
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SINGER: STOCHASTIC NETWORK GRAPH EVOLVING
OPERATOR FOR HIGH DIMENSIONAL PDES

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a novel framework, StochastIc Network Graph Evolving operatoR
(SINGER), for learning the evolution operator of high-dimensional partial dif-
ferential equations (PDEs). The framework uses a sub-network to approximate
the solution at the initial time step and stochastically evolves the sub-network
parameters over time by a graph neural network to approximate the solution at
later time steps. The framework is designed to inherit the desirable properties of
the parametric solution operator, including graph topology, semigroup, and sta-
bility, with a theoretical guarantee. Numerical experiments on 8 evolution PDEs
of 5,10,15,20-dimensions show that our method outperforms existing baselines in
almost all cases (31 out of 32), and that our method generalizes well to unseen
initial conditions, equation dimensions, sub-network width, and time steps.

1 INTRODUCTION

Partial differential equations (PDEs) are prevalent and have extensive applications in science, engi-
neering, economics, and finance (Strauss, 2007; Folland, 2020). Given that many partial differential
equations do not have analytical solutions, numerical methods like finite element methods (Hueb-
ner et al., 2001) as well as neural network based solvers (Blechschmidt & Ernst, 2021) have been
established. Although these methods have been significantly advanced recently, they suffer the well-
known issue of curse of dimensionality since the number of data points increases exponentially with
respect to the dimension d of independent variables (Bellman, 1966). They quickly become compu-
tationally intractable for general high dimensional problems, e.g. d ≥ 5.

Facing the challenge, recent advances in deep-learning-based solvers propose incorporating spe-
cific PDE problem structure (Han et al., 2017; Wang et al., 2022a; Yu et al., 2018) and designing
memory-efficient training strategies (Hu et al., 2024; Shang et al., 2023). These methods succeed in
solving a variety of PDEs empirically. Nonetheless, they aim to solve specific instances of PDEs.
Consequently, they need to retrain from scratch whenever the initial and/or boundary value changes,
which is computationally expensive and time-consuming in high-dimensional problems. To address
these limitations, Gaby et al. (Gaby et al., 2024; Gaby & Ye, 2024) obtain the solution operator of
the high-dimensional PDEs by learning the evolution of the parameters of a sub-network over time.
The training is purely based on the PDE residual loss, without requiring any spatial discretization
or solutions of the PDE. Once successfully trained, the model can generalize to new initial condi-
tions with a single inference pass. In practice, however, the training process usually collapses or
converges to an incorrect model.

In this paper, we aim to address the challenge of learning high-dimensional PDE solution operators.
We formally establish three basic assumptions of an ideal solution operator: graph topology, semi-
group, and stability, and design a novel framework that inherently satisfies those assumptions with
theoretical guarantees. Specifically, we propose a stochastic differential equation driven by a graph
neural network (GNN) on the sub-network’s network graph to model the semigroup evolution of the
sub-network parameters. The graph neural network is designed to handle the graph topology of the
sub-network, including permutation invariance and modification robustness. The stochastic noise
is introduced to stabilize the evolution process and prevent divergence. We theoretically prove the
semigroup evolution and stability of the proposed framework and empirically demonstrate model ef-
fectiveness in accuracy, stability, and generalization on several datasets. We highlight the following
contributions of our work:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

• Formally establish three assumptions of an ideal high-dimensional PDE solution operator:
graph topology, semigroup, and stability.

• Propose SINGER consists of graph network, continuous evolution and stochastic noise,
corresponding to the three assumptions, with theoretical and empirical justification.

• Solve eight PDEs on 5-20 dimensions by SINGER accurately and stably and generalize
across initial conditions, equation dimensions, input scales, and time horizons.

2 RELATED WORK

Recent developments in neural network-based PDE solvers have shown promise in overcoming the
limitations of traditional numerical solvers, especially for high-dimensional problems. Below we
discuss some of the key approaches in this area. The related work on low-dimensional PDEs are
provided in Appendix. D.

Neural High-Dim PDEs Solvers For high-dimensional PDEs, the curse of dimensionality poses a
significant challenge, thus requiring specialized methods. The existing attempts mainly fall in the
physics-informed category. Han et al. (Han et al., 2018; 2017) proposed the DeepBSDE solver,
reforming a class of hyperbolic PDEs as backward stochastic differential equations (BSDEs) by
Feynman-Kac formula. Wang et al. (Wang et al., 2022b;a) proposed tensor neural networks with
efficient numerical integration and separable structures for solving separable PDEs such as the
Schrödinger equation. The deep Ritz method (Yu et al., 2018) considers solving high-dimensional
variation PDE problems by minimizing the energy functional of the PDE. However, the above tech-
niques are limited to specific types of PDEs and may not generalize well to others. For general
PDEs, Zang et al. (Zang et al., 2020) proposed a weak adversarial network that solves PDEs using
the weak formulation. Hu et al. (Hu et al., 2024) designed a stochastic dimension gradient descent
to reduce the computational cost.

Neural High-Dim PDEs Operators The data-driven operator methods are less explored in high-
dimensional PDEs, possibly due to the difficulty in data generating and model generalization. The
only two existing works that learn the high-dimensional PDE solution operator are proposed by
Gaby et al. (Gaby et al., 2024; Gaby & Ye, 2024). The first work reduces the solution operator to
the evolution of the parameters of a reduced-order model (a neural network) and introduces another
network to learn the evolution in discrete time steps by minimizing PDE residual. The second work
extends the first work to continuous evolution by adapting a Neural ODE (NODE) (Chen et al., 2018)
framework, improving the sample efficiency. However, the above methods suffer the instability of
the evolving operator, which is crucial for both training and inferencing. Our work follows this line
of research and introduces a novel framework that inherently maintains stability, generalization, and
other desirable properties.

3 METHODOLOGY

In the SINGER model, we utilize a neural network U to approximate the solution u(x, t) of the PDE.
The parameters θt of network U evolve according to a GNN-driven ODE, where the nodes in the
graph represent neurons, and the edges represent dependencies between them. The key advantage
of this structure is the permutability of neurons within the same layer, which enhances the model’s
generalization capabilities. To combat the inherent instability in the evolution process, we introduce
stochastic noise during training. This noise stabilizes the system and prevents divergence during
long-term iterations. A theoretical analysis of the stochastic influence on stability is provided.

3.1 MOTIVATION: THREE ASSUMPTIONS

Our model design is based on three key assumptions on the sub-network U and the solution operator
of PDEs: the graph topology of U , the semigroup operator, and the stability of the solution.

The first assumption is based on the network graph G(V,E) of the sub-network U . The vertex vi
denotes the i-th learnable parameter of U , and the vertex feature is the one-hot encoding of its layer
index in U . The edge ei,j exists if vi, vj are the input and output parameters, respectively, of the
same neuron in U . We then assume such a graph is a good representation of the subnetwork U :

Assumption 1 (Graph Topology). For a proper distance metric d(·, ·), there exists a constant C > 0
such that dU (U1, U2) ≤ CdG(G1,G2) for any sub-networks U1, U2 and their network graph G1,G2.

This above statement leads to two properties of the sub-network U :

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: Left: SINGER architecture. Right: three underlying assumptions.

1. Permutation Invariance: changing the relative order of neurons of the same layer (defined
as Perm) does not change the graph and sub-network. Formally, if G1 := Perm(G2), then
dG(G1,G2) = 0, and dU (U1, U2) = 0.

2. Modification Robustness: adding or removing nodes or edges in the graph (defined as
Modif) does not substantially change the sub-network. Formally, for a small modification
budget ϵ, if G1 := Modif(G2) and dG(G1,G2) < ϵ, then dU (U1, U2) < Cϵ.

The above assumption holds for common neural network architecture. For example, the permutation
invariance is satisfied by fully connected layers, convolutional layers, and attention layers. Addi-
tionally, random removal of a node, such as through dropout, does not drastically alter the network
output. Networks that do not follow this assumption tend to be sensitive to permutation and mod-
ification noise. However, a desirable solution should be robust to noise, which motivates encoding
this property into the model.

The second assumption is on the semigroup property of the evolving operator T (t) that evolves the
solution function u from time 0 to time t. Intuitively, the semigroup property states that the operator
T is consistent over time, i.e. the evolution from time 0 to time t is the same as the concatenation
of evolutions from time 0 to any middle time ti and from time ti to time t. The mathematical
formulation is given as follows.
Assumption 2 (Semigroup). Suppose T is a mapping [0,+∞) → L (X), where X is the space of
the PDE solution function u and L (X) denotes the set of bounded operators on X . The mapping
T satisfies the semigroup property, i.e.

T (t1)T (t2) = T (t1 + t2), for any t1, t2 ≥ 0 (1)
T (0) = I, where I is the identity operator. (2)

The above assumption holds for initial value problems of PDEs (Farkas et al., 2011). This property
arises from the physical interpretation of PDEs, where the time evolution of the solution is inde-
pendent. Similar to the Markov property, the future state depends only on the current state, with no
memory of the past. Encoding this prior into the network can prevent it from learning non-physical
solutions.

The third assumption is the stability of the solution function u, which is defined as the boundedness
of the evolution of solution function u under a small perturbation of the initial condition. The
mathematical formulation is given as follows.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 1: Comparison on assumption satisfaction of neural operators.
Method Graph Topology Semigroup Stability

NODE(Gaby & Ye, 2024) No Yes No
PINO(Li et al., 2024) No No Yes

SINGER(ours) Yes Yes Yes

Assumption 3 (Stability). The solution function u of the PDE is stable under small perturbation of
the initial condition, i.e. ∀ε > 0, there exists a δ > 0 such that for any initial condition u0 and u′

0
with ∥u0 − u′

0∥ < δ, the solution functions satisfy ∥T (t)(u0)− T (t)(u′
0)∥ < ϵ for any t ≥ 0.

The stability holds for many basic PDEs, such as heat equation, reaction-diffusion equation, and
wave equation(Shirinabadi & Talebi, 2011). The stability is rooted from the well-posedness of PDEs
(Hilditch, 2013). A PDE is well-posed if its solution exists, is unique, and continuously depends on
the initial and boundary conditions. The stability we define refers to the continuous dependence of
the PDE solution on the initial condition. Stability is of paramount importance in both theoretical
analysis and numerical solutions of PDEs. For example, in our experiments, models without stability
would collapse during training (see Table 2).

As compared in Table 1, the three assumptions are non-trivial for a neural network operator. Con-
sider two baselines NODE (Gaby & Ye, 2024) and PINO(Li et al., 2024)(modified). The NODE
model flatten the initial sub-network parameters into a vector and evolve the it by a freely learnable
neural ODE. The flattening operation violates the graph topology assumption, and a free NODE
model is not guaranteed to be stable. The semigroup property is satisfied by the integration operator
in neural ode forwarding.

The PINO learns a network mapping the input data and time t directly to the solution function values
at sampling points and time t. It is not directly applicable to high-dim problems, so we modify it
to mapping the initial sub-network parameters θ0 and time t to the solution sub-network parameters
θt. The PINO violates the graph topology if the θ is flattened. And even if the graph is preserved,
the semigroup property is not guaranteed, since the model is a black-box function with regard to the
time t. Whereas the stability is generally guaranteed due to the continuity of network.

The violation of the assumption usually results in poor experiment performance or even collapse of
the model, as we will show in the experiment section. Our model, SINGER, is designed to satisfy
all three assumptions, as introduced and justified in the following subsections.

3.2 FORMULATION AND ALGORITHM

We follow the problem setting in Gaby et al. (2024) and consider the initial value problem of the
evolution PDE defined as follows:{

∂tu(x, t) = F [u](x, t), x ∈ Ω, t ∈ (0, Te],

u(x, 0) = u0(x), x ∈ Ω,
(3)

where Ω is an open bounded set in Rd, F is a possibly nonlinear differential operator of functions
u : Ω × (0, Te] → R, u0 : Ω → R stands for an initial value, and Te > 0 is terminal time. The
solution is defined in the strong sense, thus u is assumed continuous: u ∈ C2,1(Ω̄× (0, Te))

The SINGER parameterises solution u(·, t) by a sub-network Uθt ,with network graph G and param-
eters θt at time t. The parameter evolution is modeled by an operator-network V with parameters
w. The evolution of the parameters is given by the following equation:

dθt = V (θt, t,G;w)(dt+N dBt), (4)

where N is a noise matrix, and Bt is a Brownian motion. The operator-network is implemented
as a GNN to handle the graph topology of sub-network U . The stochastic noise term N dBt is
introduced to stabilize the evolution process and prevent divergence.

The network V instantiate the Message Passing Neural Network (MPNN) (Gilmer et al., 2017), a
general framework of GNN, to handle the graph topology of sub-network U . A D-layer MPNN
consists of D pairs of message and update functions, denoted as Mi and Pi respectively:

mi+1
v =

∑
w∈N(v)

Mt

(
hi
v, h

i
w

)
, hi+1

v = Pt

(
hi
v,m

i+1
v

)
, (5)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 Training pipeline for SINGER
Input: parameter set ϑ, sub-network structure U , network graph G and operator-network V
Output: optimal weights w

1: Sample {θk
0}Kk=1 uniformly from the parameter set ϑ.

2: Initialize Eq.4 and Eq.6 with Θk
0 = [θk

0 , 0]

3: Calculate loss l̂(w) = 1
K

∑K
k=1

[
rT (θ

k
0)
]

by integrating Eq.4 and Eq.6.
4: Use adjoint method according to Eq.7 to calculate ∇w l̂(w). Minimize the loss w.r.t w

Algorithm 2 Testing pipeline for SINGER
Input: initial condition u0, sub-network U , network graph G and trained operator-network V
Output: PDE solution u(·, t)

1: Estimate θ0 using gradient descent with Bernoulli noise: θ0 = argminθ0
∥u0 − Uθ0∥2.

2: Initialize Eq.4 with Θ0 = θ0
3: Integrate Eq.4 to obtain network parameters θt.
4: Place θt into sub-network U and retrieve PDE solution u(·, t) = Uθt

where hi
v is the hidden state of node v at layer i, N(v) is the set of neighbors of node v. The initial

and final hidden state h1
v, h

D
v is the input and output of MPNN, respectively. In our model, the input

h1
v is the node feature, i.e., the one-hot vector of the parameter’s layer index. The output hD

v is of
the same shape as the input and is decoded by reading out the element at the layer index.

In order to optimize the parameters of the operator-network V , we augment the above equation with
accumulated residual rt in strong sense:

drt = R(θt, t) dt := ∥∇θUθt · dθt − F [Uθt] dt∥
2
, (6)

where F is the right-hand side differential operator of the PDE, and Uθt is the solution of the PDE
at time t with parameters θt. The initial residual r0 is set to zero.

The training optimization problem is defined as finding the optimal parameters w that minimize the
final residual rT over distribution of initial parameters θ0: w∗ = argminw Eθ0 [rT]. To optimize
the parameters and avoid high memory costs, we adopt the scheme presented by Liu et al. (2019).
L is used here to represent the loss function Eθ0 [rT]. The gradient is: ∂̂L

∂w = ∂L
∂rT

∂rT
∂w . If we denote

∂rt
∂w as αt and ∂θt

∂w as βt, we can get the following relationship:

dαt =
∂R(θt, t)

∂θt
βt dt

dβt = (
∂V

∂w
+

∂V

∂θt
βt) dt+N(

∂V

∂w
+

∂V

∂θt
βt) dBt

(7)

In a way similar to the adjoint method in Neural ODE, Eq.7 is solved alongside the original SDE
system. This approach eliminates the need to store intermediate states, effectively reducing the
original memory burden. In the training phase, SINGER seeks to find the optimal operator network
using the adjoint method given in Eq.7. The algorithm is described in detail in Algorithm 1.

Given a trained operator network, we can solve high-dimensional PDEs in the following steps.
Firstly, given initial value u0, we find a θ0 = argminθ0

∥u0 − Uθ0∥2. Secondly, we solve Eq.4
to retrieve θt. Finally, the PDE solution is generated using θt and sub-network U . The detailed
algorithm is provided in Algorithm 2.

3.3 THEORETICAL ANALYSIS

Graph Topology and Semigroup Property of SINGER

Firstly we will focus on the Graph Topology assumption. Since all our operations in the SINGER
preserve permutation invariance (element-wise operation and MPNN), the model itself preserves
permutation invariance. As for Modification Robustness, the GNN holds continuity to graph struc-
ture (Han et al., 2024), which means that when edges are added or removed, GNN’s output won’t
drastically change. Thus, our model observes Assumption 1.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 2: Illustration of SIGNER’s training and testing schema and the specific algorithmic process
considered in each theorem.

Then we shall discuss assumptions 2 on our model. Since the solution operator is a stochastic
process, the definition of semigroup, especially the definition of equality, needs an extension to the
stochastic version.
Definition 1 (Stochastic Semigroup). Suppose T = {Tt(ω), t ∈ [0,+∞)} is a stochastic process,
where ω being Brownian path, the stochastic variable Tt(ω) ∈ L (X) is solution operator, X is
the space of the solution function u and L (X) denotes the set of bounded operators on X . Denote
almost surely by a.s., denote identically distributed by ∼. Then T is:

1. Strong Semigroup,if for ∀t1, t2 ≥ 0, u ∈ X:

Tt1+t2(ω)(u) = Tt2Tt1(ω)(u) a.s., T0(ω)(u) = u a.s., (8)

2. Weak Semigroup, if for ∀t1, t2 ≥ 0, u ∈ X:

Tt1+t2(ω)(u) ∼ Tt2Tt1(ω)(u), T0(ω)(u) ∼ u, (9)

The SINGER evolution operator is a stochastic semigroup with a theoretical guarantee under mild
conditions (all proofs provided in the Appendix B).
Theorem 1. If V(θt, t,G;w) is square-integrable w.r.t. time t and sub-network Uθt

is twice contin-
uously differentiable w.r.t. parameter θt, then the solution operator T of Uθt

satisfies both strong
and weak semigroup property.

Stability of SINGER

We will theoretically analyze the stability of the proposed SINGER. The overall algorithm consid-
ered in this section is depicted in Fig.2.

To examine the stability of an SDE, we initialize the system at two slightly different value (θ0, r0)
and (θe

0, r
e
0) = (θ0+εθ0, r0+εr0), where (εθ0, ε

r
0) is the initial perturbation. The stability is assessed

based on the long-term behavior of the perturbed model, i.e., how (εθt , ε
r
t) evolve in the long run.

dεθt = [V (θe
t , t,G;w)− V (θt, t,G;w)] dt+N [V (θe

t , t,G;w)− V (θt, t,G;w)] dBt

= V∆(ε
θ
t , t,G;w) dt+NV∆(ε

θ
t , t,G;w) dBt

(10)

drt = [R(θe
t , t)−R(θt, t)] dt = R∆(ε

r
t , t) dt x (11)

Here we assume that the Brownian motions have the same sample path for both of the initializations
to do subtraction. Given the above description of the problem, we can now formally define stability,
which is adapted from Liu et al. (2019):
Definition 2. (Lyapunov stability of SDE). The solution εt = 0 is almost surely exponentially stable
if lim supt→∞

1
t log ∥εt∥ < 0 a.s. ∀ε0 ∈ Rn.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Liu et al. (2019) has already proved the stability of Eq.10-like SDE in the following theorem:
Theorem 2. For Eq.10-like SDE, if V (θt, t,G;w) is L-Lipschitz continuous w.r.t. θt, then it has a
unique solution with the property lim supt→∞

1
t log ∥εt∥ ≤ −(N

2

2 − L) a.s. for any ε0 ∈ Rn. In
particular, if N2 > 2L, the solution εt = 0 is a.s. exponentially stable.

However, we can not apply Theorem 2 directly to Eq.11 since there is no diffusion term in it. It
is worth noting that Eq.11 is non-autoregressive, i.e. drt

dt is not influenced by rt. Any perturbation
to the initial value of r0 will result in only a constant-level disturbance at time t. Given certain
assumptions on the system and results from Liu et al. (2019), we can prove the following theorem:
Theorem 3. If V (θt, t,G;w) and R(θt, t) is L-Lipschitz continuous w.r.t. θt and N2 > 2L, then
the solution (εθt , ε

r
t) = 0 is almost surely exponentially stable.

Finally, we shall examine the SINGER stability during training. Adapted from Assumptions 3, the
definition of its train-time stability is formulated as follows:
Definition 3. (SINGER train-time stability) ∀ε > 0,∃δ, if ∥Θ0−Θe

0∥ < δ, then ∥Uθe
t
−Uθt∥ < ε.

where (θt, rt) is denoted as Θt for simplicity. Given Theorem 3 and some assumptions on neural
networks, we can prove the train-time stability of the SINGERe.
Theorem 4. If the Θt evolution process satisfies all conditions in Theorem 3, then SINGER is stable
during training.

We further focus on the SINGER stability during testing. In the test phase, the PDE initial con-
dition u0 is provided as input. The gradient descent method is applied to seek initial sub-network
parameters θ0 = argminL(u0, Uθ0), where L is the loss function. We first define the test stability:
Definition 4. (SINGER test-time stability) ∀ε > 0,∃δ, if ∥Uθ0−Uθe

0
∥ < δ, then ∥Uθe

t
−Uθt∥ < ε.

To ensure the stability of the process of seeking θ0, we use a gradient descent algorithm with
Bernoulli noise. Following a similar proof scheme of Theorem 3 and Theorem 4, we can further
confirm SINGER test-time stability.
Theorem 5. If both the θ0 fitting process and the Θt evolution process satisfies all conditions in
Theorem 3, then SINGER is stable during testing.

4 EXPERIMENTS

We validate the proposed architecture on 8 benchmark high-dimensional PDEs and compare it with
state-of-the-art methods. The experiments focus on accuracy, generalization, stability, and assump-
tion fulfillment. Our model is tested on 5- to 10-dimensional PDEs and evaluated for its ability to
generalize across different initial conditions, dimensions of the PDE, the width of the sub-network,
and time steps.

We compare our method with 4 baselines. The first one is the non-noise version of our method,
denoted as SINGER(-N). We also choose NODE(Gaby & Ye, 2024) and PINOLi et al. (2024) as
baselines due to their closeness to our model. The original PINO learns the mapping of function
values, which is not suitable for high-dimensional PDEs. Therefore, we modified it to learn the evo-
lution of sub-network parameters. After modification, PINO can be regarded as a variant of NODE
without semigroup property. The last baseline is the NODE with noise, denoted as NODE(+N),
regarded as the non-graph version of SINGER.

4.1 IMPLEMENTATION DETAILS

In all experiments, we implement the SINGER with a 3-layer message passing GNN, with the mes-
sage and update function being 4-layer residual networks (ResNets). The hidden dimension is 100,
and the noise type is Bernoulli (i.e. dropout) with a probability of 0.1. The validity of using Bern-
uolli noise is justified in Appx A. We also implement a NODE baseline using a ResNet with 1000
hidden dimensions. The ODE is integrated with the Runge-Kutta (Butcher, 1996) with a time step
1/10 of the time horizon. The PINO baseline is also with 1000 hidden dimensions. It is implemented
with the trick from the Consistency Model (Song et al., 2023), i.e., embedding the time index by
an encoder network, then adding the encoded feature to other inputs and feeding into ResNet. The
training set consists of 100000 randomly generated θ from the normal distribution, and the test set

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Relative error on PDEs with explicit solution, the best and second best are marked, and
the ∗ symbol denotes collapse in training.

Eqn Heat HJB

Dim d=5 d=10 d=15 d=20 d=5 d=10 d=15 d=20

SINGER 0.0045 0.0041 0.0046 0.0175∗ 0.0036 0.0027 0.0099 0.0052
SINGER(-N) 0.0137∗ 0.0294∗ 0.0371∗ 0.0507 0.0037 0.0027 0.0106 0.0047

NODE 0.0194 0.0342∗ 0.0502∗ 0.0957∗ 0.0042 0.0090 0.0280 0.0602
NODE(+N) 0.0213 0.0220 0.0196 0.0751 0.0040 0.0041 0.0197 0.0398

PI-NO 0.0543 0.0229 0.0296 0.0567 0.1075 0.5387 0.9386 3.5078

Table 3: Relative error on various PDEs, the best is marked, and the ∗ denotes collapse in training.
Eqn Pricing Sine-Gorden

Dim d=5 d=10 d=15 d=20 d=5 d=10 d=15 d=20

SINGER 0.0510 0.0217 0.0308 0.0519 0.00051 0.00054 0.00073 0.00066
NODE(+N) 0.0541 0.0258 0.0473 0.0689 0.05431 0.00065 0.00074 0.00085

Eqn Burgers Reaction Diffusion

SINGER 0.0020 0.0032 0.0079 0.0088 0.0022 0.0016 0.0018 0.0020
NODE(+N) 0.0274∗ 0.0068 0.0080 0.1729 0.0021 0.0024 0.0245 0.0056

Eqn HJBLQ Allen-Cahn

SINGER 0.0041 0.0033 0.0035 0.0037 0.00052 0.00071 0.00088 0.00077
NODE(+N) 0.0070 0.0039 0.0041 0.0059 1.16401∗ 0.13258 0.00125 0.00373

is 100 randomly generated θ from another normal distribution with slightly different mean and vari-
ance, as suggested by Gaby & Ye (2024). The training is done with Adam optimizer with a learning
rate of 0.0005 and the batch size is 64. The metric used in experiments is the L2 relative error
(L2RE) defined as: L2RE(u, u′) = ∥u−u′∥2

∥u∥2
. The function norm is evaluated by the Monte Carlo

method with 1000 samples. Unless otherwise stated, the L2RE in the main text and tables denotes
L2RE(uref , upred), where uref is the reference solution and upred is the predicted solution.

We choose two PDEs with explicit solutions, the Heat equation and HJB equation, defined as follows
(Evans, 2022):

∂tu = ∆xu, u(x, t) =

∫
g(y)N(y − x, 2tId)dy, x ∈ [−1, 1]d, t ∈ [0, 0.1] (12)

∂tu = ∆xu− 1

2
|∇xu|2, u(x, t) = −2 ln

∫
e−|x−y|2/(4(1−t))−g(y)/2

(4π(1− t))d/2
dy, x ∈ Rd, t ∈ [0, 1]

(13)

where N stands for the density of Gaussian, g(y) is the initial function, and the HJB is time-reversed
for consistency with the experiment. The subnetwork architecture for heat and HJB are two-layer
networks, reflecting the structure of the solution:

uθ(x) =

w∑
i=1

ci tanh
(
a⊤i sin(π(x− β))− bi

)
, θ = (β, a, b, c) ∈ Rd × Rd×w × Rw × Rw (14)

uθ(x) =

w∑
i=1

wie
−|ai⊙(x−bi)|2/2, θ = (a, b, w) ∈ Rd×w × Rd×w × Rw (15)

where d is input dimension and w is sub-network width. The remaining six PDEs are detailed in
Appendix C

4.2 RESULTS AND DISCUSSION

The experiments are organized to answer the following research questions:

RQ1: How does the SINGER accurately and stably solve high-dimensional PDEs?

RQ2: How does the SINGER generalize to unseen longer time indexes and higher dimensions?

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 3: Examples on 10-dimensional Heat(left) and HJB(right) PDEs. Only the first two spacial
dimensions are shown.

Figure 4: Models trained on 10-dimensional heat equation with t = 0.1. (Left) Relative error in the
early stage (560 iterations) of training. (Right) time extrapolation to t = 0.8.

RQ3: How does the SINGER satisfy the three assumptions in Section 3.1?

RQ1: Accuracy and Stability We first evaluate the accuracy and stability of the proposed SINGER
on PDEs with explicit solutions, i.e. the heat equation and HJB equation, across dimensions from
5 to 20. The results are shown in Table 2. The proposed model outperforms almost all baselines in
terms of relative error. Adding noise into the training is beneficial for both our model and NODE,
effectively improving accuracy and preventing the collapse of training in the heat equation. The
PINO model performs poorly in all cases, with a relative error of over 0.05 in most cases. Examples
of the solution are shown in Fig. 3, where the proposed model accurately captures the solution of
the heat equation and HJB equation.

We select a strong baseline NODE(+N) as the comparison baseline for the 6 more PDEs. Those
PDEs have no explicit solution in general, and the reference solution is generated by the DeepBSDE
(Han et al., 2018). The generation details are in Appendix C. As illustrated in Table 3, the SINGER
outperforms NODE(+N) with a clear margin in almost all cases. SINGER is also more stable than
NODE(+N), which collapses in training in the Burgers and Reaction-Diffusion equations.

To further investigate the performance of the models, we visualize the early stage of training in
Fig. 4(left). The NODE model collapses in the first few epochs, while the proposed model and
NODE(+N) are more stable during training. The proposed model converges faster than NODE(+N)
in the longer term, which is consistent with the results in Table 2 and Table 3. The PINO is stable
but converges slower than the proposed model and NODE(+N). The results above demonstrate that
the noise is crucial for training stability, and the graph topology and semigroup property can accel-
erate the convergence of the model in the early stage, possibly due to the incorporation of the prior
knowledge, saving the model from exploring the wrong direction.

RQ2: Generalization We test the zero-shot generalization for unseen time periods, subnetwork
widths, and even higher dimensions. The results are shown in Fig. 4(right) and Table 4. The pro-
posed model outperforms all baselines in all cases, demonstrating its superior generalization ability.
In Fig. 4(right), the models are trained on a short time horizon of t = 0.1 and tested on a long time
horizon of t = 0.8. The proposed model maintains a low error as the time horizon extends, whereas
other models experience a substantial increase in error or break down into NaN values. Notably,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Zero-shot generalization of models trained in 10-dim and 80-width to higher PDE dimen-
sions and larger subnetwork width.

Dim 10 11 12 13 14 15

Ours 0.0041 0.0159 0.0255 0.0448 0.0672 0.1194
NODE+N+I 0.0220 0.0789 0.1492 0.1259 0.1433 0.1646

Width 80 85 90 95 100 105

Ours 0.0041 0.0045 0.0061 0.0049 0.0051 0.0045
NODE+N+I 0.0220 0.0531 0.1079 0.1306 0.1404 0.1857

Table 5: Ablation study on the violation(residual) of three assumptions.
Ours Ablation

Assumption Before Train After Train Model Before Train After Train

Graph Topology 1.6× 10−14 1.1× 10−14 NODE(+N) 0.00205 0.00478
Semigroup 1.7× 10−13 4.7× 10−10 PINO 0.14441 0.01484
Stability 0.29058 0.00057 SINGER(-N) 0.29199 0.02538

removing the noise from our model will lead to a collapse in training, highlighting the importance
of noise in training.

In Table 4, we add neurons to the subnetwork in the test time. Since generally NODE can not han-
dle modification of subnetwork, the proposed model is compared with NODE(+N+I), where the +I
means ignoring the additional neurons in the subnetwork. The models are trained in 10-dim and 80-
width and can generalize to higher problem dimensions and wider subnetworks without finetuning.
The proposed model outperforms NODE(+N+I) in all cases, showcasing its generalization abil-
ity. As dimension increases, SINGER error increases slower than NODE(+N+I). When subnetwork
width increases, SINGER keeps error constantly while NODE(+N+I) increases error significantly.
The generalization arises from the preservation of graph topology since the modification of subnet-
work is essentially a modification of graph structure. The generalization of problem dimensions is
a novel metric in the existing high-dimension PDE solver literature, and this ability might be useful
in a pre-trained foundation model of PDE solver such as PDEformer (Ye et al., 2024).

RQ3: Assumption Satisfaction Lastly, we numerically check the assumptions in Section 3.1. In
order to quantify the violation of assumptions we define the following metrics:

1) Graph Topology: L2RE(T (t)(u), T (t)(uperm)), where the uperm is the randomly neuron-
permuted input of u.

2) Semigroup: L2RE(T (t)(u), T (t− ti)T (ti)(u)), where the ti is a randomly selected time index.

3) Stability: L2RE(T (t)(u), T (t)(unoise)), where the unoise is the input of u with added noise.

Table 5 shows the metrics of the proposed SINGER and its ablation models with respect to the
assumptions, before and after training. For the graph topology, the SINGER inherently satisfies
the assumption by its graph network module, while the ablation model does not and even can not
learn from training. For the semigroup, the SINGER also inherently satisfies the assumption by its
ode framework, while the ablation model does not and learns from training with limited improve-
ment. For stability, both the SINGER and ablation models are not satisfied initially, but the SINGER
improves significantly after training, while the ablation model improves a little. The results demon-
strate that the proposed model automatically satisfies the first two assumptions and can learn from
training to improve the stability property. Whereas the ablation model merely learns from training
and generally can not satisfy the assumptions after training.

5 CONCLUSION

We introduce a novel architecture for learning high-dimensional PDEs solution operators based on
a graph neural network. Our model is designed to satisfy three key assumptions: graph topology,
semigroup property, and stability. We demonstrate the effectiveness of our approach through exten-
sive experiments. Future work and broader impact are discussed in Appendix. E.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Ferran Alet, Adarsh Keshav Jeewajee, Maria Bauza Villalonga, Alberto Rodriguez, Tomas Lozano-
Perez, and Leslie Kaelbling. Graph element networks: adaptive, structured computation and
memory. In International Conference on Machine Learning, pp. 212–222. PMLR, 2019.

Richard Bellman. Dynamic programming. science, 153(3731):34–37, 1966.

Jan Blechschmidt and Oliver G Ernst. Three ways to solve partial differential equations with neural
networks—a review. GAMM-Mitteilungen, 44(2):e202100006, 2021.

Andrey Bryutkin, Jiahao Huang, Zhongying Deng, Guang Yang, Carola-Bibiane Schönlieb, and An-
gelica Aviles-Rivero. Hamlet: Graph transformer neural operator for partial differential equations.
arXiv preprint arXiv:2402.03541, 2024.

John Charles Butcher. A history of runge-kutta methods. Applied numerical mathematics, 20(3):
247–260, 1996.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Tianping Chen and Hong Chen. Universal approximation to nonlinear operators by neural networks
with arbitrary activation functions and its application to dynamical systems. IEEE Transactions
on Neural Networks, 6(4):911–917, 1995.

Tim De Ryck, Siddhartha Mishra, and Roberto Molinaro. wpinns: Weak physics informed neural
networks for approximating entropy solutions of hyperbolic conservation laws. SIAM Journal on
Numerical Analysis, 62(2):811–841, 2024.

Lawrence C Evans. Partial differential equations, volume 19. American Mathematical Society,
2022.

Bálint Farkas, Petra Csomós, and Alexander Ostermann. Operator semigroups for numerical analy-
sis. 2011.

Gerald B Folland. Introduction to partial differential equations. Princeton university press, 2020.

Nathan Gaby and Xiaojing Ye. Approximation of solution operators for high-dimensional pdes.
arXiv preprint arXiv:2401.10385, 2024.

Nathan Gaby, Xiaojing Ye, and Haomin Zhou. Neural control of parametric solutions for high-
dimensional evolution pdes. SIAM Journal on Scientific Computing, 46(2):C155–C185, 2024.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

Andi Han, Dai Shi, Lequan Lin, and Junbin Gao. From continuous dynamics to graph neural net-
works: Neural diffusion and beyond. Transactions on Machine Learning Research, 2024. ISSN
2835-8856. URL https://openreview.net/forum?id=fPQSxjqa2o. Survey Certi-
fication.

Jiequn Han, Arnulf Jentzen, et al. Deep learning-based numerical methods for high-dimensional
parabolic partial differential equations and backward stochastic differential equations. Communi-
cations in mathematics and statistics, 5(4):349–380, 2017.

Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional partial differential equations
using deep learning. Proceedings of the National Academy of Sciences, 115(34):8505–8510,
2018.

David Hilditch. An introduction to well-posedness and free-evolution. International Journal of
Modern Physics A, 28(22n23):1340015, 2013.

11

https://openreview.net/forum?id=fPQSxjqa2o

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Masanobu Horie and Naoto Mitsume. Physics-embedded neural networks: Graph neural pde solvers
with mixed boundary conditions. Advances in Neural Information Processing Systems, 35:23218–
23229, 2022.

Zheyuan Hu, Khemraj Shukla, George Em Karniadakis, and Kenji Kawaguchi. Tackling the curse
of dimensionality with physics-informed neural networks. Neural Networks, 176:106369, 2024.

Kenneth H Huebner, Donald L Dewhirst, Douglas E Smith, and Ted G Byrom. The finite element
method for engineers. John Wiley & Sons, 2001.

George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew
Stuart, Anima Anandkumar, et al. Fourier neural operator for parametric partial differential equa-
tions. In International Conference on Learning Representations, 2020.

Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar
Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial
differential equations. ACM/JMS Journal of Data Science, 1(3):1–27, 2024.

Xuanqing Liu, Tesi Xiao, Si Si, Qin Cao, Sanjiv Kumar, and Cho-Jui Hsieh. Neural sde: Stabilizing
neural ode networks with stochastic noise, 2019. URL https://arxiv.org/abs/1906.
02355.

Winfried Lötzsch, Simon Ohler, and Johannes S Otterbach. Learning the solution operator of bound-
ary value problems using graph neural networks. arXiv preprint arXiv:2206.14092, 2022.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature machine intelligence, 3(3):218–229, 2021.

Levi McClenny and Ulisses Braga-Neto. Self-adaptive physics-informed neural networks using a
soft attention mechanism. arXiv preprint arXiv:2009.04544, 2020.

Bernt Øksendal and Bernt Øksendal. Stochastic differential equations. Springer, 2003.

Eckhard Platen Peter E. Kloeden. Numerical Solution of Stochastic Differential Equations. Springer
Berlin, Heidelberg, 1992.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Ehsan Saleh, Saba Ghaffari, Timothy Bretl, Luke Olson, and Matthew West. Learning from integral
losses in physics informed neural networks. arXiv preprint arXiv:2305.17387, 2023.

Yong Shang, Fei Wang, and Jingbo Sun. Randomized neural network with petrov–galerkin meth-
ods for solving linear and nonlinear partial differential equations. Communications in Nonlinear
Science and Numerical Simulation, 127:107518, 2023.

H. Shirinabadi and H. A. Talebi. Lyapunov stability analysis of special class of pde systems. In The
2nd International Conference on Control, Instrumentation and Automation, pp. 648–653, 2011.
doi: 10.1109/ICCIAutom.2011.6356735.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. arXiv preprint
arXiv:2303.01469, 2023.

Walter A Strauss. Partial differential equations: An introduction. John Wiley & Sons, 2007.

Yifan Wang, Pengzhan Jin, and Hehu Xie. Tensor neural network and its numerical integration.
arXiv preprint arXiv:2207.02754, 2022a.

Yifan Wang, Yangfei Liao, and Hehu Xie. Solving schr\”{o} dinger equation using tensor neural
network. arXiv preprint arXiv:2209.12572, 2022b.

12

https://arxiv.org/abs/1906.02355
https://arxiv.org/abs/1906.02355

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Zhanhong Ye, Xiang Huang, Leheng Chen, Hongsheng Liu, Zidong Wang, and Bin Dong. Pde-
former: Towards a foundation model for one-dimensional partial differential equations. arXiv
preprint arXiv:2402.12652, 2024.

Bing Yu et al. The deep ritz method: a deep learning-based numerical algorithm for solving varia-
tional problems. Communications in Mathematics and Statistics, 6(1):1–12, 2018.

Yaohua Zang, Gang Bao, Xiaojing Ye, and Haomin Zhou. Weak adversarial networks for high-
dimensional partial differential equations. Journal of Computational Physics, 411:109409, 2020.

A APPROXIMATION OF DROPOUT

In this section, we form the dropout process as by Liu et al. (2019) to analyze its stability perfor-
mance using Itô process. The dropout layer can be modeled using a Bernoulli process:

θn+1 = θn + V (θn, n,G;wn)⊙
γn

p

= θn + V (θn, n,G;wn) + V (θn, n,G;wn)⊙ (
γn

p
− I)

= θn + V (θn, n,G;wn) + V (θn, n,G;wn)⊙ [

√
1− p

p
(

√
p

1− p
(
γn

p
− I))]

= θn + V (θn, n,G;wn) + [

√
1− p

p
V (θn, n,G;wn)]⊙ zn

(16)

where γn ∼ B(1, p) and ⊙ represents the Hadamard product. The random variable zn is formulated
to approximate the standard Gaussian distribution.

Given the Itô process θt satisfying dθt = V (θt, t,G;wt) dt +
√

1−p
p V (θt, t,G;wt) dBt, where

Bt is the standard Brownian motion, we can approximate it using the forward Euler scheme θn+1 =

θn + V (θn, n,G;wn)∆t +
√

1−p
p V (θn, n,G;wn)∆Wn. The constructed Eq.16 is an order-0.5

weak approximation to it (Peter E. Kloeden, 1992) since it satisfies the following property:

|E(∆Ŵn)|+ |E((∆Ŵn)
2)−∆t| ≤ K∆t1.5 (17)

where ∆Ŵn is the approximation to the original Gaussian random variable ∆Wn, which is zn here.
A weak order 0.5 approximation converges weakly to the Itô process in a rate proportional to ∆t1.5.
Hence, distributionally, we can focus on Itô process instead regarding stability analysis.

B PROOF DETAILS

Proof of Theorem 1. First, rewrite the parameter evolution equation (Eq. 4) as a shorthand expres-
sion:

dθt = µt dt+ σt dBt , (18)

where µt, σt are square-integrable. The sub-network U is a twice continuously differentiable func-
tion w.r.t. θt, denoted as Yt(ω) = Uθt . By Itô formula:

dYt =

d∑
i=1

∂Uθt

∂θi
dθi,t +

1

2

d∑
i,j=1

∂2Uθt

∂θiθj
dθi,tdθj,t

=

(
d∑

i=1

∂Uθt

∂θi
µi,t +

1

2

d∑
i=1

∂2Uθt

∂θ2i
σ2
i,t

)
dt+

(
d∑

i=1

∂Uθt

∂θi
σi,t

)
dBt

:= µ′
tdt+ σ′

t dBt .

(19)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Given a Brownian path ω in advance, Denote the solution at time t with initial condition Ys as
Tt(Ys)(ω). The Itô integral of the SDE gives the following stochastic integral equations for any
t1, t2 ≥ 0 and any initial Y0 almost surely:

Tt1+t2(Y0)(ω) =

∫ t1+t2

0

µ′
r dr +

∫ t1+t2

0

σ′
r dBr (ω) + Y0

Tt1(Y0)(ω) =

∫ t1

0

µ′
r dr +

∫ t1

0

σ′
r dBr (ω) + Y0

Tt2Tt1(Y0)(ω) = Tt2(Tt1(Y0)(ω))(ω)

=

∫ t1+t2

t1

µ′
r dr +

∫ t1+t2

t1

σ′
r dBr (ω) + Tt1(Y0)(ω)

(20)

It follows from the additive property of Itô integral that the solution operator T is a strong semigroup:

Tt1+t2(ω)(Y0) = Tt2Tt1(ω)(Y0) a.s., T0(ω)(Y0) = Y0 a.s. (21)

A strong equality implies a weak equality (Øksendal & Øksendal, 2003), therefore the solution also
satisfies weak semigroup property.

Proof of Theorem 3. Firstly, the task could be separated into two subtasks. We need to evaluate the
perturbation’s influence on θt and rt separately.

lim sup
t→∞

1

t
log ∥

[
εθt
εrt

]
∥ ≤ lim sup

t→∞

1

t
log ∥

[
εθt
0

]
∥+ lim sup

t→∞

1

t
log ∥

[
0
εrt

]
∥ (22)

Theorem 2 has already proved the stability of Eq.10:

lim sup
t→∞

1

t
log ∥εθt ∥ < 0 (23)

And hence ∃α > 0, T > 0, s.t. ∀t > T, ∥εθt ∥ ≤ e−αt.

As is proved in Liu et al. (2019), it is said that R∆ aligns with the assumptions if R does, which
means that ∥R∆(ε

θ
t , t)∥ ≤ L(∥εθt ∥ + 1). R∆ here is a scalar function, and the norm represents its

absolute value. Substituting the above equations into the SDE we will get:

dεrt
dt

= R∆(ε
θ
t , t) ≤ L(e−αt + 1) (24)

By integrating this simple ODE, we obtain an upper bound on the perturbation’s influence on rT :

εrt ≤ εr0 +

∫ t

0

L(e−αt + 1) dt = εr0 + Lt+
L

α
(1− e−αt) (25)

Substituting Eq.25 into the objective function, we can conclude that rt is almost surely exponentially
stable and thus prove that the solution to this SDE system is almost surely exponentially stable.

lim sup
t→∞

1

t
log ∥εrt∥ ≤ lim sup

t→∞

1

t
log ∥εr0 + Lt+

L

α
(1− e−αt)∥

≤ lim sup
t→∞

1

t
log |Lt| ≤ 0

(26)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Proof of Theorem 4. Firstly, since given continuous activation function, neural networks can gener-
ally be seen as continuous functions of network parameters, we can conclude that ∀ε, ∃εΘ, if ∥θe

t −
θt∥ < εΘ, then ∥Uθe

t
− Uθt∥ < ε.

Secondly, Theorem 3 proves a stricter version of stability of the evolution of Θt. Hence, given εΘ,
∃δΘ, if ∥Θe

0 − Θ0∥ < δΘ, then ∥Θe
t − Θt∥ < εΘ, and hence ∥θe

t − θt∥ < εΘ. Conclusively,
∀ε,∃δΘ, if ∥Θ0 −Θe

0∥ < δΘ, ∥Uθe
t
− Uθt∥ < ε. SINGER is stable during training.

Proof of Theorem 5. Firstly, we attempt to approximate the Gradient Descent (GD) with Bernoulli
noise as an SDE. GD could be represented as θn+1 = θn − η∇L(θn), where η is the learning rate.
If we drop random elements of the gradient, we can get the following formula:

θ0,n+1 = θ0,n − η∇L(θ0,n)⊙
γ0,n

p

= θ0,n − η∇L(θ0,n)− η∇L(θ0,n)⊙ (
γ0,n

p
− I)

(27)

If we make this representation continuous as in Appendix A, we can get the following SDE:

dθ0,τ = −η∇L(θ0,τ) dτ − η

√
1− p

p
∇L(θ0,τ) dBτ (28)

Given the conditions provided, Theorem 3 indicates that Eq.28 is stable. Following the proof in
Theorem 4, ∀δΘ,∃δ, if ∥Uθ0 − Uθe

0
∥ < δ, then ∥θe

0 − θ0∥ < δΘ. Since we always set r0 = 0,
∥Θe

0 −Θ0∥ < δΘ. In conclusion, SINGER is stable during testing.

C EQUATIONS AND EXPERIMENT SETTING DETAILS

C.1 BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS (BSDE) METHOD

The BSDE (Han et al., 2018) method reformulates certain partial differential equations (PDEs)
as backward stochastic differential equations (BSDEs), which can then be solved using numerical
methods. The general form of a BSDE is:

Yt = g(XT) +

∫ T

t

f(s,Xs, Ys, Zs) ds−
∫ T

t

Z⊤
s dWs,

where Xt represents the stochastic process, Yt and Zt are adapted processes, and g(XT) is the
terminal condition.

In our experiments, for each type of equation, we generate data by adjusting the terminal condition
function g(x) with different parameters. The BSDE solver is then used to solve these modified
equations, providing us with a dataset of triplets (t, x, upred), where t represents time, x is the state
variable of the PDE, and upred is the predicted solution at time t.

C.2 HAMILTON-JACOBI-BELLMAN LINEAR-QUADRATIC (HJB-LQ) EQUATION

C.2.1 EQUATION OVERVIEW

The Hamilton-Jacobi-Bellman (HJB) equation arises in control theory and describes the value func-
tion for an optimal control problem. In the classical linear-quadratic-Gaussian (LQG) control prob-
lem, the equation is given by:

∂u

∂t
(t, x) =

1

2
σ2∆u(t, x)− λ∥∇u(t, x)∥2, t ∈ [0, T], x ∈ Rd,

with the terminal condition u(T, x) = g(x).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

In our experiments, the terminal cost function is defined as:

g(x) = ln

(
1 + k · ∥x∥2

2

)
,

where k is the adjustable coefficient.

C.2.2 PARAMETER SETTINGS

In our experiments, the following parameters were used for solving the HJB-LQ equation and for
training the neural network to approximate the solution:

• Total time of the equation: total time = 0.4

• Number of time intervals for solving the PDE: num time interval = 20

• Range of the adjustable coefficient in the terminal condition g: k range = [0.5, 1.5]

• Parameters for fitting the generated data using the neural network:
– Number of iterations for fitting: fit n iter = 20,000
– Batch size during fitting: fit batch size = 64
– Threshold for stopping fitting based on loss: fit threshold = 1e-3

• Parameters for training the neural network using our method:
– Dropout rate during training: train dropout = 0.3
– Batch size during training: train batch size = 64
– Learning rate during training: train learning rate = 1e-4

C.3 REACTION-DIFFUSION EQUATION

C.3.1 EQUATION OVERVIEW

The reaction-diffusion equation models the behavior of a system undergoing both diffusion and
reaction processes. The equation is given by:

∂u

∂t
(t, x) =

1

2
∆u(t, x) + f(t, x, u,∇u), t ∈ [0, T], x ∈ Rd,

where the function f is defined as:

f(t, x, u,∇u) = min

1,

(
u− κ− 1− sin

(
λ

d∑
i=1

xi

)
e

λ2d(t−T)
2

)2
 ,

where λ is a constant representing the wave frequency, κ is a constant related to the initial conditions,
and T is the total time.

The terminal condition g(x) for this reaction-diffusion equation is defined as:

g(x) = 1 + κ+ sin

(
λ

d∑
i=1

xi

)
· k,

where k is the the adjustable coefficient.

C.3.2 PARAMETER SETTINGS

In our experiments, the following parameters were used for solving the reaction-diffusion equation
and training the neural network:

• Total time of the equation: total time = 0.6

• Number of time intervals for solving the PDE: num time interval = 30

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

• Range of the adjustable coefficient in the terminal condition g: k range = [0.5, 1.5]
• Parameters for fitting the generated data using the neural network:

– Number of iterations for fitting: fit n iter = 30,000
– Batch size during fitting: fit batch size = 64
– Threshold for stopping fitting based on loss: fit threshold = 1e-3

• Parameters for training the neural network using our method:
– Dropout rate during training: train dropout = 0.4
– Batch size during training: train batch size = 64
– Learning rate during training: train learning rate = 2e-4

C.4 BURGERS-TYPE EQUATION

C.4.1 EQUATION OVERVIEW

The Burgers-type equation is a fundamental partial differential equation that models various physical
phenomena such as fluid dynamics, gas dynamics, and traffic flow. The general form of the equation
is given by:

∂u

∂t
(t, x) =

1

2
σ2∆u(t, x) +

(
u− 2 + d

2d

) d∑
i=1

∂u

∂xi
, t ∈ [0, T], x ∈ Rd

The terminal condition g(x) for the Burgers-type equation is defined as:

g(x) = 1− 1

1 + exp
(
k · t+ 1

d

∑d
i=1 xi

) ,
where k is the the adjustable coefficient.

C.4.2 PARAMETER SETTINGS

In our experiments, the following parameters were used for solving the Burgers-type equation and
training the neural network to approximate the solution:

• Total time of the equation: total time = 0.3
• Number of time intervals for solving the PDE: num time interval = 30
• Range of the adjustable coefficient in the terminal condition g: k range = [0.8, 1.3]
• Parameters for fitting the generated data using the neural network:

– Number of iterations for fitting: fit n iter = 30,000
– Batch size during fitting: fit batch size = 64
– Threshold for stopping fitting based on loss: fit threshold = 1e-3

• Parameters for training the neural network using our method:
– Dropout rate during training: train dropout = 0.3
– Batch size during training: train batch size = 64
– Learning rate during training: train learning rate = 1e-4

C.5 PRICING DEFAULT RISK EQUATION

C.5.1 EQUATION OVERVIEW

The Pricing Default Risk equation is a variant of the Black-Scholes equation that models the pricing
of financial derivatives under default risk. The equation is given by:

∂u

∂t
(t, x) =

1

2
σ2x2∆u(t, x) + (−(1− δ) · piecewise linear(u)− r) · u, t ∈ [0, T], x ∈ Rd

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

where the piecewise linear term is expressed as:
piecewise linear(u) = ReLU(ReLU(u− vh) · slope + γh − γl) + γl,

where δ represents the recovery rate after default, r is the risk-free interest rate, vh is a threshold
parameter, γh and γl are constants representing the different regimes of the default intensity, and
slope determines the linear transition between regimes.

The terminal condition g(x) for the Pricing Default Risk equation is defined as:
g(x) = min(x) · k,

where k is the the adjustable coefficient.

C.5.2 PARAMETER SETTINGS

In our experiments, the following parameters were used for solving the Pricing Default Risk equation
and training the neural network to approximate the solution:

• Total time of the equation: total time = 0.2
• Number of time intervals for solving the PDE: num time interval = 20
• Range of the adjustable coefficient in the terminal condition g: k range = [0.5, 1.0]
• Parameters for fitting the generated data using the neural network:

– Number of iterations for fitting: fit n iter = 30,000
– Batch size during fitting: fit batch size = 64
– Threshold for stopping fitting based on loss: fit threshold = 1e-3

• Parameters for training the neural network using our method:
– Dropout rate during training: train dropout = 0.4
– Batch size during training: train batch size = 64
– Learning rate during training: train learning rate = 1e-4

C.6 SINE-GORDON EQUATION

C.6.1 EQUATION OVERVIEW

The Sine-Gordon equation is a second-order nonlinear partial differential equation frequently uti-
lized in the field theory, string theory, and solitons. The equation is given by:

∂u

∂t
(t, x) = ∆u(t, x) + sin(u(t, x)) t ∈ [0, T], x ∈ Rd

The terminal condition g(x) for Sine-Gordon equation is defined as:

g(x) =
5

10 + 2∥x∥2
.

C.6.2 PARAMETER SETTINGS

In our experiments, the following parameters were used for solving the Sine-Gordon equation and
training the neural network to approximate the solution:

• Total time of the equation: total time = 0.3
• Number of time intervals for solving the PDE: num time interval = 20
• Parameters for fitting the generated data using the neural network:

– Number of iterations for fitting: fit n iter = 5,000
– Batch size during fitting: fit batch size = 100
– Threshold for stopping fitting based on loss: fit threshold = 1e-3

• Parameters for training the neural network using our method:
– Dropout rate during training: train dropout = 0.1
– Batch size during training: train batch size = 100
– Learning rate during training: train learning rate = 1e-3

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

C.7 ALLEN-CAHN EQUATION

C.7.1 EQUATION OVERVIEW

The Allen-Cahn equation is reaction-diffusion equation that models various physical phenomena
such as phase separation, interfacial dynamics and pattern formation. The equation is given by:

∂u

∂t
(t, x) = ∆u(t, x) + u(t, x)− [u(t, x)]3 t ∈ [0, T], x ∈ Rd

The terminal condition g(x) for Allen-Cahn equation is defined as:

g(x) =
5

10 + 2∥x∥2
.

C.7.2 PARAMETER SETTINGS

In our experiments, the following parameters were used for solving the Allen-Cahn equation and
training the neural network to approximate the solution:

• Total time of the equation: total time = 0.3

• Number of time intervals for solving the PDE: num time interval = 20

• Parameters for fitting the generated data using the neural network:
– Number of iterations for fitting: fit n iter = 5,000
– Batch size during fitting: fit batch size = 100
– Threshold for stopping fitting based on loss: fit threshold = 1e-3

• Parameters for training the neural network using our method:
– Dropout rate during training: train dropout = 0.1
– Batch size during training: train batch size = 100
– Learning rate during training: train learning rate = 1e-3

D RELATED WORK ON NEURAL PDE SOLVERS IN LOW-DIMENSIONS

The neural-network-based approaches for low dimensional PDEs can be mainly divided into two
categories: physics-informed network and data-driven operator(Karniadakis et al., 2021). Specif-
ically, Physics-Informed Neural Networks (PINNs) (Raissi et al., 2019) leverage neural networks
to approximate the solution of a PDE and enforce boundary loss and PDE residual loss at a few
selected points. This approach has various extensions such as weak form De Ryck et al. (2024),
adaptive sample weight McClenny & Braga-Neto (2020) and integral loss (Saleh et al., 2023). These
methods may suffer from slow convergence and re-training requirements for new initial conditions.
Alternatively, DeepONet (Chen & Chen, 1995; Lu et al., 2021) leverages the universal approxi-
mation theorem of infinite-dimensional operators and directly fits the PDE solution operators in a
data-driven manner, solving a family of PDEs with a single model. However, this approach requires
a large amount of data for training and may not generalize well to new initial conditions. Physics-
informed neural operators (PINO) Li et al. (2024) is a hybrid approach incorporating data and PDE
residuals in the loss function. There exist many neural operators with other architectures, such
as Fourier transform layer (Li et al., 2020), and graph neural networks (GNNs)(Alet et al., 2019).
The existing GNN-based models describe irregular spacial grids and their relative position as graph
(Lötzsch et al., 2022; Horie & Mitsume, 2022; Bryutkin et al., 2024).

E FUTURE WORK AND BROAD IMPACT

Future work will explore extending this method to even higher dimensions and more complex sys-
tems (e.g. discontinuity), potentially incorporating additional techniques of data sampling and train-
ing. A potential limitation of our approach is the generalization among PDE parameters, which

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

could be addressed by incorporating parameters into the model inputs and modifying the training
loss.

Broader Impact: The proposed method has the potential to impact a wide range of scientific appli-
cations, including quantum mechanics, quantum chemistry and financial mathematics. The ability
to learn high-dimensional PDEs solution operator, instead of solving a single problem instance,
could lead to significant advancements in these fields. In addition, the generalization ability of the
proposed model might pave the way for pre-trained foundation models of high-dimensional PDEs.

20

	Introduction
	Related Work
	Methodology
	Motivation: Three Assumptions
	Formulation and Algorithm
	Theoretical Analysis

	Experiments
	Implementation Details
	Results and Discussion

	Conclusion
	Approximation of Dropout
	Proof details
	Equations and Experiment Setting Details
	Backward Stochastic Differential Equations (BSDE) Method
	Hamilton-Jacobi-Bellman Linear-Quadratic (HJB-LQ) Equation
	Equation Overview
	Parameter Settings

	Reaction-Diffusion Equation
	Equation Overview
	Parameter Settings

	Burgers-Type Equation
	Equation Overview
	Parameter Settings

	Pricing Default Risk Equation
	Equation Overview
	Parameter Settings

	Sine-Gordon Equation
	Equation Overview
	Parameter Settings

	Allen-Cahn Equation
	Equation Overview
	Parameter Settings

	Related work on Neural PDE Solvers in Low-Dimensions
	Future Work and Broad Impact

