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ABSTRACT

Navigating through the exponentially large chemical space to search for desirable
materials is an extremely challenging task in material discovery. Recent devel-
opments in generative and geometric deep learning have shown promising results
in molecule and material discovery but often lack evaluation with high-accuracy
computational methods. This work aims to design novel and stable crystalline
materials conditioned on a desired band gap. To achieve conditional generation,
we: 1. Formulate crystal design as a sequential decision-making problem, cre-
ate relevant trajectories based on high-quality materials data and use conservative
Q-learning to learn a conditional policy from these trajectories. To do so, we for-
mulate a reward function that incorporates constraints for energetic and electronic
properties obtained directly from density functional theory (DFT) calculations; 2.
Evaluate the generated materials from the policy using DFT calculations for both
energy and band gap; 3. Compare our results to relevant baselines, including a
random policy, behavioral cloning, and unconditioned policy learning. Our exper-
iments show that our conditioned policies achieve more targeted crystal structure
designs and demonstrate the capability to perform crystal structure design evalu-
ated with accurate and computationally expensive DFT calculations.

1 INTRODUCTION

The widespread enthusiasm in exploiting artificial intelligence (AI) for scientific discovery (Wang
et al., 2023) has resulted in various methodologies to integrate existing scientific knowledge and
large databases to design and test new hypotheses more quickly. Recently, AI has shown favorable
results in expediting the discovery of new chemical structural entities (e.g., small molecules, mate-
rials, and polymers) (Jain et al., 2023; Xu et al., 2023; Bran et al., 2023; Sim et al., 2023). While
several studies have focused on small molecule design for applications in drug discovery, there has
also been an upsurge in attention for AI-based material discovery (Miret et al., 2022b; Song et al.,
2023; Lee et al., 2023; Miret et al., 2022a). Among solid-state materials, crystalline substances are
abundant in nature and are extensively used in industry for designing batteries, semiconductors and
photovoltaic systems. The set of known and experimentally observed crystalline materials is an in-
finitesimally tiny fraction (around 200,000) of the exponentially large chemical space spanning over
100 elements in the periodic table and 230 space groups in 3 dimensions (Rutherford, 2005; Zhao
et al., 2023). Determining a way to navigate through this large space to select chemical candidates
with desired properties would be immensely beneficial for a plethora of applications like designing
energy-efficient semiconductors and combatting climate change.

Besides the complex nature of the chemical space, designing stable crystalline materials using com-
putational chemistry is a long-standing challenge primarily due to the time-consuming density func-
tional theory (DFT) calculations to estimate energetic and electronic properties of materials. Pre-
vious works have utilized generative adversarial networks (GANs) (Nouira et al., 2018), diffusion
models (Xie et al., 2021), and reinforcement learning (RL) (Meldgaard et al., 2020), in addition
to advanced crystal representation schemes for generating crystals (Damewood et al., 2023; Duval
et al., 2022). However, we identify two major gaps in the existing literature for AI-based material
discovery. Firstly, most methods do not incorporate quantum mechanics-based first-principles cal-
culations in the learning model, and instead use ML approximators. Studies that incorporate DFT
computations in their ML pipeline for material design usually focus on smaller and very specific
chemical systems (with limited number of elements or constraints on the space group) that might
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not generalize well to diverse chemical systems (Meldgaard et al., 2020; Zhao et al., 2021). Sec-
ondly, state-of-the-art generative AI methods, such as diffusion models, predict the identities and
positions of all atoms simultaneously, which is orthogonal to sequence based RL methods that also
have more established exploration methods applicable to vast search spaces.

In this work, we further the state-of-the-art in the crystal design problem by developing a model
which learns to sequentially construct crystal skeleton graphs by optimizing for both lower total
energy and desired band gap value (energy gap between the valence and conduction bands in solids),
as computed by DFT. In our case, the crystal lattice parameters and positions of atomic sites are
known beforehand (crystal skeleton) and the task is to learn a conditional policy that can sequentially
fill atoms to generate a stable and valid crystal with a desired band gap energy. To alleviate the issue
of time-consuming DFT calculations when integrated in the scientific discovery loop, we apply
offline reinforcement learning using the conservative Q-learning (CQL) approach (Kumar et al.,
2020), which is known to mitigate overestimation and out-of-distribution issues when agents are
trained with static datasets in an offline manner. We construct a state transition dataset from high-
quality nonmetallic crystal structures present in the Materials Project database (Jain et al., 2013).
Moreover, we augment this dataset to reduce the order dependence of nodes while training our offline
policy. The reward function is carefully formulated to penalize high energies and large deviations
from the desired band gap. Further, we leverage an expressive graph neural network (GNN) for
crystal representation that ensures invariance to periodicity, translation, and rotation. Through our
work, we aim to accelerate the process of high-throughput virtual screening (HTVS) for materials,
where usually elements are combinatorially substituted in a known crystal structure and optimized
using DFT calculations. Overall, our contributions are three-fold, as follows:

1. DFT Evaluation of Crystal Structures with Reinforcement Learning: Our distinct for-
mulation of the reward function for offline RL is crafted from total energy and band gap
values computed using first principles DFT calculations, the gold standard of computational
chemistry. The reward function penalizes high total energy and large deviations from the
desired band gap to a policy conditioned on a targeted band gap value.

2. Conservative Offline Reinforcement Learning Approach: Using CQL as our offline RL
framework, we demonstrate that conservatism, combined with the right amount of impor-
tance for the energy and band gap terms in the reward function, can lead the agent to gener-
ate crystals with a favorable shift in the distribution of properties of interest. This achieve-
ment is noteworthy, especially considering our task has a very sparse reward scheme, allows
no exploration, and has a high dimensional action space and limited data.

3. Open-Source Crystal Structure Design Trajectory Data: To ensure consistency in our
reward calculation, we evaluate 20k crystal structures using the Quantum Espresso (Gi-
annozzi et al., 2009) package for DFT calculation and subsequently construct offline RL
trajectories based on the data. We plan to release the dataset of trajectories and calculations
as part of the paper to enable research to further improve our work. The release of the data
is noteworthy, given that we use an open-source DFT calculator that is highly reproducible
and consistent for all the structures evaluated. Prior work used different types of proprietary
DFT software, which is difficult for the research community to reproduce.

2 RELATED WORKS

Automated Materials Design. Prior work has explored the application of various types of meth-
ods to crystal structure design, including evolutionary algorithms, simulated annealing, particle
swarm optimization, and high-throughput screening (Glass et al., 2006; Doll et al., 2008; Wang
et al., 2012). Machine learning based methods have been more recently applied, primarily to molec-
ular design problems, but also to periodic crystal structures (Li et al., 2020; Damewood et al., 2023).
Moreover, there have been notable works using machine learning based methods to approximate the
evaluation of material properties and behaviors (Miret et al., 2023; Lee et al., 2023). This includes
approximating DFT outputs directly for different systems, such as ground-state crystal structures
for a variety of applications, such as catalysts (Chanussot et al., 2021; Chen & Ong, 2022). The
recent progress in graph neural networks and generative models have led to their successful appli-
cation in materials design (Duval et al., 2023; Chen & Ong, 2022). GANs have been well explored
for crystal structure design (Nouira et al., 2018; Zhao et al., 2021; Kim et al., 2020). However,
these approaches restrict the complexity of the problem to a fixed crystal system or a smaller chem-
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ical space . Zhao et al. (2023) proposed a physics-guided GAN model using convolutional layers
to learn the generative distribution of stable crystals, and the evaluation of generated crystals was
done using DFT. CDVAE (Xie et al., 2021) introduced a diffusion-based framework with highly
expressive graph representation learning techniques to generate stable and valid crystal structures
in 3 dimensions. Zheng et al. (2023) used their Distributional Graphormer to generate structures of
carbon polymorphs with the desired band gap. Meldgaard et al. (2020) focused on building an on-
line RL framework with DFT integrated reward function for surface reconstructions. However, they
use the tight-binding version of DFT (DFTB), whose accuracy is lower than full DFT calculations.
Other relevant works include Pan et al. (2022); Sui et al. (2021); Law et al. (2022) and Zheng et al.
(2022).

Offline Reinforcement Learning. Offline RL (Levine et al., 2020; Prudencio et al., 2023) enables
for learning an optimal policy directly from trajectories, making it possible to utilize knowledge
from existing crystal structures. The ability to learn from previously determined crystal structures
reduces the need for costly DFT calculations during training which are necessary for online RL
methods. Many recently proposed offline RL methods focus on managing distribution shift between
the offline data and the learned policy (Nair et al., 2021; Kostrikov et al., 2022; Yu et al., 2021), with
Conservative Q-Learning (CQL) (Kumar et al., 2020) proving to be a particularly robust approach.
CQL has shown success in training large capacity models and performing better with suboptimal
data, which makes it a particularly good fit for our crystal structure design case.

3 BACKGROUND

3.1 CRYSTALS

Solid-state crystals are characterized by ordered and periodic arrangement of atoms in 3 dimensional
space. They consist of unit cells, which are the smallest group of atoms that form the repeating pat-
tern of the crystal. A crystal’s composition and arrangement of atoms gives rise to distinct electronic
properties usually determined by experimental or simulation-based density functional theory (DFT)
calculations. In 3 dimensions, we can mathematically express the unit cell U as follows.

U =
{
w1l1 + w2l2 + w3l3 | 0 ≤ wi < 1

}
, (1)

where l1, l2, l3 ∈ R3 are primitive translation vectors that define the periodic translation symmetry
of the crystal. Discrete linear transformations can be performed to obtain unit cells at different
locations with ∇ = c1l1 + c2l2 + c3l3, where c1, c2, and c3 are integers, thus generating the entire
3-dimensional lattice. Therefore, a 3-dimensional lattice Λ is defined as all integral combinations of
lattice basis vectors

Λ =
{
c1l1 + c2l2 + c3l3 | ci ∈ Z

}
. (2)

For a crystal with N atoms, where the atom positions are given by X = {x0, · · · ,xN−1}, the
corresponding position of atom i in a unit cell translated by c1l1 + c2l2 + c3l3 is given by

x′
i = xi + c1l1 + c2l2 + c3l3 (3)

Further, there are 230 space groups in the 3-dimensional space, each of which describes a specific
crystal symmetry. Every crystal in the database is associated with one space group number (1–230)
depending on the arrangement of atoms in the crystal lattice. The order is based on the increasing
complexity of symmetry elements and their combinations. For instance, space group number 1 is the
simplest and least symmetric crystal system (triclinic), and 230 has the highest degree of symmetry
(cubic).

3.2 CRYSTAL REPRESENTATION

A natural way to represent crystals is using graphs, with atoms as nodes and edges that connect
neighboring or bonded atoms. However, using simple graphs is often not expressive enough to
incorporate the inherent periodicity in crystals. In this work, we adopt multigraphs, following Xie
& Grossman (2018) to represent crystals structures. In multigraphs, two nodes can be connected
by more than one type of edge. In the context of crystals, consider a graph G = (V,E) with
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nodes (atoms) V = {v0, · · · , vN−1} and edges (neighboring atoms) E = {euv,(c1,c2,c3)|0 ≤ u ≤
N − 1, 0 ≤ v ≤ N − 1, c1, c2, c3 ∈ Z, u, v ∈ V }. Here, euv,(c1,c2,c3) is a directed edge from atom
u to atom v in a unit cell translated by c1l1 + c2l2 + c3l3. If c1 = c2 = c3 = 0, it corresponds to
an edge between u and v in the same unit cell. Likewise, if c1 = 1, c2 = c3 = 0 it corresponds to
an edge between atom u in the original unit cell and atom v in a unit cell translated by l1. This way,
multigraphs carry information about the entire 3 dimensional structures of crystals.

3.3 OFFLINE REINFORCEMENT LEARNING

While online RL methods demand frequent agent-environment interactions, offline RL exploits ex-
isting data (Prudencio et al., 2023), which is useful when receiving rewards or feedback from the
environment is computationally expensive or physically implausible. As previously mentioned, our
reward formulation depends on the energies and band gaps of crystals computed by DFT. Given
that the time it takes for performing DFT simulation ranges between 6 seconds to more than 20
minutes for each input depending on its size and type, it is highly infeasible to train an online rein-
forcement learning algorithm for this problem. Additionally, the high dimensional action space and
the extremely complex reward landscape with narrow modes demands large amounts of exploration
while learning in an online manner. Offline RL aims to learn from a static dataset D consisting of
state transitions, i.e., (st,at, st+1, rt) obtained from a behavioral policy πβ(a|s) to learn an offline
policy πo(a|s). However, directly adopting model-free RL (e.g., deep Q learning) approaches in a
data-driven manner causes two major issues – 1) the learned policy becomes out-of-distribution from
the behavioral policy and 2) values of some states are over estimated. Both these issues go hand-
in-hand. Addressing these issues, Kumar et al. (2020) proposed conservative Q-learning (CQL),
which regularizes Q-values by concurrently optimizing for the Bellman error to learn a conservative
and lower-bound Q function. The optimization objective of the DQN (Mnih et al., 2015) version
(discrete action space) of CQL is given below

min
θ
ωEs∼D

[
log

∑
a′

exp(Qθ(s,a
′))− Es,a∼D

[
Qθ(s,a)

]]
+ (4)

1

2
Es,a,s′,r∼D

[
Qθ(s,a)−

(
r + γmax

a′
Qθ′(s′,a′)

) ]2
.

Here, ω controls the amount of conservatism, i.e., higher the value of ω, the more the preference for
a conservative policy that better fits the data. Qθ′ is the target network. When the action space is
discrete, learned discrete offline policy is therefore

πo(a|s) = argmax
a

Qθ(s,a). (5)

3.4 DENSITY FUNCTIONAL THEORY

DFT is a simulation-based quantum mechanical modeling method that is used to compute the elec-
tronic structure of multi-atom systems, thereby estimating several properties including total energy,
formation energy, and band gap. This is achieved by iteratively solving the Kohn–Sham equations
(Kurth et al., 2005). For evaluating crystal structures, we make use of the open-source Quantum
Espresso software suite (Giannozzi et al., 2009) to perform self-consistent field (SCF calculations)
using the Perdew–Burke-Ernzerhof (PBE) exchange-correlation functional. However, the PBE func-
tional is known for its systematic underestimation of band gap energies (Seidl et al., 1996), and is
less accurate than functionals like HSE06 (Heyd et al., 2003) or other self-energy approximations
like GW (Aryasetiawan & Gunnarsson, 1998). Nevertheless, we used PBE because of its lower
computational costs and superiority over DFTB. The output produced by the DFT simulation con-
sists of two important properties that we are interested in – total energy (in Rydberg) and band gap
(in eV). In this process, we also faced multiple new crystals failing to complete DFT simulation due
to unknown properties (e.g., spin, magnetization) as part of our evaluation.
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Figure 1: a) Our design approach centers on filling in the composition of predefined crystal using an
RL policy. b) To successfully train an RL policy, we obtain data from Materials Project (Jain et al.,
2013), recompute relevant property values using open-source DFT (Quantum Espresso (Giannozzi
et al., 2009) and create trajectories for offline RL. c) We train a graph neueral network based policy
based on MEGNet (Chen et al., 2019) to achieve property conditioned crystal generation.

4 METHODS

4.1 RL FORMULATION

The RL formulation of our problem follows a MDP defined as M = ⟨S,A, T , R, γ⟩, where S
denotes the state space, A denotes the action space, T (s′|s,a) : S × S × A → [0, 1] is the
environment transition probability function, R(s,a) : S × A → R is the reward function, and
γ ∈ [0, 1] is a discount factor denoting the preference for long term rewards over short term rewards.
In our setup, the state space consists of empty, partially or fully filled multigraphs (G(V,E)) of
crystal structures. The action space A consists of atomic elements from which the agent has to
choose to assign an atom at a given atomic site in a unit cell. Starting with initial state s0, which is
the graph G0 of an empty crystal skeleton, the sequential construction of a crystal of N atoms can
be represented as a trajectory, as shown in Figure 1.

4.1.1 REWARD FUNCTION

For this property-driven crystal design problem, our reward function is expected to penalize high
total energies (Etot) and large deviations from a desired property of interest (e.g., band gap), whose
value is denoted by p̂. In the context of training an offline RL agent with batches of transitions,
we aim to minimize the deviation between the ground truth property p of the crystal and p̂ (desired
property). This bi-objective optimization can be addressed by using a linear combination of terms
that individually optimize for lower energy and desired property. In other words, for a crystal with
N atoms, the terminal reward, which is also equal to the return in this case, can be expressed in
terms of its total energy Etot and ground truth property p as follows.

rN (Etot, p̂, p) = α1gE(Etot) + α2gp(p, p̂). (6)

Here, gE(Etot) enforces lower total energy, gp(p, p̂) enforces p and p̂ to be close, and α1 and α2

are design parameters that control the importance of each of the terms. We emphasize that this
formulation of the reward function is only reasonable when the magnitudes of gE(Etot) and gp(p, p̂)
are comparable. However, because of the large discrepancy in the magnitudes of the of the total
energy (Rydberg units) and the band gap (eV units), we devise gE(Etot) such that the energy term
is scaled down to lower magnitudes, and propose an appropriate distance function for gp(p, p̂) in the
range. To achieve this, we perform log-scaling of the total energy value, and apply an exponential
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distance function to penalize large deviations from the desired property yielding:

rN = α1 log10 (−Etot) + α2 exp

[
− (p− p̂)2

β

]
. (7)

This introduces another design parameter β, which essentially influences the sharpness of the mode
of reward surface, with a lower value of β resulting in a higher level of sharpness (Jain et al., 2023).

4.2 Q-NETWORK AND STATE REPRESENTATION

Our conditional Q-network Qθ(s,a; p̂) consists of two components: 1) a graph neural network
that extracts meaningful state representation of the input multigraph; 2) linear layers for computing
Q-values from this representation. To represent and process multigraphs in an expressive manner,
we adopt the MEGNet model Chen et al. (2019), a universal graph machine learning framework
for molecules and materials. MEGNet provides an effective way of iterative information exchange
among node, edge and state features, which is particularly useful for chemical entities. For a crystal
graph G(V,E,y; p̂) conditioned on the desired property p̂, V and E are sets of nodes and edges,
and y corresponds to the global state-level feature. For the N atoms in a unit cell, the categorical
feature of the nodes H = {hu}N−1

u=0 denote the one-hot encoding of the atom type in each of the
nodes. It includes an additional dimension to indicate whether the node is currently filled or unfilled
with an atom. Edges connect neighboring atoms based on the CrystalNN scheme proposed by Pan
et al. (2021) for determining the presence and type (i.e., (c1, c2, c3) triplet) of edges. The set of edge
features T = {tuv,(c1,c2,c3)} represents the Gaussian distance between the position of atom u in the
reference unit cell and atom v in a unit cell shifted by c1l1 + c2l2 + c3l3.

tuv,(c1,c2,c3) = exp

[
−
d2uv,(c1,c2,c3)

ρ

]
, (8)

duv,(c1,c2,c3) =
√

(xv + c1l1 + c2l2 + c3l3 − xu)2, (9)

where xu,xv ∈ R3 are the positions (Cartesian coordinates) of atoms u and v in the reference unit
cell. The state-level feature y is expressed as follows.

y = [z||f ], z = [a, b, c, ϕ1, ϕ2, ϕ3,S, p̂]. (10)

where, a, b, c are the lengths of the edges of the lattice (a = ∥l1∥, b = ∥l2∥, c = ∥l3∥), ϕ1, ϕ2, ϕ3
are the angles of the lattice, S is the space group number of the crystal, p̂ is the desired property
that the policy is conditioned on, and f is a categorical feature, which we refer to as focus – it
instructs the policy which unfilled node to focus on for atom type prediction in the following step.
The categorical features H and f are passed through embedding layers to obtain embedded feature
maps H̃, f̃ . Numerical features T and y are passed through multilayer perceptrons (MLPs).

ỹ =MLP ([z||f̃ ]). (11)

A graph G̃ with embedded and encoded features is then passed throughK MEGNet layers, followed
by a readout layer (Appendix A.2) to obtain a graph-level representation, which is then passed
through an MLP to obtain conditioned Q-values for all actions in A.

G̃(k+1) =MEGNET (G̃(k)) ∀ k = 0, · · · ,K − 1 (12)

ψ(G̃(K)) = READOUT (G̃(K)) (13)

Qθ(s = G; p̂) =MLP (ψ(G̃(K))) (14)

4.3 DATASET

For this study, we used a subset of the Materials Project database, referred to as MP-20, that was
previously used by Xie et al. (2021). MP-20 consists of∼ 45k metallic and nonmetallic crystals with
different structure and composition, covering 88 elements in the periodic table. All of them have
at most 20 atoms. For our experiments, we excluded metallic crystals with zero band gap1. Metals

1Metallic crystals, being conductors have a zero band gap because of the overlapping conduction and va-
lence bands.
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constituted more than 60% of the data, leading to class imbalance challenges while conditioning the
model with a nonzero band gap. Next, we used Quantum Espresso to determine the total energies
and band gaps of all nonmetallic crystals in the training and validation set. In the end, our training
set included 8832 crystals, and our validation set included 2486 crystals.

4.4 STATE TRANSITIONS FOR OFFLINE RL

As shown in Figure 1, we generated a static dataset for training the offline policy using episodic
trajectories consisting of (st,at, st+1, rt) transitions from MP-20 crystals. We applied a determin-
istic policy πβ(a|s), where the actions correspond to the original element identities of the atom at
a specific position of interest in an empty or partially constructed crystal skeleton graph. Each tra-
jectory of an episode starts with the initial state s0, which is a graph G0 of a crystal skeleton, where
all atom identities are hidden. Through the focus feature f , we are explicitly providing the order of
traversal through the nodes of the graph, thereby simplifying the problem further. To mitigate the
effects of bias due to this order dependency, we obtain up to 5 trajectories for each crystal by varying
the order of nodes with breadth-first traversals of the graph from different source nodes. This way,
we obtained ∼ 520k transitions to train our offline RL policies.

5 EXPERIMENTS

In this study, we focus on designing stable (i.e., low energy) crystals that have a desired band gap
(p̂) of 1.12 eV, 2 eV, 3eV, and 4 eV, which fall within the semiconductor range. To determine the
amount of conservatism required for better performance, we varied the CQL ω term using weight
of 1 and 5, with the latter being more conservative than the former. Furthermore, we investigate the
effect of the design parameters of the reward function in Equation (7) (i.e., coefficients α1, α2, β) on
generating favorable crystals. After an initial hyperparameter sweep, we choose the coefficents as
follows: α1 = {0, 1}, α2 = {5, 10}, β = {1, 3}. As such, we trained 16 models for each target band
gap. Our baselines are 1) Random Policy, 2) Behavioral Cloning (BC)2, and 3) Unconditional
CQL Policy (where p̂ is removed in the state feature vector and the reward is only in terms of
Etot). For evaluating the model, we start with an empty crystal skeleton graph G0 as the initial state
s0, and perform a rollout using the learned conditional offline policy πo(a|s, p̂) to sequentially fill
atoms in the crystal. We then perform a pre-simulation assessment of the generated crystals using
the following metrics – 1) Compositional Validity: a generated crystal is valid if it has an overall
neutral charge, as computed by SMACT (Davies et al., 2019), 2) Accuracy, which is the fraction of
correctly predicted atoms, and 3) Similarity, which measures the similarity of the predicted atoms
with the ground truth, i.e., two atoms are similar if they belong to the same class of elements3. Our
results are shown in Table 1 for 1.12 eV and Table 2 for 4 eV.

Next, we performed DFT simulation for all the valid crystals to estimate the total energy and band
gap. The post-simulation metrics are 1) Earth Mover Distance (EMD) between the generated
and true band gap distributions (Γp

true), 2) Earth Mover Distance between the generated and
true total energy distributions (ΓE

true), 3) % of crystals that have the band gap value in the desired
range (ν), which in our case is from p̂− 0.25 eV to p̂+0.25 eV, and 4) Out-of-distribution design
(κ) – % of generated crystals that have band gaps in the desired range but whose corresponding
ground truth crystals do not have band gaps in the desired range. The results are shown in Figure 2.

5.1 ANALYSIS OF PRE-SIMULATION METRICS

For all band gap targets, as seen in Table 1 (for 1.12 eV) and Table 2 (for 4 eV), the more conser-
vative model (i.e., ω = 5) generally performs better in terms pre-simulation metrics. The metrics
were also influenced by the magnitude of the reward function – the higher the magnitude, lower
the accuracy, and in most cases, the lower the validity of generated structures. This is interesting
because when the magnitude of the reward is lower or ω is higher, the conservative term in the CQL
objective in Equation (4) becomes dominant, resulting in the net maximization of Q-values of state-
action pairs present in the dataset. Evidently, behavioral cloning (BC), being the most conservative

2Trained with supervised classification loss
3Classes – transition metals, post-transition metals, group 1 metals, group 2 metals, nonmetals, lanthanides,

actinides, halogens, and noble elements
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approach with no reward signal, performed the best for all pre-simulation metrics, which can be
attributed to BC’s better prediction capacities attributed to supervised learning. However, this might
not be helpful from the perspective of property-driven crystal design where the CQL-based policies
outfperform BC in κ, as described next in Section 5.2 outlining relevant case studies.

(a) % Desired range for different band gaps
targets for various policies. Conditioned
policies outperform random policy and com-
pete with unconditional policies in design-
ing crystal in the desired property range.

(b) % of generated crystals with property in
the desired range with corresponding ground
truth crystals outside the desired range.

(c) Band gap EMD (generated vs true) for
various policies showing that unconditioned
policies reproduce the original dataset better.
Lower is better.

(d) Energy EMD (generated vs true) for
various policies showing that unconditioned
policies reproduce the original dataset better.
Lower is better.

Figure 2: Results for conditioned CQL policies on all band gap design targets. Conditioned and
more conservative policies perform better in the κ metric while unconditioned policies, including
behavioral cloning, perform better at reproducing the original distribution. Random policies fail to
reproduce the original distribution and achieve desired properties.

5.2 BAND GAP DESIGN CASE STUDIES: TARGETING 1.12 EV, 2 EV, 3 EV & 4 EV

The results in Figure 2, which include a well-performing policy for all the design cases, show some
clear trends: 1) Conditioned policies (with ω = 5) generate more materials in the desired property
range when the corresponding true materials are outside the desired range (Figure 2b). Examples
are shown in Figure 3. 2) Greater conservatism leads to more materials in the desired range as
shown by the fact that ω = 5 outperforms ω = 1 in all design cases. 3) Unconditioned policies
manage to recreate the original distributions better than conditioned distributions. This is shown by
better performance in pre-simulation metrics and in the plots in Figure 2c and Figure 2d, holding
for both energy and band gap. 4) Random policies are not effective in generating valid and desired
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s

Figure 3: Examples of cases where the crystal generated by our model has the band gap in the
desired range i.e., (p̂ − 0.25, p̂ + 0.25), while the ground truth crystal has the band gap outside the
desire range. In most cases, it can be observed that some of the elements are common in the true
and generated crystals. This indicates selective atomic substitutions for favorable band gap shift.

crystal structures. The average energy shown in Figure 4b for the random policy is lower than for the
other policies, but this is not particularly meaningful as all policies manage to generate valid crystal
structures. It is likely that the random policy generated a small subset of valid metal-like crystal
structures given the close to zero average band gap shown in Figure 4a. Random policy generates
many unrealistic crystals, since many of the DFT runs validating the crystals failed (Table 3), as well
as the full experimental results showing pre-simulation metrics included in Table 1 and Table 2.

As shown in Figure 2, the higher values of p̂ is more challenging because: 1) Most samples in the
dataset have a lower band gap value (Appendix C) making the number of samples with a higher
band gap that get exposed to the model while training a very small fraction, 2) Underestimation of
band gaps by DFT, which causes an unfavorable shift from the expected band gap distribution.

6 CONCLUSION AND FUTURE WORK

We show that it is possible to train reinforcement learning based policies that can design valid
crystal compositions conditioned on a crystal structure skeleton and a target property, such as the
band gap, evaluated on precise and expensive computational chemistry engines, such as DFT. We
demonstrate that offline RL methods can be used to learn distributions of design trajectories for
valid crystal structures and provide tuning based on desired properties. While our results suggest
that one can train policies for materials design problems, there is still significant space for future
work to improve the performance, robustness and capabilities of the RL policies. First, our current
approach only considers crystal structure composition, which can be extended to include additional
design variables, such as crystal lattice parameters and atomic positions, for greater design flexibility
to design more performant materials. Second, the dataset we used for offline RL is still limited
in size (∼ 10k materials) given the large cost of generating the dataset in a consistent manner
and evaluating the reward function for structures generated by the policy. This leaves significant
room for future work in creating large pretraining datasets and accelerating the evaluation of crystal
structures through more optimized high-throughput DFT or machine learning based approximators.
Third, much algorithmic work remains in designing better policies for materials design that can
further improve the performance of conditional design.
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A EXPERIMENTAL DETAILS

A.1 PRE-SIMULATION RESULTS

Accuracy (%) Similarity (%) Validity (%)
CQL Weight ω = 1 ω = 5 ω = 1 ω = 5 ω = 1 ω = 5
Random 0.0115 0.1254 NaN
BC 52.26 71.98 85.00

No Condition 49.77 51.53 70.85 71.26 81.50 82.54
(0− 5− 1) 38.64 48.85 61.23 69.38 69.99 77.84
(0− 5− 3) 43.02 46.43 65.01 67.04 73.57 78.44
(0− 10− 1) 36.54 43.72 59.3 65.18 73.33 80.81
(0− 10− 3) 35.16 42.42 57.48 64.15 71.20 81.30
(1− 5− 1) 42.11 47.72 64.00 68.12 75.62 80.29
(1− 5− 3) 40.59 47.57 63.70 67.26 72.93 76.51
(1− 10− 1) 35.02 43.18 58.63 65.13 67.82 75.14
(1− 10− 3) 35.38 43.81 57.23 65.58 61.87 77.19

Table 1: Pre-simulation metrics for band gap design case of 1.12 eV with (α1−α2−β) corresponding
to the terms of the reward function in Equation (7) with the policy in Figure 2 and best by metric
highlighted. Unconditional policies perform better on pre-simulation metrics while conditioned
policies produce target designs shown as in Figure 2 and discussed in Section 5.2.

Accuracy (%) Similarity (%) Validity (%)
CQL Weight ω = 1 ω = 5 ω = 1 ω = 5 ω = 1 ω = 5
Random 0.0115 0.1254 NaN
BC 52.26 71.98 85.00

No Condition 49.77 51.53 70.85 71.26 81.50 82.54
(0− 5− 1) 41.82 48.09 64.34 68.82 80.21 82.18
(0− 5− 3) 39.46 47.61 61.59 68.24 74.46 80.09
(0− 10− 1) 33.24 39.42 60.78 53.42 62.39 67.82
(0− 10− 3) 35.24 41.47 57.14 64.06 64.40 75.54
(1− 5− 1) 38.80 46.79 60.09 68.77 70.80 80.17
(1− 5− 3) 42.06 47.49 63.36 68.35 78.32 81.0
(1− 10− 1) 36.52 42.21 59.57 65.07 76.55 74.41
(1− 10− 3) 35.94 42.91 56.8 64.2 68.95 77.63

Table 2: Band gap design case of 4 eV with similar nomenclature and conclusions as Table 1.

The full algorithmic description as well as relevant hyperparameters related to the model architecture
and policy training are shown below:

A.2 MEGNET

• Number of MEGNet blocks: 3
• Node embedding dimensions: 16
• Edge embedding dimensions: 1
• State embedding dimensions: 8
• READOUT Function: Order-invariant set2set (Vinyals et al., 2015)

A.3 OFFLINE RL

• Number of steps trained: 500000
• Discount factor: 0.99
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(a) Average Band Gap for various policies.
Greater CQL conditioning (ω = 5) yields
greater alignment to the desired band gap for
conditioned policies.

(b) Average total energy for various poli-
cies yielding valid crystals with energy be-
low 0. Possible reasons for random pol-
icy having the lowest energies is provided in
Section 5.2.

Figure 4: Analysis of average band gap and average energy of generated crystals in the validation
set.

Algorithm 1 Training Conditional CQL: DQN Version for Crystal Design with Target Property p̂

Construct dataset D of size ND consisting of transitions (s,a, s′, r) using known crystals
Load D in Replay Buffer B
Initialize Q-network Qθ and target network Qθ′ , batch size B
for j = 1 to max steps do

Sample B transitions, {(si,ai, s
′
i, ri)}Bi=1 from B

Compute TD loss

LTD
i (θ) =

{
(Qθ(si,ai; p̂)− (ri + γmaxaQθ′(s′i,a; p̂)))

2 if s′i is not terminal
(Qθ(si,ai; p̂)− ri)2 otherwise

LTD(θ) = 1
B

∑B
i=1 L

TD
i (θ)

Compute conservative loss, LC(θ) = 1
B

∑B
i=1 [log

∑
a exp(Qθ(si,a; p̂))−Qθ(si,ai; p̂)]

Compute total CQL loss LCQL(θ) = ωLC(θ) + 1
2L

TD(θ)

Compute gradients and backpropogate: θ ← θ − η∇LCQL(θ), η is the learning rate
Update target network parameters θ′

end for

• Batch size: 1024

• Learning rate: 3e− 4

A.4 DFT PARAMETERS (QUANTUM ESPERESSO)

For performing DFT calculations we use the Quantum Espresso (Giannozzi et al., 2009) simulation
suite. The details of the DFT parameters are given below. For simplicity, this configuration was used
for all crystals, and the evaluation is consistent for the training and generated crystals. Note that we
do not perform structure relaxation in any of the cases.

• Calculation: SCF

• Tolerance: 1e− 6

• Number of Bands: 256

• k-points: (3-3-3)
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• Occupations: fixed (since our training set consists only of nonmetallic crystals)
• Diagonalization: David
• ecutrho: 245
• ecutwfc: 30
• mixing beta: 0.7
• degauss: 0.001
• Default charge: 0
• Maximum iterations: 1000

A.4.1 HANDLING FAILURES

It is important to note that DFT can be best leveraged once we know certain properties of the crystals
– for example, charge, magnetization, and metallicity. Considering the difficulty in determining
these properties for completely unknown crystals, we standardized the evaluation procedure by using
the same DFT configuration for all crystals (except for the crystal-specifc parameters like number of
atoms, species, and pseudopotentials directory). However, this resulted in multiple crystals failing
DFT simulation. Some of the errors are explained below.

• Charge is wrong. Smearing is needed.: This error mainly occurs because of unpaired
electrons in the system, and can be resolved by changing the occupation to ‘smearing’
instead of ‘fixed’. However, doing so will not help in determining the band gap of crystals,
as it will only output the Fermi energy. Another way is to set the ‘nspin’ parameter to 2
and specify the total magnetization value as an additional input to Quantum Espresso. This
helped us resolve most of the failures for the MP-20 crystals in the training and validation
set because the total magnetization value is retrievable from the Materials Project, but for
the newly generated crystals, we had to ignore those which failed because of this error. The
error could also occur if generated crystal is metallic, and this property is also difficult to
identify directly from the structure and composition.

• NOT converged in 1000 iterations: For some crystals, the DFT simulation did not con-
verge even after 1000 iterations. These crystals were ignored while constructing the offline
dataset, and also when evaluating the policy-generated crystals.

• Time limit exceeded: For constructing the offline dataset using known crystals, we used a
flexible time limit to ensure none of the crystals are discarded because of time restrictions.
However, while performing DFT simulation for the policy-generated crystals, due to the
high-throughput nature of our evaluation pipeline, we had to ignore crystals that did not
converge in 12 minutes.

• Too few bands: This error occurs when the number of bands specified, through ‘nbnds’
parameter is insufficient for the crystal system being simulated. This error was largely
resolved by specifying a higher number of bands. In our case, we used 256 bands for all
crystals.

Overall, during evaluation of generated crystals, only 50-70% of the valid crystals successfully
underwent DFT simulation to output the energy and band gap (Table 3), and the rest failed because
of the above errors.

A.4.2 % DFT SUCCESS

Table 3 shows the percentage of policy-generated crystals that successfully underwent DFT simula-
tion based on failure handling strategies discussed in Appendix A.3.

B LIMITATIONS

The important limitations of this work are that the scope is limited to predicting only the atom
types given all other information about the skeleton of the crystal and the order of traversal, and the

16



Under review as a conference paper at ICLR 2024

% DFT Success
CQL Weight ω = 1 ω = 5
Random 14.99
BC 67.48

No Condition 70.97 59.92
CQL(p̂ = 1.12 eV) 51.92 61.68

CQL(p̂ = 2 eV) 53.76 69.06
CQL(p̂ = 3 eV) 54.18 67.71
CQL(p̂ = 4 eV) 52.31 66.48

Table 3: % Generated valid crystals that successfully underwent DFT simulation, for random policy
and each of the trained models. Most of the crystals generated by the random policy failed DFT
simulation.

training data is small and limited to nonmetals. Considering computational challenges attributed to
DFT calculations, we had to restrict our design parameter space to a very small set, but it would be
interesting to see the results after an extensive analysis after training models with several values of
ω, α1, α2, and β. Due to significant underestimation of band gaps by DFT, most of the generated
crystals had an estimated band gap value of 0.0, which hindered our evaluation and analyses. This
explains the very low fraction of generated crystals having a greater band gap.

C TRUE DISTRIBUTIONS OF PROPERTIES

This section shows the true distribution of the band gaps and total energies for both training and
validation data.

(a) Band Gap Distribution (Training Data) (b) Band Gap Distribution (Validation Data)

(c) Energy Distribution (Training Data) (d) Energy Distribution (Validation Data)

D FULL EXPERIMENTAL POST-SIMULATION METRICS

We provide full experimental for our reward function design parameters for both the 1.12 eV design
case (Table 1 and Figure 6 and 4 eV case (Table 2 and Figure 7) below. The tables includes evaluation
of both the pre-simulation and post-simulation metrics described in Section 5.
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(a) Average band gap (b) Average energy

(c) Band gap Wasserstein distance (gener-
ated vs true)

(d) Energy Wasserstein distance (generated
vs true)

(e) % Desired range (0.87-1.87eV)

Figure 6: Full design parameter values for all learned policies for the band gap design case of 1.12
eV. Nomenclature of the table is (α1−α2− β) corresponding to the terms of the reward function in
Equation (7)

18



Under review as a conference paper at ICLR 2024

(a) Average band gap (b) Average energy

(c) Band gap Wasserstein distance (gener-
ated vs true)

(d) Energy Wasserstein distance (generated
vs true)

(e) % Desired range (3.75-4.25)

Figure 7: Full design parameter values for all learned policies for the band gap design case of 4.0
eV. Nomenclature of the table is (α1−α2− β) corresponding to the terms of the reward function in
Equation (7)
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