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ABSTRACT

Cartographic reasoning is the skill of interpreting geographic relationships by
aligning legends, map scales, compass directions, map texts, and geometries
across one or more map images. Although essential as a concrete cognitive ca-
pability and for critical tasks such as disaster response and urban planning, it
remains largely unevaluated. Building on progress in chart and infographic un-
derstanding, recent large vision language model (LVLM) studies on map visual
question-answering (VQA) often simplify maps as a special case of charts. In
contrast, map VQA demands comprehension of layered symbology (e.g., sym-
bols, geometries, and text labels) as well as spatial relations tied to orientation
and distance that often span multiple maps and are not captured by chart-style
evaluations. To address this gap, we introduce FRIEDA, a benchmark for test-
ing complex open-ended cartographic reasoning in LVLMs. FRIEDA sources
real map images from documents and reports in various domains (e.g., geology,
urban planning, and environmental assessment) and geographical areas. Follow-
ing classifications in Geographic Information System (GIS) literature, FRIEDA
targets all three categories of spatial relations: topological (border, equal, inter-
sect, within), metric (distance), and directional (orientation). All questions re-
quire multi-step inference, and many require cross-map grounding and reasoning.
We evaluate eleven state-of-the-art LVLMs under two settings: (1) the direct set-
ting, where we provide the maps relevant to the question, and (2) the contextual
setting, where the model may have to identify the maps relevant to the question
before reasoning. Even the strongest models, Gemini-2.5-Pro and GPT-5-Think,
achieve only 38.20% and 37.20% accuracy, respectively, far below human perfor-
mance of 84.87%. These results reveal a persistent gap in multi-step cartographic
reasoning, positioning FRIEDA as a rigorous benchmark to drive progress on
spatial intelligence in LVLMs.

1 INTRODUCTION

Recent advances in large vision-language models (LVLMs) have markedly improved multimodal
reasoning, with strong results across diverse visual question-answering (VQA) tasks (Dong et al.,
2024; Souibgui et al., 2025). Education and cognitive science research characterizes reasoning as a
broad capability that spans numeric reasoning, logical deduction (Holyoak & Morrison, 2012), and
textual interpretation (Wharton & Kintsch, 1991), as well as interpreting pictures (Mayer, 2020),
spatial data (Li et al., 2025), and map images (Goodchild, 2012). Extensive LVLM benchmarks
cover many of these facets: visual numeracy in chart and infographics (Lin et al., 2025; Mathew
et al., 2022; Masry et al., 2022), document and layout reasoning (Duan et al., 2025; Mathew et al.,
2021), multi-image inference (Kazemi et al., 2025; Xia et al., 2025), and even spatial relations
in natural images (Shiri et al., 2024). However, reasoning over maps, also a core human compe-
tence (Tversky, 2003; Kastens & Ishikawa, 2006; Ishikawa & Newcombe, 2021), which we refer to
as cartographic reasoning, remains under-examined in LVLMs.

Unlike natural images, maps encode information with an abstract, symbolic visual grammar (e.g.,
map scales, compass/north arrows, and thematic symbology) (Buckley, 2006), which demands a
deeper interpretation than simple pattern recognition. Mastery of these elements must be coupled
with the comprehension of spatial relations that are commonly grouped into topological reasoning
(e.g., detecting shared boundaries), metric inference (e.g., converting map lengths to real-world dis-
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Figure 1: Example of a FRIEDA question requiring multi-map, multi-step cartographic reasoning.
To solve the question, the model must (1) use each legend to locate the two referenced regions,
(2) evaluate the border spatial relation between them, and (3) read the map label of the qualifying
feature to answer “Kinsinger Farm.”

tances through the map scale), and directional reasoning (using a compass or north arrow) (Clemen-
tini et al., 1993; Cohn & Renz, 2007). In addition, human map-reading competencies (Liben et al.,
2010; Muir, 1985) frequently require these inferences across multiple maps within a single doc-
ument. Correctly answering a map question, therefore, draws on map-specific skills (Hegarty &
Waller, 2005) such as interpreting map elements, reasoning over spatial relations, and integrating
evidence across multiple maps, as well as broader capabilities emphasized in LVLM research that
include text grounding (Singh et al., 2019; Sidorov et al., 2020), numeric and logical inference (Lu
et al., 2024a; Hu et al., 2023), multi-image integration (Wang et al., 2024a; Xia et al., 2025), and
retrieval (Wang et al., 2025a; 2024b). A cartographic reasoning benchmark can therefore probe
comprehensive reasoning and provide a clear understanding of the spatial intelligence of LVLMs.

A growing line of work began to evaluate LVLMs on map VQA, yet these benchmarks do not fully
assess cartographic reasoning. Earlier datasets pose chart-style questions that can be answered with-
out interpreting spatial relations, which bypasses the topological, metric, and directional inferences
that are central to map comprehension (Koukouraki et al., 2025; Chang et al., 2022). Other ef-
forts cover only a subset of relations as they target specific tasks such as navigation (Feng et al.,
2025; Kazemi et al., 2025) or entity identification (Dihan et al., 2025). While suitable for those
objectives, such coverage is insufficient for evaluating human-like map understanding (Liben et al.,
2010). Many benchmarks also restrict the stylistic variability of maps. Some focuses on choro-
pleths (Koukouraki et al., 2025; Chang et al., 2022; Mukhopadhyay et al., 2025), others rely on
maps created with map-coloring tools (Srivastava et al., 2025) or common web basemaps (Kazemi
et al., 2025; Dihan et al., 2025). Several further focus on limited thematic domains (e.g., geol-
ogy (Huang et al., 2025)) or restricted geography coverage (Chang et al., 2022; Srivastava et al.,
2025). These constraints overlook the heterogeneity in toponyms, labeling conventions, projections,
and symbology that real-world cartography demands (Slocum et al., 2022; Robinson et al., 1978).
Multi-map reasoning is rarely evaluated, with limited exceptions (Kazemi et al., 2025), even though
practical cases often require integrating evidence across multiple maps (e.g., reconciling transit maps
with future land-use maps for urban planning) and aligning overlapping information (Lupien &
Moreland, 1987). Moreover, although document-level multimodal understanding is emphasized
in other LVLM benchmarks, existing map VQA benchmarks seldom require selecting the correct
map among many images in long reports, despite government documents and technical documents
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containing numerous, visually similar, context-dependent maps (Federal Emergency Management
Agency, 2025; U.S. Environmental Protection Agency, 2025; SEDAR+, 2025). As a result, current
map VQA settings underestimate the demands of comprehensive map understanding, leaving it un-
clear whether LVLMs possess human-like map-reading competencies. Full cartographic reasoning
remains beyond the scope of what existing VQA benchmarks assess.

We introduce FRIEDA, a benchmark designed for evaluating multi-map, multi-step, comprehen-
sive cartographic reasoning in LVLMs. We curate maps from public documents of various the-
matic domains (e.g., geological surveys, planning reports, environmental studies) to develop ques-
tions that require models to interpret maps as they appear in reports, mirroring practical scenarios in
which a reader must synthesize evidence from maps embedded in a document (see Figure 1). The
collection encompasses a diverse range of styles, projections, and scales. We create each question
such that it requires (1) reasoning over topological, metric, and directional relations, (2) interpreting
map elements and their semantics (e.g., legends, map scales, and north arrows), and, when appli-
cable, (3) integrating information across multiple maps, and (4) selecting the appropriate map(s)
from a document to answer the query. To probe genuine reasoning rather than random guessing,
the answers are in a free-form (not multiple-choice) format. The benchmark evaluation includes
two settings: a direct setting, which provides the relevant map images with the question to focus
on evaluating map comprehension, and a contextual setting, where the model must first retrieve the
correct maps from a broader within-document collection before answering. We score outputs using
a unified, task-aware protocol aligned to the three spatial-relation categories. We evaluate textual re-
sponses (topological and semantic labels) with LLM-as-Judge (Gu et al., 2025), distance responses
(numeric values with units) with unit-aware parsing and mean absolute percentage error (MAPE),
and directional responses (cardinal directions for relative position) with angular tolerance over the
eight directions. We compare the result against the human upper bound derived from multi-annotator
agreement to contextualize LVLM performance. By aligning our tasks with the competencies ex-
pected of human map-readers (Goodchild, 2012; Liben et al., 2010) and explicitly targeting com-
positional cross-image inference that is largely absent from prior map VQA work, FRIEDA fills a
crucial gap in state-of-the-art LVLM evaluation.

Across 11 LVLMs (both proprietary and open source), we find that even state-of-the-art models
struggle with multi-step cartographic reasoning. With FRIEDA-direct, where the relevant maps
are provided, the best-performing model (Gemini-2.5-Pro) correctly answers fewer than 40% of
the questions, far below human performance (> 80%). Overall accuracy remains essentially un-
changed in the contextual setting, indicating that retrieval and disambiguation are not the primary
bottlenecks; the core difficulty lies in cartographic reasoning itself. Our error analysis highlights re-
curring failures, such as misreading legends (confusing symbol shapes and colors) and misaligning
information across maps when map styles, projections, or map scales differ. We also observe hetero-
geneous strengths across models (e.g., GPT-5-Think on multi-map questions and Claude-Sonnet-4
on distance queries). However, overall accuracy remains low, highlighting the gap between current
LVLMs and the multi-step, cross-image cartographic reasoning skills required.

We organize the remainder of the paper as follows. Section 2 formalizes the tasks and core skills of
cartographic reasoning; Section 3 describes the benchmark design and dataset statistics; Section 4
details the models, experimental setup, and evaluation protocol, and reports the results; Section 5
presents ablations and error analyses.

2 TASK DEFINITION

Cartographic reasoning is the ability to interpret maps and draw justified inferences from them. In
FRIEDA, we design questions to assess core map-reading competence while mirroring realistic
document use, where a reader may need to navigate a document to locate the relevant map(s). All
questions require (1) reasoning over spatial relations, (2) interpreting heterogeneous map elements,
and (3) integrating evidence across multiple maps when necessary. We also include a (4) contextual
setting in which additional maps are provided, requiring the model to identify relevant map(s) before
performing the reasoning. We detail these categories and the accompanying taxonomy below.

Spatial Relation Spatial relations describe how geographic features relate in space (Carlson &
Logan, 2001), how they are positioned in space (Majic et al., 2021), and how their geometries
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interact (Renzhong, 1998). In geographic information systems (GIS) and spatial cognition, these
relations are often grouped into three categories: topological, metric, and directional (Cohn & Renz,
2007; Clementini et al., 1993). To make these abilities measurable and comparable, FRIEDA sep-
arates questions by spatial relation type and grounds the topological portion in the 9-intersection
model (Clementini et al., 1993). We consolidate finer-grained subtypes into their broader categories
(e.g., cross classified as intersect, and contain classified as within), yielding four topological classes:
border (shared boundary between regions), equal (coincident geometries), intersect (crossing or
overlap of features), and within (containment or inclusion of one area inside another). We comple-
ment these with one metric primitive, distance, and one directional primitive, orientation. Together,
these six relations maintain the expressiveness of spatial queries while aligning with users’ intuitive
spatial reasoning.

Map Elements Maps are symbolic representations that encode spatial information through ab-
stract conventions (Slocum et al., 2022). Therefore, interpreting map elements is a distinct skill cen-
tral to cartographic reasoning. The key elements we target are map text (place and feature names),
legends (mappings from color, icons, and patterns to semantic classes), map scales (measurements
that convert the map distance to the real-world distance), and the compass (ESRI, 2021). The styles
of these components vary widely across maps: map texts may use different typography or placement
rules (Monmonier, 2015), legends may use continuous color ramps or discrete pictograms (Slocum
et al., 2022), map scales may appear as bars or frames around the map (Robinson, 1995), and the
compass may be a compass rose or a north arrow (Slocum et al., 2022). Practical map interpreta-
tion requires grasping the concepts of map elements rather than simply recognizing their shapes.
Consequently, our design includes questions that require reading map texts, decoding legends, using
the map scale, and applying orientation to demonstrate true map literacy by linking abstract visual
encodings to their underlying semantics.

Multi-Map Reasoning Beyond interpreting spatial relations and map elements, practitioners reg-
ularly perform cross-map comparison and fusion to synthesize multiple map editions or thematic
layers (Lupien & Moreland, 1987). Our multi-map setting reflects this practice: we curate questions
that present two or more maps together and require the model to integrate evidence by aligning
shared symbols, reconciling differences in labels, map scales, and orientation, and identifying co-
referent regions or features (Foody, 2007). Extracting distributions and patterns is widely recognized
as a core capability (Ishikawa, 2016; Rexigel et al., 2024; Morita & Fukuya, 2025). By testing this
setting, we move beyond isolated spatial computation to evaluate deeper cartographic reasoning
across varied depictions of the same space.

Contextual Setting To mirror practical workflows (Mathew et al., 2021; Tanaka et al., 2023),
we evaluate a contextual setting (FRIEDA-contextual), where a model must identify the relevant
map before answering a question. In this scenario, we provide the model with multiple maps from
the same source (i.e., a document), and the model must perform within-document retrieval using
cues in the map, such as titles, legends, or labels. By evaluating model performance on FRIEDA-
contextual, we capture a core aspect of real map use: the model must understand how map elements
encode meaning and leverage that understanding to select the required map from thematically related
alternatives that vary in data layers, geographic extent, or purpose (Ishikawa, 2016).

3 FRIEDA

We present FRIEDA, a benchmark for assessing LVLM’s comprehensive cartographic reasoning,
with an emphasis on cross-map (i.e., multi-image) scenarios. This section summarizes the bench-
mark statistics and details the dataset curation procedure.

3.1 BENCHMARK STATISTICS

Table 1 shows that FRIEDA comprises 17,030 map images drawn from 210 documents. To capture
real-world variability, these maps span diverse geographies (32 countries) and six thematic domains,
exhibiting heterogeneous styles, including varied color palettes, legends, and symbol conventions.
The benchmark contains a total of 500 questions, comprising 202 single-map and 298 multi-map
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Statistics Number

Total questions 500

Total number of documents 210
Total number of images 17,030

Map text 366 (73.2%)
Legend 417 (83.4%)
Compass 137 (27.4%)
Scale 46 (9.2%)

Single-map 202 (40.4%)
Multi-map 298 (59.6%)

Avg maps in contextual 9.5
Relevant:Irrelevant 1:5.71

Table 1: Key statistics.
Figure 2: Question distribution by spatial relation (in-
ner) and map count (outer). Sizes are proportional to
the number of questions in each category.

questions. The multi-map subset consists primarily of two-map comparisons (295 questions), with
a few cases requiring reasoning across three (2 questions) or four (1 question) maps.

Figure 2 reports the question distribution for each spatial relation, stratified by single- and multi-
map questions.1 The distribution is roughly balanced across relations and settings. We provide the
detailed counts by spatial relation and setting in Appendix C.1 and include a representative example
of each in Appendix D.

For FRIEDA-contextual, we provide between 2 and 9 irrelevant maps in addition to the relevant
map(s) required to answer the question. The total input image averages 9.54 maps (σ = 1.27) per
question across both the single- and multi-map settings, with an average relevant-to-irrelevant maps
ratio of 1:5.71.

3.2 BENCHMARK CONSTRUCTION

This section describes the construction of FRIEDA, which proceeds in four stages: map image
collection, question generation, pre-annotation curation, and validity verification.

Map Image Collection To capture stylistic and geographic diversity, we curate maps from pub-
licly available government and multilateral reports across domains including geology (SEDAR+,
2025), national park management (National Park Service, 2025), environmental assessments (U.S.
Environmental Protection Agency, 2025; Environmental Protection Agency, 2025; Ministry of Agri-
culture Climate Change and Environment, 2025), disaster response (Federal Emergency Manage-
ment Agency, 2025), urban planning (Seattle Planning and Community Development, 2024; De-
partment of Community Development, 2025; Urban Redevelopment Authority, 2025; City of Cape
Town, 2025), and infrastructure investment (AIIB, 2025). We limit the sources to documents using
the Latin characters to focus on cartographic reasoning over translation. We extract images using
Idefics3-8B (Laurençon et al., 2024) with a custom prompt (Appendix B.1) and manually verify that
each extracted set contains only cartographic maps (examples of excluded non-maps appear in Ap-
pendix B.1.1). To support FRIEDA-contextual, we retain only documents with at least four maps.
We select contextual maps based on their page proximity to the target map; this ensures they are
thematically and stylistically related to the target maps. We then shuffle the map order to prevent
LVLM from using positional cues to identify the target maps.

Question Generation For each collected map, we use GPT-4 and GPT-o3 (Appendix B.6) to
propose candidate questions, the targeted spatial relations, and a reference answer. We do not impose
templates and accept any phrasing that unambiguously represents the target relation as valid to reflect

1As equal denotes identical geometry (i.e., identical location and size), the benchmark contains no single-
map equal questions.
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various forms of paraphrases of spatial relations (e.g., “Is A within B?” vs. “Does B contain A”).
To ensure the benchmark tests visual cartographic reasoning rather than search or memorization,
we discard questions answerable by text-only web search or without visual inspection of the map
image.

Pre-Annotation Curation All LLM-proposed candidate questions undergo a pre-annotation cu-
ration stage. The two question curators (one with 7 years of GIS experience and another with 2 years
of experience in geospatial data) manually verify gold answers against source maps and rewrite or
discard ambiguous questions. This step ensures FRIEDA consists only of high-quality, unambigu-
ous questions before the broader annotator validation phase.

Annotation Pipeline We validate every question with annotations from 11 Ph.D. researchers
(eight with map expertise) collected over four weeks. Annotators confirm that each question is
answerable from the provided map(s) and, for multi-map questions, verify that all maps are required
to answer the question. To prevent bias, curators do not validate their own edits. We only keep the
question if a majority (≥2/3) agrees with the gold answer. In a rare case (currently two questions in
FRIEDA) where all three annotators agree on an answer contradicting the gold answer, we conduct
a secondary review to update the gold answer if consensus is reached. In total, we remove 61 ques-
tions that fail to reach an agreement ≥2/3. Appendix B.3 details the instruction prompt provided to
the annotators, and Appendix B.5 shows the annotation interface.

4 EXPERIMENTS

This section details the experimental setup, baselines, and evaluation metrics, and then presents the
main result, showing that FRIEDA is a challenging benchmark even for the strongest LVLMs.

4.1 EXPERIMENTAL SETUP

Models We evaluate 11 LVLMs with multi-image support on FRIEDA. For proprietary models,
we test three models: Gemini-2.5-Pro (Gemini Team, 2025), GPT-5-Think (OpenAI, 2025), and
Claude-Sonnet-4 (Anthropic, 2025). For open source models, we consider eight model families
and evaluate the largest available model from each family: LLaVA-NeXT-110B (Li et al., 2024b),
GLM4.5V-108B (Team et al., 2025), InternVL3-78B (Chen et al., 2024b), LLaVA-OneVision-
72B (Li et al., 2024a), Qwen2.5VL-72B (Bai et al., 2025), InternVL3.5-38B (Wang et al., 2025b),2
Ovis2-34B (Lu et al., 2024b), and Ovis2.5-9B (Lu et al., 2025).

To enforce determinism in open-source models, we set do sample=False and
temperature=0. For proprietary models, we use the default settings of each model with
maximum reasoning enabled (e.g., reasoning=high for GPT-5-Think) and append the in-
struction “Do not use search” to turn off external retrieval. All models receive the same set of
instructions that human annotators receive (Appendix B.4).

Evaluation metrics Answers in FRIEDA fall into three categories: textual, distance, and direc-
tion. For textual answers, we employ an LLM-as-Judge (Gu et al., 2025) method, utilizing Mistral
Small 3.1 (Mistral AI, 2024) as the evaluator.3 The full judge prompt appears in Appendix E.1. This
setup handles minor variation (e.g., ‘Cypress Creek’ vs. ‘Cypress’) by matching semantics rather
than identifying exact string equality. For distance-based answer, we report mean absolute percent-
age error (MAPE) and consider predictions within 20% error as correct, following Lewis (1982).
For directional answers, we mark a response correct if it matches the target cardinal direction within
one adjacent label (e.g., if the gold answer is North, accept North, North West, and North East),
reflecting the perceptual nature of the labels. We validate the reliability of the evaluation method
against manual annotations, achieving a Cohen’s κ of 0.9028 across all judged questions, which
supports its suitability for evaluation.

2We evaluate the 38B variant rather than the 241BA28B variant as the latter activates only 28B parameters
during inference. We report the results for the 241BA28B setting in Appendix F.2.

3Mistral is not the language backbone of any tested LVLM, thereby reducing potential bias Panickssery
et al. (2024).
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4.2 EVALUATION RESULTS

Figure 3 summarizes the overall performance, and Table 2 reports accuracy by spatial relation.
As FRIEDA retains questions with at least 2/3 annotator agreeing on the gold answer, we report
accuracy for two subsets: All-Agree, where all three annotators agreed, and Partial-Agree, where
2/3 annotators agreed. All-Agree items serve as an indirect indicator of questions that are easier
and less ambiguous for the annotators under our task and instructions, whereas Partial-Agree items
may be considered as intrinsically more difficult or ambiguous to answer correctly. We also report
the Overall Accuracy, which aggregates both subsets. Even the strongest LVLM (Gemini-2.5-Pro)
remains below 40% overall accuracy, well behind human performance at 84%. The best open source
result (Ovis2.5-9B-Think) achieves 24% overall accuracy, underperforming proprietary systems and
far below humans. We find no clear relationship between model size and performance, suggesting
that training data, training objectives, and explicit reasoning mechanisms matter more than scale for
cartographic reasoning.

Figure 3: Overall accuracy of different models on the FRIEDA-direct benchmark.

Overall
(500)

Border
(71)

Distance
(91)

Equal
(54)

Intersect
(80)

Orientation
(89)

Within
(115)

Human Average 84.87 89.00 78.28 89.10 85.53 91.80 88.08

Proprietary LVLMs

Gemini-2.5-Pro 38.20 32.39 25.27 33.33 28.75 71.59 35.34
GPT-5-Think 37.20 25.35 27.47 44.44 31.25 69.32 28.45
Claude-Sonnet-4 31.60 33.80 23.08 37.04 22.50 56.82 21.55

Open Source LVLMs

LLaVA-NeXT-110B 8.60 4.23 10.99 11.11 16.25 0.00 9.48
GLM-4.5V-108B 6.40 5.41 2.15 21.57 6.17 1.16 7.83
InternVL3-78B 11.00 1.41 4.40 12.96 5.00 34.09 7.76
LLaVA-OneVision-72B 13.00 9.86 10.99 5.56 8.75 29.55 10.34
Qwen2.5-VL-72B 25.60 11.27 14.29 25.93 17.50 55.68 25.86
InternVL3.5-38B 14.20 11.27 8.79 14.81 2.50 36.36 11.21
Ovis2-34B 17.80 25.35 13.19 25.93 26.25 2.27 18.97
Ovis2.5-9B-Think 25.80 12.68 20.88 24.07 22.50 51.14 21.55

Table 2: Overall and per spatial relation accuracy of human and LVLMs on FRIEDA-direct.
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5 ANALYSIS

Error analysis on Gemini Pro To pinpoint where LVLMs fail, we analyze Gemini-2.5-Pro on
the All-Agree subset (in total, 167 questions). This ensures that our analysis targets distinct model
failures on questions that humans find straightforward. We assign each incorrect answer to a single
primary error category. When multiple issues co-occur, we prioritize errors that occur earlier in
the reasoning pipeline that propagate to downstream steps. The largest source of error involves
the misinterpretation of legends (25.61%): cases where the model assigns colors or symbols to
the wrong class. The remaining 23.78% is due to cross-map interpretation failures, which reflect
difficulties in aligning the map scales and shared features across maps, and 16.46% is due to spatial-
relation semantics error, which arises when the model mixes up spatial relations (e.g., labeling region
B within A when it only touches A at the boundary). Map-element misunderstandings include
mistakes with the map scale (9.76%; unit or ratio errors), map text (8.93%; selecting the wrong
place or feature from labels), geometry or shape reference (3.66%; pointing to the wrong area on the
map), and orientation (3.05%; ignoring a tilted compass). Finally, we observe generic VQA errors
not specific to cartography, such as miscounting (6.71%), subject-object confusion (1.82%; referring
‘A relative to B’ as ‘B relative to A’), and hallucination (1.20%). For the top three error categories,
we provide examples and rationales returned by the three proprietary models in Appendix F.1.

Figure 4: Per spatial relation accuracy (%)
of human annotators and three proprietary
LVLMs (Gemini-2.5-Pro, Claude-Sonnet-4,
and GPT-5-Think) on FRIEDA-direct.

Performance by spatial relation Figure 4 reports
per-spatial relation accuracy for human annotators
and the three proprietary models. LVLM perfor-
mance broadly tracks the human baseline: both are
most accurate on orientation and struggle most with
distance. On questions where an annotator answers
incorrectly, LVLMs are also incorrect 84.53% of
the time. While GPT-5-Think and Gemini-2.5-Pro
achieve comparable overall accuracy, GPT-5-Think
is stronger on tasks that require multi-map reasoning
(Table 10), indicating better integration of evidence
across maps. This is most evident in the equal re-
lation questions, a multi-map exclusive task, where
GPT-5-Think’s accuracy is nearly 13% higher com-
pared to Gemini-2.5-Pro. Notably, Claude-Sonnet-4
is the strongest on distance questions, particularly
those requiring interpretation of the map scale to
compute exact distances.

Performance on contextual setting We observe a minimal difference in accuracy between the
FRIEDA-direct (Figure 3 and Table 2) and FRIEDA-contextual (Appendix E.3). To verify
that this is not an artifact of the accuracy metric, we directly compare the per-question perfor-
mance of the eight open-source models under deterministic settings (i.e., do sample=False and
temperature=0). We observe 88.03% per-question performance agreement between the direct
and contextual settings, indicating that contextual images (maps from the same document that are
not required to answer the question) rarely affect the model’s prediction.

Model Accuracy (%)

Ovis2.5-9B 19.00
Ovis2.5-9B-Think 24.80

Table 3: Performance of Ovis2.5 model
on FRIEDA-direct.

Impact of reasoning (think) on cartographic ques-
tion types Despite being the smallest model tested with
FRIEDA, Ovis2.5-9B-Think attains strong results (4th
overall and 1st among open source models). To iden-
tify what drives this performance, we further evaluate
Ovis2.5-9B with explicit reasoning (i.e., Think) disabled
(Table 3). The overall accuracy of Ovis2.5-9B remains
above the open source average, indicating that model

characteristics (e.g., architecture, training data) contribute to the model’s strong results. Enabling
Think adds an additional 5% performance gain. To identify which question types benefit from ex-
plicit reasoning and whether it improves cartographic performance, we manually analyze the 60
questions that only the Think variant answers correctly. Reasoning helps mostly with cardinal-
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direction questions, where north faces the top of the image (48.33%), followed by multi-map align-
ment (23.33%). Additional improvements come from correctly reading map text (15%), interpreting
the map scale (5%), associating legend with symbol (5%), and counting (3%). Together, these pat-
terns suggest that explicit reasoning primarily strengthens orientation-related and multi-map ques-
tions, which are central to carographic reasoning, while yielding smaller gains in symbol and map
scale interpretation.4

6 RELATED WORK

Document & Infographic/Chart VQA Recent benchmarks established baselines for LVLM rea-
soning over documents and designed graphics. In the document domain, DocVQA (Mathew et al.,
2021) and DocVXQA (Souibgui et al., 2025) introduce a large-scale question-answering (QA)
dataset over real forms and reports, while DocoPilot (Duan et al., 2025) extends evaluation to sci-
entific articles, which involve embedded figures. For graphics, InfographicsVQA (Mathew et al.,
2022) and InfoChartQA (Lin et al., 2025) test reasoning over rich layouts and charts. In general,
frontier LVLMs reveal competence at high-level patterns, such as trends and extrema, but struggle
with precise value extraction and robustness. FRIEDA evaluates these shortcomings in a carto-
graphic setting where layout, symbols, legends, scales, and compass orientation interact tightly to
measure how well LVLMs integrate these signals to answer map-based questions.

Map VQA and Spatial Reasoning While recent map VQA benchmarks have expanded the scope
of evaluation, they remain constrained to single-map tasks or specific domains. MapQA (Chang
et al., 2022) evaluates question answering on choropleth maps and shows that general VQA and
ChartVQA systems underperform on maps. MapWise (Mukhopadhyay et al., 2025) broadens the
geographic coverage, while MapIQ (Srivastava et al., 2025) extends the map type coverage to in-
clude cartograms and proportional-symbol maps. MapEval (Dihan et al., 2025) assesses geospatial
reasoning across various cities, and it reports consistent human-LVLMs performance gaps. Domain-
specific efforts include PEACE (Huang et al., 2025) for geology, CartoMark (Zhou et al., 2024) for
text extraction and recognition, and MapBench (Xing et al., 2025) and ReasonMap (Feng et al.,
2025) for navigation. However, these benchmarks rarely test cross-image reasoning on heteroge-
neous sources and often rely on a limited set of spatial relations. While ReMI (Kazemi et al., 2025)
explores the cross-image setting, the questions lack cartographic focus. We detail key differences
between prior map VQA benchmarks and FRIEDA in Appendix G.

Spatial reasoning benchmarks, such as SpatialVLM (Chen et al., 2024a) and SpatialRGPT (Cheng
et al., 2024), have advanced spatial perception and reasoning on natural images. In the geospatial
domain, GeoChain (Yerramilli et al., 2025) enhances tasks like geolocalization by inducing step-by-
step geographic reasoning. However, these works do not engage with symbolic conventions unique
to maps (i.e., legends, scales, compasses, and map texts). In contrast, our benchmark closes this gap
by evaluating multi-step cartographic reasoning over heterogeneous, real-document maps, which re-
quires models to integrate evidence across multiple figures and align legends, scales, and orientation
to infer key spatial relations (i.e., border, distance, equal, intersect, orientation, and within).

7 CONCLUSION

We present FRIEDA, a benchmark for evaluating multi-step cartographic reasoning across six
spatial relations, often requiring multi-image alignment. Our evaluation across 11 state-of-the-art
LVLMs demonstrates a substantial gap between current performance and the proficiency required
for robust map understanding. Analysis reveals that these failures extend beyond issues observed in
prior VQA datasets, highlighting the need for novel architectures and effective training methods that
incorporate cartographic priors and explicit reasoning over map elements. We will release the error
taxonomy and baseline results, alongside FRIEDA, to catalyze progress. We encourage the com-
munity to build on FRIEDA with methods that explicitly integrate text, symbology, and geospatial
structure, toward LVLMs that reason reliably over real-world maps.

4We further evaluate the association between performance and model size in Appendix F.2
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ETHICS STATEMENT

We introduce a benchmark for evaluating cartographic reasoning in large vision-language models.
We curate maps from publicly available documents (e.g., government reports, planning, and envi-
ronmental studies) and retain only the figures necessary for research purposes. To the best of our
knowledge, we use all materials under terms that permit research and non-commercial distribution.

All annotators provided informed consent. We collected no personal data about annotators beyond
task performance. Our institution’s IRB reviewed the annotation protocol and determined that the
project does not constitute human subjects research; therefore, no further IRB review was required.

The benchmark inevitably reflects the patterns in the source documents and may exhibit represen-
tation bias, including uneven geographic coverage and map types, English-language focus, and un-
equal representation across regions and themes. We document these limitations and their potential
impact in the dataset card (Appendix A) to aid transparency and interpretation.

REPRODUCIBILITY STATEMENT

Upon the end of the anonymity period, we plan to release: (1) the benchmark (images, QA JSON,
taxonomy, and provenance), (2) code for data loading, inference, evaluation, and table/figure gen-
eration, (3) code to replicate the annotation interface, and (4) all prompts and configuration files
used for annotation and inference. In the meantime, we provide all details needed to reproduce our
results in the main text and appendices: Section 3 describes dataset construction, Section 4 specifies
models and inference settings, and Section 5 reports ablations and error analyses.
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A DATACARD

We adopt the data statement framework of Bender & Friedman (2018) and integrate complementary
fields from Datasheets for Datasets (Gebru et al., 2021) to centralize key information for the analysis,
reuse, and deployment of FRIEDA.

A.1 CURATION RATIONALE

We design FRIEDA to evaluate carographic reasoning (the ability to interpret map-specific symbols,
comprehend spatial relations, and integrate evidence across one or more maps). We source questions
from public documents to reflect map-reading tasks encountered in practice (e.g., planning, hazard
assessment, and geology). High-level goals, task definitions, and design choices appear in the main
text (Section 2 and Section 3). We further expand on the benchmark curation process in Appendix B.

A.2 BENCHMARK COMPOSITION

• Total size: 500 validated questions; each question with 1 gold answer

• Agreement: Each question is annotated by three annotators; we record the problem-level
agreement and mark items with unanimous agreement on the gold answer as All-Agree, and
those with 2/3 agreement as Partial-Agree.

• Modalities: Every question involves one or multiple map image(s) and associated question
text.

• Spatial relations (6): Border, Equal, Intersect, Within, Distance, Orientation

• Answer types (3): Textual (short text), Distance, and Direction

• Provenance: Public documents from 32 countries across six continents. Documents
are from six domains (urban planning, environmental assessment, national park manage-
ment, geologic reports, disaster and hazard reports, infrastructure and investment reports).
Sources are detailed further in Section 3 and Appendix C.3.

• Languages: Questions and instructions are in English (en-US); source maps primarily use
English labels but may include other languages written in the Latin script.

A.3 DATA COLLECTION PROCESS

• Acquisition: We collected maps from public reports, then filtered for reading map elements
and task suitability.

• Question creation: Curators wrote questions that required reading the legend, scale, and
compass, and reasoning over one or more spatial relations; questions were rejected if (1)
they were solvable without using any maps or (2) if question ambiguity could not be re-
solved by manual editing.

A.4 ANNOTATOR DEMOGRAPHIC

We share the annotator demographics to contextualize potential biases while preventing re-
identification.

• Count: 11 Annotators in total (2 also served as question curator)

• Academic background: Ph.D. Researchers [100%]

• GIS/cartography background: ≤1 year: [27%]; 1–3 years: [27%]; 3–5 years: [18%]; 5+
years: [27%].

• Language: All authoring and communication used American English (en-US). As the task
focuses on cartographic symbols and spatial relations (not dialect), we do not report in-
dividual annotator nationalities. Non-native participation may introduce minor phrasing
variance. We standardized qustion phrasing during review and removed questions flagged
as ambiguous by ≥ 2/3 annotators.
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A.5 EVALUATION & METRICS

• Primary metric: Accuracy
• Textual (LLM-as-Judge): After attempting exact string match, we use an LLM-as-Judge

to compare model outputs to gold answers. Appendix E.1 provides the judging prompt for
reproducibility.

• Distance (MAPE): We apply mean absolute error (MAPE) and unit-aware parsing and
consider all distance answers with in 20% as correct.

• Direction: We canonicalize directional answers to the eight cardinal directions and con-
sider all cardinal direction within one adjacent unit as correct.

A.6 KNOWN LIMITATIONS & BIASES

• Regional representation bias: As FRIEDA uses only English-language documents, re-
gions where English is a dominant language are overrepresented, and non-English conven-
tions and locales are not covered.

• Domain skew: The corpus emphasizes planning, environmental, and government reports
with less coverage on other types of maps, such as nautical or military charts.

B DETAILED BENCHMARK CONSTRUCTION

B.1 MAP IMAGE FILTERING

We use Idefics3-8B (Laurençon et al., 2024) to filter map images from the document. To produce a
strict Yes/No decision, we prompt the model:
Is this a cartographic map? Answer only with Yes or No.

We consider any image for which the model responds Yes as a candidate map.

B.1.1 NON-MAP EXAMPLES

We manually verify all map candidate images and remove those that we do not consider as maps.
For example, although Figure 5 shows a silhouette of a city with subdivision, we consider it as a
stylized graphic rather than a cartographic map. The image lacks essential map elements (i.e., map
texts, legend, scale, and compass), which are needed to support cartographic reasoning. Without
these components, we cannot reason about locations, distances, or spatial relationships; therefore,
we exclude such images from our dataset and do not treat them as maps for FRIEDA.

B.2 DEFINITION OF SPATIAL RELATION

Figure 6 visualizes the four topological spatial relations evaluated in FRIEDA: border, equal, inter-
sect, and within.

B.3 ANNOTATOR PROMPT

To standardize responses and minimize ambiguity, we supply annotators with a fixed instruction set
(Figure 7). We introduce these guidelines during task onboarding and repeat them at the start of
every question to promote a consistent answer format.

B.4 LVLM SYSTEM PROMPT

To ensure consistency, we use the same instruction set provided to human annotators as the prompt
for the LVLM system. As some LVLMs produce intermediate reasoning, we append a final
line to standardize the output: Give the final answer in ‘Final answer: 〈your
answer〉. For the proprietary models, we additionally include the clause Do not use online
search to prevent external browsing.5

5We add this clause as a precautionary measure; during the dataset construction phase, we verify that ques-
tions are not directly answerable through web search.
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Figure 5: An example of a non-map image flagged by Idefics3-8B as a candidate map. The image
is a graphic from the cover page of the document. We exclude it from the benchmark after manual
verification, as we consider it a graphical image rather than a cartographic map.

Figure 6: Illustrations of the spatial relations evaluated in the benchmark. Columns show Border,
Equal, Within, and Intersect; rows provide representative cases across geometry types—areas, lines,
and points.
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For each one, please verify whether it can be answered (Q# Validation) using the provided map(s).
If an image appears too small, click on the image. For question with multiple images, please mark
whether all images were required to correctly answer the question (Q# M). You may use tools like a
ruler or calculator, but do not use online search.

For each questions:
General:

• If question can be answered, write answer in short answer box
• If answer is a text from the map, copy it as it appears

Numerical Answers:
• Include units as indicated on the map (Don’t convert 1200m to 1.2km)
• If both map frame and ruler scale is available, use the ruler scale
• If question asks for an area, use {unit}ˆ2
• Use numerical values (e.g., 4 instead of four)

Directional Answers:
• Use 8 cardinal directions only: North, North East, East, South East, South, South West,

West, North West
• Write ‘North’ or ‘South’ before ‘East’ or ‘West’
• Notice that the north arrow compass do not always point upward

Multi-Part Answers:
• Separate with semicolon (;) (e.g., Zone A; Zone B)

Figure 7: Instruction provided to annotators at the beginning of every question.

Answer the questions based on the following criteria:
General:

* If question can be answered, write answer in short answer box

* If answer is a text from the map, copy it as it appears

Numerical Answers:

* Include units as indicated on the map (Don’t convert 1200m to 1.2km)

* If both map frame and ruler scale is available, use the ruler scale

* If question asks for an area, use {unit}ˆ2
* Use numerical values (e.g., 4 instead of four)

Directional Answers:

* Use 8 cardinal directions only: North, North East, East, South East, South, South
West, West, North West

* Write ‘North’ or ‘South’ before ‘East’ or ‘West’

* Notice that the north arrow compass do not always point upward

Multi-Part Answers:

* Separate with semicolon (;) (e.g., Zone A; Zone B)
Give the final answer in ’Final answer: 〈your answer〉’
{Do not use online search}

Figure 8: System prompt used for LVLM inference. For readability in the figure, newline characters
(\n) are shown as actual line breaks.
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B.5 ANNOTATION PLATFORM

We built a web interface (Figure 9) to collect annotator responses. We provide the annotator instruc-
tion (Figure 7) at the top of every question similar to how LVLMs receives the system instruction
for each question. For each question, annotators see the question and its associated map image(s),
then (1) enter a short free-text answer if it is considered answerable, (2) mark answerability by se-
lecting either “Can be answered” or “Map doesn’t contain information to answer the question” (the
latter requires a brief justification), and (3) for multi-map questions, indicate whether all images are
necessary to precisely answer the question without guessing.

B.6 LLM TO GENERATE QUESTIONS

We use GPT-4 and GPT-o36 with a tailored prompt (Figure 10) to draft candidate questions for
FRIEDA. In addition to the prompt, we supply 10 randomly selected map images for question
generation. Two of the authors then manually review each candidate question, editing or discarding
questions as needed to ensure correctness, clarity, and coverage of targeted spatial relations before
adding them to the benchmark.

C EXTENDED BENCHMARK DETAILS

This section provides expanded details on the distribution of questions within FRIEDA. To visualize
the hierarchical nature of the task dimensions formalized in Section 2, we present a Sankey diagram
(Figure 11). Additionally, we provide granular breakdown counts for other dataset attributes, in-
cluding question frequency per spatial relation, national representation, and domain diversity.

C.1 QUESTION COUNT PER SPATIAL RELATION

In Table 4, we report the number of questions in FRIEDA by spatial relation, including totals as well
as the counts split into single-map and multi-map questions. The distribution is roughly balanced:
Within is the largest class (23.0%), while Equal is the smallest (10.8%).

Spatial Relation Total Q Count Single-map Q Count Multi-map Q Count

Border 71 (14.2%) 41 (8.2%) 30 (6.0%)
Distance 91 (18.2%) 42 (8.4%) 49 (9.8%)

Equal 54 (10.8%) 0 (0.0%) 54 (10.8%)
Intersect 80 (16%) 38 (7.6%) 42 (8.4%)

Orientation 89 (17.8%) 32 (6.4%) 57 (11.4%)
Within 115 (23.0%) 49 (9.8%) 65 (13.0%)

Table 4: Question statistics in FRIEDA across six spatial relations. The table reports the total num-
ber of questions per relation, along with their breakdown into multi-map and single-map settings.

C.2 EXAMPLE QUESTION PER SPATIAL RELATION

In Table 5, we present one sample question for each spatial relation, split by map count (single-map
vs. multi-map).

C.3 NATION AND DOMAIN COVERAGES

Nation Coverage FRIEDA includes maps from government documents and multilateral reports
from 32 countries across six continents (Figure 12; Table 6). We also report the ten most-represented
countries by question count in Figure 13.

6Questions are generated before the release of GPT-5.
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Figure 9: Annotation interface for validating questions of FRIEDA.
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I’m trying to create a benchmark dataset to test out generative AI’s ability on complex cartographical
reasoning on maps. The hard questions we should provide in this benchmark should leverage
information from one or a few of the given maps above, and should involve some reasoning. Also, the
questions should follow these criteria:

- Answer should be self-contained, non-binary, and not-multiple choice questions.
- Question should not be solved by searching online - We assume that the image to refer to is not
known when answering the question.
- We assume that the image to refer to is not known when answering the question.

Give a set of questions, the maps to refer to, and the answer to the question. Target spatial relation is
{Spatial Relation}.

Figure 10: Question-generation prompt used to prompt for candidate questions to either GPT-4 or
GPT-o3.

Figure 11: Sankey diagram illustrating the hierarchical structure of FRIEDA’s question taxonomy.
Each question is annotated with its count of maps (left), the spatial relation that defines the core
reasoning objective (middle), and the specific map elements that must be interpreted to answer the
question (right). The flow demonstrates how the dimensions interact in practice, highlighting that
FRIEDA’s questions typically require reasoning across multiple cartographic primitives.
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Spatial
Relation

Map
Count Question Example

Border Single Which DMMUs along the Inner Harbor Navigation Canal share a boundary with
‘DMMU 4’? Answer in the form DMMU #.

Multi Identify the ‘National Road [map1]’ that crosses the ‘Ou Ta Paong’ area. Which
two ‘Irrigation Schemes [map2]’ does this road serve as a border for? Provide the
names without the word ‘Area’.

Distance Single What is the approximate straight-line distance between the SLC-6 Launch Site
and the 2 psf contour of the Falcon Heavy Launch line?

Multi In Tinian, each ‘Heritiera longipetiolata’ species observation area is associated
with a name. Which ‘observation area[map1]’ is located closest to the Noise
Sensitive Receptor labeled ‘T15[map2]’?

Equal Multi Which ‘feature[map1]’ on the infrastructure map corresponds to ‘Existing
Component 60[map2]’ of the Santander project?

Intersect Single How many Asanko tenement blocks does the Haul Road intersect?

Multi Which ‘claim block(s)[map1]’ of the UEX Christie Lake Project are crossed by
the ‘power line[map2]’?

Orientation Single What is the name of the northernmost ‘National Air Monitoring Site’ as recorded
by Ordnance Survey Ireland?

Multi In the Lumberton Loop Project Area, what is the orientation of the ‘Crosswalk
Stripping [map1]’ in relation to the ‘Walnut Street Component[map2]’?

Within Single Along Pine Street and Pike Street, how many ‘Future Redevelopment &
Renovation Project’ areas overlap with the ’West Focus Area’?

Multi Identify the area of Nighthawk Gold Property located North of the ‘Winter
Road[map1]’. How many ‘Gold Deposits[map2]’ are located within this area?

Table 5: Example questions by spatial relation and map count. For multi-map questions, entities are
annotated with [map1]/[map2] only for illustration, indicating different source maps; these tags are
not part of the actual questions. We underline the word/phrase that denotes the target spatial relation.

Figure 12: Global country coverage of FRIEDA. Countries included in the dataset are shown in pur-
ple; countries where English is a primary or official working language but not covered by FRIEDA
are shaded light gray. Coverage spans six continents (32 countries).

Domain Coverage We source maps from domains where spatial reasoning is essential: geologic
reports (SEDAR+, 2025), national park management reports (National Park Service, 2025), invest-
ment and infrastructure reports (AIIB, 2025), disaster and hazard assessments (Federal Emergency
Management Agency, 2025), city and regional planning documents (Seattle Planning and Commu-
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Country Count Country Count

United States 251 Mexico 18
Canada 82 Portugal 2

South Africa 32 New Zealand 1
Peru 9 Chile 4

Burkina Faso 1 Brazil 2
Guyana 2 Guinea 3
Ireland 24 Colombia 2

Seychelles 14 Ecuador 1
Singapore 9 Cuba 1

Kazakhstan 6 Argentina 3
Cambodia 5 Bolivia 2

India 7 Spain 1
Bangladesh 6 Sweden 1
Sri Lanka 3 Australia 1

United Arab Emirates 3 Namibia 2
Ghana 1 Nicaragua 1

Table 6: Country coverage in FRIEDA. Count reflects the number of questions whose maps origi-
nate from each country.

Figure 13: Top 10 countries by question Count

nity Development, 2024; City of Cape Town, 2025; Department of Community Development, 2025;
Urban Redevelopment Authority, 2025), and environmental reviews (U.S. Environmental Protection
Agency, 2025; Ministry of Agriculture Climate Change and Environment, 2025; Environmental Pro-
tection Agency, 2025). Several of these are umbrella categories that can be further subdivided. For
example, environmental assessments may target facilities, hydrology, land use/land cover, or habi-
tat. For consistency, we retain the top-level labels used by the source repositories. Across these
domains, maps employ varied symbol conventions (legends, scale bars, north arrows) and hetero-
geneous geometry types (areas, lines, points), encouraging generalization beyond any single map
style. Figure 14 summarizes the domain coverage.
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Figure 14: Domain distribution in FRIEDA by document category (e.g., geology, planning). Slices
indicate categories, and parentheses denote question counts.

D EXAMPLES OF FRIEDA

We store each example as a JSON record containing the question, the gold answer, the required map
image(s), any contextual image(s), and metadata such as the number of maps, target spatial relation,
and answer type. Figure 15 illustrates an example of a single-map question, and Figure 16 shows an
example of a multi-map question.

"question ref":"q 1093",
"question text":"What is the orientation of ’Bryan Palmer & Barry Maust’ in relation to
’Gary Blocher’ within the Meyersdale Study Area?",
"expected answer":"South",
"image urls":[
"EIS/Vol-3-FEISAppendixA-M-May-2025/image21 m1.png"

],
"map count":"Single",
"spatial relationship":"Orientation",
"answer type":"cardinal",
"contextual urls":[
"EIS/Vol-3-FEISAppendixA-M-May-2025/image21 m1.png",
"EIS/Vol-3-FEISAppendixA-M-May-2025/image21 m0.png",
"EIS/Vol-3-FEISAppendixA-M-May-2025/image20 1.png",
"EIS/Vol-3-FEISAppendixA-M-May-2025/image22 1.png",
"EIS/Vol-3-FEISAppendixA-M-May-2025/image19 1.png",
"EIS/Vol-3-FEISAppendixA-M-May-2025/image26 1.png",
"EIS/Vol-3-FEISAppendixA-M-May-2025/image15 1.png",
"EIS/Vol-3-FEISAppendixA-M-May-2025/image11 1.png",
"EIS/Vol-3-FEISAppendixA-M-May-2025/image10 1.png",
"EIS/Vol-3-FEISAppendixA-M-May-2025/image12 1.png"

],
"domain":"Environmental review",
"map elements":[
"map text",
"compass"

]

Figure 15: Example question single map

E DETAILED BENCHMARK RESULT AND ANALYSIS

E.1 LLM-AS-JUDGE PROMPT

To evaluate free-form textual answers, we employ LLM-as-Judge (Gu et al., 2025) using Mistral-
Small-3.1 (Mistral AI, 2024). Since not all models follow our requested output format (“Final
answer: 〈your answer〉”) and minor wording differences may occur (e.g., ‘15.00%’ vs. ‘15’), we
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"question ref":"q 0150",
"question text":"The Aberdeen-Hoquiam North Shore Levee is classified into three
categories. In which category is the ’Hoquiam Police Station’ located?",
"expected answer":"North Shore Levee (West)",
"image urls":[
"FEMA/BRIC-EMS-2020-BR-102-0002 WA-NorthShoreLeveeWest-DEA-20241126/image116 1.png",
"FEMA/BRIC-EMS-2020-BR-102-0002 WA-NorthShoreLeveeWest-DEA-20241126/image101 1.png"

],
"map count":"Multi",
"spatial relationship":"Intersect",
"answer type":"textual",
"contextual urls":[
"FEMA/BRIC-EMS-2020-BR-102-0002 WA-NorthShoreLeveeWest-DEA-20241126/image116 1.png",
"FEMA/BRIC-EMS-2020-BR-102-0002 WA-NorthShoreLeveeWest-DEA-20241126/image118 1.png",
"FEMA/BRIC-EMS-2020-BR-102-0002 WA-NorthShoreLeveeWest-DEA-20241126/image136 1.png",
"FEMA/BRIC-EMS-2020-BR-102-0002 WA-NorthShoreLeveeWest-DEA-20241126/image138 1.png",
"FEMA/BRIC-EMS-2020-BR-102-0002 WA-NorthShoreLeveeWest-DEA-20241126/image101 1.png",
"FEMA/BRIC-EMS-2020-BR-102-0002 WA-NorthShoreLeveeWest-DEA-20241126/image139 1.png",
"FEMA/BRIC-EMS-2020-BR-102-0002 WA-NorthShoreLeveeWest-DEA-20241126/image140 1.png",
"FEMA/BRIC-EMS-2020-BR-102-0002 WA-NorthShoreLeveeWest-DEA-20241126/image141 1.png",
"FEMA/BRIC-EMS-2020-BR-102-0002 WA-NorthShoreLeveeWest-DEA-20241126/image142 1.png",
"FEMA/BRIC-EMS-2020-BR-102-0002 WA-NorthShoreLeveeWest-DEA-20241126/image137 1.png"

],
"domain":"Disaster/hazard",
"map elements":[
"legend"

]

Figure 16: Example question multi map

first require the LLM to extract the answer span based on the question and then compare the extracted
portion to the gold answer with tolerance for minor variants (Figure 17).

You will be given a triple consisting of a question, an expected answer, and a given response. Your
task is to output either ‘yes’ or ‘no’. Given the question and response, extract only the exact portion
of the text that serves as the answer from the given response. Then output ‘yes’ if the user response
conveys the same meaning as the expected answer in relation to the question. Output ‘no’ if it does
not. For questions with multiple correct answers, the expected answers are separated by semicolons.
The user response is correct if it matches all required answers, regardless of order. When the user
provides more items than required, the response is treated as incorrect. If the user lists fewer items
than expected, mark the response as incorrect. Differences in plurality, extra details such as acronyms
or counts, minor typographical errors, and differences in wording style do not affect correctness.
Focus only on whether the meaning matches.

Question: {Question}
Expected answer: {Expected Answer}
Given response: {User Response}

Does the response correctly answer the question based on the expected answer?
Answer strictly ‘yes’ or ‘no’

Figure 17: The input prompt to generate questions.

E.2 STATISTICAL SIGNIFICANCE OF FRIEDA-DIRECT RESULTS

As FRIEDA partitions questions into a large number of fine-grained categories, some subsets con-
tain relatively few examples (fewer than 100). In such cases, raw accuracy comparisons can be
unreliable due to limited sample size. To more rigorously assess whether observed performance
differences within these smaller subcategories are statistically meaningful, we apply McNemar’s
test McNEMAR (1947) on the top three proprietary models. We use the exact binomial version of
the test when the number of disagreements is small (< 50), and the χ-squared version with correc-
tion when disagreements are larger (≥ 50). Table 7 reports the resulting p-values.
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Category Gemini 2.5 vs. GPT-5 Gemini 2.5 vs. Sonnet-4 GPT-5 vs. Sonnet-4

Single-Map 0.03 0.01 1.00*

Multi-Map 0.05* 0.02 <0.01

Border 0.17 1.00* 0.10*

Distance 0.80* 0.84 0.54
Equal 0.10* 0.63* 0.21

Intersect 0.50* 0.13 0.03
Orientation 0.82 0.02 0.08

within 0.11 <0.01 0.09

Table 7: p-values from pairwise McNemar’s tests across key subcategories. Bold values indicate
statistical significance at α = 0.05. An asterisk (*) indicates that for each pair (A vs. B), model B
achieved a higher accuracy.

E.3 PERFORMANCE ON FRIEDA-CONTEXTUAL

Table 8 reports overall and per-spatial relation performance for FRIEDA-contextual. As noted
in Section 5, models show little difference between the FRIEDA-direct and FRIEDA-contextual
settings. Figure 18 summarizes overall accuracy across models on FRIEDA-contextual.

Figure 18: Overall accuracy across models in the FRIEDA-contextual setting.

E.4 PERFORMANCE ON ALL-AGREE SUBSET

To validate that the performance gap reported in Section 5 is not an artifact of annotation noise,
we evaluate models not only on the full dataset but also on the All-agree subset, where all three
annotators unanimously agreed on the gold answer. Table 9 presents the results for both the full
dataset and the All-agree subset, for both the direct and contextual setting of FRIEDA.

E.5 PER MAP COUNT & ANSWER TYPE RESULT BREAKDOWN

We also report performance by map count and answer type for FRIEDA-direct (Table 10) and
FRIEDA-contextual (Table 11). In the FRIEDA-direct setting, GPT-5-Think leads on multi-map
questions, outperforming the next-best model (Gemini-2.5-Pro) by roughly 5%. Claude-Sonnet-4
performs best on Distance answers but underperforms on directional (i.e., Orientation) questions.
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Overall
(500)

Border
(71)

Distance
(91)

Equal
(54)

Intersect
(80)

Orientation
(89)

Within
(115)

Proprietary LVLMs

Gemini 2.5 Pro 36.60 28.17 29.67 50.00 21.25 64.77 30.17
GPT-5-Think 37.00 28.17 27.47 40.74 36.25 61.36 30.17
Claude Sonnet 4 28.40 19.72 19.78 27.78 23.75 55.68 23.28

Open Source LVLMs

LLaVA-NeXT-110B 3.80 2.86 3.30 3.64 7.50 0.00 5.17
GLM-4.5V-108B 7.40 9.46 0.00 6.00 13.41 1.12 12.82
InternVL3-78B 9.20 2.82 5.49 5.56 3.75 30.68 5.17
LLaVA-OneVision-72B 9.20 7.04 5.49 3.7 7.5 17.05 11.21
Qwen2.5-VL-72B 26.40 12.68 16.48 29.63 16.25 55.68 25.86
InternVL3-78B 9.20 2.82 5.49 5.56 3.75 30.68 5.17
InternVL3.5-38B 12.00 8.45 4.40 7.41 7.50 34.09 8.62
Ovis2-34B 16.00 21.13 14.29 18.52 18.75 2.27 21.55
Ovis2.5-9B-Think 24.80 18.31 9.89 27.78 21.25 56.82 17.24

Table 8: Performance of the 11 LVLMs across 6 spatial relationships on FRIEDA-contextual set-
ting. Values represent performance scores (in %) for each spatial relationship and the overall accu-
racy.

FRIEDA-direct FRIEDA-contextual

Full
(500)

All-agree
(297)

Full
(500)

All-agree
(297)

Human Average 84.87 93.93* - -

Proprietary LVLMs

Gemini 2.5 Pro 38.20 46.13 33.06 15.56
GPT-5-Think 37.20 44.11 30.65 26.67
Claude Sonnet 4 31.60 24.26 25.81 28.89

Open Source LVLMs

LLaVA-NeXT-110B 8.60 9.43 10.48 8.89
GLM-4.5V-108B 6.40 8.67 8.33 0.00
InternVL3-78B 11.00 13.80 6.18 4.44
LLaVA-OneVision-72B 13.00 14.48 9.41 11.11
Qwen2.5-VL-72B 25.60 28.28 21.24 8.89
InternVL3.5-38B 14.20 14.81 9.68 6.67
Ovis2-34B 17.80 20.54 22.58 11.11
Ovis2.5-9B-Think 25.80 29.97 20.43 20.00

*Note: Although the All-agree subset reflects complete human consensus on the ground truth, the human average score is 93.33% rather than 100% because our
evaluation pipeline relies on an LLM-as-Judge. In other words, the 93.33% accuracy reflects the LLM Judge’s assessment of the human-provided answer on the
All-agree items, not human disagreement.

Table 9: Performance of humans and 11 LVLMs on the All-agree subset for FRIEDA-direct and
FRIEDA-contextual.
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Map Count Answer Types

Overall
(500)

Single
(202)

Multi
(298)

Textual
(372)

Distance
(45)

Direction
(83)

Human Average 84.87 84.91 88.08 87.93 67.18 92.15

Proprietary LVLMs

Gemini 2.5 Pro 38.20 32.67 41.95 33.06 15.56 73.49
GPT-5-Think 37.20 23.76 46.31 30.65 26.67 72.29
Claude Sonnet 4 31.60 24.26 36.58 25.81 28.89 59.04

Open Source LVLMs

LLaVA-NeXT-110B 8.60 7.43 9.40 10.48 8.89 0.00
GLM-4.5V-108B 6.40 4.81 7.53 8.33 0.00 1.23
InternVL3-78B 11.00 6.93 13.76 6.18 4.44 36.14
LLaVA-OneVision-72B 13.00 15.35 11.41 9.41 11.11 30.12
Qwen2.5-VL-72B 25.60 21.78 28.19 21.24 8.89 54.22
InternVL3.5-38B 14.20 11.88 15.77 9.68 6.67 38.55
Ovis2-34B 17.80 17.33 18.12 22.58 11.11 0.00
Ovis2.5-9B-Think 25.80 22.28 28.19 20.43 20.00 53.01

Table 10: Performance of humans and 11 LVLMs across the two map count types and three answer
types on FRIEDA-direct.

Map Count Answer Types

Overall
(500)

Single
(202)

Multi
(298)

Textual
(372)

Distance
(45)

Direction
(83)

Proprietary LVLMs

Gemini 2.5 Pro 36.60 25.25 44.30 31.99 17.78 67.47
GPT-5-Think 37.00 26.24 44.30 31.72 28.89 65.06
Claude Sonnet 4 28.40 20.30 33.89 23.12 17.78 57.83

Open Source LVLMs

LLaVA-NeXT-110B 3.80 1.99 5.03 4.85 2.22 0.00
GLM-4.5V-108B 7.40 6.19 8.28 9.95 0.00 0.00
InternVL3-78B 9.20 6.93 10.74 4.57 4.44 32.53
LLaVA-OneVision-72B 9.20 7.43 10.40 7.53 6.67 18.07
Qwen2.5-VL-72B 26.40 18.32 31.88 21.24 11.11 57.83
InternVL3.5-38B 12.00 8.42 14.43 7.53 4.44 36.14
Ovis2-34B 16.00 14.36 17.11 19.62 15.56 0.00
Ovis2.5-9B-Think 24.80 20.79 27.52 19.62 6.67 57.83

Table 11: Performance of the 11 LVLMs across the two map count types and three answer types on
FRIEDA-contextual.
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E.6 PER MAP ELEMENT & MAP ELEMENT COUNT RESULT BREAKDOWN

We analyze performance based on the specific map elements required to answer each question,
as well as the number of distinct element types involved, for both FRIEDA-direct (Table 12) and
FRIEDA-contextual (Table 13). As map elements are not mutually exclusive, a single question may
require interpreting multiple elements simultaneously to produce a correct answer.

Humans outperform every model by a large margin across all four map elements. Accuracy is high-
est when only one or two elements are required, but drops substantially when four elements must be
combined, indicating that even expert map readers experience increased difficulty as compositional
complexity grows. On the other hand, the best proprietary model performance occurs at three ele-
ments; this may be because questions involving multiple components compel the model to search
the image to identify relevant elements.

Map Element Type Map Element Count

Map text
(366)

Legend
(417)

Compass
(137)

Scale
(46)

1
(132)

2
(279)

3
(80)

4
(9)

Human Average 80.97 83.61 75.91 63.78 84.09 81.84 80.00 51.85

Proprietary LVLMs

Gemini 2.5 Pro 38.80 37.41 56.20 17.39 35.61 35.13 55.00 22.22
GPT-5-Think 38.52 34.05 53.28 28.26 36.36 34.41 48.75 33.33
Claude Sonnet 4 31.69 31.41 51.83 30.43 24.24 29.75 47.50 55.56

Open Source LVLMs

LLaVA-NeXT-110B 7.38 8.87 0.73 8.70 14.39 8.24 0.00 11.11
GLM-4.5V-108B 5.72 5.74 3.62 0.00 12.12 5.00 2.47 0.00
InternVL3-78B 9.84 10.31 23.36 4.35 9.85 9.32 20.00 0.00
LLaVA-OneVision-72B 13.39 11.27 20.44 10.87 10.61 13.62 16.25 0.00
Qwen2.5-VL-72B 26.23 24.46 40.88 10.87 21.97 24.37 37.50 11.11
InternVL3.5-38B 14.48 12.23 25.55 6.52 12.12 14.34 17.50 11.11
Ovis2-34B 16.12 18.47 4.38 10.87 27.27 17.20 6.25 0.00
Ovis2.5-9B-Think 26.78 23.26 38.69 21.74 23.48 24.73 33.75 22.22

Table 12: Performance of humans and 11 LVLMs across the map element types and count of map
elements on FRIEDA-direct.

Map Element Type Map Element Count

Map text
(366)

Legend
(417)

Compass
(137)

Scale
(46)

1
(132)

2
(279)

3
(80)

4
(9)

Proprietary LVLMs

Gemini 2.5 Pro 37.43 35.49 50.36 19.57 34.85 34.77 46.25 33.33
GPT-5-Think 38.25 34.53 51.09 30.43 34.09 35.48 48.75 22.22
Claude Sonnet 4 29.78 26.38 43.07 19.57 25.00 27.24 37.50 33.33

Open Source LVLMs

LLaVA-NeXT-110B 3.01 4.32 0.00 2.17 6.06 3.94 0.00 0.00
GLM-4.5V-108B 5.93 6.75 4.67 0.00 10.95 6.13 3.33 0.00
InternVL3-78B 8.47 8.39 20.44 4.35 6.06 9.32 15.00 0.00
LLaVA-OneVision-72B 7.65 9.11 13.87 6.52 9.85 8.96 8.75 11.11
Qwen2.5-VL-72B 27.32 24.46 41.61 13.04 21.97 26.88 32.50 22.22
InternVL3.5-38B 13.39 10.31 23.36 4.35 6.06 13.62 17.50 0.00
Ovis2-34B 13.93 16.31 5.11 15.22 25.00 14.70 7.50 0.00
Ovis2.5-9B-Think 26.23 22.30 40.15 8.70 21.97 24.01 33.75 11.11

Table 13: Performance of the 11 LVLMs across the map element types and count of map elements
on FRIEDA-contextual.
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E.7 PER DOMAIN RESULT BREAKDOWN

In addition, we report performance by domain for FRIEDA-direct (Table 14) and FRIEDA-
contextual (Table 15). The domain can serve as an indicator of map style heterogeneity. For ex-
ample, reports from park maps (labeled “Parks” in the table) and disaster reports typically follow
the same formalized format because they are produced by the same source (usually the government).
In contrast, reports from the investment and infrastructure domain (labeled “Investment”) and the
geology domain (labeled “Geology”) originate from various sources, as they are usually authored
by different companies, resulting in more diverse map styles.

Overall
(500)

Planning
(112)

Investment
(27)

Environment
(100)

Disaster
(83)

Parks
(22)

Geology
(166)

Human Average 84.87 86.60 88.89 82.33 83.13 75.76 76.91

Proprietary LVLMs

Gemini 2.5 Pro 38.20 37.25 33.33 43.00 49.40 45.45 30.12
GPT-5-Think 37.20 35.29 25.93 40.00 54.22 68.18 25.90
Claude Sonnet 4 31.60 33.33 22.22 28.00 42.17 50.00 26.51

Open Source LVLMs

LLaVA-NeXT-110B 8.60 9.80 18.52 6.00 8.43 13.64 7.23
GLM-4.5V-108B 6.40 3.92 0.00 5.00 8.43 9.09 8.33
InternVL3-78B 11.00 12.75 7.41 12.00 16.87 22.73 5.42
LLaVA-OneVision-72B 13.00 16.67 11.11 11.00 7.23 22.73 13.86
Qwen2.5-VL-72B 25.60 29.41 18.52 21.00 34.94 22.73 22.89
InternVL3.5-38B 14.20 13.73 22.22 15.00 18.07 18.18 10.24
Ovis2-34B 17.80 18.63 14.81 19.00 21.69 22.73 14.46
Ovis2.5-9B-Think 25.80 21.57 22.22 23.00 33.73 40.91 24.70

Table 14: Performance of humans and 11 LVLMs across the seven domain types on FRIEDA-direct.

Overall
(500)

Planning
(112)

Investment
(27)

Environment
(100)

Disaster
(83)

Parks
(22)

Geology
(166)

Proprietary LVLMs

Gemini 2.5 Pro 36.60 39.22 40.74 34.00 50.60 50.00 27.11
GPT-5-Think 37.00 36.27 25.93 34.00 49.40 72.73 30.12
Claude Sonnet 4 28.40 30.39 25.93 24.00 42.17 45.45 21.08

Open Source LVLMs

LLaVA-NeXT-110B 3.80 3.92 14.81 3.00 7.23 4.55 0.60
GLM-4.5V-108B 7.40 5.61 0.00 5.66 10.23 0.00 8.29
InternVL3-78B 9.20 8.82 7.41 12.00 13.25 18.18 4.82
LLaVA-OneVision-72B 9.20 12.75 14.81 9.00 10.84 18.18 4.22
Qwen2.5-VL-72B 26.40 25.49 37.04 20.00 44.58 36.36 18.67
InternVL3.5-38B 12.00 10.78 14.81 13.00 15.66 27.27 7.83
Ovis2-34B 16.00 16.67 25.93 12.00 22.89 18.18 12.65
Ovis2.5-9B-Think 24.80 20.59 18.52 25.00 36.14 36.36 21.08

Table 15: Performance of the 11 LVLMs across the seven domain types on FRIEDA-contextual.

F EXTENDED ANALYSES

F.1 EXAMPLES OF EACH ERROR CATEGORY

We illustrate the three most frequent error categories for Gemini-2.5-Pro and show each example
alongside answers and reasoning from Gemini-2.5-Pro, GPT-5-Think, and Claude-Sonnet-4.
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Model Size Accuracy (%)

1B 9.40
2B 12.80
4B 20.00
8B 23.20

14B 23.00
30BA3B 24.20

38B 14.20
241BA28B 11.40

Table 16: InternVL3.5 perfor-
mance by size Figure 19: Performance of InternVL3.5 by model parameter size

Misinterpretation of legend Listing 1 presents a case where the model fails to map a legend
symbol or color to its intended semantic class, leading to the selection of the wrong feature despite
the correct evidence being present.

Cross-map interpretation failure Listing 2 shows a failure that arises when reasoning requires
aligning information across multiple maps or overlays; the model identifies the wrong subject when
the maps must be cross-referenced.

Spatial-relation semantics error Listing 3 illustrates a case where the model misinterprets the
key spatial relation, yielding an incorrect answer.

F.2 ANALYSES ON MODEL SIZE

In the main evaluation (Figure 3), the results deviate from the usual scaling law (Kaplan et al., 2020),
which states that the performance of the model improves with size. Among open-source models,
LLaVA-NeXT, despite having the most parameters, ranks near the bottom, whereas Ovis-2.5-9B,
the smallest model, ranks near the top. We, therefore, hypothesize that cartographic reasoning is not
an emergent ability (i.e., a capability absent in smaller models but present in larger ones). To test
this, we evaluate the InternVL3.5 family (Wang et al., 2025b) on FRIEDA: 1B, 2B, 4B, 8B, 14B,
30BA3B, 38B, 241BA28B where ‘A’ denotes parameters active at inference. The trend (Figure 19,
Table 16) shows modest gains up to roughly 30B parameters, followed by degradation thereafter.

G EXTENDED RELATED WORKS

To provide a comprehensive context for FRIEDA, we detail the scope of related benchmarks across
three areas: general document and infographics understanding, map visual question answering, and
broader spatial reasoning.

G.1 DOCUMENT AND INFOGRAPHICS VQA

Benchmarks in this domain have established baselines for LVLM reasoning over structured text and
graphical images, including charts. In the document domain, DocVQA (Mathew et al., 2021) intro-
duces a large-scale question-answering dataset over real forms and reports. DocVXQA (Souibgui
et al., 2025) builds upon the benchmark to design a self-explanatory framework that produces in-
terpretable rationales for LVLMs. Docopilot (Duan et al., 2025) evaluates LVLMs on scientific
articles, which not only test text understanding but also the interpretation of embedded figures such
as charts. For graphics, InfographicsVQA (Mathew et al., 2022) tests joint reasoning over text, lay-
out, and pictorial elements in visually rich infographics. InfoChartQA (Lin et al., 2025) extends this
by pairing plain charts and infographics and identifying design elements that degrade LVLM per-
formance. In general, VQA evaluation on frontier LVLMs reveals a consistent trend: competence at
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high-level patterns, such as identifying trends in the data or the extrema, but struggles with precise
value extraction and robustness. FRIEDA evaluates these shortcomings in a cartographic setting,
where layout, symbols, legends, scales, and compass orientation interact tightly to measure how
well LVLMs integrate these signals to answer map-based questions.

G.2 MAP VQA

Research in map understanding can be categorized into general map VQA, navigation-centered rea-
soning, and domain-specific question-answering.

General Map VQA MapQA (Chang et al., 2022) establishes a baseline for choropleth map un-
derstanding by creating question-answer pairs targeting value retrieval and region identification.
However, the dataset is limited to a single map type (i.e., choropleth maps) and geographically re-
stricted to the United States, thereby limiting the diversity of cartographic styles and toponyms.
MapWise (Mukhopadhyay et al., 2025) broadens geographic coverage to the United States, India,
and China and introduces diverse question templates for probing relative spatial relationships; yet, it
still relies solely on choropleth maps and remains constrained to single-map reasoning, which lim-
its its ability to model real-world cartographic complexity. MapIQ (Srivastava et al., 2025) further
advances visualization literacy by introducing cartograms and proportional-symbol maps, which are
commonly used in analytical tasks. While the expanded map diversity is valuable, MapIQ’s maps
are generated using map-coloring tools rather than drawn from heterogeneous, noisy real-world doc-
uments. In contrast, FRIEDA explicitly captures this real-world variability by sourcing map images
directly from government and scientific reports.

Navigation-centered Reasoning Benchmarks centered on navigation often require more complex
reasoning than simple semantic retrieval, yet they tend to remain domain-narrow. MapEval (Dihan
et al., 2025) evaluates LVLMs’ geospatial reasoning through multiple-choice travel-planning ques-
tions spanning 180 cities. Still, it relies on standard web basemaps (e.g., Google Maps) whose clean,
uniform designs lack the layered, domain-specific symbology (e.g., variable legends, irregular pro-
jections, and customized north arrows) often found in professional cartography. ReasonMap (Feng
et al., 2025) moves beyond basemaps by using high-resolution transit maps and designing naviga-
tion tasks that closely simulate real-world subway routing, though its scope is restricted to transit
systems. MapBench (Xing et al., 2025) evaluates LVLMs’ spatial reasoning and chain-of-thought
inference by testing outdoor navigation performance on diverse map types, such as park and trail
maps. Despite their contributions, all of these benchmarks remain focused on navigation-centric
tasks. In contrast, our benchmark generalizes spatial reasoning across six distinct spatial relations
that extend well beyond navigation, capturing the broader landscape of cartographic reasoning re-
quired in professional and scientific contexts.

Domain- and Task-specific QA Specialized benchmarks address domain-specific needs or par-
ticular visual modalities, but they tend to trade breadth for depth. PEACE (Huang et al., 2025)
introduces a benchmark focused on geologic map understanding and develops a framework for an-
swering domain-specific questions, such as identifying lithologic units, fault lines, and structural
patterns. While the benchmark and the approach is highly effective for geology-specific evalua-
tion, the scope is limited to a single scientific domain, and it lacks the thematic diversity required for
broader cartographic reasoning. CartoMark (Zhou et al., 2024) provides a wide range of maps across
various styles, but its core task centers on simple pattern recognition, such as scene classification and
text annotation. These tasks primarily test perceptual recognition and, in many cases, do not require
reasoning at all. ReMI (Kazemi et al., 2025) offers a framework for multi-image reasoning that eval-
uates how models integrate and compare information across visual inputs. However, ReMI operates
on natural images and uses simple web-based maps. Therefore, it does not assess the specialized
challenges of multi-map cartographic reasoning, such as aligning heterogeneous legends, reconcil-
ing differing spatial scales, and interpreting mismatched orientations across maps. These capabilities
form the core of FRIEDA’s multi-map setting, which reflects real-world analytical scenarios where
experts must synthesize information from multiple, heterogeneous cartographic sources.

To situate FRIEDA within the broader landscape of MapVQA benchmarks, we provide a compara-
tive summary of existing works in Table 17. The table evaluates each dataset along four key dimen-
sions: (1) the types of spatial abilities evaluated, (2) diversity of map elements (measured through
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country and domain coverage), (3) whether multi-map reasoning is supported, and (4) whether a
contextual setting is included to emulate real-world map-use scenarios.

We use orange checkmarks (✓) to indicate partial or limited coverage within a category. For ex-
ample, in the topological relation category, we treat questions such as “how many points lie along
the route to location A?” partially covering topological relation as such tasks contain the notion of
intersect while it does not examine the relation with the depth or rigor as required in FRIEDA.
Overall, the comparison highlights that prior MapVQA benchmarks tend to emphasize narrow task
settings, limited spatial relations, or constrained map styles, whereas FRIEDA is designed to pro-
vide comprehensive, cross-domain evaluation that reflects the complexity of real-world cartographic
reasoning.

Spatial Relation Heterogeneity

Topological Metric Directional Country Domain Multi-Map Contextual

MapQA (Chang et al., 2022) ✗ ✗ ✗ 1 1 ✗ ✗
CartoMark (Zhou et al., 2024) ✗ ✗ ✗ 13 7 ✗ ✗
MapWise (Mukhopadhyay et al., 2025) ✓ ✗ ✓ 3 3 ✗ ✗
MapIQ (Srivastava et al., 2025) ✓ ✗ ✗ 1 6 ✗ ✗
MapBench (Xing et al., 2025) ✗ ✗ ✓ UNK 9 ✗ ✗
MapEval (Dihan et al., 2025) ✓ ✓ ✓ 54 1 ✗ ✗
ReMi (Kazemi et al., 2025) ✗ ✗ ✓ 100? 1 ✓ ✗
PEACE (Huang et al., 2025) ✓ ✓ ✓ 2 1 ✗ ✗
ReasonMap (Feng et al., 2025) ✗ ✗ ✗ 13 1 ✗ ✗

FRIEDA ✓ ✓ ✓ 32 6 ✓ ✓

Note: ReMi (Kazemi et al., 2025) reports counts by city, not by country; consequently, the corresponding country total is less than 100.

Table 17: A comparison of FRIEDA with prior map VQA benchmarks. FRIEDA covers a broader
set of map-reading abilities and exhibits greater geographic and thematic diversity.

G.3 SPATIAL REASONING

Spatial reasoning benchmarks have advanced model capabilities in perception and localization,
though often outside the cartographic domain. Benchmarks such as SpatialVLM (Chen et al., 2024a)
and SpatialRGPT (Cheng et al., 2024) focus on natural images, testing a model’s ability to reason
about 2D and 3D spatial relationships, relative positions, and object dimensions in photographic
scenes. In the geospatial domain, GeoChain (Yerramilli et al., 2025) enhances tasks such as ge-
olocation by inducing step-by-step geographic reasoning to link visual cues to geographic entities.
However, these works primarily rely on natural scene understanding or semantic knowledge re-
trieval and do not engage with the abstract symbolic conventions unique to maps. FRIEDA closes
this gap by evaluating multi-step cartographic reasoning, in which models must not only perceive
space but also decode specific symbolic rules to infer topological, metric, and directional relations
across heterogeneous real-world maps.

H THE USE OF LARGE LANGUAGE MODELS

We acknowledge the use of large language models (LLMs) for benchmark question curation, re-
vision, and polishing of this paper. The details of usage, the exact prompt used, and all related
information are provided in the main paper or appendices. All questions created with the assis-
tance of a large language model have been verified and modified by the authors. The paper’s main
contribution remains with the authors.
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Listing 1: Legend misinterpretation example of Gemini-2.5-Pro on FRIEDA. Other models are
shown for reference. Orange : Task Instruction. Green : Correct Answer. Red : Incorrect Answer.

System: :

Answer the questions based on the following criteria:
General:

* If question can be answered, write answer in short answer box

* If answer is a text from the map, copy it as it appears

Numerical Answers:

* Include units as indicated on the map (Don’t convert 1200m to 1.2km)

* If both map frame and ruler scale is available, use the ruler scale

* If question asks for an area, use {unit}ˆ2

* Use numerical values (e.g., 4 instead of four)

Directional Answers:

* Use 8 cardinal directions only: North, North East, East, South East, South, South West,
West, North West

* Write ‘North’ or ‘South’ before ‘East’ or ‘West’

* Notice that the north arrow compass do not always point upward

Multi-Part Answers:

* Separate with semicolon (;) (e.g., Zone A; Zone B)

Give the final answer in ’Final answer: <your answer>’
Do not use online search.

Images: :

Question: The 23rd Ave and E Union St Rezone (Draft) classifies each area into four distinct

Rezone Areas. With which Rezone Area does ’Rezone Area 4’ share its westernmost boundary. Give
the name of the area in form Rezone Area #.

Gold Answer: Rezone Area 6

Gemini-2.5-Pro:
I’ve determined the user’s objective: to find the "Rezone Area" west of "Rezone Area 4". I’ve
analyzed the map and deconstructed the task. "Rezone Area 4" is the blue-hatched area. Its
western border is along 22nd Ave. I’ve identified the adjacent pink area. Now, according to
the legend, the pink/magenta area corresponds to "Rezone Area 5". Final answer: Rezone Area 5

GPT-5-Think: The image shows a zoning map with areas labeled 4-7, and the title mentions "23
rd Ave and E Cherry St Rezone (Draft)." The question asks about Rezone Area 4’s westernmost
boundary. I’ll need to find Area 4 on the map and check which area lies directly to the west
of it, likely along 23rd Ave. The map shows colored boxes for Areas 4, 5, and 6. Area 4,
labeled in light blue, is near the left margin, adjacent to "NC1-30" and "NC1-40." It seems
that Area 4’s westernmost boundary touches Area 5, which is directly to the left of Area 4. So
, I suspect Area 5 shares this boundary. Final answer: Rezone Area 5

Claude-4-Sonnet: Looking at the map, I can identify Rezone Area 4 by its blue diagonal line
pattern. This area is located in the western portion of the map.
Examining the westernmost boundary of Rezone Area 4, I can see that it directly borders the
magenta/pink colored area, which according to the legend corresponds to Rezone Area 6. Final
answer: Rezone Area 6
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Listing 2: Cross-map interpretation failure example of Gemini-2.5-Pro on FRIEDA. Other models
are shown for reference. Orange : Task Instruction. Green : Correct Answer. Red : Incorrect
Answer.

System: :

Answer the questions based on the following criteria:
General:

* If question can be answered, write answer in short answer box

* If answer is a text from the map, copy it as it appears

Numerical Answers:

* Include units as indicated on the map (Don’t convert 1200m to 1.2km)

* If both map frame and ruler scale is available, use the ruler scale

* If question asks for an area, use {unit}ˆ2

* Use numerical values (e.g., 4 instead of four)

Directional Answers:

* Use 8 cardinal directions only: North, North East, East, South East, South, South West,
West, North West

* Write ‘North’ or ‘South’ before ‘East’ or ‘West’

* Notice that the north arrow compass do not always point upward

Multi-Part Answers:

* Separate with semicolon (;) (e.g., Zone A; Zone B)

Give the final answer in ’Final answer: <your answer>’
Do not use online search.

Images: :

Question: Identify the Air Quality Monitoring Location closest to the Noise Level Monitoring

Location ’NL 5’. What is the orientation of this point in relation to ’NL 5’?

Gold Answer: North East

Gemini-2.5-Pro: I’ve determined that AQ 6 is the closest point to NL 5. Now, I am analyzing
their relative orientation. It appears that from NL 5, AQ 6 lies in a west-northwest direction
. Final answer: AQ 6; West

GPT-5-Think: Looking at the maps, AQ5 seems nearest to NL5, based on their locations along
the river. AQ5 seems to be slightly northeast of NL5, just a bit to the east of it. To answer
the question, it makes sense to say AQ5 is closest to NL5. As for the orientation, I think AQ5
lies slightly southeast of NL5. The AQ5 triangle is located near the river, south of the
river bend, while NL5 is to the north. I’ll go with: AQ5 lies southeast of NL5. This seems
like the most accurate conclusion. Final answer: AQ 5; southeast.

Claude-4-Sonnet: Looking at both maps, I need to locate NL 5 on the Noise Level Monitoring
Locations Map and find the closest AQ location on the Ambient Air Quality Monitoring Locations
Map. NL 5 is located near the Karnatali River area. Examining the AQ locations on the first
map:
- AQ 5 is positioned very close to the same Karnatali River area
- AQ 6 is slightly further west
- AQ 2, AQ 3, AQ 4 are further south
- AQ 7 and AQ 8 are further north
AQ 5 is clearly the closest Ambient Air Quality Monitoring Location to NL 5.
Comparing the relative positions of AQ 5 and NL 5, AQ 5 appears to be positioned to the east
of NL 5. Final answer: AQ 5; East"}
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Listing 3: Spatial-relation semantics error example of Gemini-2.5-Pro on FRIEDA. Other models
are shown for reference. Orange : Task Instruction. Green : Correct Answer. Red : Incorrect
Answer.

System: :

Answer the questions based on the following criteria:
General:

* If question can be answered, write answer in short answer box

* If answer is a text from the map, copy it as it appears

Numerical Answers:

* Include units as indicated on the map (Don’t convert 1200m to 1.2km)

* If both map frame and ruler scale is available, use the ruler scale

* If question asks for an area, use {unit}ˆ2

* Use numerical values (e.g., 4 instead of four)

Directional Answers:

* Use 8 cardinal directions only: North, North East, East, South East, South, South West,
West, North West

* Write ‘North’ or ‘South’ before ‘East’ or ‘West’

* Notice that the north arrow compass do not always point upward

Multi-Part Answers:

* Separate with semicolon (;) (e.g., Zone A; Zone B)

Give the final answer in ’Final answer: <your answer>’
Do not use online search.

Images: :

Question: Which ’National Register Districts’ overlap with both the ’Ballard’ and ’Interbay

Dravus’ Industrial Lands Subareas within the Ballard-Interbay MIC?

Gold Answer: Washington Ship Canal

Gemini-2.5-Pro: I’m currently focused on dissecting the user’s complex query. My goal is to
determine the exact regions where the yellow "National Register Districts" overlap with both
the purple "Ballard" and orange "Interbay Dravus" subareas, all contained within the "Ballard-
Interbay MIC." I’m visualizing the overlay on the map. I’ve broken down the request into map
elements and used the legend to visualize the features. I’ve concluded that the only district
meeting all criteria is the "Chittenden Locks and Lake Washington Ship Canal." Final answer:
Chittenden Locks and Lake Washington Ship Canal

GPT-5-Think:
I need to figure out which National Register Districts overlap with both the ’Ballard’ and ’
Interbay Dravus’ subareas within the Ballard-Interbay MIC. I’ve got the map, and I think the
overlapping yellow polygons (representing districts) fall within both the Ballard (pink?) and
Interbay Dravus (green?) subareas. I’ll check for yellow dots (properties) and orange polygons
(districts), focusing on labels in the north area, like the Ballard Avenue Historic District.
The "Washington Ship Canal" National Register District seems to be the most likely answer, as
it follows the canal and overlaps both subareas. Final answer: Washington Ship Canal

Claude-4-Sonnet: Looking at the map, I need to identify National Register Districts (shown in
orange) that overlap with both the Ballard Industrial Lands Subarea (shown in purple) and the
Interbay Dravus Industrial Lands Subarea (shown in orange/peach). After careful examination
of the map, I do not see any National Register Districts that overlap with both the Ballard
and Interbay Dravus Industrial Lands Subareas within the Ballard-Interbay MIC.Final answer:
None"
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