Dale Schuurmans, and Hanjun Dai. Score-based Continuous-time
Discrete Diffusion Models. In International Conference on Learning Representations, 2023.

Pascal Vincent. A Connection Between Score Matching and Denoising Autoencoders. Neural
Computation, 23(7):1661–1674, 2011.

13

Published as a conference paper at ICLR 2025

David S. Watson, Kristin Blesch, Jan Kapar, and Marvin N. Wright. Adversarial random forests for
density estimation and generative modeling. In International Conference on Artificial Intelligence
and Statistics, pp. 5357–5375, 2023.

Tong Wu, Zhihao Fan, Xiao Liu, Yeyun Gong, Yelong Shen, Jian Jiao, Hai-Tao Zheng, Juntao Li,
Zhongyu Wei, Jian Guo, Nan Duan, and Weizhu Chen. AR-Diffusion: Auto-Regressive Diffusion
Model for Text Generation. In Advances in Neural Information Processing Systems, volume 36,
pp. 39957–39974, 2023.

Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Modeling Tabular
Data using Conditional GAN. In Advances in Neural Information Processing Systems, volume 32,
pp. 7335–7345, 2019.

I-Cheng Yeh. Default of Credit Card Clients, 2009.

Hengrui Zhang, Jiani Zhang, Balasubramaniam Srinivasan, Zhengyuan Shen, Xiao Qin, Christos
Faloutsos, Huzefa Rangwala, and George Karypis. Mixed-Type Tabular Data Synthesis with
Score-based Diffusion in Latent Space. In International Conference on Learning Representations,
2024.

Zilong Zhao, Aditya Kunar, Hiek Van der Scheer, Robert Birke, and Lydia Y. Chen. CTAB-GAN:
Effective Table Data Synthesizing. In Asian Conference on Machine Learning, pp. 97–112, 2021.

14

Published as a conference paper at ICLR 2025

A NOISE IMPLICATIONS OF HETEROGENEOUS CARDINALITIES

One distinct characteristic of mixed-type tabular data is that each categorical feature may have a
different cardinality, i.e., a different number of categories. Below, we briefly empirically investigate
how this data characteristic warrants a rethinking of diffusion noise schedules. We show that, under
some assumptions, categorical features of higher cardinality require more added noise than lower
cardinality features to remove the same amount of signal.

Let x(j)
cat be a single categorical feature with Cj categories. We assume that each category c has

equal probability P(c) = 1/Cj and train a CDTD model with a fixed, linear noise schedule to
learn the distribution of a single x

(j)
cat . For each class c ∈ {1, . . . , Cj}, we extract the associated

learned embedding e
(j)
c . For 500 timesteps t, linearly spaced on [0, 1], we derive the associated noise

levels σ(t) from the learned noise schedules and for each σ(t), we sample 1000 noisy embeddings
e
(j)
c (t) = e

(j)
c + σ(t)ϵ such that ϵ ∼ N (0, I). We input all e(j)c (t) into the score model to compute

the average (calibrated) cross-entropy (CE) loss. We define the remaining signal of the feature at a
given t as Sc = 1 − CEc(t), where CEc reflects the CE loss when using the noisy embedding for
class c to predict the true class. Lastly, we compute the overall remaining signal over all classes as
maxc Sc. Figure 4 shows the result of repeating this procedure with varying Cj and four-dimensional
embeddings. As we can see, lower cardinality features, i.e., those with a low Cj , attain the same
signal only at a higher noise levels σ(t). This example of the effect of feature heterogeneity in tabular
data encourages us to investigate feature-specific noise schedules.

10 1 100 101 102

noise level (t)

0.0

0.2

0.4

0.6

0.8

1.0

sig
na

l i
n

em
be

dd
in

gs

2 classes
3 classes
4 classes
5 classes
6 classes
7 classes
8 classes

Figure 4: Comparison of signal remaining in embedded categorical features given by maxc Sc,
where Sc = 1 − CEc(t) and CEc reflects the CE loss when using the noisy embedding for class
c ∈ {1, . . . , Cj} to predict the true class. Lower cardinality features tend to require a higher noise
level σ(t) to achieve the same amount of remaining signal as higher cardinality features.

B LOSS CALIBRATION

Under Assumption 1, the signal-to-noise ratio at the terminal timestep is sufficiently low to
approximate a situation in which the model has no information about the data. We want to let the
model be indifferent between features, that is, we scale the loss of each feature such that at the
terminal timestep the same expected loss is attained. Therefore, we are looking for scaled losses
L∗

MSE(x
(i)
cont, 1) and L∗

CE(x
(j)
cat , 1) which at t = 1 achieve unit loss in expectation.

For a single scalar feature and a given timestep t, we can write the empirical denoising score matching
loss (Equation (3)) when using the EDM parameterization (Karras et al., 2022) as:

LMSE(x
(i)
cont, t) = λ(t)

(
cskip(t)xt + cout(t)F

(i)
θ︸ ︷︷ ︸

x̂θ(xt,t)

−x(i)
cont

)2

,

where F
(i)
θ denotes the neural network output for feature i that parameterizes the denoiser x̂θ. The

score model is then given by sθ(xt, t) = σ(t)−2(x̂θ(xt, t)− xt).

15

Published as a conference paper at ICLR 2025

The parameters cskip(t) = σ2
data/(σ

2(t) + σ2
data) and cout(t) = σ(t) · σdata/(

√
σ2(t) + σ2

data) depend
on σ(t) (and σdata) and therefore on timestep t. For t→ 1, σ(t) approaches the maximum noise level
σcont,max and cskip(t) → 0 and cout(t) → 1 such that the score model directly predicts the data at
high noise levels. For t→ 0, the model shifts increasingly towards predicting the error that has been
added to the true data. In the EDM parameterization, the explicit timestep weight (used to achieve a
unit loss across timesteps at initialization, see Appendix C) is λ(t) = 1/cout(t)

2 ≈ 1 for t = 1.

At the terminal timestep t = 1, we then have:

E
p(x

(i)
cont)

[LMSE(x
(i)
cont, 1)] = λ(1)E

p(x
(i)
cont)

(
cskip(1)x1 + cout(1)F

(i)
θ − x

(i)
cont

)2

,

≈ E
p(x

(i)
cont)

(
0 · x1 + 1 · F (i)

θ − x
(i)
cont

)2

,

= E
p(x

(i)
cont)

(
F

(i)
θ − x

(i)
cont

)2

.

Without information, it is optimal to always predict the average value E
p(x

(i)
cont)

[x
(i)
cont] and thus, the

minimum expected loss becomes:

E
p(x

(i)
cont)

[LMSE(x
(i)
cont, 1)] = E

p(x
(i)
cont)

(
E
p(x

(i)
cont)

[x
(i)
cont]− x

(i)
cont

)2

= Var[x
(i)
cont] .

Therefore, we have L∗
MSE(x

(i)
cont, 1) = LMSE(x

(i)
cont, 1) as long as we standardize x

(i)
cont to unit variance.

For a single categorical feature, x(j)
cat is distributed according to the proportions pc (for categories

c = 1, . . . , Cj). The denoising model for score interpolation is trained with the CE loss:

LCE(x
(j)
cat , t) = −

Cj∑
c=1

I(x
(j)
cat = c) logF

(j)
θ,c ,

where F
(j)
θ,c denotes the score model’s prediction of the class probability at timestep t. Without

information, it is optimal to assign the c-th category the same proportion as in the training set.
At t = 1, we thus let F (j)

θ,c = pc such that the loss equals:

E
p(x

(j)
cat)

[LCE(x
(j)
cat , 1)] = −Ep(x

(j)
cat)

Cj∑
c=1

I(x
(j)
cat = c) logF

(j)
θ,c , (8)

= −
Cj∑
c=1

E
p(x

(j)
cat)

[I(x
(j)
cat = c) log pc] , (9)

= −
Cj∑
c=1

pc log pc. (10)

Note that this is the feature-specific entropy and we can use the training set proportions to compute
this normalization constant Zj = −

∑Cj

c=1 pc log pc to scale the loss for categorical features. Then,

E
p(x

(j)
cat)

[L∗
CE(x

(j)
cat , 1)] = E

p(x
(j)
cat)

[LCE(x
(j)
cat , 1)/Zj] = 1 .

We have thus achieved calibrated losses with respect to the terminal timestep t = 1, that is,
E
p(x

(i)
cont)

[L∗
MSE(x

(i)
cont, 1)] = E

p(x
(j)
cat)

[L∗
CE(x

(j)
cat , 1)] = 1 for all continuous features i and categori-

cal features j.

C OUTPUT LAYER INITIALIZATION

At initialization, we want the neural network to reflect the state of no information (see Appendix B).
Likewise, our goal is a loss of one across all features and timesteps.

16

Published as a conference paper at ICLR 2025

For continuous features i, we initialize the output layer weights (and biases) to zero such that
the output of the score model for a single continuous feature, F (i)

θ , is also zero. Since we use
the EDM parameterization (Karras et al., 2022), we apply the associated explicit timestep weight
λ(t) =

σ2(t)+σ2
data

(σ(t)·σdata)2
. This is explicitly designed to achieve a unit loss across timesteps at initialization

and we show this analytically below. We denote the variances of the data x
(i)
cont and of the Gaussian

noise ϵ at time t as σ2
data and σ2(t), respectively. At initialization we have:

E
p(x

(i)
cont),p(ϵ)

[L∗
MSE(x

(i)
cont, t)] = λ(t)E

p(x
(i)
cont),p(ϵ)

(
cskip(t)(x

(i)
cont + ϵ) + cout(t)F

(i)
θ − x

(i)
cont

)2

,

= λ(t)E
p(x

(i)
cont),p(ϵ)

(
cskip(t)(x

(i)
cont + ϵ)− x

(i)
cont

)2

,

=
σ2(t) + σ2

data

(σ(t) · σdata)2
E
p(x

(i)
cont),p(ϵ)

(σ2
data

σ2(t) + σ2
data

(x
(i)
cont + ϵ)− x

(i)
cont

)2

,

=
σ2(t) + σ2

data

(σ(t) · σdata)2
E
p(x

(i)
cont),p(ϵ)

(σ2
dataϵ− σ2(t)x

(i)
cont

σ2(t) + σ2
data

)2

,

=
1

σ2(t) + σ2
data

E
p(x

(i)
cont),p(ϵ)

(σdata

σ(t)
ϵ− σ(t)

σdata
x
(i)
cont

)2

,

=
1

σ2(t) + σ2
data

E
p(x

(i)
cont),p(ϵ)

(σ2
data

σ2(t)
ϵ2 +

σ2(t)

σ2
data

(x
(i)
cont)

2 − 2ϵx
(i)
cont

)
,

=
1

σ2(t) + σ2
data

(σ2
data

σ2(t)
Var(ϵ)︸ ︷︷ ︸
σ2(t)

+
σ2(t)

σ2
data

Var(x
(i)
cont)︸ ︷︷ ︸

σ2
data

−2Cov(ϵ, x(i)
cont)︸ ︷︷ ︸

0

)
,

=
1

σ2(t) + σ2
data

(
σ2

data + σ2(t)
)
= 1.

For categorical features j, we initialize the output layer such that the model achieves the respective
losses under no information. Using the loss normalization constant Zj (see Appendix B) and dropping
the expectation over p(ϵ), we have

E
p(x

(j)
cat)

[L∗
CE(x

(j)
cat , t)] = E

p(x
(j)
cat)

[LCE(x
(j)
cat , t)/Zj] =

1

Zj
E
p(x

(j)
cat)

[LCE(x
(j)
cat , t)].

Hence, for E
p(x

(j)
cat)

[LCE(x
(j)
cat , t)] = Zj , we obtain an expected loss of one irrespective of t. The

neural network outputs a vector of logits F (j)
θ that are transformed into probabilities with a softmax

function for each categorical feature. We denote the c-th element of that vector softmax(·)c. Since
Zj is derived in Equation (10) by imposing probabilities equal to the training set proportions for that
category, pc, we have

log pc = log softmax(F
(j)
θ)c = log

exp(F
(j)
θ,c)∑C

k=1 exp(F
(j)
θ,k)

= F
(j)
θ,c − log

C∑
k=1

exp(F
(j)
θ,k).

We initialize the neural network such that F (j)
θ,c = log pc for all c. This is achieved by initializing the

output layer weights to zero and the output layer biases to the relevant training set log-proportions of
the corresponding class. Hence, this initialization gives us

F
(j)
θ,c − log

C∑
k=1

exp(F
(j)
θ,k) = log pc − log

C∑
k=1

pk = log pc,

which in turn leads to an initial loss of Zj for all t and therefore achieves a uniform, calibrated loss of
one at initialization similar to the continuous feature case.

17

Published as a conference paper at ICLR 2025

D ADAPTIVE NORMALIZATION OF THE AVERAGE DIFFUSION LOSS

Both the loss calibration (see Appendix B) and output layer initialization (see Appendix C) ensure
that the losses across timesteps (and features) are equal at initialization. During training, the adaptive
noise schedules allow the model to focus automatically on the noise levels that matter most, i.e., where
the loss increase is steepest. However, the better the model becomes at a given timestep t, the lower
the loss at the respective timestep, and the lower the gradient signal relative to the signal for timesteps
t̃ > t. We counteract this with adaptive normalization of the average diffusion loss (averaged over
the features) across timesteps. Specifically, we want to weight the average diffusion loss at timestep t,
L(t) given in Equation (5), such that the normalized loss is the same (equal to one) for all t. Similar
methods have been used by Karras et al. (2024) and Kingma & Gao (2023), we follow the latter in
the setup of the corresponding network.

We train a neural network alongside our diffusion model to predict L(t) based on t and use the
MSE loss to learn this weighting. First, we compute cnoise(t) = log(t)/4 following the EDM
parameterization (Karras et al., 2022). Then, we embed cnoise in frequency space (1024-dimensional)
using Fourier features. The result is passed through a single linear layer to output a scalar value and
through an exponential function to ensure that the prediction L̂(t) ≥ 0. We initialize the weights and
biases to zero, to ensure that at model initialization we have a unit normalization.

E DERIVATION OF THE FUNCTIONAL TIMEWARPING FORM

Since higher noise levels, σ, imply a lower signal-to-noise ratio, and in turn a larger loss, ℓ, we know
that the loss must be a monotonically increasing and S-shaped function of the noise level. Additionally,
the function has to be easy to invert and differentiate. We incorporate this prior information in the
functional timewarping form of F : σ 7→ ℓ. A convenient choice is the cdf of the logistic distribution:

Flog(y) =
[
1 + exp

(
−ν(y − µ∗)

)]−1
, (11)

where µ∗ describes the location of the inflection point of the S-shaped function and ν ≥ 1 indicates
the steepness of the curve.

We let y = logit(σ) = log(σ/(1− σ)) to change the domain of Flog from (−∞,∞) to (0, 1). The
latter covers all possible values of the noise level σ scaled to [0, 1] with the pre-specified minimum
and maximum noise levels σmin and σmax. To define the parameter µ in the same space and ensure
that 0 < µ < 1, we also let µ∗ = logit(µ). Accordingly, we derive the cdf of the domain-adapted
Logistic distribution:

Fd.a.log(σ) =

[
1 +

(
σ

1− σ

1− µ

µ

)−ν
]−1

. (12)

Since ℓ is not bounded, we introduce a multiplicative scale parameter, γ > 0, such that for timewarp-
ing we predict the potentially feature-specific loss as ℓ̂ = F (σ) = γFd.a.log(σ). Fd.a.log can also
be initialized to the cdf of the uniform distribution with µ = 0.5, ν ≈ 1 and γ = 1 such that all
noise levels are initially equally weighted. However, an initial overweighting of lower noise levels is
beneficial for tabular data (see also Section 3.4).

Likewise, we can derive the inverse cdf F−1
d.a.log(t), that is our mapping of interest from timestep t to

noise level σ, in closed form:

σ = F−1
d.a.log(t) = sigmoid(c), with c = ln

(
µ

1− µ

)
+

1

ν
ln

(
t

1− t

)
. (13)

When training the diffusion model, we learn the parameters of Fd.a.log as well as γ by predicting the
diffusion loss using F (σ) and the noise levels scaled to [0, 1]. At the beginning of each training step,
we then use the current state of the parameters and F−1

d.a.log, with a sampled timestep t ∼ U[0,1] as input,
to derive σ. To allow for feature-specific, adaptive noise schedules, we separately introduce Fk(σk) for
each feature k, to predict the feature-specific loss ℓk based on the feature-specific scaled noise level σk.

Note that with timewarping we create a feedback loop in which we generate more and more σs from
the region of interest, decreasing the number of observations available to learn the parameters in

18

Published as a conference paper at ICLR 2025

different noise level regions. We thus weight the timewarping loss, ||ℓ− ℓ̂||22, when fitting F (σ) to the
data by the reciprocal of the pdf fd.a.log(σ) to mitigate this adverse effect (see Dieleman et al., 2022).
Again, this function is available to us in closed form. With Flog and flog denoting the respective cdf
and pdf of the Logistic distribution, we have

fd.a.log(σ) =
∂

∂y
Flog(y)

∣∣∣∣
y=logit(σ)

∂

∂σ
ln

σ

1− σ

= flog(logit(σ))
1

σ(1− σ)

=
ν

σ(1− σ)
· Z(σ, µ, ν)(

1 + Z(σ, µ, ν)
)2 ,

where we defined Z(σ, µ, ν) =
(

σ
1−σ

1−µ
µ

)−ν
and used the definitions of flog and the parameter µ∗.

F BENCHMARK DATASETS

Our selected benchmark datasets are highly diverse, particularly in the number of categories for
categorical features (see Table 3). For the diabetes and covertype datasets, we transform the
original multi-class classification problem into a binary classification task for ease of presentation.
For the diabetes data, we convert the task to predicting whether a patient was readmitted to a
hospital. For the covertype data, the task is converted into predicting whether a forest of type
2 is present in a given 30 × 30 meter area. All datasets are publicly accessible and (except nmes)
licensed under creative commons.

Table 3: Overview of the selected experimental datasets. We count the target towards the respective
features that remain after removing continuous features with an excessive number of missings. The
minimum and maximum number of categories are taken over all categorical features.

Dataset License Prediction task Total no. No. of features No. of categories
observations categorical continuous min max

acsincome (Ding et al., 2021) CC0 regression 1 664 500 8 3 2 529
adult (Becker & Kohavi, 1996) CC BY 4.0 binary class. 48 842 9 6 2 42
bank (Moro et al., 2014) CC BY 4.0 binary class. 41 188 11 10 2 12
beijing (Chen, 2015) CC BY 4.0 regression 41 757 1 10 4 4
churn (Keramati et al., 2014) CC BY 4.0 binary class. 3 150 5 9 2 5
covertype (Blackard, 1998) CC BY 4.0 binary class. 581 012 44 10 2 2
default (Yeh, 2009) CC BY 4.0 binary class. 30 000 10 14 2 11
diabetes (Clore et al., 2014) CC BY 4.0 binary class. 101 766 28 9 2 716
lending (Lending Club, 2015) DbCL 1.0 regression 9 182 10 34 2 3151
news (Fernandes et al., 2015) CC BY 4.0 regression 39 644 14 46 2 2
nmes (Deb & Trivedi, 1997) unknown regression 4 406 8 11 2 4

G BASELINE MODELS

Below, we give a brief description of our selected generative baseline models (including code sources).

SMOTE (Chawla et al., 2002) – a technique (not a generative model) typically used to oversample
minority classes based on interpolation between ground-truth observations. We use SMOTENC
for mixed-type data from the scikit-learn package and mostly adapt the code from the TabDDPM
repository (Kotelnikov et al., 2023). For sampling, we utilize 16 CPU cores.

ARF (Watson et al., 2023) – a recent generative approach that is based on a random forest for
density estimation. The implementation is available at https://github.com/bips-hb/arfpy
and licensed under the MIT license. We use package version 0.1.1. For training, we utilize 16 CPU
cores.

CTGAN (Xu et al., 2019) – one of the most popular Generative-Adversarial-Network-based models
for tabular data. The implementation is available as part of the Synthetic Data Vault (Patki et al.,
2016) at https://github.com/sdv-dev/CTGAN and licensed under the Business Source License
1.1. We use package version 0.9.0.

19

https://fairlearn.org/main/user_guide/datasets/acs_income.html
https://www.kaggle.com/datasets/wenruliu/adult-income-dataset
https://archive.ics.uci.edu/dataset/222/bank+marketing
https://archive.ics.uci.edu/dataset/381/beijing+pm2+5+data
https://archive.ics.uci.edu/dataset/563/iranian+churn+dataset
https://archive.ics.uci.edu/dataset/31/covertype
https://archive.ics.uci.edu/dataset/350/default+of+credit+card+clients
https://archive.ics.uci.edu/dataset/296/diabetes+130-us+hospitals+for+years+1999-2008
https://www.kaggle.com/datasets/joebeachcapital/lending-club
https://archive.ics.uci.edu/dataset/332/online+news+popularity
https://vincentarelbundock.github.io/Rdatasets/doc/AER/NMES1988.html
https://github.com/bips-hb/arfpy
https://github.com/sdv-dev/CTGAN

Published as a conference paper at ICLR 2025

TVAE (Xu et al., 2019) – a Variational-Autoencoder-based model for tabular data. Similar to
CTGAN. The implementation is available as part of the Synthetic Data Vault (Patki et al., 2016) at
https://github.com/sdv-dev/CTGAN and licensed under the Business Source License 1.1. We
use package version 0.9.0. Note that since we only use TVAE (and CTGAN) as benchmark, and do
not provide a synthetic data creation service, the license permits the free usage.

TabDDPM (Kotelnikov et al., 2023) – a diffusion-based generative model for tabular data that
combines multinomial diffusion (Hoogeboom et al., 2021) and diffusion in continuous space. An
implementation is available as part of the synthcity package (Qian et al., 2023) at https:
//github.com/vanderschaarlab/synthcity/ and licensed under the Apache 2.0 license. We
use package version 0.2.7 with slightly adjusted code to allow for the manual specification of
categorical features.

CoDi (Lee et al., 2023) – a diffusion model trained with an additional contrastive loss, and which
factorizes the joint distribution of mixed-type tabular data into a distribution for continuous data condi-
tional on categorical features and a distribution for categorical data conditional on continuous features.
Similarly, the authors utilize the multinomial diffusion framework (Hoogeboom et al., 2021) to model
categorical data. An implementation is available at https://github.com/ChaejeongLee/CoDi
under an unknown license.

TabSyn (Zhang et al., 2024) – a diffusion-based model that first learns a transformer-based VAE
to map mixed-type data to a continuous latent space. Then, the diffusion model is trained on that
latent space. Note that despite TabSyn utilizing a separately trained encoder, this does not result in a
lower-dimensional latent space and therefore, does not speed up sampling. We use the official code
available at https://github.com/amazon-science/tabsyn under the Apache 2.0 license.

H IMPLEMENTATION DETAILS

Each of the selected benchmark models requires a rather different, more specialized neural network
architecture. Imposing the same architecture across models is therefore not possible. The same
inability holds for the comparison of CDTD to other diffusion-based models: Our model is the first
to use a continuous noise distribution on both continuous and categorical features, and therefore the
alignment of important design choices, like the noise schedule, across models is not possible. In par-
ticular, the forward process of the multinomial diffusion framework (Hoogeboom et al., 2021) used in
TabDDPM and CoDi, which is based on Markov transition matrices, does not translate to our setting.

To ensure a fair comparison in terms of sampling steps, we set the steps for CDTD, TabDDPM, CoDi
and TabSyn to max(200, default). We therefore increase the default number of sampling steps for
CoDi and TabSyn (from 50 steps) and TabDDPM (from 100 steps for classification datasets). For
TabDDPM and regression datasets, we use the suggested default of 1000 sampling steps.

We adjust each architecture to a total of ∼ 3 million trainable parameters on the adult dataset to
improve the comparability further (see Table 4) and use the same architectures for all considered
datasets. Note that the total number of parameters may vary slightly across datasets due to different
number of features and categories affecting the one-hot encoding but is still comparable across models.
We also align the embedding/bottleneck dimensions for CTGAN, TVAE, TabDDPM, TabSyn and
CDTD to 256. To align TabDDPM, TabSyn and CDTD further, we use the TabDDPM architecture
for all models, with appropriate adjustments for different input types and dimensions. If applicable,
all models are trained for 30k steps on a single RTX 4090 instance, using PyTorch version 2.2.2.

Below, we briefly discuss our model-specific hyperparameter choices.

Table 4: Total number of trainable parameters per model on the adult dataset.

Model Trainable parameters

CTGAN 3 000 397
TVAE 2 996 408
TabDDPM 3 001 786
CoDi 2 998 043
TabSyn 2 997 765
CDTD (per type) 3 002 969

20

https://github.com/sdv-dev/CTGAN
https://github.com/vanderschaarlab/synthcity/
https://github.com/vanderschaarlab/synthcity/
https://github.com/ChaejeongLee/CoDi
https://github.com/amazon-science/tabsyn

Published as a conference paper at ICLR 2025

SMOTE (Chawla et al., 2002): We use the default hyperparameters suggested for the SMOTENC
scikit-learn implementation.

ARF (Watson et al., 2023): We use the authors’s suggested default hyperparameters. In particular, we
use 20 trees, δ = 0 and a minimum node size of 5. We follow the official package implementation
and set the maximum number of iterations to 10 (see https://github.com/bips-hb/arfpy).

CTGAN (Xu et al., 2019): We follow the popular implementation in the Synthetic Data Vault package
(see https://github.com/sdv-dev/CTGAN). For this model to work, the batch size must be
divisible by 10. Therefore, we adjust the batch size if necessary. We use a 256-dimensional embedding
(instead of the default embedding dimension of 128) to better align the CTGAN architecture with
TVAE, TabDDPM, TabSyn and CDTD.

TVAE (Xu et al., 2019): We again follow the implementation in the Synthetic Data Vault. We use a
256-dimensional embedding to better align the architecture with CTGAN, TabDDPM, TabSyn and
CDTD.

TabDDPM (Kotelnikov et al., 2023): There are no general default hyperparameters provided. Hence,
we mostly adapt the papers’ tuned hyperparameters for the adult dataset (one of the few used
datasets that includes both continuous and categorical features). However, we decrease the learning
rate from 0.002 to 0.001, since most of the tuned models in the paper used learning rates around 0.001.
For regression task datasets, we use 1000 sampling steps in accordance with the author’s settings.
For classification task datasets, we use 200 sampling steps (instead of the default 100 steps), to better
align the model with CoDi and CDCD. Note also that for classification task datasets, TabDDPM
models the conditional distribution p(x|y), instead of the unconditional distribution p(x) which is
modeled for regression tasks. We adjust the dimension of the bottleneck to 256 (instead of the default
128) to also accommodate also larger datasets and align the model with CTGAN, TVAE,and CDTD.

CoDi (Lee et al., 2023): We use the default hyperparameters from the official code (see https:
//github.com/ChaejeongLee/CoDi).

TabSyn (Zhang et al., 2024): We use the default hyperparameters as suggested by the authors. The
training steps that go towards training the VAE and the denoising network follow the proportions
given in the official code (see https://github.com/amazon-science/tabsyn). To improve
comparability to TabDDPM, CoDi and CDTD, we use the same neural network architecture as
TabDDPM, which only differs slightly from the original architecture. We leave the VAE untouched.

CDTD (ours): To ensure comparability in particular to TabDDPM, CoDi and TabSyn, we use the
same neural network architecture as TabDDPM. We only change the input layers to accommodate
our embedding-based framework. In the input layer, we vectorize all embedded categorical features
and concatenate them with the scalar valued continuous features. The adjusted output layer ensures
that we predict a single value for each continuous features and set of class-specific probabilities for
each categorical feature. Since our use of embeddings introduces additional parameters, we scale the
hidden layers slightly down relative to the TabDDPM to ensure approximately 3 million trainable
parameters (instead of 798 neurons per layer we use 796) on the adult dataset. More details on the
CDTD implementation are given in Appendix K.

I TUNING OF THE DETECTION MODEL

We use a catboost model (Prokhorenkova et al., 2018) to test whether real and generated samples
can be distinguished. We generate the same number of fake observations for each of the real train,
validation and test sets. We cap the maximum size of the real data subsets to 25 000, and subsample
them if necessary, to limit the computational load. Per set, we combine real and fake observations
to Ddetect

train ,Ddetect
valid , and Ddetect

test , respectively. The catboost model is trained on Ddetect
train with the task

of predicting whether an observation is real or fake. We tune the catboost model with optuna and
for 50 trials to maximize the accuracy on Ddetect

valid . The catboost hyperparameter search space is
given in Table 5. Afterwards, we repeat the sampling process and the creation of Ddetect

train ,Ddetect
valid and

Ddetect
test for five different seeds. Each time, the model is trained on Ddetect

train with the previously tuned
hyperparameters, and evaluated on Ddetect

test . The average test set accuracy over the five seeds yields
the estimated detection score.

21

https://github.com/bips-hb/arfpy
https://github.com/sdv-dev/CTGAN
https://github.com/ChaejeongLee/CoDi
https://github.com/ChaejeongLee/CoDi
https://github.com/amazon-science/tabsyn

Published as a conference paper at ICLR 2025

Table 5: Catboost hyperparameter space settings. The model is tuned for 50 trials.

Parameter Distribution

no. iterations = 1000
learning rate Log Uniform [0.001, 1.0]
depth Cat([3,4,5,6,7,8])
L2 regularization Uniform [0.1, 10]
bagging temperature Uniform [0, 1]
leaf estimation iters Integer Uniform [1, 10]

J MACHINE LEARNING EFFICIENCY MODELS

For the group of machine learning efficiency models, we use the scikit-learn and catboost package
implementations including the default parameter settings, if not specified otherwise below:

Logistic or Ridge Regression: max. iterations = 1000

Random Forest: max. depth = 12, no. estimators = 100

Catboost: no. iterations = 2000, early stopping rounds = 50, overfitting detector pval = 0.001

We subsample Dtrain in case of more than 50 000 observations to upper-bound the computational load.

K CDTD IMPLEMENTATION DETAILS

To enable a fair comparison to the other methods, and to TabDDPM and TabSyn in particular, the
CDTD score model utilizes the exact same architecture as Kotelnikov et al. (2023), which was also
adapted by TabSyn (Zhang et al., 2024). We use the QuantileTransformer to pre-process continuous
features, followed by a standardization to zero mean and unit variance. An overview of the score
model is provided in Figure 5: First, the noisy data, i.e., the noisy scalars for continuous features
and the noisy embeddings for categorical features, and the timestep t, are projected onto a 256-
dimensional space. Then, all 256-dimensional vectors are added and the result is processed by a

++

Figure 5: Overview of the CDTD architecture adapted from TabDDPM. The dimensions of the
inputs and layer outputs are stated in the lower-left hand corner for a continuous features xcont and a
categorical features xcat. Note that each categorical features can have a different number of categories
|C|, impacting the output dimension of the final layer. Scalars are colored orange, embeddings red and
linear layers blue. The positional embedding highlighted in green refers to the positional sinusoidal
embedding. CDTD only conditions on y, i.e., the target feature, for classification task datasets.

22

Published as a conference paper at ICLR 2025

set of five fully-connected linear layers with ReLU activation functions. Lastly, a linear projection
maps the output of the fully-connected layers to the required output dimensions, which depend on the
number of features and number of categories per feature.

The only major difference to the TabDDPM setup are the inputs, as we need to embed the categorical
features in Euclidean space. The output dimensions are the same, as we need to predict a single scalar
for each x

(i)
cont, and Cj values for each x

(j)
cat , with Cj being the number of categories of feature j. We

change the initialization of the output layer as described in Appendix C. To handle our inputs, we
embed the categorical features in 16-dimensional space and add a feature-specific bias of the same
dimension, which captures feature-specific information common to all categories and is initialized
to zero. We L2-normalize each embedding to prevent a degenerate embedding space in which
embeddings are pushed further and further apart (see Dieleman et al., 2022). Also, Dieleman et al.
(2022) argue that the standard deviation of the Normal distribution used to initialize the embeddings,
denoted by σinit, is an important hyperparameter. In this paper, we set σinit = 0.001 for all datasets and
have not seen detrimental effects. Table 7 indicates that CDTD is not sensitive to the choice of σinit.

Since we utilize embeddings, we have to scale the neurons per layer slightly down in the stack of
the five fully-connected layers (from 798 for TabDDPM to 796). Also, since TabDDPM samples
discrete steps from [0, T], with T ≫ 1, we scale our timesteps t ∈ [0, 1] up by 1000. We use the
same optimizer (Adam), learning rate (0.001), learning rate decay (linear), EMA decay (0.999), and
training steps (30000). However, since we work with embeddings we add a linear warmup schedule
over the first 1000 steps. Lastly, instead of using uniform (time)step sampling as TabDDPM, the
CDTD model uses antithetic sampling (Dieleman et al., 2022; Kingma et al., 2021). The timesteps
are still uniformly distributed but spread out more evenly over the domain, which benefits the training
of the adaptive noise schedules. For generation, we use a deterministic (Euler) sampler with 200
steps to minimize the discretization error (see Appendix L for details).

L CDTD SAMPLING

Algorithm 1 shows our deterministic sampling approach, where Dcont,i
θ and Dcat,j

θ represent the score
model output for the i-th continuous and j-th categorical feature, respectively. We found results
similar to Karras et al. (2022), i.e., that adding stochasticity to the sampling process does not benefit
sample quality. We also experimented with second-order samplers (e.g., Heun) but found them to
add little benefit over our first-order method while requiring double the NFEs. As a default, we use
200 sampling steps. Table 6 shows that the gains in sample quality are marginal to non-existent after
more than 500 sampling steps.

There is another subtlety in our sampler: Unlike in EDM (Karras et al., 2022), in the final step the
sampler steps into t = 0, which is not associated with σ0 = 0 but σ0 = σmin. This is a consequence
of utilizing more than one noise schedule. We condition the score model not on σ but on t, which
indicates the “global” time common to all noise schedules. Moving from σ0 = σmin to σ = 0 in the
final step, would imply t < 0. Therefore, we let σmin = 0 for all feature types.

To sample from the learned distribution, we need to run the reverse process of the probability flow
ODE (Equation (2)). For example, for two different features x1 and x2, we deconstruct the ODE as:

dx = −1

2
G(t)G(t)T∇x log pt(x)dt

= −
[
σ̇1(t)σ1(t)

σ̇2(t)σ2(t)

] [x̂1−x1

σ1(t)2
x̂2−x2

σ2(t)2

]
dt

= −
[
σ̇1(t)

σ̇2(t)

] [x̂1−x1

σ1(t)
x̂2−x2

σ2(t)

]
dt

In practice, we use an Euler sampler with 200 discrete timesteps ∆t = ti+1 − ti < 0. The timesteps
are generated as a linearly spaced grid on [0, 1] and transformed afterwards into noise levels σk(t)
via the described timewarping procedure. For the discretized and simplified ODE at step i, this yields

xi+1 = xi −

[
∆σ1(t)

∆t
∆σ2(t)

∆t

][
x̂1−x1

σ1(ti)
x̂2−x2

σ2(ti)

]
∆t = xi +

[
x1−x̂1

σ1(ti)
x2−x̂2

σ2(ti)

]
⊙

[
∆σ1(t)
∆σ2(t)

]
,

23

Published as a conference paper at ICLR 2025

Algorithm 1 Deterministic Sampling

Input: N sampling steps
Sample x

(i)
cont,t0 ∼ N (0, σ2

cont,maxIKcont)∀i ∈ {1, . . . ,Kcont}
Sample x

(j)
cat,t0 ∼ N (0, σ2

cat,maxIKcat)∀j ∈ {1, . . . ,Kcat}
1: for s ∈ {0, . . . , N − 1} do
2: ts = 1− s/N
3: ts+1 = 1− (s+ 1)/N

4: xs ← (x
(1)
cat,ts , . . . ,x

(Kcat)
cat,ts , x

(1)
cont,ts , . . . , x

(Kcont)
cont,ts)

5: for all i ∈ {1, . . . ,Kcont} do
6: dx

(i)
cont = (x

(i)
cont,ts −Dcont,i

θ (xs, ts))/σcont,i(ts)

7: x
(i)
cont,ts+1

← x
(i)
cont,ts + [σcont,i(ts+1)− σcont,i(ts)] dx

(i)
cont

8: end for
9: for all j ∈ {1, . . . ,Kcat} do

10: P̂(x
(j)
cat,0|x

(j)
cat,ts) = Dcat,j

θ (xs, ts)

11: dx
(j)
cat =

(
x
(j)
cat,ts − E

P̂(x
(j)
cat,0|x

(j)
cat,ts

)
[x

(j)
cat,0]

)
/σcat,j(ts) from Equation (4)

12: x
(j)
cat,ts+1

← x
(j)
cat,ts + [σcat,j(ts+1)− σcat,j(ts)] dx

(j)
cat

13: end for
14: end for

Recover classes from embeddings with additional pass to score model
15: xN ← (x

(1)
cat,tN , . . . ,x

(Kcat)
cat,tN , x

(1)
cont,tN , . . . , x

(Kcont)
cont,tN)

16: for all j ∈ {1, . . . ,Kcat} do
17: P̂(x

(j)
cat,0|x

(j)
cat,tN) = Dcat,j

θ (xN , tN−1)

18: x
(j)
cat ← argmaxc∈Cj

P̂(x
(j)
cat,0 = e

(j)
c |x(j)

cat,tN) (pick most likely category)
19: end for
20: return (x

(1)
cat , . . . , x

(Kcat)
cat , x

(1)
cont,tN , . . . , x

(Kcont)
cont,tN)

where ⊙ denotes the element-wise product. Hence, we are effectively taking feature-specific steps
of length ∆σk(t). The adaptive noise schedules (timewarping) therefore not only affect the training
process, but also focus most work in the reverse process on the noise levels that matter most for
sample quality (i.e., where ∆σk(t) is small).

We use finite differences to approximate σ̇i, instead of the available, analytical variant, since
dσk(t)

dt →∞ as t → 1. The step ∆t would therefore be required to decrease as t → 1 to en-
sure ∆t ≈ dt holds. For a large number of steps, this assumption does not hold in practice, and for
dσk(t)

dt the update of x overshoots the target drastically. Intuitively, σk(t) becomes too steep near the
terminal timestep t = 1 such that the step size can not sufficiently compensate for the slope increase
to turn dσk(t)

dt into a good approximation of the actual change in σk(t). Moreover, the analytical
solution would approximate dσk(t) = σ̇k(t)dt, i.e., the change in the noise level caused by a change
in t. Since we know exactly where σk(t) will end up when changing t, we are better off using that
exact value and let dσk(t) = ∆σk(t).

Table 6: Performance sensitivity of CDTD (per type) to increasing number of sampling steps. Each
metric is averaged over five seeds. As a robust measure, we report the median over the ablation study
datasets acsincome, adult, beijing and churn .

Steps RMSE F1 AUC L2 distance of corr. Detection score JSD WD DCR

100 0.038 0.011 0.007 0.131 0.574 0.012 0.003 0.315
200 (default) 0.030 0.009 0.006 0.130 0.565 0.012 0.003 0.316

500 0.027 0.009 0.006 0.130 0.557 0.013 0.002 0.313
1000 0.028 0.008 0.006 0.130 0.562 0.013 0.002 0.311

24

Published as a conference paper at ICLR 2025

M SENSITIVITY TO IMPORTANT HYPERPARAMETERS

The training and sampling processes of CDTD are affected by various novel hyperparameters.
Generally, a per-type noise schedule works best, as we show in our main results in Table 1 for a
diverse set of benchmark datasets. Here, we examine the sensitivity of CDTD to two additional
important hyperparameters: (1) the standard deviation of the noise used to initialize the embeddings
(and therefore specific to score interpolation), σinit, and (2) the weight of the low noise levels used to
initialize the µk in the adaptive noise schedule parameterization.

The experiments in Dieleman et al. (2022) show that σinit is a crucial hyperparameter for score
interpolation on text data. Table 7 shows that this sensitivity does not translate to the tabular data
domain. This may be explained by the much smaller embedding dimension (16 vs. 256) or by our
usage of feature-specific embeddings. Compared to a vocabulary size of 32000 for text data (Dieleman
et al., 2022), we only face a maximum of 3151 categories in the lending dataset (see Table 3). Thus,
unlike other generative (diffusion) models for tabular data, CDTD scales to a practically arbitrary
number of categories.

Our proposed functional form for the adaptive noise schedules (see Appendix E) is the first to allow
for the incorporation of prior information about the importance of low vs. high (normalized) noise
levels. For this, we adjust the weight of low noise levels which directly determines the location of
the inflection point µk (see Section 3.3). The results in Table 8 indicate low sensitivity of sample
quality to weight changes for a per-type noise schedule. The initialization only impacts the time to
convergence but not (much) the location of the optimum. In our experiments, the number of training
steps (30000) appears to be high enough for all model variants to converge to similar states.

Table 7: Performance sensitivity of CDTD (per type) to changes in the standard deviation σinit in
the initialization of the embeddings of categorical features. Each metric is averaged over five seeds.
As a robust measure, we report the median over the ablation study datasets acsincome, adult,
beijing and churn .

σinit RMSE F1 AUC L2 distance of corr. Detection score JSD WD DCR

1 0.031 0.012 0.004 0.123 0.555 0.013 0.003 0.294
0.1 0.027 0.012 0.004 0.125 0.556 0.013 0.003 0.323
0.01 0.031 0.007 0.005 0.129 0.575 0.013 0.003 0.320

0.001 (default) 0.030 0.009 0.006 0.130 0.565 0.012 0.003 0.316

Table 8: Performance sensitivity of CDTD (per type) to changes in the prior weight of low noise
levels in the initialization of the adaptive noise schedules. Each metric is averaged over five seeds.
As a robust measure, we report the median over the ablation study datasets acsincome, adult,
beijing and churn .

Weight RMSE F1 AUC L2 distance of corr. Detection score JSD WD DCR

1 0.031 0.010 0.005 0.126 0.570 0.012 0.002 0.238
2 0.030 0.009 0.004 0.125 0.570 0.013 0.002 0.289

3 (default) 0.030 0.009 0.006 0.130 0.565 0.012 0.003 0.316
4 0.028 0.011 0.005 0.134 0.574 0.011 0.003 0.350

N ADVANTAGES OF DIFFUSION IN DATA SPACE

These days, inspired from diffusion models in the image and video domains, much work relies on the
idea of latent diffusion. Here, we want to briefly discuss and emphasize that for tabular data, diffusion
in latent space (represented by TabSyn) has important drawbacks and how CDTD, a diffusion model
defined in data space alleviates those.

Latent diffusion models first encode the data in a latent space. The diffusion model itself is then
trained in that latent space instead of directly on the features. Hence, the performance of the diffusion
model directly depends on a second model, with a separate training procedure. TabSyn uses a VAE
model to encode mixed-type data into a common continuous space that is not lower-dimensional,
so as to minimize reconstruction errors. Any reconstruction errors caused by the VAE reduce the

25

Published as a conference paper at ICLR 2025

sample quality of the eventually generated samples, no matter the capacity of the diffusion model.
This suggests that we would want to train a highly capable encoder/decoder, which adds additional
training costs. Figure 3 shows that latent diffusion is not necessarily more efficient in the tabular
data domain. In particular, if the latent space is not lower-dimensional or the encoder/decoder is very
complex, then sampling speed is not improved.

We further hypothesize that much tabular data, due to the lack of redundancy and spatial or sequential
correlation, is difficult to summarize efficiently in a joint latent space. Hence, compared to other
domains, larger VAEs and higher-dimensional latent spaces are required, increasing the training
time. Also, there is the risk of the VAE not picking up on subtle correlations within the data or
distorting existing correlations by mapping into the latent space. Any correlations not properly
encoded cannot be learned by the diffusion model. Since we optimize the VAE on an average loss,
its reconstruction and encoding performance of, for instance, minority classes or extreme values in
long-tailed distributions is likely lacking. This makes the job of the diffusion model more difficult, if
not sometimes impossible.

Lastly, we take great care in homogenizing categorical and continuous features throughout the training
process (see Appendix B and C). This is a crucial part of modeling mixed-type data. Using a VAE to
define a diffusion process in latent space only shifts the necessity for homogenization to the VAE
training process. Not balancing different feature- or data-types and their losses induces implicit
importance weights. Thus, the VAE may sacrifice the reconstruction quality of some features in favor
of others (Kendall et al., 2018; Ma et al., 2020).

To empirically investigate the difference of diffusion in data space (CDTD) and latent diffusion
(TabSyn), we examine feature-specific sample quality metrics and those that directly benefit from
all features being generated well. Our results in Table 9 show that latent diffusion comes with
a considerable decrease in sample quality (while imposing a similar architecture and number of
parameters as well as sampling steps, see Appendix H). In particular, the attained maximum univariate
metrics as well as the detection score and the L2 distance of the correlation matrices indicate that
TabSyn has issues modeling all features and their correlations sufficiently well. This supports our
argument that a homogenization of data types is important and that an encoding in latent space may
complicate the learning of joint data characteristics.

Table 9: A comparison of the CDTD model to latent diffusion (TabSyn). We average each metric
over five sampling seeds and as a robust measure report the median over the 11 datasets. Abs. diff. in
corr. matrices refers to the absolute differences in the correlation matrices between ground truth and
synthetic data. The max, min and mean are taken across features.

Detection
score

L2 dist.
of corr.

JSD WD Abs. diff. in
corr. matrices

min mean max min mean max min max

TabSyn 0.859 0.919 0.004 0.044 0.141 0.002 0.012 0.025 0.000 0.261
CDTD (per type) 0.701 0.444 0.002 0.011 0.025 0.001 0.006 0.010 0.000 0.088

Improv. over TabSyn 18.4% 51.7% 50.0% 75.0% 82.3% 50.0% 50.0% 60.0% - 66.3%

O COMPARISON TO RELATED WORK

Table 10 summarizes our comparison of CDTD to the diffusion-based benchmark models, that is,
TabSyn, TabDDPM and CoDi. Of those models, only TabSyn applies diffusion in latent space,
which comes with both advantages and costs (as discussed in Appendix N). TabSyn is the only other
model besides CDTD that avoids one-hot encoding categorical features by using embeddings. This
improves the scalability to a higher number of categories without blowing up the input dimensions.
Although both models utilize embeddings, TabSyn’s generative capabilities are more constrained
by jointly encoding all features in a latent space. It should also be noted that TabSyn makes use of
a Transformer architecture in its VAE, which means that it scales quadratically in the number of
features and therefore may not be easily scaled to high-dimensional data.

CDTD is the first model to utilize adaptive and type- or feature-specific noise schedules to model
tabular data. Further, we take great care in homogenizing categorical and continuous features

26

Published as a conference paper at ICLR 2025

throughout the training process (see Appendix B and C). No other model attempts balancing the
different features types. This is problematic as it suggests that other models may suffer from feature-
specific implicit importance weights that impact both training and generation. Hence, the sample
quality of some features may be unintentionally sacrificed in favor of increasing the sample quality of
other features (Kendall et al., 2018; Ma et al., 2020). Note that this also applies to TabSyn: Even
though their diffusion model avoids this issue by relying on a single type of loss due to the continuous
latent space, the VAE training process does not account for any balancing issues between the two
data types. Hence, the balancing issue is not eliminated but got only shifted to the VAE.

Lastly, CDTD and TabSyn are the only models that define the diffusion process in continuous space.
As such, other advanced techniques, like classifier-free guidance or ODE/SDE samplers, can be
directly applied. To accommodate categorical data, CoDi and TabDDPM make use of multinomial
diffusion (Hoogeboom et al., 2021), which is an inherently discrete process and therefore prohibits
such applications.

Table 10: Comparison of CDTD to the diffusion-based generative models CoDi, TabDDPM and
TabSyn. (∗) Note that the VAE trained as part of the TabSyn model does not balance type-specific
losses, which induces an implicit weighting among features. This can worsen the sample quality of
some features in favor of others.

defined in
feature space

avoids one-hot
encoding

balances
feature types

adaptive
noise schedule

type- or feature-
specific noise schedules

diffusion in
continuous space

CoDi ✓
TabDDPM ✓
TabSyn ✓ ∗ ✓

CDTD (ours) ✓ ✓ ✓ ✓ ✓ ✓

27

Published as a conference paper at ICLR 2025

P EXAMPLES OF LEARNED NOISE SCHEDULES

Next, we show the learned noise schedules for the largest (acsincome) and the smallest (churn)
datasets. Additionally, we illustrate the fit of single, per type and per feature schedules to the
respective diffusion losses they were trained to fit.

0.0

0.2

0.4

0.6

0.8

1.0

S
in

gl
e

no
is

e
le

ve
lσ

t
sc

al
ed

to
[0

,1
]

0

5

10

15

20

25

p(
σ

t)

0.0

0.2

0.4

0.6

0.8

1.0

P
er

Ty
pe

no
is

e
le

ve
lσ

t
sc

al
ed

to
[0

,1
]

categorical
continuous

0

10

20

30

40

p(
σ

t)

categorical
continuous

0.0 0.2 0.4 0.6 0.8 1.0

timestep t

0.0

0.2

0.4

0.6

0.8

1.0

P
er

Fe
at

ur
e

no
is

e
le

ve
lσ

t
sc

al
ed

to
[0

,1
]

0.0 0.2 0.4 0.6 0.8 1.0

σt scaled to [0,1]

0

20

40

60

p(
σ

t)

Figure 6: (Left): Learned noise schedules for acsincome. This reflects F−1
d.a.log,k. (Right): Implicit

weighting of noise levels / timesteps. This visualizes fd.a.log,k.

10−4 10−3 10−2 10−1 100

σt scaled to [0,1]

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

fitted function
true diffusion loss

10−4 10−3 10−2 10−1 100

σt scaled to [0,1]

categorical
continuous
fitted function
true diffusion loss

10−4 10−3 10−2 10−1 100

σt scaled to [0,1]

fitted function
true diffusion loss

Figure 7: Illustration of the goodness of fit of the timewarping function Fk for single (left), per type
(middle) and per feature noise schedules (right) on the acsincome data.

28

Published as a conference paper at ICLR 2025

0.0

0.2

0.4

0.6

0.8

1.0

S
in

gl
e

no
is

e
le

ve
lσ

t
sc

al
ed

to
[0

,1
]

0

5

10

15

20

p(
σ

t)

0.0

0.2

0.4

0.6

0.8

1.0

P
er

Ty
pe

no
is

e
le

ve
lσ

t
sc

al
ed

to
[0

,1
]

categorical
continuous

0

5

10

15

20

25

30

p(
σ

t)

categorical
continuous

0.0 0.2 0.4 0.6 0.8 1.0

timestep t

0.0

0.2

0.4

0.6

0.8

1.0

P
er

Fe
at

ur
e

no
is

e
le

ve
lσ

t
sc

al
ed

to
[0

,1
]

0.0 0.2 0.4 0.6 0.8 1.0

σt scaled to [0,1]

0

20

40

60

80

p(
σ

t)

Figure 8: (Left): Learned noise schedules for churn. This reflects F−1
d.a.log,k. (Right): Implicit

weighting of noise levels / timesteps. This visualizes fd.a.log,k.

10−4 10−3 10−2 10−1 100

σt scaled to [0,1]

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

fitted function
true diffusion loss

10−4 10−3 10−2 10−1 100

σt scaled to [0,1]

categorical
continuous
fitted function
true diffusion loss

10−4 10−3 10−2 10−1 100

σt scaled to [0,1]

fitted function
true diffusion loss

Figure 9: Illustration of the goodness of fit of the timewarping function Fk for single (left), per type
(middle) and per feature noise schedules (right) on the churn data.

29

Published as a conference paper at ICLR 2025

Q QUALITATIVE COMPARISONS

2.5

5.0

7.5

10.0

12.5

15.0

ed
uc

at
io

na
l-

nu
m

Real Data SMOTE ARF CTGAN TVAE

0 25 50 75

age

2.5

5.0

7.5

10.0

12.5

15.0

ed
uc

at
io

na
l-

nu
m

TabDDPM

0 25 50 75

age

CoDi

0 25 50 75

age

TabSyn

0 25 50 75

age

CDTD (per type)

0 25 50 75

age

CDTD (per feature)

Figure 10: Bivariate density for age and educational-num from the adult data.

0 10 20

educational-num

0.00

0.01

0.02

0.03

0.04

D
en

si
ty

Adult

−5 0 5

emp.var.rate

0.00

0.02

0.04

0.06

0.08

0.10

D
en

si
ty

Bank

0 20 40

Call Failure

0.000

0.002

0.004

0.006

0.008

D
en

si
ty

Churn

0 2

health

0.0

0.1

0.2

0.3

0.4

0.5

D
en

si
ty

NMES

2 540 631

marital-status

0

5000

10000

15000

C
ou

nt

0 5 62 71 3 4

education

0

2500

5000

7500

10000

12500

C
ou

nt

430 1 2

Age Group

0

200

400

600

800

1000

C
ou

nt

20 1 3

region

0

250

500

750

1000

1250

C
ou

nt

Real
SMOTE

ARF
TVAE

CTGAN
TabDDPM

CoDi
TabSyn

CDTD (per type)
CDTD (per feature)

Figure 11: Comparison of some univariate distributions for adult, bank, churn, nmes.

0 500 1000

pm2.5

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

D
en

si
ty

Beijing

0 50

AGE

0.000

0.002

0.004

0.006

D
en

si
ty

Default

0 50 100

account never delinq percent

0.000

0.005

0.010

0.015

0.020

0.025

D
en

si
ty

Lending

0.0 0.5 1.0

avg positive polarity

0.0

0.2

0.4

0.6

D
en

si
ty

News

0 1 32

cbwd

0

2000

4000

6000

8000

10000

C
ou

nt

321 650 4

EDUCATION

0

2000

4000

6000

8000

10000

C
ou

nt

21 3 84 6 7 100 5 119

loan purpose

0

1000

2000

3000

4000

C
ou

nt

0 1

weekday is monday

0

5000

10000

15000

20000

C
ou

nt

Real
SMOTE

ARF
TVAE

CTGAN
TabDDPM

CoDi
TabSyn

CDTD (per type)
CDTD (per feature)

Figure 12: Comparison of some univariate distributions for beijing, default, lending, news.
(Note that CoDi is prohibitively expensive to train on lending and therefore excluded.)

30

Published as a conference paper at ICLR 2025

R VISUALIZATIONS OF CAPTURED CORRELATIONS

Cat. Cont.

ARF

Cat. Cont.

TVAE

Cat. Cont.

CTGAN

Cat. Cont.

CoDi

Cat. Cont.

C
at

.
C

on
t.

TabSyn

Cat. Cont.

CDTD
(single)

Cat. Cont.

CDTD
(per type)

Cat. Cont.

CDTD
(per feature)

Cat. Cont.

Real Test Set

0 0.02 0.04 0.06 0.08 ≥ 0.1

Figure 13: Element-wise absolute differences of the correlation matrices between the real training set
and the synthetic data for the acsincome dataset. TabDDPM generates NaNs for this dataset and is
therefore excluded. SMOTE takes too long for sampling. Continuous (cont.) and categorical (cat.)
features are indicated on the axes.

Cat. Cont.

C
at

.
C

on
t.

SMOTE

Cat. Cont.

ARF

Cat. Cont.

TVAE

Cat. Cont.

CTGAN

Cat. Cont.

TabDDPM

Cat. Cont.

CoDi

Cat. Cont.

C
at

.
C

on
t.

TabSyn

Cat. Cont.

CDTD
(single)

Cat. Cont.

CDTD
(per type)

Cat. Cont.

CDTD
(per feature)

Cat. Cont.

Real Test Set

0 0.02 0.04 0.06 0.08 ≥ 0.1

Figure 14: Element-wise absolute differences of the correlation matrices between the real training set
and the synthetic data for the adult dataset. Continuous (cont.) and categorical (cat.) features are
indicated on the axes.

Cat. Cont.

C
at

.
C

on
t.

SMOTE

Cat. Cont.

ARF

Cat. Cont.

TVAE

Cat. Cont.

CTGAN

Cat. Cont.

TabDDPM

Cat. Cont.

CoDi

Cat. Cont.

C
at

.
C

on
t.

TabSyn

Cat. Cont.

CDTD
(single)

Cat. Cont.

CDTD
(per type)

Cat. Cont.

CDTD
(per feature)

Cat. Cont.

Real Test Set

0 0.02 0.04 0.06 0.08 ≥ 0.1

Figure 15: Element-wise absolute differences of the correlation matrices between the real training set
and the synthetic data for the bank dataset. Continuous (cont.) and categorical (cat.) features are
indicated on the axes.

31

Published as a conference paper at ICLR 2025

Cat. Cont.

C
at

.
C

on
t.

SMOTE

Cat. Cont.

ARF

Cat. Cont.

TVAE

Cat. Cont.

CTGAN

Cat. Cont.

TabDDPM

Cat. Cont.

CoDi

Cat. Cont.

C
at

.
C

on
t.

TabSyn

Cat. Cont.

CDTD
(single)

Cat. Cont.

CDTD
(per type)

Cat. Cont.

CDTD
(per feature)

Cat. Cont.

Real Test Set

0 0.02 0.04 0.06 0.08 ≥ 0.1

Figure 16: Element-wise absolute differences of the correlation matrices between the real training set
and the synthetic data for the beijing dataset. Continuous (cont.) and categorical (cat.) features
are indicated on the axes.

Cat. Cont.

C
at

.
C

on
t.

SMOTE

Cat. Cont.

ARF

Cat. Cont.

TVAE

Cat. Cont.

CTGAN

Cat. Cont.

TabDDPM

Cat. Cont.

CoDi

Cat. Cont.

C
at

.
C

on
t.

TabSyn

Cat. Cont.

CDTD
(single)

Cat. Cont.

CDTD
(per type)

Cat. Cont.

CDTD
(per feature)

Cat. Cont.

Real Test Set

0 0.02 0.04 0.06 0.08 ≥ 0.1

Figure 17: Element-wise absolute differences of the correlation matrices between the real training set
and the synthetic data for the churn dataset. Continuous (cont.) and categorical (cat.) features are
indicated on the axes.

Cat. Cont.

ARF

Cat. Cont.

TVAE

Cat. Cont.

CTGAN

Cat. Cont.

TabDDPM

Cat. Cont.

CoDi

Cat. Cont.

C
at

.
C

on
t.

TabSyn

Cat. Cont.

CDTD
(single)

Cat. Cont.

CDTD
(per type)

Cat. Cont.

CDTD
(per feature)

Cat. Cont.

Real Test Set

0 0.02 0.04 0.06 0.08 ≥ 0.1

Figure 18: Element-wise absolute differences of the correlation matrices between the real training set
and the synthetic data for the covertype dataset. SMOTE takes too long for sampling. Continuous
(cont.) and categorical (cat.) features are indicated on the axes.

32

Published as a conference paper at ICLR 2025

Cat. Cont.

C
at

.
C

on
t.

SMOTE

Cat. Cont.

ARF

Cat. Cont.

TVAE

Cat. Cont.

CTGAN

Cat. Cont.

TabDDPM

Cat. Cont.

CoDi

Cat. Cont.

C
at

.
C

on
t.

TabSyn

Cat. Cont.

CDTD
(single)

Cat. Cont.

CDTD
(per type)

Cat. Cont.

CDTD
(per feature)

Cat. Cont.

Real Test Set

0 0.02 0.04 0.06 0.08 ≥ 0.1

Figure 19: Element-wise absolute differences of the correlation matrices between the real training set
and the synthetic data for the default dataset. Continuous (cont.) and categorical (cat.) features
are indicated on the axes.

Cat. Cont.

C
at

.
C

on
t.

SMOTE

Cat. Cont.

ARF

Cat. Cont.

TVAE

Cat. Cont.

CTGAN

Cat. Cont.

C
at

.
C

on
t.

TabSyn

Cat. Cont.

CDTD
(single)

Cat. Cont.

CDTD
(per type)

Cat. Cont.

CDTD
(per feature)

Cat. Cont.

Real Test Set

0 0.02 0.04 0.06 0.08 ≥ 0.1

Figure 20: Element-wise absolute differences of the correlation matrices between the real training set
and the synthetic data for the diabetes dataset. TabDDPM generates NaNs for this dataset and
is therefore excluded. CoDi is prohibitively expensive to train and therefore excluded. Continuous
(cont.) and categorical (cat.) features are indicated on the axes.

Cat. Cont.

C
at

.
C

on
t.

SMOTE

Cat. Cont.

ARF

Cat. Cont.

TVAE

Cat. Cont.

CTGAN

Cat. Cont.

TabDDPM

Cat. Cont.

C
at

.
C

on
t.

TabSyn

Cat. Cont.

CDTD
(single)

Cat. Cont.

CDTD
(per type)

Cat. Cont.

CDTD
(per feature)

Cat. Cont.

Real Test Set

0 0.02 0.04 0.06 0.08 ≥ 0.1

Figure 21: Element-wise absolute differences of the correlation matrices between the real training
set and the synthetic data for the lending dataset. CoDi is prohibitively expensive to train and
therefore excluded. Continuous (cont.) and categorical (cat.) features are indicated on the axes.

33

Published as a conference paper at ICLR 2025

Cat. Cont.

C
at

.
C

on
t.

SMOTE

Cat. Cont.

ARF

Cat. Cont.

TVAE

Cat. Cont.

CTGAN

Cat. Cont.

TabDDPM

Cat. Cont.

CoDi

Cat. Cont.

C
at

.
C

on
t.

TabSyn

Cat. Cont.

CDTD
(single)

Cat. Cont.

CDTD
(per type)

Cat. Cont.

CDTD
(per feature)

Cat. Cont.

Real Test Set

0 0.02 0.04 0.06 0.08 ≥ 0.1

Figure 22: Element-wise absolute differences of the correlation matrices between the real training set
and the synthetic data for the news dataset. Continuous (cont.) and categorical (cat.) features are
indicated on the axes.

Cat. Cont.

C
at

.
C

on
t.

SMOTE

Cat. Cont.

ARF

Cat. Cont.

TVAE

Cat. Cont.

CTGAN

Cat. Cont.

TabDDPM

Cat. Cont.

CoDi

Cat. Cont.

C
at

.
C

on
t.

TabSyn

Cat. Cont.

CDTD
(single)

Cat. Cont.

CDTD
(per type)

Cat. Cont.

CDTD
(per feature)

Cat. Cont.

Real Test Set

0 0.02 0.04 0.06 0.08 ≥ 0.1

Figure 23: Element-wise absolute differences of the correlation matrices between the real training set
and the synthetic data for the nmes dataset. Continuous (cont.) and categorical (cat.) features are
indicated on the axes.

34

Published as a conference paper at ICLR 2025

S DETAILED RESULTS

CoDi is prohibitively expensive to train on lending and diabetes and TabDDPM produces
NaNs for acsincome and diabetes. SMOTE takes too long to sample datasets of a sufficient
size for acsincome and covertype (see Table 29). For those models, the performance metrics
on these datasets are therefore not reported. They are assigned a rank of 10 in Table 1 and the worst
metric-specific performance across all models before computing the average metrics reported in
Table 11.

Table 11: Model evaluation results averaged over 11 datasets (if a model was not trainable on a given
dataset, we assign the maximum, i.e., worst, value over all models for that dataset to this model)
for seven benchmark models and for CDTD with three different noise schedules. Per performance
metric, bold indicates the best, underline the second best result.

SMOTE ARF CTGAN TVAE TabDDPM CoDi TabSyn CDTD
(single)

CDTD
(per type)

CDTD
(per feature)

RMSE (abs. diff.; ↓) 0.366 0.091 0.635 0.868 0.674 0.278 0.309 0.086 0.091 0.102
F1 (abs. diff.; ↓) 0.068 0.053 0.130 0.074 0.020 0.048 0.111 0.020 0.015 0.014
AUC (abs. diff.; ↓) 0.043 0.020 0.080 0.065 0.023 0.039 0.066 0.015 0.014 0.015
L2 distance of corr. (↓) 1.287 1.321 2.190 2.707 3.001 2.383 2.097 0.792 0.684 0.920
Detection score (↓) 0.869 0.933 0.986 0.977 0.790 0.947 0.858 0.761 0.739 0.770
JSD (↓) 0.077 0.011 0.101 0.135 0.086 0.073 0.052 0.015 0.016 0.018
WD (↓) 0.011 0.011 0.024 0.023 0.050 0.059 0.017 0.010 0.008 0.009
DCR (abs. diff. to test; ↓) 1.813 1.588 3.317 1.602 2.061 2.838 2.648 0.927 0.867 0.760

Table 12: L2 norm (incl. standard errors in subscripts) of the correlation matrix differences of real and
synthetic train sets for seven benchmark models and for CDTD with three different noise schedules.

SMOTE ARF CTGAN TVAE TabDDPM CoDi TabSyn CDTD
(single)

CDTD
(per type)

CDTD
(per feature)

acsincome - 0.242±0.002 1.696±0.008 1.136±0.004 - 0.517±0.006 0.560±0.005 0.134±0.002 0.135±0.002 0.123±0.002

adult 0.414±0.016 0.576±0.006 1.858±0.010 0.735±0.012 0.160±0.012 0.493±0.009 0.514±0.013 0.175±0.007 0.125±0.005 0.123±0.011

bank 0.404±0.015 0.819±0.024 0.947±0.019 2.758±0.049 0.529±0.050 0.499±0.021 0.759±0.013 0.333±0.018 0.231±0.009 0.288±0.013

beijing 0.081±0.007 0.128±0.009 1.470±0.007 1.226±0.008 0.368±0.085 0.373±0.008 0.086±0.008 0.073±0.009 0.073±0.007 0.071±0.009

churn 0.264±0.036 0.635±0.026 1.355±0.043 1.301±0.041 0.273±0.069 0.746±0.062 0.613±0.022 0.269±0.028 0.255±0.021 0.271±0.040

covertype - 1.192±0.017 3.685±0.005 4.668±0.003 1.124±0.183 1.029±0.032 3.749±0.181 1.970±0.010 1.357±0.155 1.972±0.011

default 0.709±0.048 1.228±0.021 2.697±0.021 1.564±0.029 0.685±0.131 1.672±0.061 1.125±0.049 0.724±0.116 0.641±0.130 0.681±0.037

diabetes 2.355±0.026 1.189±0.004 1.654±0.008 5.351±0.095 - - 2.796±0.066 1.381±0.016 1.213±0.029 1.351±0.044

lending 1.321±0.063 3.473±0.057 2.420±0.016 5.895±0.026 10.046±0.007 - 6.792±0.034 1.148±0.087 1.239±0.090 1.351±0.050

news 1.684±1.466 4.333±0.128 4.641±0.028 4.612±0.016 12.356±0.097 4.874±0.148 5.153±0.014 2.050±0.594 1.811±0.295 3.446±1.111

nmes 0.565±0.047 0.717±0.054 1.663±0.035 0.532±0.030 0.426±0.041 0.609±0.032 0.919±0.067 0.454±0.043 0.444±0.075 0.445±0.071

Table 13: Jensen-Shannon divergence (incl. standard errors in subscripts) for seven benchmark models
and for CDTD with three different noise schedules.

SMOTE ARF CTGAN TVAE TabDDPM CoDi TabSyn CDTD
(single)

CDTD
(per type)

CDTD
(per feature)

acsincome - 0.013±0.001 0.256±0.000 0.309±0.000 - 0.076±0.001 0.052±0.001 0.021±0.001 0.022±0.001 0.019±0.000

adult 0.064±0.001 0.007±0.001 0.112±0.001 0.113±0.001 0.035±0.001 0.045±0.001 0.022±0.001 0.011±0.001 0.015±0.001 0.015±0.001

bank 0.039±0.001 0.004±0.000 0.086±0.001 0.191±0.001 0.021±0.001 0.038±0.001 0.063±0.001 0.011±0.000 0.011±0.001 0.015±0.001

beijing 0.006±0.002 0.004±0.001 0.005±0.002 0.074±0.003 0.024±0.002 0.011±0.003 0.011±0.003 0.006±0.002 0.006±0.001 0.007±0.002

churn 0.012±0.004 0.011±0.004 0.095±0.003 0.048±0.004 0.015±0.006 0.043±0.001 0.031±0.002 0.011±0.002 0.010±0.002 0.012±0.003

covertype - 0.002±0.000 0.044±0.000 0.043±0.000 0.004±0.000 0.008±0.000 0.044±0.000 0.004±0.000 0.003±0.000 0.007±0.000

default 0.042±0.001 0.008±0.001 0.194±0.001 0.177±0.001 0.028±0.001 0.073±0.002 0.093±0.001 0.012±0.002 0.016±0.001 0.017±0.001

diabetes 0.067±0.000 0.009±0.000 0.093±0.000 0.187±0.000 - - 0.098±0.000 0.024±0.000 0.025±0.000 0.031±0.000

lending 0.143±0.001 0.049±0.002 0.092±0.001 0.188±0.001 0.287±0.002 - 0.119±0.001 0.056±0.001 0.057±0.001 0.065±0.002

news 0.063±0.001 0.002±0.001 0.022±0.001 0.128±0.001 0.017±0.001 0.012±0.001 0.017±0.001 0.003±0.001 0.003±0.001 0.003±0.001

nmes 0.060±0.001 0.008±0.002 0.117±0.002 0.029±0.003 0.025±0.004 0.027±0.003 0.019±0.001 0.009±0.001 0.007±0.002 0.012±0.004

Table 14: Wasserstein distance (incl. standard errors in subscripts) for seven benchmark models and
for CDTD with three different noise schedules.

SMOTE ARF CTGAN TVAE TabDDPM CoDi TabSyn CDTD
(single)

CDTD
(per type)

CDTD
(per feature)

acsincome - 0.007±0.000 0.037±0.000 0.021±0.000 - 0.017±0.000 0.005±0.000 0.002±0.000 0.001±0.000 0.001±0.000

adult 0.003±0.000 0.012±0.000 0.016±0.000 0.021±0.000 0.002±0.000 0.013±0.000 0.007±0.000 0.007±0.000 0.003±0.000 0.002±0.000

bank 0.002±0.001 0.012±0.000 0.021±0.000 0.040±0.001 0.004±0.000 0.030±0.001 0.006±0.000 0.006±0.000 0.003±0.001 0.007±0.001

beijing 0.002±0.000 0.008±0.000 0.030±0.000 0.036±0.000 0.007±0.000 0.019±0.000 0.004±0.000 0.003±0.000 0.002±0.000 0.002±0.000

churn 0.006±0.001 0.013±0.001 0.027±0.001 0.032±0.001 0.007±0.002 0.048±0.002 0.013±0.002 0.006±0.001 0.006±0.001 0.006±0.001

covertype - 0.006±0.000 0.041±0.000 0.022±0.000 0.002±0.000 0.012±0.000 0.019±0.000 0.018±0.000 0.009±0.000 0.013±0.000

default 0.002±0.000 0.005±0.000 0.011±0.000 0.005±0.000 0.002±0.000 0.013±0.000 0.003±0.000 0.004±0.000 0.003±0.000 0.003±0.000

diabetes 0.004±0.000 0.012±0.000 0.020±0.000 0.038±0.000 - - 0.012±0.000 0.042±0.000 0.034±0.000 0.041±0.000

lending 0.006±0.000 0.013±0.001 0.011±0.000 0.016±0.000 0.410±0.001 - 0.053±0.000 0.012±0.000 0.013±0.000 0.011±0.000

news 0.007±0.000 0.024±0.000 0.009±0.000 0.018±0.000 0.033±0.001 0.030±0.000 0.029±0.000 0.008±0.000 0.006±0.000 0.008±0.000

nmes 0.005±0.001 0.012±0.000 0.036±0.000 0.008±0.000 0.007±0.001 0.016±0.001 0.032±0.001 0.006±0.001 0.006±0.000 0.006±0.000

35

Published as a conference paper at ICLR 2025

Table 15: Detection score (incl. standard errors in subscripts) for seven benchmark models and for
CDTD with three different noise schedules.

SMOTE ARF CTGAN TVAE TabDDPM CoDi TabSyn CDTD
(single)

CDTD
(per type)

CDTD
(per feature)

acsincome - 0.808±0.001 0.989±0.001 0.985±0.000 - 0.825±0.002 0.688±0.003 0.529±0.005 0.527±0.002 0.528±0.002

adult 0.687±0.003 0.889±0.002 0.997±0.000 0.967±0.001 0.594±0.003 0.992±0.001 0.641±0.003 0.621±0.002 0.590±0.004 0.605±0.004

bank 0.839±0.003 0.955±0.002 1.000±0.000 0.988±0.001 0.781±0.002 1.000±0.000 0.853±0.003 0.808±0.003 0.701±0.005 0.835±0.001

beijing 0.938±0.002 0.989±0.002 0.996±0.001 0.995±0.001 0.738±0.004 0.989±0.001 0.723±0.003 0.574±0.003 0.620±0.005 0.614±0.003

churn 0.567±0.015 0.853±0.002 0.945±0.006 0.843±0.011 0.556±0.013 0.730±0.012 0.859±0.005 0.614±0.016 0.541±0.008 0.639±0.011

covertype - 0.945±0.002 0.997±0.000 0.989±0.001 0.584±0.002 0.900±0.002 0.991±0.000 0.989±0.000 0.981±0.000 0.989±0.001

default 0.928±0.004 0.991±0.001 0.998±0.001 0.997±0.001 0.827±0.005 0.995±0.000 0.914±0.002 0.823±0.001 0.793±0.005 0.827±0.003

diabetes 0.726±0.001 0.854±0.002 0.935±0.002 0.997±0.001 - - 0.946±0.001 0.864±0.002 0.837±0.001 0.862±0.001

lending 0.966±0.003 0.997±0.001 0.995±0.002 0.995±0.001 1.000±0.000 - 0.998±0.000 0.959±0.009 0.955±0.003 0.960±0.005

news 0.998±0.000 0.998±0.000 1.000±0.000 1.000±0.000 0.974±0.001 1.000±0.000 0.999±0.000 0.947±0.002 0.950±0.002 0.972±0.002

nmes 0.926±0.007 0.987±0.002 0.992±0.003 0.988±0.002 0.652±0.011 0.988±0.000 0.829±0.010 0.646±0.005 0.633±0.010 0.636±0.010

Table 16: Distance to closest record of the generated data (incl. standard errors in subscripts) for
seven benchmark models and for CDTD with three different noise schedules.

Test Set SMOTE ARF CTGAN TVAE TabDDPM CoDi TabSyn CDTD
(single)

CDTD
(per type)

CDTD
(per feature)

acsincome 7.673±0.017 - 8.637±0.027 10.758±0.054 6.652±0.032 - 10.877±0.092 10.797±0.101 8.337±0.053 8.397±0.062 8.344±0.027

adult 1.870±0.000 1.371±0.018 2.523±0.012 5.012±0.028 2.227±0.013 1.656±0.008 2.735±0.028 2.408±0.031 1.138±0.015 1.327±0.015 1.334±0.012

bank 2.369±0.000 1.369±0.011 3.025±0.017 3.840±0.014 3.136±0.007 2.211±0.011 3.062±0.012 3.022±0.009 1.749±0.008 1.913±0.006 1.997±0.008

beijing 0.385±0.000 0.139±0.003 0.731±0.003 0.800±0.002 0.724±0.005 0.639±0.002 0.588±0.003 0.633±0.002 0.474±0.002 0.473±0.002 0.469±0.001

churn 0.347±0.000 0.232±0.028 1.136±0.015 1.804±0.036 1.146±0.039 0.368±0.044 0.852±0.016 1.209±0.010 0.329±0.010 0.278±0.012 0.350±0.023

covertype 0.529±0.001 - 1.741±0.011 5.773±0.017 3.173±0.013 0.877±0.008 1.508±0.020 3.033±0.012 1.825±0.016 1.594±0.009 1.805±0.009

default 1.812±0.000 1.032±0.010 3.095±0.026 5.880±0.020 3.216±0.013 1.437±0.020 2.593±0.020 2.801±0.032 1.192±0.022 1.355±0.017 1.352±0.016

diabetes 15.608±0.055 13.909±0.050 17.736±0.107 21.935±0.046 8.214±0.022 - - 28.794±0.054 14.356±0.050 14.468±0.028 14.866±0.033

lending 11.184±0.000 17.752±0.143 17.776±0.132 20.239±0.222 10.688±0.025 14.310±0.093 - 16.239±0.052 14.958±0.292 14.962±0.090 14.146±0.240

news 3.615±0.000 3.553±0.134 6.147±0.010 4.789±0.005 5.821±0.003 4.358±0.013 4.661±0.023 5.410±0.005 3.615±0.009 3.676±0.008 3.736±0.094

nmes 1.931±0.000 1.394±0.019 2.203±0.028 2.971±0.008 1.710±0.019 0.890±0.027 1.231±0.024 2.105±0.022 0.801±0.017 0.780±0.031 0.803±0.017

Table 17: Machine learning efficiency F1 score for seven benchmark models, the real training data
and for CDTD with three different noise schedules. The standard deviation takes into account five
different sampling seeds and uses the average results of the four machine learning efficiency models
computed across ten model seeds.

Real Data SMOTE ARF CTGAN TVAE TabDDPM CoDi TabSyn CDTD
(single)

CDTD
(per type)

CDTD
(per feature)

adult 0.797±0.000 0.784±0.001 0.769±0.002 0.647±0.015 0.756±0.002 0.788±0.001 0.745±0.004 0.782±0.002 0.788±0.001 0.789±0.002 0.789±0.002

bank 0.745±0.002 0.740±0.004 0.682±0.006 0.680±0.006 0.629±0.006 0.744±0.005 0.673±0.006 0.661±0.008 0.782±0.003 0.766±0.005 0.747±0.004

churn 0.873±0.003 0.865±0.008 0.780±0.015 0.761±0.009 0.802±0.017 0.855±0.012 0.865±0.008 0.748±0.015 0.859±0.007 0.863±0.007 0.860±0.007

covertype 0.817±0.001 - 0.783±0.001 0.442±0.008 0.711±0.002 0.799±0.001 0.767±0.001 0.620±0.014 0.766±0.001 0.767±0.001 0.765±0.001

default 0.674±0.001 0.677±0.001 0.627±0.003 0.686±0.002 0.632±0.007 0.680±0.002 0.638±0.008 0.485±0.016 0.673±0.003 0.675±0.002 0.677±0.002

diabetes 0.621±0.002 0.615±0.002 0.572±0.005 0.557±0.004 0.553±0.003 - - 0.566±0.006 0.614±0.003 0.619±0.002 0.614±0.003

Table 18: Machine learning efficiency AUC score for seven benchmark models, the real training data
and for CDTD with three different noise schedules. The standard deviation takes into account five
different sampling seeds and uses the average results of the four machine learning efficiency models
computed across ten model seeds.

Real Data SMOTE ARF CTGAN TVAE TabDDPM CoDi TabSyn CDTD
(single)

CDTD
(per type)

CDTD
(per feature)

adult 0.915±0.000 0.906±0.001 0.901±0.000 0.836±0.006 0.889±0.002 0.909±0.000 0.880±0.005 0.906±0.001 0.909±0.000 0.909±0.001 0.908±0.001

bank 0.947±0.000 0.943±0.001 0.938±0.001 0.934±0.003 0.830±0.020 0.942±0.004 0.929±0.005 0.922±0.006 0.945±0.000 0.946±0.000 0.944±0.003

churn 0.964±0.001 0.961±0.002 0.939±0.007 0.882±0.006 0.948±0.004 0.957±0.006 0.961±0.001 0.911±0.013 0.960±0.002 0.957±0.008 0.960±0.003

covertype 0.892±0.000 - 0.860±0.001 0.677±0.007 0.777±0.001 0.876±0.001 0.845±0.001 0.675±0.013 0.840±0.001 0.844±0.000 0.840±0.001

default 0.768±0.000 0.759±0.003 0.754±0.002 0.744±0.002 0.751±0.004 0.765±0.002 0.739±0.008 0.732±0.021 0.763±0.002 0.764±0.002 0.765±0.002

diabetes 0.693±0.001 0.679±0.001 0.669±0.002 0.626±0.003 0.592±0.002 - - 0.642±0.002 0.671±0.002 0.673±0.002 0.672±0.002

Table 19: Machine learning efficiency RMSE for seven benchmark models, the real training data
and for CDTD with three different noise schedules. The standard deviation takes into account five
different sampling seeds and uses the average results of the four machine learning efficiency models
computed across ten model seeds.

Real Data SMOTE ARF CTGAN TVAE TabDDPM CoDi TabSyn CDTD
(single)

CDTD
(per type)

CDTD
(per feature)

acsincome 0.804±0.012 - 0.757±0.007 2.292±0.013 1.054±0.011 - 0.857±0.010 0.955±0.010 0.827±0.009 0.807±0.008 0.812±0.004

beijing 0.711±0.001 0.742±0.002 0.779±0.007 1.050±0.010 1.295±0.016 0.799±0.007 0.849±0.004 0.789±0.010 0.772±0.003 0.766±0.003 0.762±0.002

lending 0.030±0.000 0.042±0.001 0.274±0.007 0.137±0.007 0.404±0.007 0.789±0.033 - 0.305±0.006 0.071±0.001 0.066±0.002 0.062±0.002

news 1.001±0.002 1.180±0.107 0.923±0.052 1.906±0.019 3.999±0.175 0.171±0.006 1.302±0.074 0.397±0.037 0.848±0.081 0.752±0.067 0.717±0.045

nmes 1.001±0.003 1.112±0.044 0.972±0.024 1.331±0.052 1.127±0.047 1.200±0.054 1.137±0.052 0.563±0.005 1.154±0.052 1.109±0.055 1.136±0.074

36

Published as a conference paper at ICLR 2025

T ABLATION STUDY DETAILS

Table 20: L2 norm (incl. standard errors in subscripts) of the correlation matrix differences of real and
synthetic train sets for five CDTD configurations with progressive addition of model components.

Configuration A B C D CDTD
(per type)

acsincome 0.138±0.004 0.138±0.003 0.135±0.001 0.152±0.001 0.135±0.002

adult 0.135±0.006 0.113±0.004 0.159±0.015 0.100±0.010 0.125±0.005

bank 0.478±0.019 0.243±0.015 0.269±0.012 0.196±0.012 0.231±0.009

beijing 0.076±0.009 0.070±0.007 0.067±0.004 0.068±0.006 0.073±0.007

churn 0.294±0.053 0.280±0.043 0.262±0.030 0.239±0.038 0.255±0.021

covertype 1.178±0.193 2.099±0.010 1.974±0.136 1.808±0.010 1.357±0.155

default 0.905±0.110 0.799±0.123 0.727±0.132 0.521±0.124 0.641±0.130

diabetes 0.719±0.049 1.435±0.021 1.397±0.005 1.230±0.061 1.213±0.029

lending 1.480±0.046 1.127±0.083 1.178±0.059 1.295±0.044 1.239±0.090

news 2.484±0.138 2.136±0.417 1.973±0.417 2.016±0.483 1.811±0.295

nmes 0.483±0.048 0.421±0.032 0.457±0.041 0.450±0.041 0.444±0.075

Table 21: Jensen-Shannon divergence (incl. standard errors in subscripts) for five CDTD configura-
tions with progressive addition of model components.

Configuration A B C D CDTD
(per type)

acsincome 0.016±0.000 0.022±0.000 0.026±0.001 0.032±0.001 0.022±0.001

adult 0.010±0.001 0.013±0.001 0.013±0.001 0.015±0.001 0.015±0.001

bank 0.008±0.000 0.017±0.000 0.011±0.001 0.011±0.001 0.011±0.001

beijing 0.005±0.001 0.005±0.004 0.004±0.002 0.004±0.001 0.006±0.001

churn 0.015±0.003 0.011±0.002 0.009±0.003 0.010±0.003 0.010±0.002

covertype 0.002±0.000 0.003±0.000 0.004±0.000 0.004±0.000 0.003±0.000

default 0.014±0.001 0.015±0.001 0.012±0.002 0.017±0.002 0.016±0.001

diabetes 0.024±0.000 0.030±0.000 0.022±0.000 0.024±0.001 0.025±0.000

lending 0.055±0.001 0.055±0.002 0.055±0.001 0.057±0.001 0.057±0.001

news 0.003±0.001 0.003±0.001 0.003±0.001 0.004±0.001 0.003±0.001

nmes 0.008±0.002 0.008±0.002 0.008±0.002 0.009±0.001 0.007±0.002

Table 22: Wasserstein distance (incl. standard errors in subscripts) for five CDTD configurations with
progressive addition of model components.

Configuration A B C D CDTD
(per type)

acsincome 0.005±0.000 0.002±0.000 0.002±0.000 0.001±0.000 0.001±0.000

adult 0.008±0.000 0.005±0.000 0.006±0.000 0.002±0.000 0.003±0.000

bank 0.007±0.000 0.004±0.000 0.005±0.001 0.003±0.000 0.003±0.001

beijing 0.006±0.000 0.004±0.000 0.002±0.000 0.002±0.000 0.002±0.000

churn 0.008±0.001 0.007±0.001 0.007±0.001 0.007±0.002 0.006±0.001

covertype 0.003±0.000 0.020±0.000 0.019±0.000 0.012±0.000 0.009±0.000

default 0.003±0.000 0.004±0.000 0.004±0.000 0.003±0.000 0.003±0.000

diabetes 0.021±0.000 0.042±0.000 0.041±0.000 0.033±0.000 0.034±0.000

lending 0.012±0.000 0.011±0.000 0.012±0.000 0.013±0.000 0.013±0.000

news 0.009±0.000 0.006±0.000 0.007±0.000 0.005±0.000 0.006±0.000

nmes 0.008±0.001 0.007±0.001 0.008±0.000 0.008±0.001 0.006±0.000

37

Published as a conference paper at ICLR 2025

Table 23: Detection score (incl. standard errors in subscripts) for five CDTD configurations with
progressive addition of model components.

Configuration A B C D CDTD
(per type)

acsincome 0.547±0.001 0.533±0.003 0.540±0.002 0.546±0.003 0.527±0.002

adult 0.640±0.003 0.595±0.002 0.621±0.002 0.581±0.002 0.590±0.004

bank 0.880±0.001 0.739±0.006 0.798±0.001 0.662±0.005 0.701±0.005

beijing 0.699±0.003 0.658±0.004 0.615±0.002 0.626±0.002 0.620±0.005

churn 0.710±0.008 0.610±0.006 0.580±0.011 0.560±0.019 0.541±0.008

covertype 0.887±0.002 0.991±0.001 0.989±0.001 0.984±0.001 0.981±0.000

default 0.925±0.002 0.816±0.003 0.774±0.003 0.759±0.004 0.793±0.005

diabetes 0.762±0.001 0.895±0.001 0.870±0.002 0.851±0.001 0.837±0.001

lending 0.989±0.002 0.938±0.011 0.958±0.003 0.944±0.005 0.955±0.003

news 0.993±0.001 0.956±0.002 0.965±0.002 0.946±0.002 0.950±0.002

nmes 0.663±0.014 0.651±0.007 0.667±0.009 0.648±0.015 0.633±0.010

Table 24: Distance to closest record of the generated data (incl. standard errors in subscripts) for five
CDTD configurations with progressive addition of model components.

Real Test Set A B C D CDTD
(per type)

acsincome 7.673±0.017 8.550±0.055 8.342±0.037 8.284±0.030 8.311±0.041 8.397±0.062

adult 1.870±0.000 1.231±0.016 1.318±0.009 1.296±0.012 1.520±0.011 1.327±0.015

bank 2.369±0.000 1.583±0.006 2.016±0.007 2.069±0.014 2.187±0.009 1.913±0.006

beijing 0.385±0.000 0.592±0.001 0.537±0.002 0.505±0.001 0.511±0.001 0.473±0.002

churn 0.347±0.000 0.526±0.014 0.383±0.014 0.327±0.022 0.333±0.020 0.278±0.012

covertype 0.529±0.001 0.871±0.009 1.919±0.016 1.872±0.022 1.698±0.024 1.594±0.009

default 1.812±0.000 1.321±0.015 1.333±0.021 1.306±0.020 1.484±0.012 1.355±0.017

diabetes 15.608±0.055 13.299±0.020 14.958±0.029 15.007±0.026 14.755±0.045 14.468±0.028

lending 11.184±0.000 15.130±0.320 15.112±0.286 14.957±0.149 14.916±0.196 14.962±0.090

news 3.615±0.000 3.894±0.016 3.737±0.012 3.692±0.014 3.746±0.010 3.676±0.008

nmes 1.931±0.000 1.202±0.019 1.014±0.013 0.958±0.008 0.952±0.022 0.780±0.031

Table 25: Machine learning efficiency F1 score for five CDTD configurations with progressive
addition of model components. The standard deviation accounts for five different sampling seeds and
uses the average results of the four machine learning efficiency models across ten model seeds.

Real Data A B C D CDTD
(per type)

adult 0.797±0.000 0.780±0.002 0.788±0.001 0.786±0.001 0.790±0.001 0.789±0.002

bank 0.745±0.002 0.759±0.004 0.758±0.006 0.760±0.005 0.751±0.005 0.766±0.005

churn 0.873±0.003 0.850±0.006 0.861±0.008 0.863±0.004 0.860±0.008 0.863±0.007

covertype 0.817±0.001 0.791±0.001 0.745±0.001 0.761±0.001 0.768±0.001 0.767±0.001

default 0.674±0.001 0.672±0.002 0.674±0.002 0.671±0.002 0.673±0.003 0.675±0.002

diabetes 0.621±0.002 0.616±0.002 0.612±0.003 0.612±0.003 0.617±0.002 0.619±0.002

Table 27: Machine learning efficiency RMSE for five CDTD configurations with progressive addition
of model components. The standard deviation accounts for five different sampling seeds and uses the
average results of the four machine learning efficiency models across ten model seeds.

Real Data A B C D CDTD
(per type)

acsincome 0.804±0.012 0.868±0.011 0.808±0.014 0.820±0.012 0.800±0.011 0.807±0.008

beijing 0.711±0.001 0.801±0.006 0.780±0.005 0.771±0.005 0.769±0.006 0.766±0.003

lending 0.030±0.000 0.124±0.006 0.059±0.002 0.072±0.001 0.067±0.002 0.066±0.002

news 1.001±0.002 0.772±0.019 0.835±0.062 0.805±0.079 0.763±0.062 0.752±0.067

nmes 1.001±0.003 0.967±0.064 1.128±0.088 1.195±0.087 1.225±0.070 1.109±0.055

38

Published as a conference paper at ICLR 2025

Table 26: Machine learning efficiency AUC score for five CDTD configurations with progressive
addition of model components. The standard deviation accounts for five different sampling seeds and
uses the average results of the four machine learning efficiency models across ten model seeds.

Real Data A B C D CDTD
(per type)

adult 0.915±0.000 0.906±0.001 0.909±0.000 0.909±0.000 0.909±0.001 0.909±0.001

bank 0.947±0.000 0.945±0.003 0.946±0.002 0.945±0.002 0.946±0.000 0.946±0.000

churn 0.964±0.001 0.959±0.003 0.961±0.002 0.962±0.002 0.960±0.002 0.957±0.008

covertype 0.892±0.000 0.870±0.000 0.826±0.001 0.838±0.001 0.844±0.001 0.844±0.000

default 0.768±0.000 0.763±0.002 0.764±0.001 0.764±0.002 0.764±0.002 0.764±0.002

diabetes 0.693±0.001 0.675±0.001 0.664±0.001 0.671±0.001 0.673±0.001 0.673±0.002

U TRAINING AND SAMPLING TIMES DETAILS

Table 28: Training times in minutes. TabDDPM produces NaNs during training on acsincome and
diabetes, and is therefore excluded for these data. CoDi is considered prohibitively expensive to
train on diabetes and lending and we report estimated (est.) training times.

SMOTE ARF CTGAN TVAE TabDDPM CoDi TabSyn CDTD
(per feature)

acsincome - 80.3 59.9 26.0 - 231.9 13.4 5.8
adult - 7.4 36.2 23.7 38.3 48.3 32.7 6.9
bank - 11.0 37.6 24.6 40.5 42.7 48.5 26.3
beijing - 3.7 34.3 23.9 36.1 24.9 25.8 23.4
churn - 0.3 27.1 13.7 18.2 25.7 21.5 6.1
covertype - 130.2 58.0 36.5 44.9 69.2 30.7 28.2
default - 12.0 38.3 24.8 38.9 45.9 40.1 26.4
diabetes - 58.5 90.1 25.3 - 870 (est.) 34.6 26.9
lending - 5.2 157.9 36.6 48.7 3000 (est.) 42.1 25.3
news - 23.0 48.8 33.3 37.2 41.5 57.9 25.2
nmes - 0.4 32.8 17.2 24.9 30.2 31.0 6.3

Table 29: Sample times in seconds per 1000 samples. TabDDPM produces NaNs during training
on acsincome and diabetes, and is therefore excluded for these data. CoDi is considered
prohibitively expensive to train on diabetes and lending.

SMOTE ARF CTGAN TVAE TabDDPM CoDi TabSyn CDTD
(per feature)

acsincome 4674.45 4.20 0.23 0.07 - 10.26 3.53 0.59
adult 10.71 1.78 0.31 0.16 0.82 3.65 0.88 0.56
bank 16.19 2.24 0.44 0.44 0.87 3.38 0.80 0.64
beijing 3.98 0.34 0.41 0.32 2.09 2.45 0.99 0.26
churn 0.52 1.00 0.40 0.24 0.95 2.78 0.80 0.39
covertype 10913.34 9.74 0.28 0.25 2.45 4.35 0.85 1.97
default 10.00 2.07 0.27 0.25 0.86 3.48 0.82 0.60
diabetes 166.75 5.87 0.53 0.15 - - 0.83 1.33
lending 4.06 2.49 0.45 0.54 4.33 - 0.85 0.69
news 66.49 3.89 0.43 0.30 5.13 2.93 0.86 0.85
nmes 0.69 1.54 0.31 0.17 4.17 2.91 0.82 0.55

39

Published as a conference paper at ICLR 2025

Figures 24 and 25 show the benefit of deep generative models over SMOTE. Even though SMOTE
is often praised as a simple, easy-to-use oversampling tool for tabular data, it relies on identifying
nearest neighbors, making sampling very inefficient for larger datasets. As a consequence, we deem
SMOTE to be infeasible to use for the acsincome and covertype datasets. The figures also
illustrate the performance edge of CDTD, in particular compared to other diffusion-based models.

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Detection Score

0

5

10

15

Sa
m

pl
in

g
Ti

m
e

(s
ec

 /
10

00
 sa

m
pl

es
)

SMOTE

ARF
CTGAN

TVAE
TabDDPM CoDi

TabSynCDTD
0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

L2 Distance of Correlation Matrices

SMOTE

ARF
CTGAN

TVAE
TabDDPMCoDi

TabSynCDTD

0.02 0.04 0.06 0.08 0.10
JSD

0

5

10

15

Sa
m

pl
in

g
Ti

m
e

(s
ec

 /
10

00
 sa

m
pl

es
)

SMOTE

ARF
CTGAN TVAE

TabDDPM
CoDi

TabSynCDTD
0.005 0.010 0.015 0.020 0.025

WD

SMOTE

ARF CTGAN
TVAE

TabDDPM CoDi

TabSynCDTD

Figure 24: Average sample quality metrics as a function of sampling time. Diffusion-based models
are indicated in orange. Only datasets for which we could retrieve results from all models are included,
this excludes acsincome, covertype, diabetes, lending.

0.68 0.70 0.72 0.74 0.76
F1

0

5

10

15

Sa
m

pl
in

g
Ti

m
e

(s
ec

 /
10

00
 sa

m
pl

es
)

SMOTE

ARFCTGAN
TVAE

TabDDPMCoDi
TabSyn CDTD

0.85 0.86 0.87 0.88 0.89 0.90
AUC

SMOTE

ARF
CTGAN

TVAE
TabDDPMCoDi

TabSyn CDTD

0.6 0.8 1.0 1.2 1.4 1.6
RMSE

0

5

10

15

Sa
m

pl
in

g
Ti

m
e

(s
ec

 /
10

00
 sa

m
pl

es
)

SMOTE

ARF
CTGAN TVAE

TabDDPM

CoDiTabSyn CDTD
1.5 2.0 2.5 3.0 3.5

DCR

SMOTE

ARF
CTGANTVAE

TabDDPM CoDi

TabSynCDTD

Figure 25: Average ML efficiency metrics and DCR as a function of sampling time. Diffusion-
based models are indicated in orange. The dotted line indicates the test set performance of the real
data. Only datasets for which we could retrieve results from all models are included, this excludes
acsincome, covertype, diabetes, lending.

40

	Introduction
	Score-based Generative Framework
	Continuous Features
	Categorical Features

	Method
	General Framework
	Homogenization of Data Types
	Noise Schedules
	Additional Customization to Tabular Data

	Experiments
	Evaluation Metrics
	Results

	Conclusion and Discussion
	Noise implications of heterogeneous cardinalities
	Loss Calibration
	Output Layer Initialization
	Adaptive Normalization of the Average Diffusion Loss
	Derivation of the Functional Timewarping Form
	Benchmark Datasets
	Baseline Models
	Implementation Details
	Tuning of the Detection Model
	Machine Learning Efficiency Models
	CDTD Implementation Details
	CDTD Sampling
	Sensitivity to Important Hyperparameters
	Advantages of Diffusion in Data Space
	Comparison to Related Work
	Examples of Learned Noise Schedules
	Qualitative Comparisons
	Visualizations of Captured Correlations
	Detailed Results
	Ablation Study Details
	Training and Sampling Times Details

