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ABSTRACT

Large language models achieved state-of-the-art performance in generative tasks
but are computationally expensive, making them impractical for deployment in
resource-constrained environments. Knowledge distillation (KD) is a promising
technique for compressing LLMs by transferring knowledge from a large teacher
to a more efficient student model. However, existing task-based KD methods
distill all teacher model components indiscriminately. Since teacher models are
typically pre-trained for versatility across a broad range of tasks, this approach
can introduce unnecessary complexity when distilling for a specific downstream
task, potentially limiting the student’s ability to specialize. Furthermore, previous
work showed that only a subset of the LLM components significantly contribute
to a given task, making indiscriminate distillation inefficient. Motivated by these
insights, we propose task-aware selective KD (TASKD-LLM), a novel approach
that transfers only task-relevant knowledge from the teacher to the student, simpli-
fying the distillation process and maintaining the student’s focus. Our method is
flexible and can be combined with other distillation techniques in a plug-and-play
manner. Empirical results demonstrate that TASKD-LLM outperforms existing
methods, achieving higher performance on several benchmark datasets.

1 INTRODUCTION

Recently, there has been a surge in using large language models (LLMs) for generative tasks (Ope-
nAI, 2023), where they achieved good performance across diverse applications (Zhuge et al., 2024;
OpenAI, 2023; Touvron et al., 2023; Wang et al., 2023). Despite their remarkable success, these
models are computationally intensive and often impractical for deployment in resource-constrained
environments. Hence, there has been an interest in making LLMs more efficient in terms of storage
and computation through knowledge distillation (KD) (Zhu et al., 2024; Xu & McAuley, 2022).

In the standard LLMs KD framework, the teacher model is typically a large, versatile language
model (Gu et al., 2024), pre-trained on a diverse dataset (OpenAI, 2023). During distillation, all
components of the teacher are transferred uniformly to the student model (Gu et al., 2024; Peng
et al., 2023; Kim & Rush, 2016; Sanh et al., 2019). While this approach is beneficial for training
generally capable student models (Jiao et al., 2020; Sanh et al., 2019), many real-world applications
prioritize performance on a specific downstream task (Ge et al., 2023). In such cases, the broad
versatility of the teacher model may introduce unnecessary complexity, potentially hindering the
student model’s ability to specialize effectively (Ojha et al., 2023).

Furthermore, in the context of LLMs, it was shown in Hase et al. (2024); Gromov et al. (2024a); Luo
et al. (2024); Dai et al. (2021) that only a part of the LLM components significantly contribute to a
given task. To further confirm this, Figure 1 illustrates the sparsity of the activation map for the last
hidden state on a downstream example, along with the percentage of small activation magnitudes
(< 2), averaged over all fine-tuning data, across all hidden layers of the fine-tuned gpt2-xlarge.
As shown, many neuron activations are either zero or have low magnitudes, and thus contribute
weakly to the final model output. Additional illustrations with different thresholds are provided in
Appendix A. This highlights the inefficiency of conventional LLMs KD, which transfers all teacher
components indiscriminately, even though many do not contribute meaningfully to a specific task.
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Figure 1: (Left): Last hidden state activation magnitudes (z-axis) for a fine-tuned gpt2-xlarge on
a downstream example, with magnitude values < 2 set to zero for visualization. The x/y axes
represent sequence/features. (Right): Percentage of small activation magnitudes (< 2) across all
hidden layers. See Appendix A for more illustrations with different thresholds.

Motivated by these findings, we propose TASKD-LLM, a task-aware knowledge distillation ap-
proach for LLMs. Specifically, we locate and target only the task-relevant knowledge in the teacher’s
hidden layers during the distillation process. Unlike existing KD methods that transfer knowledge
indiscriminately from all units, we focus on distilling the information from the components of the
teacher model most responsible for the task at hand. In summary, our contributions are as follows:

• We leverage the inherent versatility of teacher models, recognizing that only a fraction of
their nodes are relevant to a given task in the context of knowledge distillation.

• We propose a novel knowledge distillation approach namely Task-Aware Selective Knowl-
edge Distillation for LLMs (TASKD-LLM) that locates and transfers task-relevant knowl-
edge from the teacher model to the student model.

• Our proposed approach can be combined in a plug and play manner with other KD methods.
Experimental results on various language generation benchmarks show that our approach
outperforms existing methods on several datasets, achieving performance improvements of
up to 0.96% in Rouge-L score on S-NI dataset.

For a detailed related work, see Appendix B.

2 METHOD

In this work, we propose TASKD-LLM, where we identify and distill only the most task-relevant
teacher components to the student. Our method addresses the limitations in the existing task-based
KD approaches (Gu et al., 2024; Sun et al., 2019a), which compress a versatile teacher model in-
discriminately, transferring all its knowledge to the student without distinguishing between task-
relevant and irrelevant information. These traditional methods often lead to inefficiencies, as not all
teacher components contribute meaningfully to every task (Dai et al., 2021).

Given a teacher hidden layer, we first locate the task-relevant neurons. To achieve that, we employ
the gradient attribution method (Krishna et al., 2024; Simonyan et al., 2014; Baehrens et al., 2010)
to calculate the gradient of the output with respect to each neuron’s activation. The magnitude of
the gradient reflects how much each node affects the model’s output, providing a measure of task
relevance score for each unit. Next, neurons with higher gradient magnitudes are deemed more
influential and are thus prioritized for distillation. Formally, given a teacher model T modeled by
a function F and a student model S, the importance score on the input x of the i-th neuron in the
hidden layer l of the teacher model T is computed as scorei(x) =

∂F (x)

∂al
i

, where F (x) is the output
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logit of T on the input x and ali is the activation of the corresponding neuron in the layer l. The
scores of all the units in the layer l of T are computed as follows:

scoresl(x) = {∂F (x)

∂al1
,
∂F (x)

∂al2
, ...,

∂F (x)

∂alN
}, (1)

where N is the size of the hidden state l of T . Lastly, we rank the scores of all the units in layer
l and select the n highest scores to target their corresponding nodes for distillation, where n is the
corresponding hidden size of the student model S. Unlike previous methods that require identical
hidden layer sizes (Sun et al., 2019b) or an additional projector training (Jiao et al., 2020) to align the
teacher and the student hidden representations, TASKD-LLM allows the teacher and student models
to have different hidden layers dimensions without requiring extra computations. The selected task-
relevant neurons, from T are obtained as follows:

Rl(B) =

{
B∑

b=1

∂F (x)

∂ali1
, . . . ,

B∑
b=1

∂F (x)

∂aliN

∣∣∣∣∣
B∑

b=1

∂F (x)

∂ali1
> · · · >

B∑
b=1

∂F (x)

∂aliN

}
, (2)

where B is the batch size and b is the sample index in the batch B. The set of selected neurons
El(B) = {ul

i1
, ul

i2
, ..., ul

in
} is the set of units that correspond to the first n scores in the set R(B),

where u is namely for unit.

Distillation Loss Function: To transfer the knowledge of these carefully selected neurons El(B) to
the student model S, we employ a correlation loss function, which was shown to be more effective
than traditional mean squared error (MSE) and cosine distance in capturing meaningful relationships
in the feature space (Saadi et al., 2023; Fard & Mahoor, 2022). In the context of LLMs, Dai et al.
(2021) showed that factual knowledge in transformer models is primarily stored in MLP layers rather
than in attention. Moreover, Gromov et al. (2024a); Men et al. (2024) emphasized the significance
of the last hidden state over other layers in generative tasks for LLMs. Thus, in TASKD-LLM,
we focus on distilling the teacher’s last hidden state L to the student’s last hidden state. Formally,
we maximize the cross-correlation between the set of units EL(B) from T and their corresponding
units in S as follows:

LTASKD−LLM =

n∑
j

(1− Cjj)
2, (3)

where Cjj =
∑B

b=1 aT
b,ja

S
b,j√∑B

b=1 (aT
b,j)

2
√∑B

b=1 (aS
b,j)

2
which represents the cross-correlation value between the

feature representation aTj , which corresponds to the j-th neuron activation from EL(B) of T , and
aSj , which is the j-th neuron activation in the student’s last hidden state. The final training loss of the
student model is: Loss = αLTASKD−LLM + βL2 + LLM , where L2 is the logit distillation loss,
e.g., Gu et al. (2024), and LLM is the supervised language modeling loss (Radford et al., 2019).

3 EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we present our experimental setup and discuss our results. The conducted experi-
ments follow a similar setup to the one outlined in Gu et al. (2024). In all experiments, the teacher
is the gpt2-xlarge model, with 1.5 billion parameters, after being fine-tuned on the instruction-
following Dolly1 dataset. In this work, our target task is instruction-following. We experiment
with two student models, namely gpt2-base (120 million) and gpt2-medium (340 million). For eval-
uation metrics, similar to Gu et al. (2024), we report the Rouge-L (Lin, 2004) score on the following
benchmark datasets: Dolly test dataset, SelfInst (Wang et al., 2022a), Vicuna (Chiang et al., 2023),
S-NI (Wang et al., 2022b), and UnNI (Honovich et al., 2023) datasets. The Rouge-L score measures
the precision of the model generation and it was shown by Wang et al. (2022b) that it is suitable
for large-scale instruction-following evaluation. For L2, we use the proposed logit loss in Gu et al.
(2024), which applies a reverse Kullback-Leibler divergence (Kullback, 1951) between the teacher
and the student logits. Full experimental details are available in Appendix C.

As shown in Table 1, our proposed distillation approach outperforms state-of-the-art methods, in-
cluding FT (fine-tuning), KD (word-level KD), SeqKD (sequence-level KD), and MiniLLM, on

1https://github.com/databrickslabs/dolly/tree/master
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most datasets. For gpt2-base (120 M), TASKD-LLM achieves the highest performance on S-NI
(23.07%), UnNI (25.32%), and Vicuna (17.91%) and ranks second on Dolly and SelfInst. For gpt2-
medium (340 M), TASKD-LLM outperforms all methods on four out of five datasets, often by a
significant margin. For instance, on UnNI, TASKD-LLM surpasses MiniLLM by 0.79% and Se-
qKD by 6.98%. These results demonstrate that focusing on task-relevant components is a promising
direction for task-based KD, leading to improved student model performance.

Notably, as shown in Table 1, the distilled gpt2-base medium (340 M) model with our TASKD-LLM
outperforms our trained teacher model on SelfInst, Vicuna, S-NI, and UnNI. This phenomenon,
where a distilled model surpasses its teacher, has been observed in prior work (Gu et al., 2024;
Stanton et al., 2021; Furlanello et al., 2018), highlighting the student model’s strong generalization
capabilities.

Table 1: The Rouge-L score (%) of the different approaches. * Results reported from Gu et al.
(2024). Results are averaged over 3 random seeds. M for million and B for billion.

#params Method Dolly SelfInst Vicuna S-NI UnNI

1.5 B Teacher* 27.60 14.03 16.30 27.60 31.80
Teacher 26.67 13.72 16.18 25.14 28.56

FT* 23.30 10.00 14.70 16.30 18.50
KD* (Sanh et al., 2019) 22.80 10.08 13.40 19.70 22.00

120 M SeqKD* (Taori et al., 2023) 22.70 10.10 14.30 16.40 18.80
MiniLLM Gu et al. (2024) 24.43 12.47 17.89 22.11 24.48
TASKD-LLM (ours) 24.31 12.29 17.91 23.07 25.32
FT* 25.50 13.00 16.00 25.10 28.10
KD* (Sanh et al., 2019) 25.00 12.00 15.40 23.70 24.60

340 M SeqKD* (Taori et al., 2023) 25.30 12.60 16.90 22.90 23.30
MiniLLM (Gu et al., 2024) 25.62 14.19 18.03 24.93 29.49
TASKD-LLM (ours) 26.02 14.57 17.68 25.61 30.28

Ablation Study: As explained in Section 2, TASKD-LLM focuses exclusively on distilling the last
hidden state of the teacher to the last hidden state of the student. In Table 2 of Appendix D, we
experiment with different layer combinations. As shown in Table 2, the performance across all layer
combinations is generally comparable. However, distilling the last two layers from the teacher model
to the last two layers of gpt2-base yields superior performance on four datasets, i.e., SelfInst, Vicuna,
S-NI, and UnNI, compared to other configurations. This suggests that incorporating layer selection
techniques, such as those in Gromov et al. (2024b); Belrose et al. (2023), could further enhance our
approach. To further validate the effectiveness of our approach, which targets task-relevant neurons,
in Table 3 of Appendix D, we compare TASKD-LLM with random neuron distillation. Indeed,
targeting the relevant knowledge through the gradient attribution method (Grad) in the distillation
process outperforms random distillation in most cases. For instance, in the case of gpt2-medium
(340 M), TASKD-LLM has a rouge-L score of 26.02% on Dolly dataset while the random approach
(Rand) has 25.55%. This perfectly aligns with the findings of Hase et al. (2024); Dai et al. (2021),
which showed that only certain components of an LLM significantly contribute to a specific task.

4 CONCLUSION AND FUTURE WORK

In this paper, we introduced TASKD-LLM, a novel task-based knowledge distillation approach that
reduces LLMs size while preserving performance. By identifying and distilling only task-relevant
components from the teacher model, our method produces more efficient student models. Notably,
TASKD-LLM is the first to explore feature distillation in LLMs for generative tasks. We showed
through preliminary experiments that our approach is a promising direction for task-based KD. Fu-
ture work will include incorporating different layer selection strategies, exploring alternative meth-
ods for identifying task-relevant components (e.g., integrated gradients (Sundararajan et al., 2017),
LogitLens (Belrose et al., 2023)), and extending our approach to different model architectures.
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A ADDITIONAL FIGURES

(a)

(b)

(c)

Figure 2: Activation magnitudes (z-axis) after feeding training samples from the downstream task to
a fine-tuned gpt2-xlarge. x and y axes are sequence and feature dimensions: (a) We threshold values
below 1 to zero. (b) We threshold values below 0.5 to zero. (c) We threshold values below 2 to zero.
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Figure 3: Percentage of small (< 1 and < 0.5, respectively) activation magnitudes (averaged across
all fine-tuning data) across different layers of the fine-tuned gpt2-xlarge.

B RELATED WORK

Model compression reduces neural network size while preserving performance. Common tech-
niques include pruning, which removes unimportant weights, neurons, or layers (Frankle & Carbin,
2018; Lagunas et al., 2021; Prasanna et al., 2020); weight sharing, where different model parts reuse
the same weights (Long et al., 2017; Lan et al., 2019; Reid et al., 2021); and quantization, which rep-
resents weights and activations with lower-bit integers instead of high-precision floats (Zhou et al.,
2017; Kim et al., 2021; Prato et al., 2020).

Knowledge Distillation (KD) is also a widely used model compression technique that transfers
knowledge from a large teacher model to a small, efficient student model (Sanh et al., 2019; Gou
et al., 2021). In natural language processing (NLP), KD has been predominantly applied to text clas-
sification tasks by aligning the student model with the teacher’s output distributions (Liang et al.,
2021; Zhang et al., 2023), hidden representations (Sun et al., 2019b; Jiao et al., 2020), or attention
matrices (Wang et al., 2020; 2021). These approaches effectively reduce model size while preserving
performance, making them suitable for resource-constrained setups.

However, the application of KD in language generation tasks is more complex than in classification
tasks (Gu et al., 2024). Unlike the fixed-label space of classification, open-ended text generation
involves producing discrete token sequences of varying lengths, which adds inherent complexity.
Existing KD techniques for generative models primarily minimize the forward Kullback-Leibler
divergence (KLD) (Kullback, 1951) between the teacher and student model distributions (Sanh et al.,
2019; Kim et al., 2024). This may involve supervision using the teacher’s outputs at each generation
step (Kim & Rush, 2016; Taori et al., 2023), training on teacher-generated text (Peng et al., 2023),
or employing reverse KLD (Gu et al., 2024), which has shown promise in significantly improving
student model performance.

C EXPERIMENTAL DETAILS

The teacher model is GPT-2 xlarge, with 1.5 billion parameters, fine-tuned on the Dolly dataset
for 10 epochs, using a learning rate of 1e − 5. The Dolly dataset is constructed from
databricks-dolly-15K3, which consists of 15K human-written instruction-response pairs
(Gu et al., 2024). For all experiments, the batch size for both training and evaluation is set to 8.
During training, all experiments are repeated for 3 random seeds. The models are trained for 7000
steps. The learning rate is set to 5e−6 , α and β are 0.5 and 1.0, respectively. For efficient computa-
tion of the selection process using the gradient attribution method, we focus on three tokens during
fine-tuning: The first, the middle, and the last ones of the generated response text. Specifically, for
each selected token, we compute the gradient of its probability distribution with respect to the last
hidden state and average the attribution scores across the three token positions. For the LLM loss,
we use the OpenWebText (Gokaslan et al., 2019) dataset as in Gu et al. (2024). For all test sets, we
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sample the responses and report the average scores of 5 generations for each prompt with different
random seeds as in Gu et al. (2024).

We compare our approach to the following competitive methods:

• FT refers to standard fine-tuning.
• KD (Sanh et al., 2019) namely, word-level KD, where the student model is trained on the

teacher model’s output at each token step.
• SeqKD (Taori et al., 2023) refers to sequence-level knowledge distillation, where the stu-

dent model is trained on data generated by the teacher model.
• MiniLLM (Gu et al., 2024) employs reverse KL divergence to distill knowledge from the

teacher model’s logits.

We evaluate our models on the following instruction-following datasets:

• Dolly: 500 samples from the databricks-dolly-15K dataset used as test set.
• SelfInst (Wang et al., 2022a): A user-oriented instruction-following set consisting of 252

samples.
• Vicuna (Chiang et al., 2023): The set of 80 difficult questions used for the Vicuna evalua-

tion.
• S-NI (Wang et al., 2022b): The SUPER-NATURALINSTRUCTIONS test set comprises

9K samples spanning 119 tasks. Following Gu et al. (2024), we divide it into three subsets
based on ground truth response lengths: [0, 5], [6, 10], [11,+∞] and we use the [11,+∞]
subset.

• UnNI (Honovich et al., 2023): The core set of UNNATURALINSTRUCTIONS comprises
60K samples. Following a similar approach to S-NI, we evaluate on a randomly selected
subset of 10K examples from the [11,+∞] range.

D ABLATION STUDY

Table 2: Ablation study: Performance of TASKD-LLM applied to different layers configurations.
Results are reported over 3 random seeds. L refers to Last layer, F refers to First layer, and M refers
to Middle layer. M for million.

#params: 120 M #params: 340 M

Dolly SelfInst Vicuna S-NI UnNI Dolly SelfInst Vicuna S-NI UnNI

L 24.31 12.29 17.91 23.07 25.32 26.02 14.57 17.68 25.61 30.20
F+L 24.30 12.10 17.55 23.11 25.02 25.83 14.65 17.79 26.43 30.58
2L 24.50 12.37 17.95 23.47 25.54 25.60 14.50 17.71 26.07 30.09
M+L 24.51 12.17 17.54 23.19 24.98 25.83 14.74 17.89 26.34 30.50

Table 3: Ablation study: Comparing different selection approaches. Results are reported over 3
random seeds. Rand refers to random selection of units. Grad is the gradient attribution method for
units selection. M for million.

#params: 120 M #params: 340 M

Dolly SelfInst Vicuna S-NI UnNI Dolly SelfInst Vicuna S-NI UnNI

Grad 24.31 12.29 17.91 23.07 25.32 26.02 14.57 17.68 25.61 30.28
Rand 24.45 12.33 17.58 22.90 25.31 25.55 14.34 18.02 24.96 29.68
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