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1. Introduction
Spin Hall materials, which generate spin currents

under the excitation of charge currents, play a cen-
tral role in spintronic devices. Despite their util-
ity, the spin Hall Conductivity (SHC) of commonly
used experimental materials remains limited, re-
stricting device performance in criticalmetrics such
as switching speed and energy efficiency. Theoreti-
cal studies propose exotic materials with enhanced
intrinsic SHC[1], however the systematic discovery
of practical candidates faces two fundamental chal-
lenges: (1) the lack of a unified physical descriptor
linking crystal chemistry to SHC magnitude, and (2)
the computational intractability of high-throughput
ab initio screening for spin-dependent transport
properties.
Recent advances in machine learning have

shown promise in spintronics material research,
focusing primarily on fundamental properties such
as magnetic ground states[2] and thermodynamic
stability[3], while the spin-dependent transport
properties remain under-explored. Finite studies
are limited to specific crystal systems [4], leaving
a gap in predictive models for the spin Hall effect
(SHE). Momentum-resolved electronic signatures
offer critical insights complementary to real-space
crystal features [5], yet the integration of reciprocal-
space information for spin-dependent property
prediction remains largely unexplored, presenting
a significant opportunity for further exploration.
Here, we propose a symmetry-aware multi-

modal transformer architecture to synergistically
integrate real-space crystallographic geometry with
the reciprocal-space electronic structure descrip-
tors, with crystal symmetry as a prompt. By innova-
tively incorporating the strength of atomic SOC and
valence electron configuration into atomic embed-
dings and leveraging cross-attention mechanisms,
the model achieves effective information fusion be-
tween these dual-space representations (Fig.1). The
proposed model outperformed the SOTA single-
modal GNNmodel on the unified data set, exhibiting
a statistically significant improvement of more than
23%. Extensive validation on independent computa-
tional and experimental benchmarks, together with
the additional ab initio validation confirmations are

performed for additional cross-validation. The pro-
posed approach not only enables SHC prediction
but also establishes connections between real-space
atomic configurations and momentum-dependent
energy dispersion relationship, offering a quantum-
aware paradigm for Spin Hall material discovery.

Fig. 1: Overview of the multi-modal Transformer
framework for SHC prediction.

2. SHCTransformer
The proposed Physics-guided Multi-modal SHC-

Tansformer architecture is composed of three pri-
mary components(Fig.1). First, feature extraction
modules independently process inputs from the
real-space crystal structure (CS) and reciprocal-
space electronic band structure (BS), extracting ef-
fective information from the dual-space respec-
tively.
For the real-space crystal structure, atomic and

bond features are embedded and processed through
a graph neural network (GNN) architecture, en-
abling effective information propagation between
nodes (atoms) and edges (bonds). The valence elec-
tron configuration and SOC strength information of
the composition are creatively integrated into the
atomic embedding to supplement the spin-related
information of electrons.
For the reciprocal-space band structure, feature

embedding is achieved using a residual convolu-
tional approach combined with self-attentionmech-
anisms to capture intricate patterns. While acquir-
ing complete band structure information for amate-
rial is often challenging, numerous published stud-
ies provide accessible band structure images near
the Fermi level. These readily available images can
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be directly utilized as band structure inputs, signif-
icantly simplifying data acquisition and enhancing
the accessibility of the model, making it more prac-
tical for real-world applications.
These are followed by a transformer-based fea-

ture fusion module, which employs cross-attention
and self-attentionmechanisms to integrate informa-
tion from both modalities. Specifically, we leverage
a standardized representation of the crystal symme-
try as a prompt within the cross-attention module.
This enables the embedding of symmetry-relevant
information during the multimodal fusion process,
enhancing the capacity to capture meaningful fea-
tures.

3. Results and Discussion
The model was trained using approximately 4600

high-throughput computational SHC data from the
SHC-DBdatabase[1]. The data is divided into training
set, test set and validation set according to the ratio
of 8:1:1, and the hyperparameters are fine-tuned on
the test set, while the model performance is evalu-
ated using the combination of validation set and test
set.

Fig. 2: Overview of the multi-modal Transformer
framework for SHC prediction.

First of all, the data of Crystal Structure and Elec-
tronic Band Structure modes are used to complete
the training respectively, however the performance
of the model is not satisfactory. Although single-
modality models achieved basic classification be-
tween materials with and without finite spin Hall
conductivity (SHC), they struggled to predict quan-
titative SHC values accurately.
The integration of both modalities substantially

improved prediction accuracy, achieving a 25% rela-
tive enhancement in the coefficient of determination
(R2) compared to best-performing single-modality
baselines. As visualized in Fig. 2, the color of each
data point indicates the local density of samples in
that region. Consistent with the ground truth data
distribution, the points are predominantly clustered
near zero and around 300 h̄/e(S/cm), aligning with
the two peaks observed in the prediction label distri-

bution shown on the right.
In comparison with state-of-the-art (SOTA) graph

neural networks (GNNs)—such as CGCNN, M3GNet,
and Gemnet—we observed that models overly fo-
cused on pairwise atomic interactions (e.g., bond
lengths and angles) underperformed in predicting
SHC. This suggests that transport properties such as
as SHC may rely more heavily on global symmetry
relationships rather than localized atomic environ-
ments. A similar conclusion was drawn from tradi-
tional machine learning frameworks, such as Mat-
miner combined with Random Forest Regression.
Although the predictive performance of ML archi-
tecturewas limited, the feature importance rankings
consistently highlighted crystallographic symmetry-
related descriptors as top contributors, further un-
derscoring the critical role of symmetry in SHC pre-
diction.

4. Conclusion and future work
Further efforts will focus on verifying the SHC

prediction performance of the model with more
theoretical calculation and experimental test data
and interpretable analysis. By leveraging dual spa-
tial information—real-space crystal structures and
reciprocal-space electronic signatures—the multi-
modal framework captures a more comprehensive
representation of spin transport properties, en-
hanced by explicit physical symmetry constraints.
This approach enables rapid preliminary screening
of materials using readily accessible data, prioritiz-
ing high-potential candidates for resource-intensive
ab initio validation. As a result, the model provides
an efficient and scalable pathway to accelerate the
discovery of next-generation spintronic materials.
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