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ABSTRACT

In the field of image editing, three core challenges persist: controllability, back-
ground preservation, and efficiency. Inversion-based methods rely on time-
consuming optimization to preserve the features of the initial images, which re-
sults in low efficiency due to the requirement for extensive network inference.
Conversely, inversion-free methods lack theoretical support for background simi-
larity, as they circumvent the issue of maintaining initial features to achieve effi-
ciency. As a consequence, none of these methods can achieve both high efficiency
and background consistency. To tackle the challenges and the aforementioned dis-
advantages, we introduce PostEdit, a method that incorporates a posterior scheme
to govern the diffusion sampling process. Specifically, a corresponding measure-
ment term related to both the initial features and Langevin dynamics is introduced
to optimize the estimated image generated by the given target prompt. Extensive
experimental results indicate that the proposed PostEdit achieves state-of-the-art
editing performance while accurately preserving unedited regions. Furthermore,
the method is both inversion- and training-free, necessitating approximately 1.5
seconds and 18 GB of GPU memory to generate high-quality results.

1 INTRODUCTION

Large text-to-image diffusion models Saharia et al. (2022); Pernias et al. (2024); Podell et al. (2024);
Ramesh et al. (2022) have demonstrated significant capabilities in generating photorealistic images
based on given textual prompts, facilitating both the creation and editing of real images. Current
research Cao et al. (2023); Brack et al. (2024); Ju et al. (2024); Parmar et al. (2023); Wu & la Torre
(2022); Xu et al. (2024) highlights three main challenges in image editing: controllability, back-
ground preservation, and efficiency. Specifically, the edited parts must align with the target prompt’s
concepts, while unedited regions should remain unchanged. Additionally, the editing process must
be sufficiently efficient to support interactive tasks. There are two mainstream categories of image
editing approaches, namely inversion-based and inversion-free methods, as illustrated in Fig. 1.

Inversion-based approaches Song et al. (2021a); Mokady et al. (2023); Wu & la Torre (2022);
Huberman-Spiegelglas et al. (2024) progressively add noise to a clean image and then remove the
noise conditioned on a given target prompt, utilizing large text-to-image diffusion models (i.e. Stable
Diffusion Rombach et al. (2022)), to obtain the edited image. However, directly inverting the diffu-
sion sampling process (e.g., DDIM Song et al. (2021a)) for reconstruction introduces bias from the
initial image due to errors accumulated by an unconditional score term, as discussed in classifier-
free guidance (CFG) Ho & Salimans (2022) and proven in App. A.14. Consequently, the editing
quality of inversion-based methods is primarily constrained by the similarity in unedited regions.
Several approaches address this issue by optimizing the text embedding Wu et al. (2023), employing
iterative guidance Kim et al. (2022); Garibi et al. (2024), or directly modifying attention layers Hertz
et al. (2023); Mokady et al. (2023); Parmar et al. (2023) to mitigate the bias introduced by the un-
conditional term. However, the necessity of adding and subsequently removing noise predicted by
a network remains unavoidable, thereby significantly constraining their efficiency. Recent meth-
ods Starodubcev et al. (2024); Li & He (2024); Kim et al. (2024) attempt to enhance the accuracy
of the iterative sampling process by training an invertible consistency trajectory, following the dis-
tillation process in the consistency models (CM) Song et al. (2023); Salimans & Ho (2022); Song &
Dhariwal (2024); Luo et al. (2023b). Although this approach significantly reduces the accumulation
errors from the unconditional term, it cannot eliminate them. Moreover, the editing performance is
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Figure 1: Different Image Editing Schemes. The inversion-based method, illustrated in the top-
left section, involves adding noise from a pre-trained network to a clean image. It then denoises
the image based on a target prompt, though it requires time-consuming tuning to ensure background
preservation. The top-right section discusses training-based, inversion-free methods, which train
a learnable model to achieve satisfactory results but have limited generalization capabilities. Our
approach, outlined in the bottom section, is both inversion-free and training-free.

sensitive to the hyperparameters (i.e., the fixed boundary timesteps of multi-step consistency mod-
els), and the training process generally demands hundreds of GPU hours.

Another category of methods Brooks et al. (2023); Mou et al. (2024); Ye et al. (2023); Guo et al.
(2024); Li et al. (2023); Wang et al. (2024) is inversion-free and thus significantly decreases the infer-
ence time. The general idea is to train networks to learn to embed the given conditions into the noisy-
to-image diffusion process. For example, ControlNet Zhang et al. (2023b) and T2I-Adapter Mou
et al. (2024) train an extra network to encode the image-shaped conditions, e.g., depth maps, canny
maps. However, these works highly rely on the accuracy of the input guidance structure, while most
applications related to ControlNet involve customization. Some other works Zhang et al. (2023a),
Zhang et al. (2024b), Hui et al. (2024) employ a diffusion model trained on synthetic edited images,
producing edited images in a supervised manner. This methodology obviates the need for inversion
process during the sampling stage. Moreover, there is a training-free method to satisfy inversion-free
requirement Xu et al. (2024). It adopts specific settings of the DDIM solver to leverage the advan-
tages of CM to ensure the editing quality. Although these recent works can achieve fast sampling and
accurate editing, the aforementioned problem remains unsolved since the diffusion sampling process
Ho et al. (2020); Song et al. (2021a;b) is necessary. Therefore, all the inversion-free methods cannot
circumvent the accumulation errors caused by the unconditional score term in CFG.

In this work, we present an inversion- and training-free method named PostEdit to optimize the ac-
cumulated errors of the unconditional term in CFG based on the theory of posterior sampling Kawar
et al. (2021; 2022); Chung et al. (2023); Zhang et al. (2024a;a); Lugmayr et al. (2022); Zhu et al.
(2023); Song et al. (2021b). To reconstruct and edit an image x0, we adopt a measurement term y
which contains the features of the initial image, and supervise the editing process by the posterior
log-likelihood density ∇xt log p(xt|y). With this term, we can estimate the target image through
progressively sampling from the posterior p(xt|y) referring to the Bayes rule. The above process is
reasonable since the inverse problems of probabilistic generative models are ubiquitous in generating
tasks, which are trained to learn scores to match gradients of noised data distribution (log density),
and this process is also called score matching Song & Ermon (2020), Song & Ermon (2019), Karras
et al. (2022) and Karras et al. (2024). y is defined according to the following inverse problem

y = A(x0) + n, (1)

where A is a forward measurement operator that can be linear or nonlinear and n is an independent
noise. Hence, the posterior sampling strategy can be regarded as a diffusion solver and it can edit
images while maintaining the regions that are required to remain unchanged with the measurement
y. Also, instead of time-consuming training or optimization, our framework adopts an optimiza-
tion process without requirements for across the network many times for inference, which can be
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lightweight taking about 1.5 seconds to operate and around 18 GB of GPU memory. Our contribu-
tions and key takeaways are shown as follows:

• To the best of our knowledge, we are the first to propose a framework that extends the
theory of posterior sampling to text-guided image editing task.

• We theoretically address the error accumulation problem by introducing posterior sam-
pling, and designing an inversion-free and training-free strategy to preserve initial features.
Furthermore, we replace the step-wise sampling process with a highly efficient optimiza-
tion procedure, thereby significantly accelerating the overall sampling process.

• PostEdit ranks among the fastest zero-shot image editing methods, achieving execution
times of less than 2 seconds. Additionally, the state-of-the-art CLIP similarity scores on
the PIE benchmark attest to the high editing quality of our method.

2 PRELIMINARIES

2.1 SCORE-BASED DIFFUSION MODELS

We follow the continuous diffusion trajectory Song et al. (2021b) to sample the estimated initial
image x̂0. Specifically, the forward diffusion process can be modeled as the solution to an Itô SDE:

dx = f t(x)dt+ gtdw, (2)
where f is defined as the drift function and g denotes the coefficient of noise term. Furthermore, the
corresponding reverse form of Eq. 2 can be written as

dx =
[
f t(x)− g2t∇x log pt(x)

]
dt+ gtdw̄, (3)

where w̄ represents the standard Brownian motion. As shown in Song et al. (2021b), there exists a
corresponding deterministic process whose trajectories share the same marginal probability densities
as the SDE according to Eq. 2. This deterministic process satisfies an ODE

dx =

(
f t(x)−

1

2
g2t∇x log pt(x)

)
dt. (4)

The ODE can compute the exact likelihood of any input data by leveraging the connection to neural
ODEs Chen et al. (2018). To approximate the log density of noised data distribution ∇x log pt(x)
at each sampling step, a network sθ(xt, t) is trained to learn the corresponding log density

Ex0,xt∼p(xt|x0)

[
∥sθ(xt, t)−∇xt

log p(xt|x0)∥2
]
. (5)

2.2 DDIM SOLVER AND CONSISTENCY MODELS

The DDIM solver is widely applied in training large text-to-image diffusion models. The iterative
scheme for sampling the previous step is defined as follows

xt−1 =
√
αt−1

(
xt −

√
1− αtϵθ(xt, t)√

αt

)
+
√

1− αt−1ϵθ(xt, t), (6)

where ϵθ(xt, t) is the predicted noise from the network. According to Eq. 6, the sampling process
can be regarded as first estimating a clean image x0, and then using the forward process of the
diffusion models with noise predicted by the network to the previous step xt−1. Therefore, the
predicted original sample x̂0 is defined as

x̂0 =
xt −

√
1− αtϵθ(xt, t)√

αt
. (7)

Latent consistency models Luo et al. (2023a) apply the DDIM solver Song et al. (2021a) to predict
x̂0 and use the self-consistency of an ODE trajectory Song et al. (2023) to distill steps. Then the x0

is calculated by the function fθ(z, c, t) through large timestep, where f is defined in Eq. 7

fθ(z, c, t) = cskip (t)z + cout (t)

(
z − σtϵθ(z, c, t)

αt

)
, (8)

z is denoted as x encoded in the latent space. The loss function of self-consistency is defined as

LCD
(
θ,θ−; Ψ

)
= Ez,c,n

[
d
(
fθ

(
ztn+1 , c, tn+1

)
,fθ−

(
ẑΨ
tn , c, tn

))]
, (9)

where ẑΨ
tn is an estimation of the evolution of the ztn from tn+1 using ODE solver Ψ.
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2.3 POSTERIOR SAMPLING IN DIFFUSION MODELS

After obtaining sθ(xt, t), we can infer an unknown x ∈ Rd through the degraded measurement
y ∈ Rn. Specifically, in the forward process, it is well-posed since the mapping x → y : Rd → Rn

is many-to-one, while it is ill-posed for the reverse process since it is one-to-many when sampling
the posterior p(x0|y), where it can not be formulated as a functional relationship. To deal with this
problem, the Bayes rule is applied to the log density terms and we can derive that

∇xt log p(xt|y) = ∇xt log p(xt) +∇xt log p(y|xt), (10)

where the first term in the right side hand of the equation is the pre-trained diffusion model and
the second one is intractable. The measurement y can be regarded as a vital term that contains the
information of the prior p(x), which supervises the generation process towards the input images.
In order to work out the explicit expression of the second term, existing method DPS Chung et al.
(2023) presents the following approximation

p(y|xt) = Ex0∼p(x0|xt)[p(y|x0)] ≈ p(y|x̂0)

= Ex0∼p(x0|xt)[x0],
(11)

where the Bayes optimal posterior x̂0 can be obtained from a given pre-trained diffusion models
or Tweedie’s approach to iterative descent gradient for the case of VP-SDE or DDPM sampling.
Hence, each step can be written as p(xt−1|xt,y) according to Eq. 10.

When the transition kernel is defined, since the solvers utilize the unconditional scores to estimate
x̂0, the measurement term is then introduced through a gradient descent way to optimize x

xt−1 = f (xt, x̂0, ϵ) + η∇xt ∥y −A(x̂0)∥22 , ϵ ∼ N (0, I) , (12)

where the function f is defined as the approximation of the unconditional counterpart of
p(xt−1|xt,y) and η denotes the learning rate.

3 METHOD

We propose a novel sampling process integrated with a tailored optimization procedure that incor-
porates the measurements y and Langevin dynamics to enhance the quality of image reconstruction
and editing. The adopted SDE/ODE solver is based on DDIM, as described in Eq. 6. Denote
z ∼ E(x0), z ∈ Rp where E is an encoder and x0 is an initial image. Our method operates in
latent space and leverages the theory of the posterior sampling to correct the bias from the initial
features and introduce the target concepts. The core insight is using y in the form of Gaussian dis-
tribution, estimated z0 and Langevin dynamics as the optimization terms to correct the errors of the
sampling process. The importance of reconstruction and the algorithm are introduced specifically
in (Sec. 3.1). The implementation details of the editing process are illustrated in detail (Sec. 3.2).
PostEdit takes around 1.5 seconds and 18 GB memory costs on a single NVIDIA A100 GPU.

3.1 POSTERIOR SAMPLING FOR IMAGE RECONSTRUCTION

The quality of reconstruction is a crucial indicator for evaluating the editing capabilities of a method.
To preserve the features of the background (areas unaffected by the target prompt), Mokady et al.
(2023) introduces a technique for fine-tuning the text embedding to mitigate errors caused by the
null text term, as demonstrated in App. A.14. However, this approach is time-consuming, and there
is a pressing need to enhance editing performance. To address this challenge, we propose a method
that enables a fast and accurate reconstruction and editing process.

Specifically, there are four steps in our method: (1) We add noise to z0 following the DDPM noise
schedule until zT ∼ N (0, I). Unlike the iterative inversion process used in Mokady et al. (2023)
(DDIM inversion), where multiple network inferences are required, the added noise here is directly
sampled from N (0, I). As a result, this process adds random noise directly to the clean image in
a single step, significantly reducing the computational time. (2) Existing SDE/ODE solvers, such
as DDIM and LCM, are employed to estimate ẑ0. (3) To ensure that ẑ0 aligns more consistently
with the background and target prompt features of the original image, it is optimized using two
L2 norm terms related to the defined measurement y and ẑ0 respectively. Additionally, Langevin
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Figure 2: Method Overview. The latent representation of initial image x0 is z0. It is adding noise
randomly to zT and then ẑ0 is estimated from zT through diffusion ODE solvers. After that, there
are two optimization terms relating to ẑ0, the given measurement y and a random noise term ϵ,
which is applied to optimize calculated ẑ0 while avoids solutions falling in local optimality. Then
the optimized ẑ0 is adding noise to timestep T − 1 according to the noise scheduler. This process
operates recursively and finished till ẑT is converged to z0, where z∗0 is the finally optimized output.

dynamics is employed to avoid convergence to local optima. (4) Finally, by progressively applying
the above process to update the mean and variance of the Gaussian distribution in the Step (1)
according to a predefined time schedule, we obtain z∗

0 with consistent initial features and accurate
target characteristics respectively as T converges to 0. The presented algorithm corresponding to
the above process is shown in detail in Fig. 2 for image reconstruction or editing and Alg. A.15
for image reconstruction. The measurement y, defined in Eq. 17, can be simplified as a masked
observation. For a deeper understanding, we recommend referring to Kawar et al. (2021).

Our method requires a large text-to-image diffusion model as input and we select Stable Diffusion
(SD) Rombach et al. (2022). Given that SD is trained on the dataset containing billions of images,
the generated result has strong randomness relating to the same prompt. Moreover, reconstructing an
image with a given text prompt starting from N (0, I) usually gets poor results for SD due to the bias
caused by the unconditional term in CFG. Therefore, if we directly apply posterior sampling strategy
shown in Eq. 12 to acquire z0 from zT ∼ N (0, I) by leveraging SD to inference noise, ẑ0 differs
greatly from the ground truth z0. Conversely, this sampling process has good reconstruction perfor-
mance when it leverages the diffusion model trained on small datasets, for example, FFHQ Karras
et al. (2019) and ImageNet Deng et al. (2009) as shown in Chung et al. (2023); Zhang et al. (2024a).
We experimentally discover that the gap between these two kinds of models is the inconsistent lay-
outs of each estimated image ẑ0, while the features of the target prompts are successfully introduced
into the generated ẑ0. Specifically, the layouts of ẑ0 generated by the scores inferred by the net-
works trained on FFHQ and SD for intermediate timesteps are shown in App. A.4. Therefore, due
to the editing and reconstruction trade-off issue, it is much more challenging for high-quality image
editing and reconstruction by leveraging large text-to-image models.

To address the editing and reconstruction trade-off issue, we present a weighted process that intro-
duces the features of initial data into the estimated ẑ0 as shown in the following proposition.
Proposition 1. The weighted relationship between the estimated ẑ0 and the initial image zin to
correct evaluated z0 is defined as (0 ≤ w ≤ 0.1)

zw
0 = (1− w) · ẑ0 + w · zin, (13)

where w is a constant to govern the intensity of the injected features.

Since the accuracy of different solvers are different, the difficulty of image reconstruction is also
different. Experiments shown in Sec. 4.4 support that Proposition 1 is important for our method
shown in Fig. 2 to be adapted to the widely used DDIM, DDPM, and CM solvers.
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Remark 1. Eq. 13 is reasonable since (1−w) and w·zin are regarded as constant. Hence, this process
does not essentially influence the sampling process of distribution zt−1 ∼ E

(
N

(
zw
0 , σ

2
t−1I

))
,

which is shown specifically in the Proposition 2.

In order to adapt Eq. 10 to the DDIM solver shown in Eq. 6 adopted by SD, we can derive it as

∇z0
log p(z0|zt,y) = ∇z0

log p(z0|zt) +∇z0
log p(y|z0, zt), (14)

to calculate the scores towards to z0 straightly inspired by Chung et al. (2023) and Zhang et al.
(2024a). The measurement settings for image reconstruction are listed in the App. A.2
Proposition 2. Suppose zt is sampled from time marginal distribution of p (zt|y), then

zt−1 ∼ Ezw
0
N

(
zw
0 , σ

2
t−1I

)
, (15)

satisfies the time marginal distribution conditioned on p (zt−1|y), where zw
0 is obtained from Eq. 13.

(Proof is shown in Appendix A.16)

Propsition 2 ensures that zt−1 sampled from the Gaussian distribution (with mean zw
0 and variance

σ2
t−1) still satisfies the constraint of the posterior sampling Eq. 10. Therefore, we can present the

following scheme to optimize the estimated ẑ0 and run Langevin dynamics Welling & Teh (2011):

z
(k+1)
0 = (1−w) ·z(k)

0 +w ·zin−h ·∇
z
(k)
0

∥z(k)0 − z0∥2

2σ2
t

+
∥A

(
z
(k)
0

)
− y∥2

2m2

+
√
2hϵ. (16)

Here, A (·) is identical to P (·) as defined in Eq. 17 and h is the step size. σt and m are hyper-
parameters detailed in Appendix A.2. Additionally, ϵ ∼ N (0, I). Fig. 15 and Fig. 16 in Ap-
pendix A.10 demonstrate that PostEdit can achieve high-quality reconstruction outcomes without
requiring any tuning process. Eq. 16 is reasonable since the two terms that multiplied by the step
size h have the same descent direction towards to the ground truth z0. Additionally, Langevin dy-
namics is employed to search for solutions that achieve a global optimum. Since the Step (1) shown
in Fig. 2 is different from the process of DDIM inversion from the initial image to noise, which
involves adding noise ϵθ (zt, t, cini) inferred by the network at each step Mokady et al. (2023)
(where cini represents the prompt describing the content of the initial image), PostEdit is much
more efficient as mentioned before. Considering that no information related to the initial image is
incorporated into the noised distribution, the term involving the measurement y, as defined in Eq. 16,
is introduced to correct errors in the initial features caused by the unconditional term in CFG. This
ensures background consistency. All parameter settings are detailed in Appendix A.2. The detailed
process of image reconstruction is outlined in Alg. 2 of Appendix A.15.

3.2 POSTERIOR SAMPLING FOR IMAGE EDITING

In this section, we present details of the posterior sampling process for high-quality image editing
using the DDIM solver Luo et al. (2023a), as outlined in Eq. 6. Unlike the ODE solver used in
the image reconstruction task described in Sec. 3.1, image editing requires the solver with higher
accuracy to estimate ẑ0. The measurement y for image reconstruction and editing is defined as

y ∼ N
(
Pz, σ2I

)
, (17)

where P ∈ {0, 1}n×p represents a masking matrix composed of elementary unit vectors. This
measurement setup not only serves as a specialized configuration for image editing but also demon-
strates its capacity to deliver high-quality image reconstruction results, even when z0 is masked. The
settings in Eq. 17 have been validated to yield high-quality reconstructions, as shown in Sec. 4.3,
demonstrating the method’s effectiveness in preserving the features of the initial image.

Furthermore, to minimize the number of sampling steps, improving the accuracy of the estimated ẑ0

is crucial. According to the experimental results presented in LCM, the superior denoising capabil-
ities of the LCM solver Luo et al. (2023a) are demonstrated to surpass those of the DDIM solver in
both speed and accuracy. Consequently, we utilize the LCM solver, distilled from models based on
the DDIM solver, to markedly improve the convergence rate and produce more accurate ẑ0 estimates
that closely align with the target prompt in fewer than four steps. The measurement characteristics
y, as defined in Eq. 17, involve randomly masking each element of z0 with a given probability.
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Algorithm 1 Posterior Sampling for Image Editing

1: Require: Diffusion model ϵθ, step size h, posterior sampling steps N , diffusion solver steps n,
image x0, measurement y, weight w, target prompt ctgt , coefficients of diffusion sampler cskip
and cout, encoder E , decoder D, noise schedule α(t), σ(t), posterior sampler sequence {τi}N−1

i=0

and diffusion sampler sequence {tj}n−1
j=0 .

2: z0 ∼ E(x0), zin = z0

3: for i = N − 1 to 0 do
4: for j = n− 1 to 0 do
5: Sample zj ∼ N

(
α (tj) z0, σ

2 (tj) I
)

6: z0 = cskip (t)zj + cout (t)
(

zj−σtϵθ(zj ,ctgt,t)
αt

)
7: end for
8: z0

0 = z0

9: for k = 0 to T − 1 do
10: Sample ϵ ∼ N (0, I).

11: z
(k+1)
0 = (1− w) · z(k)

0 + w · zin − h · ∇
z
(k)
0

(
∥z(k)

0 −z0∥2

2σ2
t

+
∥A

(
z
(k)
0

)
−y∥2

2m2

)
+

√
2hϵ

12: end for
13: Sample zτi−1 ∼ N (z

(T )
0 , σ2

τi−1
I).

14: z0 = cskip (t)zτi−1
+ cout (t)

(
zτi−1

−σtϵθ(zτi−1
,ctgt,t)

αt

)
15: end for
16: x0 = D (z0)
17: Return x0

Since one of the optimization terms focuses on only a small portion of the initial image, both terms
in Eq. 16 guide the gradient descent in the same direction. As the sampling process progresses, the
edited xtgt gradually inherits features from both x0 and the target prompt by selectively replacing
the necessary attributes. The experimental results of different settings for the optimization defined
in Eq. 16 are presented in Sec. 4.4. The rest of the process mirrors the reconstruction phase, allow-
ing us to progressively achieve the edited x0. In summary, the algorithm’s procedure is detailed in
Alg. 1, with implementation specifics provided in Appendix A.2.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

To ensure a fair comparison, all experiments were conducted on the PIE-Bench dataset Ju et al.
(2024) using the same parameter settings specified in Appendix A.2 and a single A100 GPU to
evaluate both image quality and inference efficiency. The PIE-Bench dataset comprises 700 images
with 10 types of editing, where each image is paired with a source prompt and a target prompt.
In our experiments, the resolution of all test images was set to 512 × 512. For the reconstruction
experiments, we set the initial and target prompts to be identical across all test runs. Additional
settings, including forward operators, are provided in the Appendix A.2.

4.2 QUANTITATIVE COMPARISON

Image Reconstruction. The methods have special design for image reconstruction are compared:
NTI Mokady et al. (2023), NPI Miyake et al. (2023), iCD Starodubcev et al. (2024) and DDCM Xu
et al. (2024). The results of quantitative comparison are shown in Tab. 1. Although NTI and NPI
achieve better performance on the listed metrics, their computational time costs are substantially
higher, exceeding ours by at least an order of magnitude. Compared to the highly efficient inversion-
free method, DDCM, PostEdit demonstrates significantly superior performance.
Image Editing. We compare our method against recent inversion-based and training-based image
editing approaches: NTI, NPI, PnP Tumanyan et al. (2023), DI Ju et al. (2024), iCD, DDCM,
TurboEdit Deutch et al. (2024), SPD Li et al. (2024) and GR Titov et al. (2024), IP2P Brooks et al.
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Method
Background Preservation Efficiency

PSNR↑ LPIPS↓
×102 MSE↓

×103 SSIM↑
×102 Time↓

NTI 25.58 7.98 4.37 77.02 ∼ 120s
NPI 24.66 9.11 4.73 76.14 ∼ 15s
iCD 19.64 17.13 13.50 66.48 ∼ 1.8s
DDCM 18.00 17.74 18.94 64.01 ∼ 2s

Ours 24.39 9.00 4.75 72.74 ∼ 1.5s

Table 1: Quantitative Comparisons of Image Reconstruction. All of the comparison methods
include strategies specifically designed for image reconstruction.

Method
Background Preservation CLIP Similarity Efficiency

PSNR↑ LPIPS↓
×102 MSE↓

×103 SSIM↑
×102 Whole↑ Edited↑ Time↓

NTI 27.50 5.67 3.40 85.03 25.08 21.36 ∼120s
NPI 25.81 7.48 4.34 83.44 25.52 22.24 ∼15s
PnP 22.31 11.29 8.31 79.61 25.92 22.65 ∼240s
DI 27.28 5.38 3.25 85.34 25.71 22.17 ∼60s
iCD 22.80 10.30 7.96 79.44 25.61 22.33 ∼1.8s
DDCM 28.08 5.61 7.06 85.26 26.07 22.09 ∼2s
TurboEdit 22.44 10.36 9.51 80.15 26.29 23.05 ∼1.2s∗
SPD 28.86 3.42 2.33 86.86 25.54 21.50 ∼30s
GR 25.03 7.29 4.71 83.34 25.83 22.43 ∼30s
IP2P 19.65 17.99 26.26 75.19 24.93 21.71 ∼10s
OmniGen 19.63 15.06 38.76 72.29 25.18 21.77 ∼70s
SeedX 18.79 17.52 20.82 74.93 25.76 22.34 ∼7s

Ours 27.04 6.38 3.24 82.20 26.76 24.14 ∼1.5s

Table 2: Quantitative Comparisons of Image Editing. ‘∗’ indicates models that benefit from
SDXL-Turbo’s improved inference.

(2023), OmniGen Xiao et al. (2024) and SeedX Ge et al. (2024)1. The comparison is evaluated from
three aspects: background consistency, CLIP Radford et al. (2021) similarity, and efficiency. The
experimental results shown in Tab. 2 reflect that PostEdit achieves SOTA performance on editing,
which are the “Whole” and “Edited” metrics of the CLIP similarity and the results are significantly
better than others. For efficiency, our model is highly efficient with a runtime less than 2 seconds.
It is worth noting that our runtime is slightly higher than TurboEdit Deutch et al. (2024), which is
mainly due to different baselines. Specifically, TurboEdit employs SDXL-Turbo Sauer et al. (2023)
while our framework is based on LCM-SD1.5 Luo et al. (2023a). As shown in Appendix A.11,
SDXL-Turbo Sauer et al. (2023) is almost 2.5 times faster than LCM-SD1.5 Luo et al. (2023a). We
believe the efficiency of our framework can be further improved if we adopt a more efficient baseline
like SDXL-Turbo. In terms of background preservation, our method achieves the best MSE result
among all methods with a runtime of less than 2 seconds. The following section presents additional
qualitative results, further illustrating the superiority of our framework in editing capabilities and
background preservation, while maintaining high efficiency.

4.3 QUALITATIVE COMPARISON OF RECONSTRUCTION AND EDITING

Image Reconstruction. We present results of qualitative comparison in Fig. 3. The experiments
indicate that PostEdit demonstrates greater robustness and high quality generation ability compared
to NTI Mokady et al. (2023), NPI Miyake et al. (2023) and iCD Starodubcev et al. (2024). Specifi-
cally, we compared the reconstruction quality across four distinct categories of images: single-object
images, complex backgrounds, multi-object scenes, and cartoon images. The inversion-free method
DDCM Xu et al. (2024) fails to faithfully reconstruct the input images, supporting our claim made in
Sec. 1. While other methods yield better results in the given cases, they require significantly longer
processing times to achieve competitive outcomes. Therefore, our approach offers the best overall
performance when considering inference efficiency, stability in generation, and image quality. More
reconstruction results on complex objects are shown in Fig. 15 and Fig. 16.
Image Editing. The qualitative comparisons of the image editing results are shown in Fig. 4. The
effects of text insertion, deletion, and substitution are provided. PostEdit effectively highlights the

1See Appendix A.12 to get instructions for IP2P, OmniGen, and SeedX based on the input and target prompt.
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Figure 3: Qualitative Comparison of Reconstruction. It takes 1.5 seconds for our method to
reconstruct the input image, and the time is 1.8s, 2s, 15s, and 120s for iCD, DDCM, NPI, and NTI,
respectively. Our framework can faithfully reconstruct the foreground object and the background.

Figure 4: Qualitative Comparison of Editing. Our method performs better than the others in
aligning with target prompts while maintaining the background similarity.

features present in the target prompt, which aligns with the quantitative results shown in Tab. 2.
To present these findings more clearly, we selected the best-performing classical methods, and their
results are shown in Tab. 2. For a comparison of the other baseline methods, please refer to Fig. 12 in
Appendix A.7. Additionally, the visualized experiments demonstrate that our method successfully
preserves the original features. More comparison results can be found in Appendix A.7.
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a slanted rusty mountain bicycle on the road in front of a building

a cat dog sitting on a wooden chair

a young old woman is holding a dog

Input (a) w/o. Optim. (b) w/o. Mask (c) w/o. zin (d) Full

Figure 5: Ablation Studies. We show the results without the optimization process shown in Eq. 16,
the measurement y defined in Eq. 17 and zin shown in Proposition 1.

4.4 ABLATION STUDY

In this section, we conduct various ablation studies and present the results to demonstrate the effec-
tiveness of our framework. (a) We remove the optimization component shown in Eq. 16 and directly
apply the adopted SDE/ODE solver to estimate x0. The experimental results indicate that the edited
images lack background preservation. For instance, in the slanted bicycle example shown in the
first row of Fig. 5, the staircase on the left side of the original image is transformed into a car in
the edited image. (b) We modify the masked probability of our measurement y. Notably, there is
no discernible difference between the edited images and the input images. (c) We investigate the
influence of Proposition 1 on the experimental outcomes, which highlights the effectiveness of the
parameter w concerning background similarities. Additionally, the quantitative results, as detailed
in Tab. 5, highlight the adopted configurations of PostEdit achieve optimal generation performance.

5 CONCLUSION AND LIMITATION

In this work, we address the errors caused by the unconditional term in Classifier-Free Guidance by
introducing the theory of posterior sampling to enhance reconstruction quality for image editing. To
the best of our knowledge, our work is the first to integrate the theory of posterior sampling into the
image editing task based on large text-to-image diffusion models. By minimizing the need for re-
peated network inference, our method demonstrates fast and accurate performance while effectively
preserving background similarity, as evidenced by the results. Ultimately, our approach tackles three
key challenges associated with image editing and showcases state-of-the-art performance in terms
of editing capabilities and inference speed.

Limitation: PostEdit faces challenges in representing highly specific scenes. For example, describ-
ing ”a man raising his hand” is considerably more difficult compared to the structured input formats
used in ControlNet-related methods. Furthermore, its ability to maintain background consistency is
limited and requires improvement. Additionally, the quality and speed of generation are strongly
influenced by the performance of the underlying baseline models.
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A APPENDIX

A.1 RELATED WORK IN IMAGE EDITING

Previous works in image editing can be broadly categorized into two paradigms: inversion-based
and training-based.

Inversion-based Methods. Several works Zhang et al. (2023d); Ruiz et al. (2023); Gal et al.
(2023) focus on modifying the training process of diffusion models to incorporate the informa-
tion from the initial images. Specifically, the optimization process can be operated in two different
spaces: textual space and model space. In textual space, a set of methodologies Dong et al. (2022);
Valevski et al. (2023); Han et al. (2023) aim to optimize textual embeddings to perform various edit-
ing tasks effectively. In model space, a research line Ruiz et al. (2023); Qiao et al. (2024); Avrahami
et al. (2023) intends to further updates modules from the base model to enhance reconstruction ca-
pabilities. For example, several studies Kawar et al. (2023); Shi et al. (2024); Zhang et al. (2023c)
optimize both textual embeddings and model parameters to ensure content consistency following
non-rigid editing or localized distortions. For forward-based inversion, it can also be divided into
two categories, which is DDIM inversion and DDPM inversion. Previous works like Mokady et al.
(2023) and Miyake et al. (2023) are designed to approximate the inversion trajectory to deal with
accumulated errors. Dong et al. (2023) focuses on optimizing the text embedding, which is then in-
terpolated with the target embedding during the editing process. Some approaches Han et al. (2024);
Cho et al. (2024) aim to bypass the time-consuming optimization processes of the aforementioned
methods while preserving their reconstruction capabilities. Inspired by normalizing flow models
Dinh et al. (2015; 2017), EDICT Wallace et al. (2023) reformulates DDIM processes by simultane-
ously tracking two associated noisy variables at each step during inversion. These variables can be
exactly derived from one another during the sampling phase.
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Training-based Methods. Since some advanced approaches in zero-shot or few-shot settings re-
quire time-consuming optimization Ruiz et al. (2023); Gal et al. (2023); Mokady et al. (2023) or
are highly sensitive to hyperparameters Cao et al. (2023); Kawar et al. (2023); Hertz et al. (2023);
Huberman-Spiegelglas et al. (2024), several studies Brooks et al. (2023); Ye et al. (2023) aim to train
task-specific models with substantial amounts of data to directly transform source images into target
images under user guidance. Instruction-based editing Brooks et al. (2023); Zhang et al. (2023a);
Xie et al. (2023) provides an intuitive approach for image manipulation, allowing users to input
command-style text instead of providing an exhaustive description. For image inpainting, a group of
methods Huang et al. (2024); Wang et al. (2023) focuses on completing missing parts of an image
under text guidance. Additionally, image translation Isola et al. (2017); Zhang et al. (2023b) seeks
to transform the source image into a target domain, such as converting night to daytime or sketch
to a natural image. Another type of training-based method is content-free editing, which Ruiz et al.
(2023); Wei et al. (2023) aims to preserve the high-level semantics of the source images in the
final results. Content-free editing can be further categorized into subject-driven customization and
attribute-driven customization. Subject-driven customization Wei et al. (2023); Li et al. (2023); Arar
et al. (2023); Chen et al. (2023) is designed to capture the identity of the target and generate novel
images that place it in new contexts. In contrast, attribute-driven customization Lee et al. (2024)
focuses on extracting and manipulating attributes in a more fine-grained manner.

A.2 IMPLEMENTATION DETAILS

The main hyper-parameters of the PostEdit are briefly summarized in Tab. 3.

SD Model. We adopt LCM-SD1.5 for all the experiments Luo et al. (2023a).
Parameters of Consistency models. cskip and cout shown in line 6 of Alg. 1 are set to 0 and 1 for
most cases respectively.
Hyper-parameters in Alg. 1. N is set to 5 for schedule {τi}N−1

i=0 . To ensure higher efficiency and
quality at the same time, zN is sampled through

zN ∼ N
(√

ᾱtz0,
√
1− ᾱtI

)
, (18)

where t is set to 501 generally following the DDPM scheduler Ho et al. (2020). Additionally, n
is set to 1 for the sequence of diffusion sampler {tj}n−1

j=0 to further improve inference speed. The
parameter T shown in line 16 of Alg. 1 is set to 100 to ensure optimal quality. For Eq. 16, m is set as
0.01 for both the reconstruction and editing task while σt corresponds to the timestep of the DDPM
scheduler. Generally, we apply Eq. 8 for 1 step to estimate z0, and then according to the following
schedule to make zτi progressively converge to z0.

{τi}5i=1 = {501, 401, 301, 201, 101, 1}. (19)

The parameter w is usually set to a minimal value such as 0.1 for most cases or 0 and 0.2 for easy
and hard cases.Additionally, h is initially set to 1e-5 for image editing and reconstruction tasks. It
is dynamically adjusted at each recursion step, as described in lines 9 to 12 of Alg. 1, using the
following equation:

h =

(
1 +

k

T
· (0.01− 1)

)
· h, (20)

where k and T are the same with definition of line 9 of Alg. 1.
ODE Solvers. We adopt the solver of LCM Luo et al. (2023a) distilled from Dreamshaper v7
fine-tune of Stable-Diffusion v1-5 for images editing task. For reconstruction, different solvers, for
instance, DDIM Song et al. (2021a), DDPM Ho et al. (2020), and Song et al. (2023) based on Stable
Diffusion Rombach et al. (2022) are able to work out satisfied reconstruction quality.
Probability of Masked Features. We use the probability equal to 0.5 for a randomly mask pro-
cess, which represents whether one of the latent features is masked or not.
Measurement y Used for Better Quality of Image Reconstruction. The measurement y can be
chosen from the following Eq. 21 to further improve the reconstruction ability of PostEdit, which
are defined as linear and nonlinear operations relating to initial image z0 in latent space

y ∼ N
(
|FPz0|, σ2I

)
, (21)
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Notation Values Description

f 0.5 Appearance probability of 0 in Matrix P shown in Eq. 17
Optimization Steps 100 Operating steps of Eq. 16
w 0.1 The weighting coefficient of Proposition. 1

Table 3: Main Hyper-parameters.

Method
Background Preservation CLIP Similarity Efficiency

PSNR↑ LPIPS↓
×102 MSE↓

×103 SSIM↑
×102 Whole↑ Edited↑ Time↓

f = 0.3 27.20 6.09 2.91 82.77 25.93 22.40 ∼1.5s
f = 0.7 24.43 12.16 6.06 77.64 26.73 24.28 ∼1.5s
Optimization Steps = 50 25.49 9.39 4.85 79.95 26.61 23.59 ∼1.1s
Optimization Steps = 150 26.59 7.19 3.77 82.05 26.51 23.47 ∼1.8s
w = 0.3 27.00 8.50 4.39 82.70 26.34 23.49 ∼1.5s
w = 0.5 27.75 5.47 2.84 83.61 25.83 22.19 ∼1.5s
w = 0 24.01 10.92 6.24 77.28 26.45 23.45 ∼1.5s

Ours Default 27.04 6.38 3.24 82.20 26.76 24.14 ∼1.5s

Table 4: Quantitative Results of Hyperparameter Sensitivity Analysis

where F and P denote the 2D discrete Fourier transform matrix and the oversampling matrix with
ratio k/n respectively for Eq. 21. However, the forward operator term shown in Eq. 21 reflects poor
editing ability, and all our editing and reconstruction results all based on the measurement shown in
Eq. 17.
Oversampling Matrix. We set σ shown in Eq. 21 to 0.01 and use an oversampling factor k = 2
and n = 8.
2D Discrete Fourier Transform Matrix. The 2D Fourier transform is defined as

F [u, v] =
1√
MN

M−1∑
x=0

N−1∑
y=0

f(x, y) exp
[
−j2π

(xu
M

+
yv

N

)]
,

u = 0, 1, ...,M − 1; v = 0, 1, ..., N − 1,

(22)

where f(x, y) is denoted as a two-dimensional discrete signal with dimension M ×N obtained by
sampling at superior intervals in the spatial domain. x and y are discrete real variables and discrete
frequency variables, respectively. In this paper, the z0 is represented as a 2D matrix and operated
according to Eq. 22.
FFHQ Model. We adopt the ffhq 10m.pt with a size of 357.1MB as the baseline model for all the
experiments relating to the FFHQ dataset.

A.3 HYPERPARAMETER SENSITIVITY ANALYSIS

The hyperparameters used for PostEdit are listed in Tab.3, and its performance under different set-
tings is presented in Tab.4. We conduct the following hyperparameters sensitivity analysis:

• Appearance Probability of 0 in Matrix P . A higher probability (e.g., 0.7) improves CLIP
Similarity but degrades Background Preservation metrics (e.g., PSNR and SSIM). Conversely,
a lower probability (e.g., 0.3) favors background preservation at the expense of CLIP similarity.

• Optimization Steps. Reducing the number of steps, such as 50, decreases computation time but
negatively impacts performance across most metrics. Increasing the steps to 150 offers slight
performance improvement but reduces efficiency. The chosen configuration of 100 steps strikes a
balance between quality and runtime.

• Weighting Coefficient. Setting w to zero results in poor performance for both background preser-
vation and editing capabilities. While increasing w enhances background consistency, editing
performance remains suboptimal.

• Our Configuration. The default settings strike a balance across all metrics, achieving competitive
results in background preservation, editing alignment, and efficiency.
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A.4 COMPARISON THE IMAGES LAYOUT OF DIFFERENT DATASETS

In this section, we present a comparison of the layouts of the estimated x0 at different intermediate
timesteps, as inferred by the diffusion models trained on the SD and FFHQ datasets respectively.

In Fig. 6, we present three independent sets of results for both SD and FFHQ, each containing nine
different instances of ẑ0 selected from outputs of various iterations. The first three rows display the
results for SD, while the remaining rows correspond to FFHQ. Each set is tasked with generating the
same target image based on the same initial image. From left to right, the level of noise progressively
decreases.

Notably, the layouts for SD are more varied, with inconsistencies in the cat’s appearance, its position
relative to the mirror, and the mirror’s appearance across the three images. This contrasts sharply
with the results from FFHQ, where the layouts consistently feature a centered face surrounded by a
stable background.

To verify that this property is consistently observed in results based on the FFHQ model, we present
additional examples in Fig. 7. As we move from bottom to top, the noise gradually decreases, while
from left to right, there are 10 different examples. Each image represents the estimated z0 from
different iterations.

A.5 QUANTITATIVE RESULTS OF ABLATION STUDY

To better reflect the effectiveness of our adopted settings, we also conduct a quantitative results of
the ablation study shown in Tab. 5. The results further verify the performance of all settings of
PostEdit.

Method
Background Preservation CLIP Similarity Efficiency

PSNR↑ LPIPS↓
×102 MSE↓

×103 SSIM↑
×102 Whole↑ Edited↑ Time↓

No Posterior Sampling 21.31 16.88 10.36 73.21 26.38 23.28 ∼1s
No mask 28.31 4.61 2.64 84.15 25.17 20.94 ∼1.5s
No zin 24.01 10.92 6.24 77.28 26.45 23.45 ∼1.5s

Ours Full 27.04 6.38 3.24 82.20 26.76 24.14 ∼1.5s

Table 5: Quantitative Comparisons of Ablation Study.

A.6 RESULTS OF LONG-TEXT EDITING

We conducted long-text editing experiments, with the results presented in Fig. 8, Fig. 9, Fig. 10 and
Fig. 11. These results demonstrate that the editing capabilities of PostEdit extend beyond simple
word replacements.

A.7 MORE EDITING RESULTS

Here, we qualitatively compare with other baselines including NPI, GR, DI, and IP2P, SeedX. The
results are shown in Fig. 12. The results support the conclusion in the manuscript.

A.8 RECONSTRUCTION RESULTS OF DIFFERENT FORWARD OPERATORS

Images in Fig. 14 are reconstructed through different forward operators as shown in Eq. 17 and
Eq. 21. The corresponding quantitative comparison of image reconstruction of different measure-
ments is shown in Tab. 6. The corresponding quantitative comparison of image reconstruction of
different measurements is shown in Tab. 6.

A.9 INTERMEDIATE RESULTS

The intermediate state for different iterative steps are shown detailed in Fig. 13.
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Measurement
Background Preservation Efficiency

PSNR↑ LPIPS↓
×102 MSE↓

×103 SSIM↑
×102 Time↓

Eq. 21 24.90 7.60 4.31 74.03 ∼ 1.5s
Eq. 17 (Used) 24.39 9.00 4.75 72.74 ∼ 1.5s

Table 6: Quantitative Comparisons of Image Reconstruction using different Measurements.

A.10 ADDITIONAL RECONSTRUCTION RESULTS

The additional reconstruction results are exhibited in Fig. 15 and Fig. 16. Additionally, We compare
reconstruction quality of different methods show in Fig. 19. The results reflect the effectiveness of
PostEdit to reconstruct high frequency information.

A.11 COMPARISON BETWEEN LCM-SD1.5 AND SDXL-TURBO

Fig. 17 illustrates the inference speed of LCM-SD1.5, which is utilized in our method, alongside
SDXL-Turbo. The results indicate that TurboEdit Deutch et al. (2024) may not be faster than our
method, despite its reliance on the advanced baseline model, SDXL-Turbo. All experiments were
conducted on a single NVIDIA A100 GPU with 80GB of memory.

A.12 GENERATING EDIT INSTRUCTION FOR COMPARING WITH INSTRUCTION-BASED IMAGE
EDITING APPROACHES

We provide GPT4-o with the following instruction shown in Fig. 18 to convert the differences be-
tween the input prompt and the edited prompt into editing instructions suitable for IP2P and SeedX.

A.13 USER STUDY

We invited 34 anonymous volunteers to rank the preferred results of image editing results. The
results are evaluated by the quality of background preservation and features aligned with the given
target prompt. The feedback is shown in Tab. 7 and Tab. 8 and the preference represent a vote of the
participants. The results indicate that PostEdit outperforms the compared baselines and is the most
popular approach for both image reconstruction and editing tasks.

Method Ours iCD DI SPD NTI PnP DDCM

Preference (Editing) 81 22 8 23 5 13 12

Method TurboEdit NPI GR IP2P SeedX OmniGen

Preference (Editing) 24 18 30 1 1 55

Table 7: User Study of Image Editing.

Method Ours NTI NPI DDCM iCD

Preference (Reconstruction) 101 66 56 1 11
Table 8: User Study of Image Reconstruction.

A.14 CLASSIFIER FREE DIFFUSION GUIDANCE

According to CFG Ho & Salimans (2022), the generation process is governed by the conditional
score, which can be derived as follows

∇xt
log p(xt | c) =∇xt

log

(
p (xt) p(c | xt)

p(c)

)
=∇xt

log p(xt) + p(c | xt)

−∇xt log p(c)

=∇xt
log p(xt) +∇xt

log p(c | xt).

(23)
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Algorithm 2 : Posterior Sampling for Image Reconstruction

Require: Diffusion model ϵθ, diffusion sampler ẑ0 (·), posterior sampling steps N , step size h,
image x0, measurement y, weight w, initial prompt cini, encoder E , decoder D, noise schedule
α(t), σ(t), optimization steps NL and posterior sampler sequence {τi}Ni=0.
zτN ∼ N (0, I).
for i = N to 0 do
z0 = ẑ0 (zτi , τi, cini)
for j = 0 to NL do

ϵ ∼ N (0, I).

z
(j+1)
0 = (1− w) · z(j)

0 + w · zin − h · ∇
z
(k)
0

(
∥z(j)

0 −z0∥2

2σ2
t

+
∥A

(
z
(j)
0

)
−y∥2

2m2

)
+

√
2hϵ.

end for
Sample zτi−1

∼ N
(
z
(NL)
0 , στi−1

I
)

.
end for
x0 = D (z0)
Return x0

And then the term ∇xt
log p(c | xt) can be derived as

∇xt
log p (c | xt) = ∇xt

log p (xt | c)−∇xt
log p (xt)

= − 1√
1− ᾱt

(ϵθ (xt, t, c)− ϵθ (xt, t)) .
(24)

Substituting the above term into the gradients of classifier guidance, we can obtain

ϵθ (xt, t, c) = ϵθ (xt, t, c)−
√
1− ᾱtw∇xt

log p (c | xt)

= ϵθ (xt, t, c) + w (ϵθ (xt, t, c)− ϵθ (xt, t))

= (w + 1)ϵθ (xt, t, c)− wϵθ (xt, t) .

(25)

Clearly, there is an unconditional term (also known as the null-text term) that directly contributes to
the bias in the estimation of x0 when the DDIM inversion process is applied under Classifier-Free
Guidance (CFG) conditions. To mitigate this influence, a tuning process is typically required to
optimize the null-text term, ensuring high-quality reconstruction. Furthermore, to achieve a better
alignment between the generated image and the text prompt, as well as to enhance image quality,
it is often necessary to utilize a larger value of w. However, this can exacerbate cumulative errors,
leading to significant deviations in the acquired latent representation.

A.15 ALGORITHM FOR IMAGE RECONSTRUCTION

The overall process of image reconstruction by applying posterior sampling is shown specifically in
Alg. 2.

The differences between the reconstruction and editing tasks is the ODE solvers applied to estimate
ẑ0, and the initial and target prompts remain the same with each other for image reconstruction. All
the parameter Settings are shown specifically in App. A.2.

A.16 PROOF OF PROPOSITION 2

According to Eq. 14, the distribution of zt−1 depends on zt and z0. The marginal distribution
relating to timestep t− 1 can be rewritten by Proof. We first factorize the measurement conditioned
time-marginal p (zt2 | y) by

p (zt−1 | y, c) =
∫∫

p (zt−1, z
w
0 , zt | y) dzw0 dzt

=

∫∫
p (zt | y, c) p (zw0 | zt,y, c) p (zt−1 | zw0 , zt, y, c) dzw0 dzt,

(26)
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Figure 6: Layouts of evaluated outputs for the same objects at different intermediate timesteps.

according to the proposition 1, the above equation can be written as

p (zt−1 | y, c) =
∫∫

p (zt | y, c) p (zw0 | zt,y, c) p (zt−1 | zw0 , zt,y, c) dzw0 dzt

=

∫∫
p (zt | y, c) p (((1− w) · z0 + w · zin) | zt,y, c)

p (zt−1 | ((1− w) · z0 + w · zin) , zt, y, c) d ((1− w) · z0 + w · zin) dzt

(i)
=

∫∫
p (zt | y) [(1− w) · p (z0 | zt,y, c) + w · p (zin | zt,y)]

p (zt−1 | (1− w) · z0, zt, y) d ((1− w) · z0 + w · zin) dzt

(i)
=

∫∫
p (zt | y) p ((1− w) · z0 | zt,y, c)

p (zt−1 | (1− w) · z0, zt, y) d ((1− w) · z0) dzt

(ii)
=

∫∫
p (zt | y) p (z0 | zt,y, c) p (zt−1 | z0, zt, y) dz0 dzt

=

∫∫
p (zt | y) p (z0 | zt,y, c) p (zt−1 | z0) dz0 dzt

= Ezt∼p(zt|y)Ez0∼p(z0|zt1
,y,c)p (zt−1 | z0)

(iii)
= Ez0∼p(z0|zt,y,c)N

(
zt−1; z0, σ

2
t−1I

)
,

(27)
where (i) is dues to independent relationships and (ii) is derived by variable substitution and c is
the given target prompt. (iii) is derived directly according to the process defined in Eq. 15, whose
independent variant is substituted by z0 instead of zw

0 .
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Figure 7: Layouts of evaluated output for various objects and timesteps.

Figure 8: Example of Long-text Editing.
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Figure 9: Example of Long-text Editing.

Figure 10: Example of Long-text Editing.
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Figure 11: Example of Long-text Editing.

Figure 12: Additional Comparison Results of The Remained Baselines.
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Figure 13: Intermediate Results.
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Figure 14: Additional Comparison Results Based on Different Measurements.
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Figure 15: Additional reconstruction Results.
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Figure 16: Additional reconstruction Results.
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Figure 17: Comparison of Inference Speed.

Figure 18: Instruction Generation process GPT.
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Figure 19: Comparison of Different methods for Reconstruction of High Frequency Details. †
represents 10000 optimization steps are adopted for this result.
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