
Under review as a conference paper at ICLR 2024

DISTRIBUTION SHIFT RESILIENT GNN VIA MIXTURE
OF ALIGNED EXPERTS

Anonymous authors
Paper under double-blind review

ABSTRACT

The ability of Graph Neural Networks (GNNs) to generalize to diverse and unseen
distributions holds paramount importance for real-world applications. However,
previous works mostly focus on addressing specific types of distribution shifts,
e.g., larger graph size or node degree, or inferring distribution shifts from data
environments, which is highly limited when confronted with nuanced distribution
shifts. For example, a node in a social graph may have both increased interactions
and features alternation, while its neighbor nodes may see different shifts. Failing
to consider such complex distribution shifts will largely hinder the generalization
effect in practice. Here we introduce GraphMETRO, a novel framework based
on a mixture-of-experts (MoE) architecture, enhancing GNN generalizability for
both node- and graph-level tasks. The core concept of GraphMETRO includes the
construction of a hierarchical architecture composed of a gating model and mul-
tiple expert models that are aligned in a common representation space. Specifi-
cally, the gating model identifies the significant mixture components that govern
the distribution shift on a node or graph instance. Each aligned expert produces
representations invariant to a type of mixture component. Finally, GraphMETRO
aggregates the representations from multiple experts to produce an invariant rep-
resentation w.r.t. the complex distribution shift for the prediction task. Moreover,
GraphMETRO provides interpretations on the distribution shift type via the gat-
ing model and offers insights into real-world distribution shifts. Through the sys-
tematic experiments, we validate the effectiveness of GraphMETRO which out-
performs Empirical Risk Minimization (ERM) by 4.6% averagely on synthetic
distribution shifts and achieves state-of-the-art performances on four real-world
datasets from GOOD benchmark, including a 67% and 4.2% relative improve-
ment over the best previous method on WebKB and Twitch datasets.

1 INTRODUCTION

While Graph Neural Networks (GNNs) (Hamilton et al., 2017; Kipf & Welling, 2017; Dwivedi
et al., 2023) excel when trained on data from specific domains (i.e., source data), their ability to
generalize to unseen data (i.e., target data) remains a critical concern (Knyazev et al., 2019; Zhang
et al., 2017). This challenge can be attributed to the intricate complexities of real-world graph
data, which can substantially deviate from the distribution of source data. Within this framework,
the ability to manage data from diverse distribution shifts emerges as a fundamental requisite for
applications that depend on GNNs, e.g., social networks (Berger-Wolf & Saia, 2006; Greene et al.,
2010) and recommendation systems (Ying et al., 2018), where unforeseen variations and novel graph
structures are common.

A line of previous research has focused on addressing specific types of distribution shifts. For
example, works have looked at distribution shifts related to graph size (Bevilacqua et al., 2021;
Buffelli et al., 2022; Yehudai et al., 2021), feature noise (Knyazev et al., 2019; Ding et al., 2021), and
node degree or local structure (Wu et al., 2022b; Gui et al., 2022), assuming that the target datasets
adhere to the corresponding type of distribution shift. However, these approaches are highly limited
as the distribution shift types could be multiple in the real-world datasets and may not be consistent
with the presumed distribution shifts. While previous invariant learning methods on graphs (Wu
et al., 2022c;a; Sui et al., 2023; Chen et al., 2022) is able to accommodate multiple distribution
shifts inferred from data environments, they focus on common patterns within each environment

1

Under review as a conference paper at ICLR 2024

 𝝓
𝟎.𝟒𝟓

0.08

𝟎.𝟑𝟕

𝒢

𝝃𝟑

𝝃𝟐
𝝃𝟏

𝓓𝒕

Avg. node degree ↑

Feature noise ↑

Graph size ↓

𝓓𝒔 0.05

𝒢 𝝃𝟐

 𝝃𝟏

 𝝃𝟎

 𝝃𝟑

Gating model

Encoder 𝒉

Agg.
𝝁

Classifier

𝑦||

(a) High-level concept of GraphMETRO.

𝟎.𝟒𝟓

0.08

𝟎.𝟑𝟕

𝒢

𝝃𝟑

𝝃𝟐
𝝃𝟏

𝓓𝒕

Avg. node degree ↑

Feature noise ↑

Graph size ↓

𝓓𝒔 0.05

𝒢 𝝃𝟐

 𝝃𝟏

 𝝃𝟎

 𝝃𝟑

Gating model

Encoder 𝒉

Agg.
𝝁

Classifier

𝑦|| 𝝓

𝛚

(b) Model architecture of GraphMETRO.

Figure 1: (a) This example shows three mixture components that controls graph distribution shifts,
i.e., feature noise, smaller graph size, and higher node degree. GraphMETRO’s goal is to generate in-
variant representation for the graph instance w.r.t. its exhibited distribution shifts. (b) GraphMETRO
employs a gating model to identify the significant mixture components that govern the distribution
shift on an instance and each expert produces representations invariant to a type of mixture compo-
nent. The resulting aggregated representation is then used for the prediction task.

and do not explicitly model the variety across node or graph instances. Consequently, models may
still fail to generalize when confronted with the alternative and nuanced distribution shifts.

The fundamental challenge is due to the multifaceted property of graph distribution shifts (Gui et al.,
2022), which may involve changes of individual node features, alterations in the local structures, and
transformations affecting the global or local pattern of the graph. For example, in a citation network,
both the feature-level shifts and structure-level changes can contribute to the target distribution shift.
And each type of the shift introduces its own unique set of complexities that require to be effectively
modeled. Moreover, it is crucial to recognize that the shifts can vary significantly among different
instances. For example, one user in a social graph might experience a decrease in interactions, while
another user might see a trend of engaging with a certain topic instead. These nuanced distribution
shifts play a vital role in accurately characterizing the dynamics of graph data.

As shown in Figure 1, we present a novel framework, GraphMETRO, to enhance model generaliz-
ability on both node- and graph-level tasks conditional on each instance. GraphMETRO decomposes
any distribution shift into several mixture components, each characterized by its own statistical prop-
erties. For example, in Figure 1a, the distribution shift on a graph instance is decomposed into two
mixture components controlling feature noise and graph size, respectively. We leverage a graph
extrapolation technique to construct these mixture components. Consequently, we break down the
generalization goal into two parts: (1) Inferring the distribution shift for an instance based on the
mixture components, instead of relying on environmental patterns, and (2) Addressing the distribu-
tion shift by mitigating the shifts influenced by individual mixture components.

We design a hierarchical architecture composed of a gating model and multiple expert models, in-
spired by the mixture-of-experts (MoE) architecture (Jordan & Jacobs, 1994). Specifically, as shown
in Figure 1b, the gating model processes an input graph to pinpoint the critical mixture components
that govern the given graph instance. Each expert model excels in generating invariant represen-
tations with respect to one kind of mixture component, while all of the experts are aligned in a
common representation space to ensure model compatibility. Subsequently, GraphMETRO com-
bines representations based on the weights and aligned expert outputs, yielding the final invariant
representations that are utilized for predictive tasks.

This process effectively generates invariant representation across multiple types of distribution shifts
corresponding to the mixture components, enhancing generalization and the model’s ability to make
more reliable predictions. To highlight, our method achieves the best performances on four real-
world datasets from GOOD benckmark (Gui et al., 2022), including both node and graph classifica-
tion datasets, where GraphMETRO exhibits a 67% relative improvement over the best baseline on
WebKB dataset (Pei et al., 2020). On synthetic datasets, our method outperforms Empirical Risk

2

Under review as a conference paper at ICLR 2024

Minimization (ERM) by 4.6% in average. Additionally, the gating model outputs the weights over
the mixture components indicating the distribution shifts posed on the node or graph instance, which
offers interpretations and insights into distribution shifts of unknown datasets.

The key benefits of GraphMETRO are as follows

• It provides a simple yet novel paradigm, which formulates graph generalization as inferring the
equivalent mixture as a proxy which is tackled to mitigate the distribution shifts.

• Through the proposed training framework, it effectively mitigates complex distribution shifts
which involves multiple and nuanced distribution shifts. and greatly improves GNN generaliz-
ability, achieving the state-of-the-art performance on both node and graph classification tasks.

• It provides interpretations about which distribution types occur in the data, offering insights into
the intricate nuances of real graph distributions.

2 RELATED WORKS

GNN Generalization. The prevailing invariant learning approaches assume that there exist an un-
derlying graph structure (i.e., subgraph) (Wu et al., 2022c; Li et al., 2022b;a; Yang et al., 2022; Sui
et al., 2022) or representation (Arjovsky et al., 2019; Wu et al., 2022a; Chen et al., 2022; Bevilacqua
et al., 2021; Zhang et al., 2022) that is invariant to different environments and / or causally related
to the label of a given instance. For example, Yang et al. (2022) explore molecule representation
learning in out-of-distribution (OOD) scenarios by directing the molecule encoder to utilize stable
and environment-invariant substructures relevant to the labels, and Sui et al. (2022) introduce causal
attention modules to identify key invariant subgraph features that can be described as causing the
graph label. Besides, Ma et al. (2021) is a theoretical work which studies GNN generalization and
examine model fairness, showing that the test subgroup’s distance from the training set impacts GNN
performance. However, this line of research focuses on group patterns without explicitly consider-
ing nuanced (instance-wise) distribution shifts, making its applicability limited. Similar to models
on other data modalities, GNN demonstrates resilience to data perturbations which incorporates
augmented views of graph data (Ding et al., 2022). Previous works have explored augmentation
w.r.t. graph sizes (Zhu et al., 2021; Buffelli et al., 2022; Zhou et al., 2022), local structures (Liu
et al., 2022), and feature metrics (Feng et al., 2020). Recently, Jin et al. (2023) proposed to adapt
testing graphs to graphs with preferably similar pattern as the training graphs. Although these tech-
niques enhance out-of-distribution performance, they may lead to a degradation in in-distribution
performance because of the GNN’s limited capacity to encode a broader distribution. Another line
of research uses attention mechanism to enhance generalization. For example, GSAT (Miao et al.,
2022) injects stochasticity to the attention weights to block label-irrelevant information. However,
Knyazev et al. (2019) shows that attention mechanism helps GNNs generalize only when the at-
tention is close to optimal. It is also worth mentioning that graph domain adaptation (Zhang et al.,
2019; Wu et al., 2020), different from the problem studied in this work, commonly relies on limited
labeled samples from target datasets for improved transferability. For instance, to generate domain
adaptive network embedding, DANE (Zhang et al., 2019) uses shared weight graph convolutional
networks and adversarial learning regularization, while UDA-GCN (Wu et al., 2020) employs atten-
tion mechanisms to merge global and local consistencies. Among all, our method introduces a new
class, which is built on top of an equivalent mixture for graph generalization to capture multiple and
nuanced distribution shifts. While previous graph generalization methods mostly focus on either
node- or graph-level task, GraphMETRO can be applied to both tasks.

Mixture-of-expert models. The applications on mixture-of-expert models (Jordan & Jacobs, 1994;
Shazeer et al., 2017) has largely focused on their efficiency and scalability (Fedus et al., 2022b;a;
Riquelme et al., 2021; Du et al., 2022), with a highlight on the image and language domains. For
image domain generalization, Li et al. (2023) focuses on neural architecture design and integrates
expert models with vision transformers to capture correlations on the training dataset that may ben-
efit generalization, where an expert is responsible for a group of similar visual attributes. For the
graph domain, differently motivated as our work, Wang et al. (2023) consider the experts as in-
formation aggregation models with varying hop sizes to capture different range of message passing,
which aims to improve model expressiveness on large-scale data. GraphMETRO is the first to design
a mixture-of-expert model specifically tailored to address graph distribution shifts, coupled with a
novel objective for producing invariant representations.

3

Under review as a conference paper at ICLR 2024

3 METHOD

Problem formulation. For simplicity, we consider a graph classification task and later extend the
application domain to general graph tasks. Consider a source distribution Ds and an unknown
target distribution Dt, we aim to learn a model fθ using Ds such that the model can achieve good
task performance in the target distribution. The standard approach is Empirical Risk Minimization
(ERM) , i.e.,

θ∗ = argmin
θ

E(G,y)∼Ds
L (fθ (G) , y) , (1)

where L denotes the loss function and y is the label of the graph G. It minimizes the average loss
among all examples in the source domain. The underlying assumption of ERM is that data from
source and target distribution are independently and randomly sampled from the same underlying
distribution (IID). However, the assumption can be easily broken especially for real-world datasets,
making θ∗ nonoptimal on the target distribution. Furthermore, an unknown shift in distribution from
the source to the target domain precludes the possibility of leveraging supervision during the model
training phase, thereby rendering the solution theoretically intractable.

3.1 MIXTURE COMPONENTS

To seek a more tractable solution, we propose the following informal assumption:

Assumption 1 (An Equivalent Mixture for Distribution Shifts) Let the distribution shift between
the source Ds and target Dt distributions be the result of an unknown intervention in the graph
formation mechanism. We assume that the resulting shift in Dt can be modeled by the selective
application of up to k out of K classes of stochastic transformations to each instance in the source
distribution Ds (k < K).

Assumption 1 essentially states that the distribution shifts (whatever they are) can be decomposed
into several mixture components of stochastic graph transformations. For example, on a social net-
work dataset, each mixture component can represent different patterns of user behavior or network
dynamics shifts. Specifically, one mixture component might correspond to increased user activity,
while another could signify a particular trend of interaction within a certain group of users. Such
mixture pattern is common and well-studied in the real-world network datasets (Newman, 2003;
Leskovec et al., 2005; 2007; Peel et al., 2017).

Thus, the assumption simplifies the problem by enabling the modeling of individual mixture compo-
nents constituting the shift, as well as their respective contributions to a more intricate distributional
shift. Previous works (Krueger et al., 2021; Wu et al., 2022c;a) infer such mixture components im-
plicitly from the source distribution, focusing on the variety across different data groups. However,
the graph distribution shifts could involve multiple and heterogeneous shifts, e.g., feature-level and
structure-level shifts, making it hard to distill the diverse mixture components from the source data.
Note that while this assumption may generally apply in practice, as observed later in the experi-
ments, we discuss scenarios that fall outside the scope of this assumption in Appendix F.

Graph extrapolation as mixture components. To construct the mixture components without the
constraint, we instead employ a data extrapolation technique based on the source data. In particular,
we introduce K independent classes of transform function, including random edge removal (Rong
et al., 2020), multihop subgraph sampling, and the addition of Gaussian feature noise, etc.. The i-th
class, governed by the i-th mixture component, defines a stochastic transformation τi that transforms
an input source graph G into a potentially distinct output graph τi(G), i = 1, . . . ,K. For instance, τi
can be defined to randomly remove edges with an edge dropping probability in the domain [0.3, 0.5].

We construct a set of stochastic transformations which covers the common graph distribution
shifts (Zhao et al., 2021). See Appendix B for the details. Based on the K classes of transform
function, we obtain K extrapolated datasets that depict the effects of the mixture components, which
we will use next to find the appropriate representation for the mixture observed in each test instance.

3.2 MIXTURE OF ALIGNED EXPERTS

In light of the mixture components, we decompose the generalization issue into two distinct facets:
(1) Estimating distribution shift on any instance as a function of the relevant mixture components,

4

Under review as a conference paper at ICLR 2024

and (2) Addressing the identified distribution shift by mitigating individual mixture components.
Inspired by the mixture-of-expert (MoE) architecture (Jordan & Jacobs, 1994), the core idea of
GraphMETRO is to build a hierarchical architecture composed of a gating model and multiple expert
models, where the gating model identifies the significant mixture components that control the given
instance and each expert produces representations invariant to one type of mixture component in
a common representation space. Finally, our architecture combines these representations into a
final representation, which is enforced by our training objective to be invariant to the stochastic
transformations within the mixture distribution.

The design of gating model. We introduce a GNN ϕ, which takes any graph as input and outputs
the weights w on the mixture components. These output weights serve as indicators, suggesting
the most probable mixture components from which the input graph originates. Thus, we regard
the model ϕ as the gating model to break down the distribution shift into a mixture of weighted
mixture components. For example, in Figure 1b, given an unseen graph with decreased graph size
and node feature noise, the gating model should assign large weights to the corresponding mixture
components while assigning small weights to the irrelevant ones, including the mixture component
that controls average node degree. Note that ϕ should be such that wi, the i-th component mixture
weight, strives to be sensitive to the stochastic transformation τi but insensitive to the application
of other stochastic transformations τj , j ̸= i. This way, determining whether the i-th component
mixture is present does not depend on other components.

The design of expert models. We aim to build K expert models each of which corresponds to a
mixture component. Formally, we denote an expert model as ξi : G → Rv , where v is the hidden
dimension and we use zi = ξi(G) to denote the output representation. An expert model should
essentially produce invariant representations (Pan et al., 2011) w.r.t. the distribution shift controlled
by the corresponding mixture component. However, it is difficult to make every expert an indepen-
dent function without aligning the expert outputs in a common representation space. Specifically,
each expert model may learn its own unique representation space, which could be incompatible with
those of other experts or result in loss of information. Moreover, aggregating representations in
separate spaces results in a mixture representation space with high variance. The classifier which
takes the combined representation as input, such as multi-layer perceptrons (MLPs), may struggle
to effectively capture the complex interactions and dependencies among these diverse representa-
tions. Thus, aligning the representation spaces of experts is necessary for ensuring compatibility
and facilitating stable model training.

To align the experts properly, we introduce the concept of referential invariant representation:

Definition 1 (Referential Invariant Representation) Let G be an input graph and let τ be an ar-
bitrary stochastic transform function, with domain and co-domain in the space of graphs. Let ξ0
be a model that encoders a graph into a representation. A referential invariant representation w.r.t.
the given τ is denoted as ξ∗(G), where ξ∗ is a function that maps the original data G to a high-
dimensional representation ξ∗(G) such that ξ0(G) = ξ∗(τ(G)) holds for every G ∈ supp(Ds),
where supp(Ds) denotes the support of Ds. And we refer to ξ0 as a reference model.

Thus, the representation space of the reference model serves as an intermediate to align different
experts, while each expert ξi has its own ability to produce invariant representations w.r.t. a stochastic
transform function τi, i = 1, . . . ,K. We include the reference model as a special “in-distribution”
expert model on the source data.

Further, we propose two architecture designs for the expert models. A straightforward way is to
construct (K + 1) GNN encoders which ensures the expressiveness when modeling the invariant
representations. However, this may increase the memory requirement on the computing resource
to approximately (K + 1) times that required for training a single model. An alternative approach
to reduce memory usage involves constructing a shared module, e.g., a GNN encoder, among the
expert models, coupled with a specialized module, e.g., an MLP, for each expert. This configuration
can largely reduce memory usage.

The MoE architecture. Given an instance, the gating model assign weights w ∈ RK+1 over the
expert models, indicating the distinct shift of the instance. The output weights being conditional
on the input instance enables the depiction of a complex target distribution shifts, where these shifts
vary across instances. Based on the inferred mixture components, we obtain the outputs of the expert
models which eliminates the effect of the corresponding distribution shifts. Then we compute the

5

Under review as a conference paper at ICLR 2024

final representation via aggregating the representations based on the gating outputs, i.e.,

h(G) = Aggregate({(ϕ(G)i, ξi(G)) | i = 0, 1, . . . ,K})

where h is the encoder of f . The aggregation function can be a weighted sum over the expert outputs
or a selection function that selects the output of the expert with maximum weight, e.g.,

h(G) =
K∑
i=0

Softmax(ϕ(G))i · ξi(G) = Softmax(w) · [z0, . . . , zK]T (2)

Consider the distribution shift is controlled by only one mixture component, i.e., k = 1, which is sig-
nified by the gating model, we can obtain h(τi(G)) = ξi(τi(G)) = ξi(G) = h(G) for i = 0, . . . ,K.
This indicates that h automatically produces invariant representations w.r.t. any one mixture compo-
nent out of the K mixture components, while the mixture component can still differ across difference
instances. For clarity, we define τ (k) as a joint stochastic transform function composed of any k or
less transform functions out of the K transform functions. We refer to the scenario where h pro-
duces invariant representations w.r.t. τ (k) as τ (k)-invariance. To extend k to higher order (k > 1), we
design objective in Section 3.3 which enforces h to satisfy to τ (k)-invariance. Thus, the representa-
tions used for the prediction task are invariant to τ (k), which further guarantees model generalization
under the scope of the distribution shifts covered by τ (k). Finally, a classifier µ, e.g., an MLP, takes
the aggregated representation for the prediction task, and we have f = µ ◦ h.

3.3 TRAINING OBJECTIVE

As shown in Figure 1b, we consider three trainable modules, i.e., the gating model ϕ, the experts
models {ξi}Ki=0, and the classifier µ. Note that the encoder h defined in Equation 2 includes the
gating model and the experts. Overall, we optimize them via

min
θ

Lf = min
θ

E(G,y)∼Ds
Eτ(k){BCE(ϕ(τ (k)(G)), Y (τ (k))) +

CE(µ(h(τ (k)(G)), y)) + λ · d(h(τ (k)(G)), ξ0(G))} (3)

where Y (τ (k)) ∈ {0, 1}K+1 is the ground truth vector, and its i-th element is 1 if and only if τi
composes τ (k). BCE and CE are the Binary Cross Entropy and Cross Entropy function, respec-
tively. d(·, ·) is a distance function between two representations, λ is a parameter controlling the
strength of distance penalty. In the experiments, we use Frobenius norm as the distance function,
i.e., d(z1, z2) = 1

n∥z1 − z2∥F = 1
n

√∑n
i=1(z1i − z2i)2, and use λ = 1 for all the experiments.

Specifically, the gating model ϕ is optimized via the first loss term, which aims to improve its ac-
curacy in predicting the distribution shift types. Since the task of the gating model is to identify the
significant mixture components, we set apart the other loss terms from backpropagating to it to avoid
interference with the training of the gating model. The second loss term aims to improve the accu-
racy of the encoder output in predicting the graph class. For the third term d(h(τ (k)(G)), ξ0(G)),
when τ (k) is only composed of one type of transform function, it aligns the representation spaces
of ξi (i > 1) with the reference model ξ0, which fulfills the condition of referential invariant rep-
resentations. When τ (k) is composed of multiple types of transform functions, it enforces h to be
τ (k)-invariant, i.e., the output representations are invariant w.r.t. the stochastic transform function.

We optimize the objective via stochastic gradient descent, where τ (k) is sampled at each gradient
step. Therefore, our GraphMETRO framework yields a MoE model, which comprises a gating
model with high predictive accuracy, and expert models that are aligned and can generate invariant
representations in a shared representation space, and a task-specific classifier that utilizes robust and
invariant representations for class prediction.

3.4 DISCUSSION AND ANALYSIS

Node classification tasks. While GraphMETRO mainly focuses on graph classification, it is readily
adaptable for node classification. Instead of generating graph-level features, GraphMETRO can
produce node-specific invariants. We use transform functions on a graph and identify the distribution
shift for each node as mixture components, which is consistent with the objective in Equation 3.

6

Under review as a conference paper at ICLR 2024

Figure 2: Accuracy on synthetic distribution shifts. The first row is the testing accuracy on dis-
tribution shifts created from single tranformations. We label the distribution by the clockwise order.
The second row is the testing accuracy on distribution shifts created from compositional tranforma-
tions, where each testing distribution is a composition of two different transformations. For example,
(1, 5) denotes a testing distribution where each graph is transformed from the composition of ran-
dom subgraph (1) and noisy feature (5) transformations. See Appendix E for the numerical results.

Intepretability. The gating model of GraphMETRO predicts the mixture components indicating
the distribution shifts posed on the node or graph instance. This offers interpretations and insights
into distributions shifts of unknown datasets. In contrast, the prevailing research on GNN general-
ization (Wu et al., 2022c; Miao et al., 2022; Chen et al., 2022; Wu et al., 2022a) often lacks proper
identification and analysis of distribution shifts prevalent in real-world datasets. This missing piece
results in a gap between human understanding on the graph distribution shifts and the actual dis-
tribution dynamics. To fill the gap, we provide an in-depth study in the experiments to show the
insights of GraphMETRO into the intricate nuances of real graph distributions.

Computational cost. Consider the scenario where we use an individual encoder for each expert.
The forward process of f involves O(K) forward times using the weighted sum aggregation (or
O(1) if using the maximum selection). Since we extend the dataset to (K +1) times larger than the
original data, the computation complexity is O(K2|Ds|) , where |Ds| is the size of source dataset.

4 EXPERIMENTS
In this section, we perform comprehensive experiments on both synthetic (Section 4.1) and real-
world datasets (Section 4.2) to validate the generalizability of GraphMETRO across diverse distri-
bution shifts. Subsequently, we extract insights from the underlying mechanisms of GraphMETRO
in Section 4.4 and demonstrate how our method interprets distribution shifts in real-world datasets.

4.1 INVESTIGATING GRAPHMETRO VIA SYNTHETIC EXPERIMENTS

We initiate our study via a synthetic study to validate the effectiveness of our method.
Datasets. We use graph datasets from citation and social networks. For node classification tasks,
we use DBLP (Fu et al., 2020) and CiteSeer (Yang et al., 2016). For graph classification tasks, we
use REDDIT-BINARY and IMDB-MULTI (Morris et al., 2020). We include the dataset processing
and details of the transform functions in Appendix A due to space limitation.

Training and evaluation. We adopt the same encoder architecture for Empirical Risk Minimization
(ERM), ERM with data augmentation (ERM-Aug), and the expert models of GraphMETRO. For the
training of ERM-Aug, we augment the training datasets using the same transform functions we used
to construct the testing environments. Finally, we select the model based on the in-distribution
validation accuracy and report the testing accuracy on each environment from five trials. See Ap-
pendix A for the detailed settings and hyperparameters.

Figure 2 illustrates our model’s performance across single (the first row) and compositional transfor-
mations (the second row). In most test scenarios, GraphMETRO exhibits significant improvements
or performs on par with two other methods. Notably, on the IMDB-MULTI dataset with noisy node
features, GraphMETRO outperforms ERM-Aug by 5.9%, and it enhances performance on DBLP

7

Under review as a conference paper at ICLR 2024

Node classification Graph classification Require domain
informationWebKB Twitch Twitter SST2

ERM 14.29 ± 3.24 48.95 ± 3.19 56.44 ± 0.45 80.52 ± 1.13 No
DANN 15.08 ± 0.37 48.98 ± 3.22 55.38 ± 2.29 80.53 ± 1.40 No
IRM 13.49 ± 0.75 47.21 ± 0.98 55.09 ± 2.17 80.75 ± 1.17 Yes
VREx 14.29 ± 3.24 48.99 ± 3.20 55.98 ± 1.92 80.20 ± 1.39 Yes
GroupDRO 17.20 ± 0.76 47.20 ± 0.44 56.65 ± 1.72 81.67 ± 0.45 Yes
Deep Coral 13.76 ± 1.30 49.64 ± 2.44 55.16 ± 0.23 78.94 ± 1.22 Yes

SRGNN 13.23 ± 2.93 47.30 ± 1.43 NA NA Yes
EERM 24.61 ± 4.86 51.34 ± 1.41 NA NA No
DIR NA NA 55.68 ± 2.21 81.55 ± 1.06 No
GSAT NA NA 56.40 ± 1.76 81.49 ± 0.76 No
CIGA NA NA 55.70 ± 1.39 80.44 ± 1.24 No

GraphMETRO 41.11 ± 7.47 53.50 ± 2.42 57.24 ± 2.56 81.87 ± 0.22 No

Table 1: Test results on the real-world datasets. We use ROC-AUC as the evaluation metric on
Twitch dataset and Accuracy on the others. Each result of GraphMETRO is repeated five times.

by 4.4% when dealing with random subgraph sampling. In some instances, GraphMETRO even
demonstrates improved results on ID datasets, such as a 2.9% and 2.0% boost on Reddit-BINARY
and DBLP, respectively. This might be attributed to slight distribution shifts in the randomly split
testing datasets or the increased model width enabled by the MoE architecture, enhancing the ex-
pressiveness on the tasks.

4.2 APPLYING GRAPHMETRO TO REAL-WORLD DATASETS

Following our synthetic study, we proceeded to perform experiments on real-world datasets, which
introduced more complex and natural distribution shifts. In these scenarios, the testing distribution
might not precisely align with the mixture mechanism encountered during training.

Datasets. We use four classification datasets, i.e., WebKB (Pei et al., 2020), Twitch (Rozemberczki
& Sarkar, 2020), Twitter (Yuan et al., 2023), and GraphSST2 (Yuan et al., 2023; Socher et al.,
2013) with the same train-val-test split from the GOOD benchmark (Gui et al., 2022), which exhibit
various real-world distribution shifts.

Baselines. We use ERM and domain generalization baselines including DANN (Ganin et al., 2016),
IRM (Arjovsky et al., 2019), VREx (Krueger et al., 2021), GroupDRO (Sagawa et al., 2019), Deep
Coral (Sun & Saenko, 2016). Moreover, we compare GraphMETRO with robustness / generaliza-
tion techniques developed for GNNs, including DIR (Wu et al., 2022c), GSAT (Miao et al., 2022)
and CIGA Chen et al. (2022) for graph classification tasks, and SR-GCN (Zhu et al., 2021) and
EERM (Wu et al., 2022a) for node classification task.

Training and evaluation. We summarize the architectures and optimizer in Appendix A. Also, we
use an individual GNN encoder as the expert architecture for the experiments in the main paper
and include the results of designing a shared module among experts in Appendix C, due to space
limitation. For evaluation metrics, we use ROC-AUC on Twitch and classification accuracy on the
other datasets following Gui et al. (2022).

In Table 1, we observe that GraphMETRO consistently outperforms the baseline models across all
datasets. It achieves remarkable improvements of 67.0% and 4.2% relative to EERM on the WebKB
and Twitch datasets, respectively. When applied to graph classification tasks, GraphMETRO shows
notable improvements, as the baseline methods exhibit similar performance levels. Importantly,
GraphMETRO can be applied to both node- and graph-level tasks, whereas many graph-specific
methods designed for generalization are limited to one of these tasks. Additionally, GraphMETRO
does not require any domain-specific information during training, e.g., the group labels on training
instances, distinguishing it from methods like SRGNN.

The observation that GraphMETRO being the best-performing method demonstrates its significance
for real-world applications since it excels in handling unseen and wide-ranging distribution shifts.
This adaptability is crucial as real-world graph data often exhibit unpredictable shifts that can impact
model performance. Thus, GraphMETRO’ versatility ensures its reliability across diverse domains,

8

Under review as a conference paper at ICLR 2024

����
�����

����
����

����
��
����

����
�

����
����

��

����
������

����
�

�

�

�

�

�
���

���

���

���

(a) An example of invariance matrix

Noisy feature Drop node Add edges Drop edges Random subgraph
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Pr
ob

ab
ilit

y

WebKB
Twitch

(b) Probability distribution on the testing distribution
shifts

Figure 3: (a) Invariance matrix on the Twitter dataset. Smaller values (lighter colors) indicate higher
invariance of representation produced by each expert w.r.t. the corresponding stochastic transform
function. (b) Probability distribution predicted by the gating function averaged over the testing
instances. Higher probability indicates a potential strong component on the testing distribution.

safeguarding performance in complex real-world scenarios. In Appendix D, we also provide a study
about the impact of the stochastic transform function choices on the model performance to analyze
the sensitivity and success of GraphMETRO.

4.3 INVARIANCE MATRIX FOR INSPECTING GRAPHMETRO

A key insight from GraphMETRO is that each expert excels in generating invariant representations
concerning a stochastic transform function. To delve into the modeling mechanism, we define an
invariance matrix denoted as I ∈ RK×K . This matrix quantifies the sensitivity of expert ξi to the
stochastic transform function τj . Specifically, for i ∈ [K] and j ∈ [K], we have

Iij = EG∼DsEτj [d(ξi(τj(G)), ξ0(G))]
Ideally, for a given transform function, the representation produced by the corresponding expert
should be most similar to the representation produced by the reference model. Therefore, we an-
ticipate the the diagonal entries Iii to be smaller than the off-diagonal entries Iij for j ̸= i and
i = 1, . . . ,K. In Figure 3a, we visualize the normalized invariance matrix computed for the Twitter
dataset, revealing a pattern that aligns with our expectations. This demonstrates how GraphMETRO
effectively adapts to various distribution shifts, indicating that our approach generates consistent
invariant representations for specific transformations through the experts’ contributions.

4.4 DISTRIBUTION SHIFT DISCOVERY

After obtaining the trained MoE model, we aim to understand the distribution shifts in the testing
data. Using the gating model’s output weights, each corresponding to a distinct human-interpretable
shift, we investigate unseen graph mixtures. We conducted specific case studies on the WebKB
and Twitch datasets due to their substantial performance improvements. Specifically, we trained the
gating model for multitask binary classification with (K + 1) classes, achieving high accuracies of
92.4% on WebKB and 93.8% on Twitch datasets. When testing with an unknown shift, we computed
the gating function’s average outputs, revealing global probability distributions indicating shifts. On
WebKB, increased edges dominate, while Twitch shows shifts in user language-based node features
and fewer nodes. These align with dataset structures: WebKB’s diverse university domains and
Twitch’s language-based user segmentation. Quantitatively validating these observations in complex
graph distributions remains a challenge. Future work aims to explore these complexities, offering
insights into shifts influenced by temporal or physical dynamics in graph datasets.

5 CONCLUSION

This work focuses on the application of graph generalization approaches for diverse, unknown, and
inherently complex distribution shifts. We regard graph distribution shifts, by nature, as a mixture of
components, where each component has its unique complexity to control the direction of shifts. And
we introduce a novel mixture of aligned experts to solve the distribution shift challenge, coupled with
an objective to ensure the resulting aggregated representations remain invariant. Our experiments
demonstrate significant performance improvements of our method (ours) across synthetic and real-
world datasets, showcasing its ability to identify different distribution. For future works, we discuss
detailed directions in Appendix F, including extending GraphMETRO to domain adaptation settings.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
arXiv preprint arXiv:1907.02893, 2019.

Tanya Y. Berger-Wolf and Jared Saia. A framework for analysis of dynamic social networks. In
SIGKDD, 2006.

Beatrice Bevilacqua, Yangze Zhou, and Bruno Ribeiro. Size-invariant graph representations for
graph classification extrapolations. In ICML, 2021.

Davide Buffelli, Pietro Lió, and Fabio Vandin. Sizeshiftreg: a regularization method for improving
size-generalization in graph neural networks. In NeurIPS, 2022.

Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Aréchiga, and Tengyu Ma. Learning imbalanced
datasets with label-distribution-aware margin loss. In NeurIPS, 2019.

Yongqiang Chen, Yonggang Zhang, Yatao Bian, Han Yang, Kaili Ma, Binghui Xie, Tongliang Liu,
Bo Han, and James Cheng. Learning causally invariant representations for out-of-distribution
generalization on graphs. In NeurIPS, 2022.

Kaize Ding, Zhe Xu, Hanghang Tong, and Huan Liu. Data augmentation for deep graph learning:
A survey. SIGKDD, 2022.

Mucong Ding, Kezhi Kong, Jiuhai Chen, John Kirchenbauer, Micah Goldblum, David Wipf, Furong
Huang, and Tom Goldstein. A closer look at distribution shifts and out-of-distribution generaliza-
tion on graphs. In NeurIPS DistShift, 2021.

Nan Du, Yanping Huang, Andrew M. Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, Barret Zoph, Liam Fedus, Maarten P. Bosma,
Zongwei Zhou, Tao Wang, Yu Emma Wang, Kellie Webster, Marie Pellat, Kevin Robinson, Kath-
leen S. Meier-Hellstern, Toju Duke, Lucas Dixon, Kun Zhang, Quoc V. Le, Yonghui Wu, Zhifeng
Chen, and Claire Cui. Glam: Efficient scaling of language models with mixture-of-experts. In
ICML, 2022.

Vijay Prakash Dwivedi, Chaitanya K. Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. Benchmarking graph neural networks. J. Mach. Learn. Res., 2023.

William Fedus, Jeff Dean, and Barret Zoph. A review of sparse expert models in deep learning.
abs/2209.01667, 2022a.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. J. Mach. Learn. Res., 2022b.

Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang, Evgeny
Kharlamov, and Jie Tang. Graph random neural networks for semi-supervised learning on graphs.
In NeurIPS, 2020.

Xinyu Fu, Jiani Zhang, Ziqiao Meng, and Irwin King. MAGNN: metapath aggregated graph neural
network for heterogeneous graph embedding. In WWW, 2020.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural net-
works. The journal of machine learning research, 2016.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry. In ICML, 2017.

Derek Greene, Dónal Doyle, and Padraig Cunningham. Tracking the evolution of communities in
dynamic social networks. In ASONAM, 2010.

Shurui Gui, Xiner Li, Limei Wang, and Shuiwang Ji. GOOD: A graph out-of-distribution bench-
mark. In NeurIPS, 2022.

10

Under review as a conference paper at ICLR 2024

William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In NeurIPS, 2017.

Wei Jin, Tong Zhao, Jiayuan Ding, Yozen Liu, Jiliang Tang, and Neil Shah. Empowering graph
representation learning with test-time graph transformation. In ICLR, 2023.

Michael I. Jordan and Robert A. Jacobs. Hierarchical mixtures of experts and the EM algorithm.
Neural Comput., 1994.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In ICLR, 2017.

Boris Knyazev, Graham W. Taylor, and Mohamed R. Amer. Understanding attention and general-
ization in graph neural networks. In NeurIPS, 2019.

David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Dinghuai
Zhang, Remi Le Priol, and Aaron Courville. Out-of-distribution generalization via risk extrapo-
lation (REx). In ICML, 2021.

Jure Leskovec, Jon M. Kleinberg, and Christos Faloutsos. Graphs over time: densification laws,
shrinking diameters and possible explanations. In SIGKDD. ACM, 2005.

Jure Leskovec, Jon M. Kleinberg, and Christos Faloutsos. Graph evolution: Densification and
shrinking diameters. ACM Trans. Knowl. Discov. Data, 2007.

Bo Li, Yifei Shen, Jingkang Yang, Yezhen Wang, Jiawei Ren, Tong Che, Jun Zhang, and Ziwei Liu.
Sparse mixture-of-experts are domain generalizable learners. In ICLR, 2023.

Haoyang Li, Ziwei Zhang, Xin Wang, and Wenwu Zhu. Learning invariant graph representations
for out-of-distribution generalization. In NeurIPS, 2022a.

Sihang Li, Xiang Wang, An Zhang, Yingxin Wu, Xiangnan He, and Tat-Seng Chua. Let invariant
rationale discovery inspire graph contrastive learning. In ICML, 2022b.

Songtao Liu, Rex Ying, Hanze Dong, Lanqing Li, Tingyang Xu, Yu Rong, Peilin Zhao, Junzhou
Huang, and Dinghao Wu. Local augmentation for graph neural networks. In ICML, 2022.

Jiaqi Ma, Junwei Deng, and Qiaozhu Mei. Subgroup generalization and fairness of graph neural
networks. In NeurIPS, 2021.

Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh Rawat, Himanshu Jain, Andreas Veit, and
Sanjiv Kumar. Long-tail learning via logit adjustment. In ICLR, 2021.

Siqi Miao, Mia Liu, and Pan Li. Interpretable and generalizable graph learning via stochastic atten-
tion mechanism. ICML, 2022.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. In ICML
2020 Workshop on Graph Representation Learning and Beyond (GRL+ 2020), 2020. URL www.
graphlearning.io.

M. E. J. Newman. Mixing patterns in networks. Phys. Rev. E, 67:026126, Feb 2003.

Sinno Jialin Pan, Ivor W. Tsang, James T. Kwok, and Qiang Yang. Domain adaptation via transfer
component analysis. IEEE Trans. Neural Networks, 2011.

Leto Peel, Jean-Charles Delvenne, and Renaud Lambiotte. Multiscale mixing patterns in networks.
2017.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. ICLR, 2020.

Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, André Su-
sano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision with sparse mixture of experts. In
NeurIPS, 2021.

11

www.graphlearning.io
www.graphlearning.io

Under review as a conference paper at ICLR 2024

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. In ICLR, 2020.

Benedek Rozemberczki and Rik Sarkar. Characteristic functions on graphs: Birds of a feather, from
statistical descriptors to parametric models. In CIKM, 2020.

Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust
neural networks for group shifts: On the importance of regularization for worst-case generaliza-
tion. arXiv preprint arXiv:1911.08731, 2019.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc V. Le, Geoffrey E. Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
In ICLR, 2017.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Y. Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In EMNLP, 2013.

Yongduo Sui, Xiang Wang, Jiancan Wu, Min Lin, Xiangnan He, and Tat-Seng Chua. Causal atten-
tion for interpretable and generalizable graph classification. In SIGKDD, 2022.

Yongduo Sui, Xiang Wang, Jiancan Wu, An Zhang, and Xiangnan He. Unleashing the power of
graph data augmentation on covariate distribution shift. In NeurIPS, 2023.

Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation. In
ECCV, 2016.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. ICLR, 2018.

Haotao Wang, Ziyu Jiang, Yan Han, and Zhangyang Wang. Graph mixture of experts: Learning on
large-scale graphs with explicit diversity modeling. 2023.

Man Wu, Shirui Pan, Chuan Zhou, Xiaojun Chang, and Xingquan Zhu. Unsupervised domain
adaptive graph convolutional networks. In WWW, 2020.

Qitian Wu, Hengrui Zhang, Junchi Yan, and David Wipf. Handling distribution shifts on graphs: An
invariance perspective. In ICLR, 2022a.

Qitian Wu, Hengrui Zhang, Junchi Yan, and David Wipf. Handling distribution shifts on graphs: An
invariance perspective. In ICLR, 2022b.

Ying-Xin Wu, Xiang Wang, An Zhang, Xiangnan He, and Tat seng Chua. Discovering invariant
rationales for graph neural networks. In ICLR, 2022c.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICLR, 2019.

Nianzu Yang, Kaipeng Zeng, Qitian Wu, Xiaosong Jia, and Junchi Yan. Learning substructure
invariance for out-of-distribution molecular representations. In NeurIPS, 2022.

Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning
with graph embeddings. In ICML, 2016.

Gilad Yehudai, Ethan Fetaya, Eli A. Meirom, Gal Chechik, and Haggai Maron. From local structures
to size generalization in graph neural networks. In ICML, 2021.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-scale recommender systems. In KDD.
ACM, 2018.

Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. Explainability in graph neural networks: A
taxonomic survey. IEEE Trans. Pattern Anal. Mach. Intell., 2023.

12

Under review as a conference paper at ICLR 2024

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. In ICLR, 2017.

Yizhou Zhang, Guojie Song, Lun Du, Shuwen Yang, and Yilun Jin. DANE: domain adaptive net-
work embedding. In IJCAI, 2019.

Zeyang Zhang, Xin Wang, Ziwei Zhang, Haoyang Li, Zhou Qin, and Wenwu Zhu. Dynamic graph
neural networks under spatio-temporal distribution shift. In NeurIPS, 2022.

Tong Zhao, Yozen Liu, Leonardo Neves, Oliver J. Woodford, Meng Jiang, and Neil Shah. Data
augmentation for graph neural networks. AAAI, 2021.

Yangze Zhou, Gitta Kutyniok, and Bruno Ribeiro. OOD link prediction generalization capabilities
of message-passing gnns in larger test graphs. In NeurIPS, 2022.

Qi Zhu, Natalia Ponomareva, Jiawei Han, and Bryan Perozzi. Shift-robust gnns: Overcoming the
limitations of localized graph training data. NeurIPS, 34, 2021.

13

Under review as a conference paper at ICLR 2024

A EXPERIMENTAL DETAILS

Open-source code claim. All of the codes including dataset processing procedures, model con-
struction, and training pipeline will be made public.

Experimental settings on synthetic datasets. We randomly split the original dataset into training
(80%), validation (20%), and testing (20%) subsets. We consider the transformations when k = 2,
i.e., τ (2), which includes the single types of the transform functions and the composition of two
different transform functions. For the compositions, we exclude the trivial combination, i.e., adding
edges and dropping edges, and the combination that is likely to render empty graph, i.e., random
subgraph sampling and dropping nodes. Then, we apply the transform functions on the testing
datasets to create multiple variants as the testing environments.

Model architecture and optimization. We summarize the model architecture and hyperparameters
on synthetic experiments (Section 4.1) in Table 2. We use an Adam optimizer with wight decay 0.0.
The encoder (backbone) architecture including number of layers and hidden dimension are searched
based on the validation performance on an ERM model, and then fixed for each encoder during the
training of GraphMETRO.

Node classification Graph classification

DBLP CiteSeer IMDB-MULTI REDDIT-BINARY

Backbone Graph Attention Networks (GAT) (Veličković et al., 2018)

Activation PeLU
Dropout 0.0

Number of layers 3 3 2 2
Hidden dimension 64 32 128 128

Global pool NA NA global add pool global add pool

Epoch 100 200 100 100
Batch size NA NA 32 32

ERM Learning rate 1e-3 1e-3 1e-4 1e-3
GraphMETRO Learning rate 1e-3 1e-3 1e-4 1e-3

Table 2: Architecture and hyperparameters on synthetic experiments

For the real-world datasets, we adopt the same encoder and classifier from the implementation of
GOOD benchmark1. Results of the baseline methods except for Twitter (which is recently added
to the benchmark) are reported by the GOOD benchmark. We summarize the architecture and
hyperparameters we used as follows

Node classification Graph classification

WebKB Twitch Twitter SST2

Backbone Graph Convolutional Network Graph Isomorphism Network (Xu et al., 2019)
(Kipf & Welling, 2017) w/ Virtual node (Gilmer et al., 2017)

Activation ReLU
Dropout 0.5

Number of layers 3
Hidden dimension 300

Global pool NA NA global mean pool global mean pool

Epoch 100 100 200 200
Batch size NA NA 32 32

ERM Learning rate 1e-3 1e-3 1e-3 1e-3
GraphMETRO Learning rate 1e-2 1e-2 1e-3 1e-3

Table 3: Architecture and hyperparameters on real-world datasets

1https://github.com/divelab/GOOD/tree/GOODv1

14

https://github.com/divelab/GOOD/tree/GOODv1

Under review as a conference paper at ICLR 2024

For all of the datasets, we conduct grid search for the learning rates of GraphMETRO due to its
different architecture compared to traditional GNN models, where GraphMETRO has multiple GNN
encoders served as the expert modules.

B STOCHASTIC TRANSFORM FUNCTIONS

We built a library consists of 11 stochastic transform functions on top of PyG2, and we used 5 of
them in our synthetic experiments for demonstration. Note that each function allows one or more
hyperparameters to determine the impact of shifts, e.g., the probability in a Bernoulli distribution of
dropping edges, where certain amount of randomness remains in each stochastic transform function.

stochastic_transform_dict = {

’mask_edge_feat’: MaskEdgeFeat(p, fill_value),
’noisy_edge_feat’: NoisyEdgeFeat(p),
’edge_feat_shift’: EdgeFeatShift(p),
’mask_node_feat’: MaskNodeFeat(p, fill_value),
’noisy_node_feat’: NoisyNodeFeat(p),
’node_feat_shift’: NodeFeatShift(p),
’add_edge’: AddEdge(p),
’drop_edge’: DropEdge(p),
’drop_node’: DropNode(p),
’drop_path’: DropPath(p),
’random_subgraph’: RandomSubgraph(k)

}

We also note that there is an impact on the model performance with different sets or numbers of
transform functions. Specifically, we use stochastic transform functions as the basis of the decom-
posed target distribution shifts. Ideally, the transform functions should be diverse and covers differ-
ent potential aspects of distribution shifts. However, using a large number of transform functions
poses higher expressiveness demand on the gating model, which is required to distinguish differ-
ent transformed graphs. Moreover, it could also result in an increasing computational costs as the
parameter size increases with the number of experts or base transform functions. We include an
ablation study in Appendix D to further validate the analysis.

In the practice, we found that the stochastic transform functions works effectively on the real-world
datasets, which might indicate their representativeness on the distribution shifts. We believe it would
be intriguing to further explore the common base transform functions in the real-world shift in the
aid to reconstruct a complex distribution shift.

C DESIGN CHOICES OF THE EXPERT MODELS

WebKB Twitch Twitter SST2

GraphMETRO 41.11 53.50 57.24 81.87
GraphMETRO (Shared module) 29.05 52.77 57.15 81.71

Table 4: Experiment results on comparing different design choices of the expert models.

In the main paper, we discussed the design choices in expert models, highlighting the potential
trade-off between model expressiveness and memory utilization. In this section, we delve deeper
into various design options and their impact on model performance. Specifically, we investigate
a configuration where multiple experts share a GNN encoder while possessing individual MLPs
for customizing their output representations derived from the shared module. Our findings and
comparative results are presented in Table 4.

2https://github.com/pyg-team/pytorch_geometric

15

https://github.com/pyg-team/pytorch_geometric

Under review as a conference paper at ICLR 2024

Notably, our experiments reveal a decrease in model performance. We attribute these performance
declines to a potential limitation in the expressiveness of the customized module. This limitation
may hinder the module’s ability to align with the reference model while simultaneously ensuring
that the experts remain invariant to their respective mixture components. This phenomenon draws
parallels with data augmentation approaches, as “being invariant to every distribution shifts” using
one module may be insufficient. Nevertheless, employing a shared module for the experts continues
to yield superior results compared to the baseline models in Table 1. These improvements can be
attributed to two key factors: firstly, the selective mechanism of the gating model, which effectively
identifies and employs more relevant experts to address distribution shifts; secondly, our designed
objective function, which guarantees the generation of invariant representations.

D STUDY ON THE CHOICE OF TRANSFORM FUNCTIONS

(a) WebKB (b) Twitter

Figure 4: The impact of transform function choices on model performance. Note that each number
of transform functions corresponds to a particular set of transform functions.

We investigate how the choices of stochastic transform functions affects the performance of Graph-
METRO, ranging from 2 to 7 functions. These functions are considered sequentially in the following
order:

[noisy_node_feat, add_edge, drop_edge, drop_node,
random_subgraph, drop_path, node_feat_shift]

where we take the first n transform functions and their paired combinations (exclude trivial com-
binations like adding edge with dropping edges) during the training of GraphMETRO. We do not
from considering all combinatorial choices, such as selecting n distinct functions from the available
seven, due to computational constraints. Nonetheless, we maintain our interest in exploring different
transform function choices for training GraphMETRO .

Figure 4 illustrates the results for the WebKB and Twitter datasets. A consistent trend emerges: as
the number of stochastic transform functions increases, performance tends to decline. For instance,
on the WebKB dataset, performance decreases from 42.4% to 31.9%. Similar gradual declines are
observed on the Twitter dataset. This phenomenon may be attributed to two factors: (1) Some of
the stochastic transform functions may introduce noise that is orthogonal to the target distribution
shifts we aim to model, thereby degrading the final aggregated representation. (2) As the number of
transform functions grows, the gating function’s expressiveness may become insufficient, leading to
increased noise and inadequate prediction of the mixture.

E NUMERICAL RESULTS OF THE ACCURACY ON SYNTHETIC DISTRIBUTION
SHIFTS.

In Table 5 and 6, we include the numerical results on the synthetic datasets corresponding to Fig-
ure 2 for more precise interpretation. We also compute the average performance across different
extrapolated testing datasets, where we see an improvement of

16

Under review as a conference paper at ICLR 2024

DBLP CiteSeer

ERM ERM-Aug GraphMETRO ERM ERM-Aug GraphMETRO

i.i.d. (0) 85.71 85.66 85.92 75.80 76.00 78.01
random subgraph (1) 84.48 85.29 85.78 75.47 75.82 77.01

drop node (2) 71.08 74.85 76.61 62.21 63.89 66.22
drop edge (3) 79.69 82.34 82.95 71.48 73.24 77.00
add edge (4) 83.41 84.44 84.98 74.29 74.87 77.26

noisy features (5) 76.90 72.81 81.32 85.28 82.97 88.43
(1, 3) 77.63 81.04 81.71 70.37 71.42 74.97
(2, 3) 81.99 83.65 84.26 73.60 74.06 76.11
(1, 4) 79.69 68.62 80.31 84.47 86.36 88.56
(2, 4) 70.55 74.01 75.10 62.13 63.53 65.73
(1, 5) 71.52 68.27 71.05 66.89 62.59 67.32
(2, 5) 77.73 81.13 81.85 70.19 72.21 76.77
(3, 5) 79.59 84.49 87.14 78.24 73.29 89.18
(4, 5) 70.40 74.16 76.18 61.64 63.53 66.42

Average 77.88 78.63 81.08 72.29 72.41 76.36

Table 5: Numerical results on synthetic node classification datasets
IMDB-MULTI REDDIT-BINARY

ERM ERM-Aug GraphMETRO ERM ERM-Aug GraphMETRO

i.i.d. (0) 50.17 49.28 49.16 72.93 73.02 75.94
random subgraph (1) 34.30 39.94 45.86 62.59 69.03 71.22

drop node (2) 50.42 48.73 48.83 70.01 72.27 72.26
drop edge (3) 49.66 48.94 48.83 59.13 70.55 72.51
add edge (4) 49.64 48.14 48.90 65.18 67.28 69.34

noisy features (5) 50.17 49.28 49.16 68.66 68.50 66.79
(2, 3) 34.55 40.32 45.11 58.72 64.06 66.50
(1, 4) 34.32 40.28 46.01 59.40 62.81 65.29
(2, 4) 34.57 40.17 46.79 61.34 66.02 66.71
(1, 5) 49.31 48.36 48.68 65.89 66.88 68.09
(2, 5) 50.51 48.78 48.79 68.72 69.77 68.76
(3, 5) 49.38 47.72 48.35 55.36 65.21 64.87
(1, 3) 48.72 48.36 48.76 61.08 61.71 62.57
(4, 5) 34.62 39.88 46.15 62.99 68.68 68.34

Average 44.31 45.58 47.82 63.71 67.56 68.51

Table 6: Numerical results on synthetic graph classification datasets

F OPEN DISCUSSION AND FUTURE WORKS

The performance of gating model. One factor that affect the performance of GraphMETRO is the
effectiveness of gating model in identifing distribution shifts from transform functions. Specifically,
some transform functions are inherently disentangled, e.g., adding nodes feature noise and random
subgraph extraction. In this case, there will be certain distinction between any pair from these three
data distributions, i.e., (graphs with node noise, random subgraph graphs, random subgraphs with
node noise), which the gating model can easily tell. While some transform functions can be es-
sentially similar, e.g., dropping path and dropping edges, this won’t affect the performance of our
method as long as each expert outputs the corresponding invariant representation. Lastly, indeed,
there could be more complex combinations of the transform functions, which poses challenges to the
gating model’s expressiveness in identifying the combinations. To improve the gating model’s per-
formance, one could initialize it with a model pretrained on a wide variety of data. Since the gating
model is required to output the mixture of a node or graph (after it is finetuned on the extrapolated
dataset), by enhancing the gating model’s predictive capability regarding mixtures, GraphMETRO’s
final representation should become more resilient. This becomes particularly advantageous when
dealing with graphs not previously encountered in the extrapolated dataset.

In-depth comparison with invariant learning methods. An interesting view to see the innovation
of GraphMETRO is that it breaks the typical invariant learning formulation, which assumes the data
is manipulated by the environment variables which are then “decoded” into multiple environments.
Instead, GraphMETRO sees the distribution shifts on an instance as a mixture, which is represented

17

Under review as a conference paper at ICLR 2024

by the score vector output by the gating function over the basis of the transform functions. In other
words, GraphMETRO can produce infinite environments as the elements in the score vector are
continuous. Once we limit the output domain of the gating function into, e.g., binary {0, 1}, Graph-
METRO can also produce a limited number of environments, i.e., if we categorize the instances
based on the score vector, which covers the environment construction in invariant learning. More-
over, as mentioned, we propose the concept of referential invariant representation with a base model
ξ0, which is also different from previous works on invariant learning.

The applicability of GraphMETRO. A key question w.r.t. the applicability of GraphMETRO is
that, how does the predefined transform functions cover complex distributions causing the distribu-
tion shift?

• For general domain, in our experiments, we mainly use the five stochastic transform functions,
which are universal graph augmentations as listed in Zhao et al. (2021). In our code implementa-
tion, we have also included additional transform functions as shown in Appendix B. These trans-
form functions, while not exhaustive, still cover a wide range of distribution shifts observing from
our experimental results. Nevertheless, the real graph distribution shifts can go beyond any pos-
sible combinations of the predefined transform functions. In that case, the assumption may not
hold, meaning that GraphMETRO may not capture and precisely mitigate the unknown distri-
bution shift. This scenario could always possibly exist due to the lack of information about the
testing distribution or its domain knowledge, which is a limitation of our current work.

• However, for specific domains, we can leverage additional knowledge to infer the tendency of
the distribution shifts, such as increasing malicious users in a trading system. These information
would be very helpful in constructing the transform functions that cover the target distribution
shifts well. Specifically, such knowledge can come from two sources: i) Domain knowledge,
e.g., on molecular datasets, the transform function could be adding additional carbon structure to
a molecule (while preserving its functional groups). Or, in a particular social network, transform
functions can be defined from known user behaviors. ii) Leveraging a few samples from target
distribution (i.e., domain adaptation). Specifically, we can leverage the samples from the target
distribution to inform the selection or construction of transform functions, which can better guar-
antee the distribution shifts are covered by the transform functions. For example, we can select
more relevant transform functions by, e.g., measuring the distance of the extrapolated datasets un-
der a certain transform function with the target samples in the embedding space. We believe this
would be an interesting future direction.

Label distributional shifts. In this work, we consider distribution shift in the graph structures and
features. We believe applying GraphMETRO to label distributional shift, which is orthogonal and
complementary to the focus of our current study, would be an interesting extension. To elaborate,
label distributional shifts exert analogous impacts across various modalities, such as graphs or im-
ages. Moreover, existing methods Menon et al. (2021); Cao et al. (2019) designed to tackle label
distributional shifts can be seamlessly integrated into our proposed framework. Such integration
would necessitate minimal adjustments, potentially involving modifications to the loss function or
the training pipeline.

18

	Introduction
	Related Works
	Method
	Mixture Components
	Mixture of Aligned Experts
	Training Objective
	Discussion and Analysis

	Experiments
	Investigating GraphMETRO via Synthetic Experiments
	Applying GraphMETRO to Real-world Datasets
	Invariance Matrix for Inspecting GraphMETRO
	Distribution Shift Discovery

	Conclusion
	Experimental Details
	Stochastic transform functions
	Design Choices of the Expert Models
	Study on the Choice of Transform Functions
	Numerical results of the Accuracy on Synthetic Distribution Shifts.
	Open Discussion and Future Works

