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ABSTRACT

We present MovingParts, a NeRF-based method for dynamic scene reconstruction
and part discovery. We consider motion as an important cue for identifying parts,
that all particles on the same part share the common motion pattern. From the
perspective of fluid simulation, existing deformation-based methods for dynamic
NeRF can be seen as parameterizing the scene motion under the Eulerian view,
i.e., focusing on specific locations in space through which the fluid flows as time
passes. However, it is intractable to extract the motion of constituting objects
or parts using the Eulerian view representation. In this work, we introduce the
dual Lagrangian view and enforce representations under the Eulerian/Lagrangian
views to be cycle-consistent. Under the Lagrangian view, we parameterize the
scene motion by tracking the trajectory of particles on objects. The Lagrangian
view makes it convenient to discover parts by factorizing the scene motion as a
composition of part-level rigid motions. Experimentally, our method can achieve
fast and high-quality dynamic scene reconstruction from even a single moving
camera, and the induced part-based representation allows direct applications of
part tracking, animation, 3D scene editing, etc.

1 INTRODUCTION

Figure 1: Location-based Eulerian view vs.
particle-based Lagrangian view. The Eulerian
view observes the flow at a specific location (akin
to the approach taken by deformation-based dy-
namic NeRF) and the Lagrangian view observes
the trajectory of specific particles. These two
views constitute the conversion between the dy-
namic world space of each temporal frame and a
static canonical space.

3D scene reconstruction and understanding is
one of the central problems in computer vi-
sion and graphics, with a wide range of appli-
cations in mixed reality, robotics, movie pro-
duction, etc. While many works focus on
static scenes, real-world physical scenes are
usually dynamic and entangled with illumina-
tion changes, object motion, and shape defor-
mation. The reconstruction of dynamic scenes
is known to be highly challenging. Non-
rigid structure from motion methods (Bregler
et al. (2000); Gotardo & Martinez (2011);
Kong & Lucey (2019); Sidhu et al. (2020))
could recover nonrigid shapes but are limited
to sparse feature tracking. To reduce the am-
biguity between shape and motion, some other
methods introduce multi-view capture (Zhang
et al. (2003); Oswald et al. (2014); Tung et al.
(2009)) or category-specific priors (Egger et al.
(2021); Habermann et al. (2019); Kocabas et al.
(2020)). Recently, neural radiance representa-
tion NeRF (Mildenhall et al. (2020)) has been applied to this field and achieved promising dynamic
capture performance on general scenes using only monocular input (Pumarola et al. (2020); Park
et al. (2021a); Li et al. (2022)). However, most NeRF-based dynamic scene modeling methods only
focus on scene reconstruction without considering scene understanding, thus lacking the ability to
directly support downstream applications that need tracking, shape editing, re-animation, etc.

∗denotes equal advisory and † denotes the corresponding author.
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Our goal is to enable practical dynamic scene capture with both high-quality reconstruction and
meaningful scene understanding from monocular input. To this end, we propose MovingParts, a
novel NeRF-based approach that can achieve not only fast dynamic scene reconstruction but also
automatic rigid part discovery. Our key insight is that motion (while complicating the reconstruc-
tion) is an effective cue for identifying object parts because the scene content belonging to one rigid
part has to share the same rigid transformation. Therefore, we design novel modules to explain the
motions in dynamic neural fields, enabling unsupervised object part discovery via motion grouping.
Since the rigid motion patterns are used as the evidence of part discovery, we make explicit the
assumption of our input here, which is the general scene with piece-wise rigid motion.

Our approach is inspired by the literature on fluid simulation. We note that a family of previous
dynamic NeRF methods model motion using a 3D field that encodes scene flow (Li et al. (2021)) or
deformation (Pumarola et al. (2020); Park et al. (2021a)). Specifically, at time t, for each location x,
the 3D field encodes which particle xc in the canonical frame has been deformed to x, which actually
backward deforms the particles from world space to static canonical space. As shown in Figure 1,
this is essentially the Eulerian view in fluid simulation (Fedkiw et al. (2001)) – motion information is
denoted as a function ΨE(x, t) at each specific location x in the world coordinate frame. It is known
that, while the entire scene motion can be modeled under the Eulerian view, specific object/part
motion at different temporal moments is actually intractable and hard to analyze. On the other hand,
the Lagrangian view (Macklin et al. (2014)), as the duality of the Eulerian view, uses the particle-
based representation to track the motion of each particle belonging to the object, which forward
deforms the particles from canonical space to world space. The constructed particle trajectory from
the Lagrangian view can be an important clue for scene analysis. A relevant Lagrangian-based work
is Watch-It-Move (Noguchi et al. (2022)) which composes objects into several ellipsoid-like parts
by rendering supervision. However, the multi-view requirement and the ellipsoidal geometric prior
highly limit its application. In contrast, we mainly focus on monocular input.

To achieve meaningful scene understanding by motion analysis, we propose a hybrid approach that
learns motion under both the Eulerian and the Lagrangian views. In particular, our neural dynamic
scene model consists of three modules: (1) a canonical module that models the scene geometry
and appearance as a radiance field in a static canonical space, (2) an Eulerian module ΨE(x, t)
that records which particle xc in the canonical space passes through each specific location x in the
world coordinate frame at every time step, and (3) a Lagrangian module ΨL(xc, t) that records the
trajectory of all particles xc in the canonical space. Note that the motions modeled by the Eulerian
and Lagrangian modules are inherently reciprocal, we, therefore, apply a cycle-consistency loss
during reconstruction to enforce the consistency between the two modules, constraining them to
model the same underlying motion in the scene.

The construction of the Lagrangian view makes it convenient to discover parts by factorizing
ΨL(xc, t). As the particles in a rigid part share a common rigid transformation pattern, we pro-
pose a novel motion grouping module as part of our Lagrangian module. By projecting the particle
motion features into a few groups, we divide the scene into meaningful parts. Once reconstructed,
our Lagrangian module could offer part-level representation and allow for direct downstream ap-
plications such as part tracking, object control, and scene editing. Since the number of rigid parts
generally differs across scenes, we introduce an additional post-processing merging module that can
adaptively merge the over-segmented groups into a reasonable number of rigid parts.

We jointly train all modules with only rendering supervision. We demonstrate that our approach
achieves high-quality dynamic scene reconstruction and realistic rendering results on par with state-
of-the-art methods. More importantly, compared with previous monocular NeRF methods, ours
is the only one that simultaneously achieves part discovery, allowing for many more downstream
applications. Finally, inspired by recent fast NeRF reconstruction methods (Sun et al. (2022); Chen
et al. (2022); Yu et al. (2022)), we construct our system with feature volumes and light-weight multi-
layer perceptrons (MLPs), leading to a fast reconstruction speed comparable to other concurrent
methods that are specifically focused on speeding up dynamic NeRF.

In summary, our key contributions are:
• We propose a novel NeRF-based method for simultaneous dynamic scene reconstruction

and rigid part discovery from monocular image sequences;
• The hybrid representation of feature volume and neural network allows us to achieve both

high-quality reconstruction and reasonable part discovery within 30 minutes;
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• The extracted part-level representation can be directly applied to downstream applications
like part tracking, object control, scene editing, etc.

2 RELATED WORK

Dynamic Neural Radiance Fields. Recently, the emergence of Neural Radiance Fields (NeRF)
(Mildenhall et al. (2020)) has facilitated the tasks of scene reconstruction and image synthesis. Due
to the dynamic properties of the physical world, an important branch of NeRF research is to extend
it to dynamic scenes (Pumarola et al. (2020); Li et al. (2021); Park et al. (2021b); Fridovich-Keil
et al. (2023); Cao & Johnson (2023)). In particular, some methods directly extend the 5D radiance
field function to 6D by adding additional time-dependent input to the network (Li et al. (2022);
Xian et al. (2021)). Other works enhance the temporal consistency in the 6D dynamic radiance field
by explicitly modeling dynamic scene flows (Li et al. (2021); Du et al. (2021); Gao et al. (2021)),
leading to promising results from only monocular input. Meanwhile, deformation modules have
also been adopted in NeRF-based methods (Pumarola et al. (2020); Tretschk et al. (2021); Yuan
et al. (2021); Park et al. (2021a;b); Liu et al. (2022)), offering strong regularization for temporal
consistency. Note that these various NeRF-based methods all explain motions (modeled as flows or
deformation fields) from the location-based Eulerian view and do not support part discovery. We
instead propose a hybrid model that models motions with both location-based Eulerian and particle-
based Lagrangian views, enabling high-quality dynamic scene reconstruction with automatic part
discovery based on particle motion. In addition to these general methods, some NeRF methods have
been devised for particular domains, such as humans (Jiakai et al. (2021); Noguchi et al. (2021);
Weng et al. (2022); Peng et al. (2023)), and articulated objects within specific categories Wei et al.
(2022). While capable of achieving dynamic scene rendering and part segmentation, these methods
often incorporate category priors into the pipeline and cannot be directly applied to general objects.

Part Discovery from Motion. At the image level, most motion-based object discovery methods
(Keuper et al. (2015); Pia Bideau (2016); Yang et al. (2021); Xie et al. (2019); Papazoglou & Ferrari
(2013)) employ the clustering of 2D pixels based on features related to optical flow. We share a
common underlying logic with these 2D methods that discover parts (or objects) by constructing
and grouping motion trajectories. However, in contrast to these approaches, our method establishes
a motion group module on canonical 3D particles and relies on predicted 3D rigid motion, which
ensures arbitrary viewpoints consistency and temporal consistency of the grouping results. In the
3D domain, some methods (Shi et al. (2021); Kawana et al. (2022)) reason about object parts by
constructing point-wise correspondence at different object states and clustering their trajectories.
Without 3D input, (Agudo & Moreno-Noguer (2019)) adopts non-rigid structure from motion to
reconstruct the 3D shape and applies spatio-temporal clustering to the 3D points to reason about
segmentation. However, only the geometry of sparse feature points could be achieved. Recently,
NeRF-based dynamic scene decoupling methods (Yuan et al. (2021); Tschernezki et al. (2021); Wu
et al. (2022)) have been proposed. Although they achieve dynamic scene decomposition with high-
quality reconstruction, they can only divide the scene into static/dynamic parts and are unable to
identify motion patterns. A relevant recent work is Watch-It-Move (Noguchi et al. (2022)), which
achieves high-quality part-level reconstruction from image sequences. However, it requires dense
multi-view input and imposes ellipsoid-like priors to the part geometry, which may completely fail
on challenging monocular data with complex scene geometry. In contrast, our NeRF-based method
does not require any shape priors of dynamic objects in complex scenes and can achieve dynamic
reconstruction and part discovery from monocular input.

3 PRELIMINARIES: NERF AND D-NERF
By incorporating implicit function and volume rendering, Neural Radiance Field (NeRF) (Milden-
hall et al. (2020)) allows for scene reconstruction and novel view synthesis via optimizing scene
representation directly. In general, NeRF interprets static scenario as a continuous implicit func-
tion Fθ. By querying spatial coordinates (x) and view direction (d), Fθ outputs the corresponding
density (σ) and observed color (c) as (c, σ) = Fθ(x,d). Through classical volume rendering in
graphics, the 3D scene representation Fθ can be rendered into a 2D image. Specifically, given a ray
r emitted from the optical center to a specific pixel in the image, the rendered color of that pixel is
an integral of all the colors on the ray with near and far bounds hn and hf :

C(r) =

∫ hf

hn

T (h)σ
(
r(h)

)
c
(
r(h),d

)
dh, where T (h) = exp

(
−

∫ h

hn

σ(r(s))ds
)
. (1)
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Figure 2: Overview of our method. Inspired by the Eulerian and Lagrangian viewpoints in fluid
simulation, we designed three modules for motion-based part discovery in a scene. The Eulerian
module and the Lagrangian module observe the motion of specific spatial locations and specific
particles, respectively. They both comprise a mutual mapping of a point between its position at an
arbitrary time instance and its canonical configuration. The canonical module serves to reconstruct
the geometry and appearance for volume rendering. Based on the particle trajectories recorded by
the Lagrangian module, we can analyze the motion patterns and discover rigid parts.

T (h) can be interpreted as the transparency accumulated from hn to h. Because of the inherent
differentiability of Eq. 1, it only requires a set of images with camera poses to optimize Fθ directly.

D-NeRF (Pumarola et al. (2020)) extends NeRF to capture dynamic scenes, assuming that there is a
static canonical space and includes all objects. It divides the dynamic scene reconstruction in world
space into two sub-problems: the NeRF representation learning of canonical space and the learning
of the mapping from the world space to the canonical space (scene flow prediction) as:

(c, σ) = Fθ(Ψ(x, t),d) (2)

where Ψ(x, t) predict the canonical space position from x at time t into its canonical configuration.

4 OUR METHOD

From the perspective of fluid simulation, the scene motion is composed of particle motions. Ψ(x, t)
in D-NeRF can be interpreted as recording the motion of particles passing through a given coordinate
x at time t, corresponding to the Eulerian perspective. Following D-NeRF, we also assume a canon-
ical space that is static and includes all objects. Besides the Eulerian perspective, we also describe
the dynamic scene from the Lagrangian perspective. Accordingly, we construct three modules, as
Figure 2 shows, that include an Eulerian module ΨE(x, t) which maps a position x at any time t in
the world space to the canonical space, a Lagrangian module ΨL(xc, t) which tracks the trajectory
of a particle corresponding to xc in the canonical space, and a canonical module which encodes
the appearance and geometry in the canonical scene. Under the assumption of finite rigid bodies,
we exploit the learned motion by the Lagrangian module and design a motion grouping module to
discover moving parts. The particles in the same group share a common rigid transformation and
should belong to the same part. Next, we will describe these modules and loss functions in detail.

4.1 CANONICAL MODULE

Same as NeRF, the canonical module is formulated as an implicit function Fθ(xc,d) → (c, σ)
which encodes the geometry and appearance in a canonical space. To accelerate convergence, a
hybrid representation of feature volume and neural network is adopted. The queried canonical
coordinate xc is first used to interpolate the corresponding features within a 3D feature volume
Vc ∈ RNx×Ny×Nz×C , where the Nx ×Ny ×Nz denotes the spatial resolution and C is the feature
dimension. To alleviate the local gradient artifact of grid representation, we adopt multi-distance
interpolation and concatenate the features in different resolutions as (Fang et al. (2022)):

fc = Tri-Interp(xc,V)⊕ ...⊕ Tri-Interp(xc,V[:: sM ]). (3)

After positional encoding, the queried feature with d is fed into MLPs to predict σ and c.
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4.2 EULERIAN MODULE

The Eulerian module ΨE(x, t) records which particle xc in the canonical space goes through a
specific location x at the query time t. Assuming that the scene is piece-wise rigid, we formulate this
mapping as a rigid transformation in SE(3) similar to Park et al. (2021a), which ensures that all the
points on the same rigid body can be transformed using the same set of parameters. Specifically, our
Eulerian module contains three components. First, the 3D feature volume VE stores the information
about the particles that pass through each position during the entire observation period. Second, a
motion extractor EE decodes the motion feature from the interpolated feature in VE at query time
t. Third, different from Park et al. (2021a) that uses a screw axis as an intermediate representation,
our rigid transformation decoder DE directly maps the motion feature to rotation and translation
parameters. The overall process can be formulated as:

(RE , tE) = DE(fEm), where fEm = EE (Tri-Interp (x,VE) , t) (4)

Here we employ the continuous 6D intermediate representation (Zhou et al. (2019)) for 3D rotation
RE . The Eulerian mapping from the world space at each temporal frame to the canonical space can
be calculated by:

xc = RE(x− tE) (5)

4.3 LAGRANGIAN MODULE

Figure 3: The architecture of our motion grouping
network G. We first calculate the similarity be-
tween each fused feature f iLx and each learnable
slot Sl, and then apply Gumbel-softmax with the
straight-through trick to achieve hard grouping Â.
Finally, we assign f̂ iL to be the average of {f iL} in
its corresponding group by Equation 8.

As the inverse of the Eulerian module, the La-
grangian module ΨL(xc, t) tracks the trajec-
tories of specific object particles over time.
We use the same manner to construct VL, EL
and DL. Different from the Eulerian perspec-
tive, the trajectories of each particle in the La-
grangian perspective can be an important cue
for rigid part discovery. All particles belonging
to the same rigid part share the same rigid body
transformation, which means that their motion
can be represented by a single feature vector.
So we add an additional motion grouping net-
work G (see Figure 3) after VL to restrict that
particle trajectories are only subject to a finite
number of rigid motion patterns.

Similar to (Xu et al. (2022)), we use the atten-
tion module with the straight-through estima-
tor trick to achieve the hard grouping of La-
grangian features. To encourage the spatial coherence of points in the same group, the coordinate
of each point xi

c is concatenated to the corresponding Lagrangian feature f iL. Specifically, we first
compute the similarity map A between the feature {f iLx = f iL ⊕ xi

c} and learnable slots {Sl} by
Gumbel-softmax:

Ail =
exp(Wqf

i
Lx ·WkS

l + γi)∑L
1 exp(Wqf iLx ·WkSl + γi)

, (6)

where Wq and Wk are linear mappings and γ is a sample drawn from Gumbel(0, 1). Then the
straight-through estimator trick is used to convert the soft similarity map to one-hot formulation:

Â = one-hot(Aargmax) +A− detach(A) (7)
where the detach operation cuts off the corresponding gradient. Despite the hard conversion, Equa-
tion 7 can still keep the gradient the same as A. The hard similarity matrix Â distributes all the
Lagrangian features into several groups, where each group represents the particles with the same
motion pattern. Instead of directly assigning the learned slot as the updated Lagrangian feature,
we calculate the average of all the Lagrangian features in the same group to update the original
Lagrangian features. In this way, each updated Lagrangian feature will be directly related to the
Lagrangian grid VL, allowing for more efficient optimization. This procedure can be formulated as:

f̂ iL =

∑I
1 Âil · f iL∑I

1 Âil

(8)
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Then the updated Lagrangian features f̂ iL with query time t is fed into EL and DL sequentially to
decode the motion feature fLm and the rigid transformation RL, tL. As mentioned in Section 4.4,
to efficiently implement the cycle consistency between the Eulerian and Lagrangian modules, we
expect RL = RE and tL = tE . So the Lagrangian mapping from the canonical space to the world
space at each temporal frame is calculated by:

x = R−1
L (xc + tL) (9)

4.4 LOSS FUNCTIONS

As our main optimization goal, we adopt the Mean Squared Error (MSE) between the rendered pixel
color and the ground truth pixel color as our reconstruction loss:

Lphoto =
1

|R|
∑
r∈R

∥Ĉ(r)−C(r)∥22. (10)

We also use a total variation loss Ltv to smooth the motion volumes and encourage motion similarity
of spatial neighbors. Following Sun et al. (2022), the per-point color loss Lper pt and background
entropy loss Lentropy are used to directly supervise the sampled point color and encourage the back-
ground probability to concentrate around 0 or 1.

In addition, a cyclic consistency loss is designed to encourage the reciprocity of the Lagrangian
module and the Eulerian module. Instead of measuring the displacement of the transformations
between these two views like Liu et al. (2022), we found that accounting for the difference between
low-level motion features fLm and fEm leads to more robust optimization and better part discovery.
Our cycle loss is defined as:

Lcycle =
1

|Pobj |
∑

x∈Pobj

∥fxLm − fxEm∥22. (11)

Please refer to Appendix A.1 for a more detailed discussion of these two implementations of the
cyclic consistency loss. Since the deformation of free space does not satisfy the assumption of finite
rigid motions, we filter out free space according to density value and only calculate Lcycle at sampled
points on objects {x ∈ Pobj |σx > ϵ}. In our experiments, ϵ = 10−4. The overall loss function is:

L = Lphoto + wcycleLcycle + wper ptLper pt + wentropyLentropy + wtvLtv. (12)

4.5 GROUP MERGING MODULE

Figure 4: The group merging procedure. We
decode the average Lagrangian features of each
group into rigid transformation sequences and de-
termine the merge order as well as the stop step by
evaluating the APE cost between the sequences.

It is not reasonable to use the same number of
groups for a variety of scenarios. We generally
set a large number of groups as an upper bound
on the number of rigid bodies in the scene,
which may cause over-segmented results (Fig-
ure 5). This is because we provide an exces-
sive number of groups, and also the same rigid
transformations could be easily represented by
very different high-level motion features. To
address this problem, we design an efficient
heuristic algorithm for group merging based on
motion differences. This algorithm is used as
post-processing after training only and does not
affect the parameters of the model. We summa-
rize this group merging algorithm in Figure 4. 1) We sample points uniformly in canonical space
and filter the free space points with density lower than the threshold ϵ. 2) These remained points
are fed into the Lagrangian module to get the updated feature f̂ iL, which is the high-level represen-
tation of each motion group. 3) We evaluate the rigid transformation similarity between each pair
of groups: The rigid transformation sequences are generated by decoding the updated slots into ro-
tation and translation with uniformly sampled times between 0 and 1. 4) We use the Absolute Pose
Error (APE) to measure the difference between each sequence pair:

APEi,j =
∑
t

∥(Pt
i)

−1Pt
j − I4×4∥, (13)
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Figure 5: Visualization of our results on the D-NeRF synthetic dataset. The first three rows show
our rendered image, depth, and initial grouping result at different timesteps. The last row shows
our merged groups which demonstrates the merging module’s ability to adaptively aggregate groups
with similar motions and achieve clean and accurate segmentation results.

Table 1: Comparison with NeRF-based methods. We indicate the best and second best with bold
and underlined markings. We achieve high-quality rendering on par with the state-of-the-art method
while reasonably discovering rigid parts, efficiently completing both tasks in about 26 minutes.

Method Deformation Part Training Time PSNR ↑ SSIM ↑ LPIPS ↓
T-NeRF ∼ hours 29.50 0.95 0.08
K-Planes 52 mins 31.61 0.97 -
HexPlane 10 mins 31.04 0.97 0.04
D-NeRF Eulerian 20 hours 30.43 0.95 0.07
NDVG Eulerian 23 mins 30.54 0.96 0.05
TiNeuVox Eulerian 28 mins 32.67 0.97 0.04
WIM Lagrangian ∼ hours 15.72 0.83 0.19
Ours Eulerian&Lagrangian 26 mins 32.18 0.97 0.04

where Pt
i is the transformation matrix of group i at time t. 5) We recursively find the two groups

with the smallest APE at the current step and record their merge APE cost until all the groups are
merged into a single one. In the early stages, the groups with similar motion patterns are merged,
which keeps the merging cost growth slow. Once groups representing different motions are merged,
the cost will jump, indicating that the merging process should terminate. In practice, we simply find
the termination step with the largest cost increase to the subsequent step as our final result.

5 EXPERIMENTS AND RESULTS

Our method not only enables high-quality dynamic scene reconstruction but also allows for the
discovery of reasonable rigid parts. In this section, we first evaluate the reconstruction and part
discovery performance of our method on the D-NeRF 360◦ synthetic dataset. Then, we construct
a synthetic dataset with ground-truth motion masks to quantitatively evaluate our motion grouping
results. Finally, we provide direct applications for structural scene modeling and editing.

5.1 IMPLEMENTATION

We use 50× 50× 50 voxels for the Eulerian and Lagrangian volume and a 160× 160× 160 voxel
for the canonical volume. Following Fang et al. (2022), we employ the progressive upsample the
resolution for acceleration. We use two separated linear layers to predict the 6D rotation and 3D
translation with biases as (1, 0, 0, 0, 1, 0) and (0, 0, 0), respectively, so that the initial deformation is
an identity. We use the Adam optimizer for a total of 20k iterations, by sampling 4096 rays from a
randomly sampled image in each iteration. All the experiments were conducted on a single NVIDIA
RTX3090 GPU. More details can be found in the appendix.

5.2 EVALUATION ON D-NERF DATASET

We adopt the 360◦ Synthetic dataset provided by D-NeRF (Pumarola et al. (2020)) to evaluate
our method quantitatively and qualitatively. The dataset contains eight synthetic dynamic scenes
with different motion patterns, and only one view is captured at each time step. We compare our
method with the state-of-the-art dynamic NeRF methods: Non-deformation-based methods T-NeRF
(Pumarola et al. (2020)), K-Planes (Fridovich-Keil et al. (2023)), HexPlane (Cao & Johnson (2023)),
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Figure 6: Motion grouping evaluation on our generated datasets. Our method is able to achieve high
mIOU scores across various scene configurations and has demonstrated the ability to continuously
track specific parts as well as handle complex geometry and topology.

Eulerian-based method D-NeRF (Pumarola et al. (2020)), TiNeuVox (Fang et al. (2022)), NDVG
(Guo et al. (2022)) and a Lagrangian-view method WIM (Noguchi et al. (2022)). For TiNeuVox, we
use their base version with a canonical grid in 1603 resolution and hidden layers of 256 channels.
Following these previous works, we train each scene with images at 400 × 400 resolution and use
two metrics for evaluation: Peak Signal-to-Noise Ratio (PSNR), Structural Similarity (SSIM) (Zhou
et al. (2004)) and Learned Perceptual Image Patch Similarity (LPIPS) (Richard et al. (2018)).

As shown in Table 1, while keeping the training time within 30 minutes on one GPU, our method
not only achieves high rendering quality but also supports part discovery. Compared to the previous
methods, we achieved the best in SSIM and LPIPS, and second best in PSNR. Compared to TiNeu-
Vox, our method has a slight PSNR drop. The main reason is that TiNeuVox employs a temporal
enhancement module in the canonical space to improve quality, which also leads to a time-varying
canonical space. After removing this enhancement module in TiNeuVox, its average PSNR drops
to 31.47. In our paper, to achieve better disentanglement of geometry and motion, we expect the
geometric evolution only comes from the scene motion. Therefore we did not adopt a similar en-
hancement strategy to form a time-invariant canonical space. For WIM, due to the nonexistence of
canonical space, the significant motion ambiguity under the single view setting causes the failure.

We show our visualization results in Figure 5. It can be seen that our method enables high-quality
appearance and geometry reconstruction. We also assign each query point the corresponding group
color and render it to 2D images. As discussed in Section 4.5, over-segmentation occurs because
similar motion could be represented by different high-level features (see the third row in Figure 5).
Through our group merging algorithm, we only retain the highly distinguishable motion modes and
obtain concise part segmentation. Thanks to the motion-based grouping mechanism, our method is
capable of overlooking motion-irrelevant characteristics in geometry and appearance and producing
clean part discovery results on these realistic complex scenes.

5.3 MOTION GROUPING EVALUATION

In this section, we provide a quantitative evaluation of our motion grouping results. We created
a synthetic dataset with ground truth image-segmentation pairs using Kubric toolkit (Greff et al.
(2022)). Each created scene contains 1 to 5 realistic real-world objects from the GSO dataset (Downs
et al. (2022)) with different initial velocities and motion directions. We followed the same sampling
and rendering process as D-NeRF (Pumarola et al. (2020)) to generate a 120-frame monocular image
sequence with 256×256 resolution for each scene.

To begin our evaluation, we first establish the correlation pairs between the ground truth label and
our predicted groups. For each group, we assign the ground truth label with the highest number
of pixels corresponding to it in the first 10 frames. More details are included in the appendix. We
calculate the mean Intersection over Union (IOU) for the assigned label mask with its corresponding
ground truth mask over the entire image sequence. It is noted that achieving a high mIOU score over
the entire sequence requires more than just the ability to accurately distinguish each individual part.
It also necessitates the capacity to consistently track each part throughout the sequence.
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We present 10 examples in Figure 6, showcasing both quantitative mIOU and qualitative visual-
ization and comparisons. Despite the variation in the scene configurations, our method achieves
an mIOU score of over 85% on most scenes, clearly demonstrating its robustness over the dataset.
Moreover, the high mIOU score indicates that our method can generate accurate part segmentation
results and continuously track specific parts throughout the sequences, see the learned trajectories in
Figure 6, ensuring both temporal and multi-view consistency of the discovered parts. Furthermore,
our method is capable of dealing with complex geometry and topology. Holes (cable in example 5)
and geometry details are nicely revealed by our method. By utilizing our motion-based grouping
approach, our method can accurately segment objects even if they are spatially separated– see the
gloves (example 1) and 3-car (example 7) in Figure 6.

5.4 APPLICATION: STRUCTURED SCENE MODELING BY ROBOTIC MANIPULATION

Figure 7: Applications. Our method
can directly apply to real-scene struc-
tural modeling and editing.

Observation and interaction are crucial for human beings
to learn from the real world. In this section, we show
that our method can identify objects and understand the
functionality of their parts by observing physical interac-
tion procedures. To demonstrate this, we capture a set of
robotic manipulation sequences with a similar monocular
camera setting as (Pumarola et al. (2020)). As shown in
Figure 7 above, by observing the robot’s work process,
like picking up a toy or inserting a peg, our method can
accurately identify the manipulated object, as well as the
links and joints of the robot. Note that since the robotic
arms’ trajectories are different in the two sequences, the
joints discovered by motion are also different. The dis-
covered 3D parts with their Lagrangian motion could pro-
vide a strong prior for downstream functionality reason-
ing and robotic reinforcement learning tasks.

5.5 APPLICATION: SCENE EDITING

In addition to scene understanding, with the learned struc-
tural representation of dynamic scenes, our method can
also edit scenes and generate new renderings from the
scene. Figure 7 below presents a few scene-editing ap-
plications supported by our approach in HyperNeRF real-
world sequence (Park et al. (2021b)). Since our method
conducts grouping in the 3D canonical space, the consis-
tency can be maintained not only across multiple views
but also across time steps. We show the removal or mod-
ification of specific objects in these two real scenes and
demonstrate the scalability of our method to real-world applications.

6 CONCLUSION

In this paper, we present MovingParts, a novel method for 3D dynamic scene reconstruction and
part discovery. Inspired by fluid simulation, we observe the motion in the scene from both the
Eulerian view and the Lagrangian view. In the particle-based Lagrangian view, we constrain the
motion pattern of the particles to be a few rigid transformations, so that we successfully perform
part discovery. To ensure fast convergence during training, we utilize a hybrid feature volume and
neural network representation, for both views which are efficiently supervised by a cycle-consistency
loss. What is more, the learned part representation could directly be applied to downstream tasks,
e.g., object tracking, structured scene modeling, editing, etc.

Limitations. Motion modeling at a specific location can be considered as a sequence decoding
task. In this paper, we explicitly store the motion features in low-dimensional vectors, which makes
it challenging to model motion on very long sequences. Although we can circumvent the issue
by manually splitting long sequences into shorter ones, a unified long sequence encoding-decoding
scheme will still be a more elegant and efficient solution. We defer the exploration of this challenging
setting to future work.
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Figure 8: More visualization results of reconstruction and part discovery on D-NeRF synthetic
dataset. By analyzing the motion patterns, our method could discover parts that are consistent with
common sense, such as human arms and legs.

Table 2: Ablation study about our components and losses, including the Lagrangian module, cycle
consistency loss, TV loss, per-point loss, and cross-entropy loss.

Lcycle Ltv Lentropy Lper-pt PSNR ↑ SSIM ↑ LPIPS ↓
A1 (Ours) feature-based 32.183 0.971 0.036

A2 32.333 0.972 0.036
A3 displacement-based 31.968 0.971 0.037
A4 feature-based 30.017 0.957 0.064
A5 feature-based 31.988 0.971 0.037
A6 feature-based 32.082 0.970 0.038

A APPENDIX

A.1 ABLATION STUDY

In this section, we conduct ablation experiments on the Lagrangian module and the loss functions to
showcase their effectiveness. These ablations were conducted on the D-NeRF synthetic dataset and
we report their averaged metric values (PSNR, SSIM and LPIPS) with their corresponding model
settings (A1 – 7) in Table 2. Moreover, we show the rendered results of these experiments on the
Bouncing Balls scene in Fig. 9 to illustrate the influence of individual modules on rendering and part
discovery. We present our full model in Experiment A1.

Lagrangian module. Our Lagrangian module is mainly designed for automatic part discovery,
which is the main focus of the this work. Without this module, the model cannot achieve part
discovery at all while dynamic reconstruction and novel view rendering can still be done. We eval-
uate how the Lagrangian module is affecting the final rendering with the ablated model setting A2,
where we set the weight of the cycle consistency loss to 0, which essentially disables the Lagrangian
module. As shown in Table 2, the absence of rigid part motion constraints in the Lagrangian module
leads to only a slightly higher PSNR (less than 0.2db difference). In general, our Lagrangian module
enables automatic part discovery while retaining high rendering quality.

Cycle Consistency loss. To validate the effectiveness of the motion feature-based cycle consistency
loss, we compare it with the displacement-based cycle loss in A3. We enforce that the displacement
modeled by the Eulerian and Lagrangian modules remains consistent, akin to the Deformation Cycle
Consistency in Liu et al. (2022):

Lcycle-disp =
1

|Pobj |
∑

x∈Pobj

∥x−R−1
L (RE(x− tE) + tL)∥22. (14)

As demonstrated in Table 2, there is a decline in PSNR for displacement-based cycle consistency
(A3) when compared to the feature-level consistency used in our paper (A1). More importantly, the
discovery of parts is contingent upon grouping Lagrangian motion features. The inherent ambiguity
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Figure 9: The rendering results of ablations on Bouncing Balls scene.

between motion features and displacement, where multiple motion features may correspond to the
same displacement, poses a challenge in attaining precise part discovery results. As a result, the A3
model often fails to distinguish different parts in the scene (see A3 in Figure 9).

Total variation loss. The total variation loss imposes constraints on the feature similarity among
neighboring grids in the motion volume, effectively ensuring that adjacent particles in space exhibit
similar motion patterns. Experiment A4 demonstrates the critical role of this regularization in motion
modeling. In its absence, there is a notable decline in image rendering quality. Furthermore, due
to the unrestrained movement of near-neighbor particles, the discovered parts lack the characteristic
localized nature in 3D space, as illustrated in A4 of Figure 9.

Additional losses. The removal of either the cross-entropy loss (A5) or the per-point RGB loss (A6)
lead to a decline in rendering quality. Notably, the cross-entropy loss plays a crucial role in regulat-
ing foreground-background probability, and its omission may lead to ghosting in the background, as
evident in A6 of Figure 9. It is noteworthy that even in the absence of these additional regularization
losses, our method can still produce reasonable part discovery results.

A.2 MORE RECONSTRUCTION AND GROUP RESULTS

In this subsection, we report the per-scene results of the D-NeRF synthetic dataset in Table 3. We
also show more dynamic scene reconstruction and part discovery results in Figure 8. It can be seen
that our method can achieve high-quality dynamic reconstruction with different motion patterns and
also shows the ability that reasonably segment the moving regions and obtain meaningful parts, like
the legs and arms. Note that our approach does not explicitly introduce any category and geometric
priors. Therefore, it is not necessary to separate parts that are perceptually/semantically distinguish-
able but have no relative motion with other parts in the video capture, like the head and body.

A.3 VISUALIZATION OF GROUP MERGING

Figure 10: Two examples of the group merging
process. The groups with similar motion patterns
are gradually merged, and then the most reason-
able step could be selected.

Due to the excessive number of groups and non-
linear neural networks, the same rigid transfor-
mation trajectory could be easily represented by
different high-level motion features. Therefore,
we introduce a group merging module to reduce
the number of the group to a plausible level. In
this subsection, we visualize two examples of
all steps of group merging, as shown in Figure
10 At each merge step, the pair of groups with
the current most similar motion patterns are ag-
gregated; the entire process actually builds a bi-
nary tree of the original groups. The whole pro-
cess stops when all groups are combined into a
single one, i.e. the step with a single color. Fi-
nally, the most reasonable step is selected by
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Table 3: Per-scene results of D-NeRF synthetic dataset.

Method Hell Warrior Mutant Hook Bouncing Balls
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

T-NeRF 23.19 0.93 0.08 30.56 0.96 0.04 27.21 0.94 0.06 37.81 0.98 0.12
D-NeRF 25.02 0.95 0.06 31.29 0.97 0.02 29.25 0.96 0.11 38.93 0.98 0.10
TiNeuVox 28.17 0.97 0.07 33.61 0.98 0.03 31.45 0.97 0.05 40.73 0.99 0.04
NDVG 25.53 0.95 0.07 35.53 0.99 0.01 29.80 0.96 0.04 34.58 0.97 0.11
K-Planes 25.70 0.95 - 33.79 0.98 - 28.50 0.95 - 41.22 0.99 -
HexPlane 24.24 0.94 0.07 33.79 0.98 0.03 28.71 0.96 0.05 39.69 0.99 0.03
WIM 12.35 0.81 0.21 16.20 0.85 0.16 14.16 0.82 0.19 15.82 0.84 0.29
Ours 28.66 0.97 0.04 34.42 0.98 0.02 31.39 0.97 0.04 38.99 0.99 0.04

Method Lego T-Rex Stand Up Jumping Jacks
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

T-NeRF 23.82 0.90 0.15 30.19 0.96 0.13 31.24 0.97 0.02 32.01 0.97 0.03
D-NeRF 21.64 0.83 0.16 31.75 0.97 0.03 32.79 0.98 0.02 32.80 0.98 0.03
TiNeuVox 25.02 0.92 0.07 32.70 0.98 0.03 35.43 0.99 0.02 34.23 0.98 0.03
NDVG 25.23 0.93 0.05 30.15 0.97 0.05 34.05 0.98 0.02 29.45 0.96 0.08
K-Planes 25.48 0.95 - 31.79 0.98 - 33.72 0.98 - 32.64 0.98 -
HexPlane 25.22 0.94 0.04 30.67 0.98 0.03 34.36 0.98 0.02 31.65 0.97 0.04
WIM 13.95 0.72 0.28 19.05 0.87 0.14 16.26 0.89 0.12 17.95 0.87 0.16
Ours 25.08 0.92 0.07 32.24 0.98 0.03 34.46 0.98 0.02 32.22 0.98 0.03

the merging threshold discussed in our paper, shown as the rectangles in the figure. Note that the
same color in different steps does not denote the same group.

A.4 MOTION GROUPING EVALUATION DETAILS.
We utilized Kubric (Greff et al. (2022)), a data generation pipeline for multi-object videos with
annotation, to create our evaluation dataset. The MOVi-C pipeline from Kubric was employed to
generate scenes, utilizing realistic, textured objects from the GSO dataset (Downs et al. (2022)). To
create a diverse set of scenes, a random HDRI was used to generate the background. The number of
objects in each scene varied randomly between one to five, and object shadows were not considered
due to their highly non-rigid nature. Objects were placed randomly in space with a randomized
initial velocity. To capture each scene, the camera was positioned above the objects with a camera
movement setting similar to Pumarola et al. (2020). Finally, each scene was simulated and rendered
into a 120-frame image sequence, with ground truth instance masks. To evaluate the mean Intersec-
tion over Union (mIOU) between our grouping result and the ground truth mask, it is necessary to
establish correspondence between them. To achieve this, we utilized the first 10 frames in the se-
quence to determine the correspondence, which then was extended to the whole sequence. For each
group, we tallied the number of pixels belonging to each label in the first ten frames and identified
the ground truth label with the highest number of pixels to associate it with the group. This operation
enabled us to map each group to a label and convert the group map into a label map. Subsequently,
we calculated the per-frame IOU between the converted label map and the ground truth mask. To
obtain the final mIOU, we averaged the IOUs of all labels over the entire image sequence.

A.5 TRAINING DETAILS AND HYPER-PARAMETER SETTINGS

We use 50×50×50 voxels to construct the Eulerian volume VE and the Lagrangian volume VL with
a feature dimension of 20. The canonical volume Vc is constructed with a 160× 160× 160 voxel.
Following Fang et al. (2022), the feature dimension of Vc is set as 6. To alleviate the optimization
difficulty and speed up training, we set the initial resolution of the canonical volume to 403 and
upsample it at the 4k, 6k, and 8k iterations. For the MLPs in our framework, we set the channel
number of all hidden layers to 128. We use two-layer MLPs for the motion extractors EE and EL.
The parameters of the rigid transformation decoders, DE and DL, are shared. This sharing ensures
that the decoded motion parameters exhibit consistency when the motion features are consistent.
Two separated linear layers are used for the decoders to predict the 6D rotation and 3D translation
with biases as (1, 0, 0, 0, 1, 0) and (0, 0, 0), respectively so that the initial deformation is an identity.
For motion grouping, we set the slot number to 12 and initialize the slots from a standard normal
distribution. We use the Adam optimizer for a total of 20k iterations, by sampling 4096 rays from a
randomly sampled image in each iteration. To reduce the learning difficulty, we add images into the
training set progressively at the early training stage. We set the learning rate as 0.08 for the Eulerian
and Lagrangian volumes, 0.01 for the canonical volume, 6× 10−4 for E and D, 8× 10−4 for other
networks. For the overall loss function, we described it as:

L = Lphoto + wcycleLcycle + wper ptLper pt + wentropyLentropy + wtvLtv. (15)

15



Published as a conference paper at ICLR 2024

We use Lper pt and Lentropy to supervise the color of sampled points and regularize the background
probability, respectively. We set wper pt and wentropy to 0.01 and 0.001. To encourage reciprocity of
motion between the Eulerian and Lagrangian views, we use the cycle consistency loss Lcycle with a
weight parameter wcycle of 0.1. Additionally, we apply the total variation loss to smooth the features
of the motion volumes VE and VL:

Ltv =
1

N

∑
(
√
△2VL + wE

√
△2VE) (16)

Where N denotes the number of parameters of each motion volume, △2 represents the square differ-
ence between neighboring values in the motion volume, wE denotes the additional weight between
VE and VL. We set the wtv = 0.01 and wE = 1 for the D-NeRF synthetic dataset. For motion
grouping evaluation, we decrease these two weights due to the more complex object geometry and
motion patterns, we set the wtv = 0.001 and wE = 0.1.

A.6 MORE RESULTS OF APPLICATIONS ON SYNTHETIC DATA.

Figure 11: Structural scene modeling and
editing in simulated robotic manipulation en-
vironments.

Except for the real data application, we also con-
ducted structural scene modeling and editing on
robotic synthetic data. We utilized a subset of
the robotic manipulation environments in ManiSkill
(Mu et al. (2021)) to simulate robot-object interac-
tions with a similar monocular setting as (Pumarola
et al. (2020)). As shown in Figure 11, We conducted
experiments using two different setups: articulated
object manipulation and rigid-body manipulation. In
the first setup, the robot performs operations on a
particular movable part of an articulated object, as
shown in Figure 11 above. In the second setup, the
robot is tasked with grasping a specific object and
moving it to a target position, as illustrated in Fig-
ure 11 below. In both setups, through observation,
our method can accurately identify the manipulated
object or object part, such as the drawer (orange)
and the cabinet door (yellow), as well as the links
and joints of the robot. What is more, benefit from
the learned structural scene representation, we could
apply direct high-level scene editing. In Figure 11,
we show the editing operations like duplication, re-
moval, scaling of a specific object in the scene, and
the control of an articulated robot arm. Note that
these operations are all performed in 3D space and
rendered into 2D images for visualization.

A.7 IMPLEMENTATION DETAILS OF SCENE
EDITING

Figure 12: Illustration of the application im-
plementation.

Based on our part-level representation, we could di-
rectly edit the 3D dynamic scenes. In this paper, we
present four scene-editing applications: Removal,
Duplication, Rescaling, and Re-posing. Here, we
will provide more details about how to implement
these applications.

As shown in Figure 12, these application implemen-
tations could be divided into 2 ways. For Removal,
after ray marching, the sampled points are fed into
the Eulerian module to be transformed into canon-
ical space. Then these canonical coordinates are
grouped by our motion grouping network. To delete
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the specified group, we simply assign the density of the points in this group to zero to remove it
from the canonical space. After rendering, the specific group will be deleted from the image.

Duplication, rescaling, and re-posing could be implemented in the same way. We do this by pro-
cessing the group to be edited and the background (all the other groups) respectively. Specifically,
the sampled points by ray marching are fed into the background branch and the edit branch. In the
background branch, we leave the background group fixed and delete the group to be edited, which is
the same as the Removal application. In the edit branch, we perform transformations for the target
group, such as rotation, translation, scaling, etc. We achieve this by first performing a manually
specified transformation on the sampled points. Then these transformed points are fed into the Eule-
rian module and the motion grouping network obtains the canonical coordinates and corresponding
group index. After that, we set the density of the points in the background groups to 0 so that the
transformation only acts on the target group. Finally, we integrate the corresponding points of the
two branches to render them into the 2D image, the integration formula is as follows:

σ = σbg + σedit

c =
1

σ
(σbg · cbg + σedit · cedit)

(17)

Note that by introducing additional edit branches, we could make different edits to different groups
simultaneously.
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