

000 001 002 003 004 005 FRIEDA: BENCHMARKING MULTI-STEP CARTO- 006 GRAPHIC REASONING IN VISION-LANGUAGE MODELS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034

ABSTRACT

035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
18

Figure 1: Example of a FRIEDA question requiring multi-map, multi-step cartographic reasoning. To solve the question, the model must (1) use each legend to locate the two referenced regions, (2) evaluate the *border* spatial relation between them, and (3) read the map label of the qualifying feature to answer “Kinsinger Farm.”

tances through the map scale), and directional reasoning (using a compass or north arrow) (Clementini et al., 1993; Cohn & Renz, 2007). In addition, human map-reading competencies (Liben et al., 2010; Muir, 1985) frequently require these inferences across multiple maps within a single document. Correctly answering a map question, therefore, draws on map-specific skills (Hegarty & Waller, 2005) such as interpreting map elements, reasoning over spatial relations, and integrating evidence across multiple maps, as well as broader capabilities emphasized in LVLM research that include text grounding (Singh et al., 2019; Sidorov et al., 2020), numeric and logical inference (Lu et al., 2024a; Hu et al., 2023), multi-image integration (Wang et al., 2024a; Xia et al., 2025), and retrieval (Wang et al., 2025a; 2024b). A cartographic reasoning benchmark can therefore probe comprehensive reasoning and provide a clear understanding of the spatial intelligence of LVLMs.

A growing line of work began to evaluate LVLMs on map VQA, yet these benchmarks do not fully assess cartographic reasoning. Earlier datasets pose chart-style questions that can be answered without interpreting spatial relations, which bypasses the topological, metric, and directional inferences that are central to map comprehension (Koukouraki et al., 2025; Chang et al., 2022). Other efforts cover only a subset of relations as they target specific tasks such as navigation (Feng et al., 2025; Kazemi et al., 2025) or entity identification (Dihan et al., 2025). While suitable for those objectives, such coverage is insufficient for evaluating human-like map understanding (Liben et al., 2010). Many benchmarks also restrict the stylistic variability of maps. Some focus on choropleths (Koukouraki et al., 2025; Chang et al., 2022; Mukhopadhyay et al., 2025), others rely on maps created with map-coloring tools (Srivastava et al., 2025) or common web basemaps (Kazemi et al., 2025; Dihan et al., 2025). Several further focus on limited thematic domains (e.g., geology (Huang et al., 2025)) or restricted geography coverage (Chang et al., 2022; Srivastava et al., 2025). These constraints overlook the heterogeneity in toponyms, labeling conventions, projections, and symbology that real-world cartography demands (Slocum et al., 2022; Robinson et al., 1978). Multi-map reasoning is rarely evaluated, with limited exceptions (Kazemi et al., 2025), even though practical cases often require integrating evidence across multiple maps (e.g., reconciling transit maps with future land-use maps for urban planning) and aligning overlapping information (Lupien & Moreland, 1987). Moreover, although document-level multimodal understanding is emphasized in other LVLM benchmarks, existing map VQA benchmarks seldom require selecting the correct map among many images in long reports, despite government documents and technical documents

108 containing numerous, visually similar, context-dependent maps (Federal Emergency Management
 109 Agency, 2025; U.S. Environmental Protection Agency, 2025; SEDAR+, 2025). As a result, current
 110 map VQA settings underestimate the demands of comprehensive map understanding, leaving it un-
 111 clear whether LVLMs possess human-like map-reading competencies. Full cartographic reasoning
 112 remains beyond the scope of what existing VQA benchmarks assess.

113 We introduce FRIEDA, a benchmark designed for evaluating **multi-map, multi-step, comprehensive**
 114 **cartographic reasoning** in LVLMs. We curate maps from public documents of various the-
 115 matic domains (e.g., geological surveys, planning reports, environmental studies) to develop ques-
 116 tions that require models to interpret maps as they appear in reports, mirroring practical scenarios in
 117 which a reader must synthesize evidence from maps embedded in a document (see Figure 1). The
 118 collection encompasses a diverse range of styles, projections, and scales. We create each question
 119 such that it requires (1) reasoning over topological, metric, and directional relations, (2) interpreting
 120 map elements and their semantics (e.g., legends, map scales, and north arrows), and, when appli-
 121 cable, (3) integrating information across multiple maps, and (4) selecting the appropriate map(s)
 122 from a document to answer the query. To probe genuine reasoning rather than random guessing,
 123 the answers are in a free-form (not multiple-choice) format. The benchmark evaluation includes
 124 two settings: a *direct* setting, which provides the relevant map images with the question to focus
 125 on evaluating map comprehension, and a *contextual* setting, where the model must first retrieve the
 126 correct maps from a broader within-document collection before answering. We score outputs using
 127 a unified, task-aware protocol aligned to the three spatial-relation categories. We evaluate textual re-
 128 sponses (topological and semantic labels) with LLM-as-Judge (Gu et al., 2025), distance responses
 129 (numeric values with units) with unit-aware parsing and mean absolute percentage error (MAPE),
 130 and directional responses (cardinal directions for relative position) with angular tolerance over the
 131 eight directions. We compare the result against the human upper bound derived from multi-annotator
 132 agreement to contextualize LVLM performance. By aligning our tasks with the competencies ex-
 133 pected of human map-readers (Goodchild, 2012; Liben et al., 2010) and explicitly targeting com-
 134 positional cross-image inference that is largely absent from prior map VQA work, FRIEDA fills a
 135 crucial gap in state-of-the-art LVLM evaluation.

136 Across 11 LVLMs (both proprietary and open source), we find that even state-of-the-art models
 137 struggle with multi-step cartographic reasoning. With FRIEDA-direct, where the relevant maps
 138 are provided, the best-performing model (Gemini-2.5-Pro) correctly answers fewer than 40% of
 139 the questions, far below human performance ($> 80\%$). Overall accuracy remains essentially un-
 140 changed in the contextual setting, indicating that retrieval and disambiguation are not the primary
 141 bottlenecks; the core difficulty lies in cartographic reasoning itself. Our error analysis highlights re-
 142 curring failures, such as misreading legends (confusing symbol shapes and colors) and misaligning
 143 information across maps when map styles, projections, or map scales differ. We also observe hetero-
 144 geneous strengths across models (e.g., GPT-5-Think on multi-map questions and Claude-Sonnet-4
 145 on distance queries). However, overall accuracy remains low, highlighting the gap between current
 146 LVLMs and the multi-step, cross-image cartographic reasoning skills required.

147 We organize the remainder of the paper as follows. Section 2 formalizes the tasks and core skills of
 148 cartographic reasoning; Section 3 describes the benchmark design and dataset statistics; Section 4
 149 details the models, experimental setup, and evaluation protocol, and reports the results; Section 5
 150 presents ablations and error analyses.

2 TASK DEFINITION

151 Cartographic reasoning is the ability to interpret maps and draw justified inferences from them. In
 152 FRIEDA, we design questions to assess core map-reading competence while mirroring realistic
 153 document use, where a reader may need to navigate a document to locate the relevant map(s). All
 154 questions require (1) reasoning over *spatial relations*, (2) interpreting heterogeneous *map elements*,
 155 and (3) integrating evidence across *multiple maps* when necessary. We also include a (4) *contextual*
 156 *setting* in which additional maps are provided, requiring the model to identify relevant map(s) before
 157 performing the reasoning. We detail these categories and the accompanying taxonomy below.

158 **Spatial Relation** Spatial relations describe how geographic features relate in space (Carlson &
 159 Logan, 2001), how they are positioned in space (Majic et al., 2021), and how their geometries

162 interact (Renzhong, 1998). In geographic information systems (GIS) and spatial cognition, these
 163 relations are often grouped into three categories: topological, metric, and directional (Cohn & Renz,
 164 2007; Clementini et al., 1993). To make these abilities measurable and comparable, FRIEDA sep-
 165 arates questions by spatial relation type and grounds the topological portion in the 9-intersection
 166 model (Clementini et al., 1993). We consolidate finer-grained subtypes into their broader categories
 167 (e.g., *cross* classified as *intersect*, and *contain* classified as *within*), yielding four topological classes:
 168 *border* (shared boundary between regions), *equal* (coincident geometries), *intersect* (crossing or
 169 overlap of features), and *within* (containment or inclusion of one area inside another). We comple-
 170 ment these with one metric primitive, *distance*, and one directional primitive, *orientation*. Together,
 171 these six relations maintain the expressiveness of spatial queries while aligning with users' intuitive
 172 spatial reasoning.

173 **Map Elements** Maps are symbolic representations that encode spatial information through ab-
 174 stract conventions (Slocum et al., 2022). Therefore, interpreting map elements is a distinct skill cen-
 175 tral to cartographic reasoning. The key elements we target are *map text* (place and feature names),
 176 *legends* (mappings from color, icons, and patterns to semantic classes), *map scales* (measurements
 177 that convert the map distance to the real-world distance), and the *compass* (ESRI, 2021). The styles
 178 of these components vary widely across maps: map texts may use different typography or placement
 179 rules (Monmonier, 2015), legends may use continuous color ramps or discrete pictograms (Slocum
 180 et al., 2022), map scales may appear as bars or frames around the map (Robinson, 1995), and the
 181 compass may be a compass rose or a north arrow (Slocum et al., 2022). Practical map interpreta-
 182 tion requires grasping the concepts of map elements rather than simply recognizing their shapes.
 183 Consequently, our design includes questions that require reading map texts, decoding legends, using
 184 the map scale, and applying orientation to demonstrate true map literacy by linking abstract visual
 185 encodings to their underlying semantics.

186 **Multi-Map Reasoning** Beyond interpreting spatial relations and map elements, practitioners reg-
 187 ularly perform cross-map comparison and fusion to synthesize multiple map editions or thematic
 188 layers (Lupien & Moreland, 1987). Our multi-map setting reflects this practice: we curate questions
 189 that present two or more maps together and require the model to integrate evidence by aligning
 190 shared symbols, reconciling differences in labels, map scales, and orientation, and identifying co-
 191 referent regions or features (Foody, 2007). Extracting distributions and patterns is widely recognized
 192 as a core capability (Ishikawa, 2016; Rexigel et al., 2024; Morita & Fukuya, 2025). By testing this
 193 setting, we move beyond isolated spatial computation to evaluate deeper cartographic reasoning
 194 across varied depictions of the same space.

195 **Contextual Setting** To mirror practical workflows (Mathew et al., 2021; Tanaka et al., 2023),
 196 we evaluate a contextual setting (FRIEDA-contextual), where a model must identify the relevant
 197 map before answering a question. In this scenario, we provide the model with multiple maps from
 198 the same source (i.e., a document), and the model must perform within-document retrieval using
 199 cues in the map, such as titles, legends, or labels. By evaluating model performance on FRIEDA-
 200 contextual, we capture a core aspect of real map use: the model must understand how map elements
 201 encode meaning and leverage that understanding to select the required map from thematically related
 202 alternatives that vary in data layers, geographic extent, or purpose (Ishikawa, 2016).

204 3 FRIEDA

205 We present FRIEDA, a benchmark for assessing LVLM's comprehensive cartographic reasoning,
 206 with an emphasis on cross-map (i.e., multi-image) scenarios. This section summarizes the bench-
 207 mark statistics and details the dataset curation procedure.

208 3.1 BENCHMARK STATISTICS

209 Table 1 shows that FRIEDA comprises 17,030 map images drawn from 210 documents. To capture
 210 real-world variability, these maps span diverse geographies (32 countries) and six thematic domains,
 211 exhibiting heterogeneous styles, including varied color palettes, legends, and symbol conventions.
 212 The benchmark contains a total of 500 questions, comprising 202 single-map and 298 multi-map

Statistics	Number
Total questions	500
Total number of documents	210
Total number of images	17,030
Map text	366 (73.2%)
Legend	417 (83.4%)
Compass	137 (27.4%)
Scale	46 (9.2%)
Single-map	202 (40.4%)
Multi-map	298 (59.6%)
Avg maps in contextual	9.5
Relevant:Irrelevant	1:5.71

Table 1: Key statistics.

Figure 2: Question distribution by spatial relation (inner) and map count (outer). Sizes are proportional to the number of questions in each category.

questions. The multi-map subset consists primarily of two-map comparisons (295 questions), with a few cases requiring reasoning across three (2 questions) or four (1 question) maps.

Figure 2 reports the question distribution for each spatial relation, stratified by single- and multi-map questions.¹ The distribution is roughly balanced across relations and settings. We provide the detailed counts by spatial relation and setting in Appendix C.1 and include a representative example of each in Appendix D.

For FRIEDA-contextual, we provide between 2 and 9 irrelevant maps in addition to the relevant map(s) required to answer the question. The total input image averages 9.54 maps ($\sigma = 1.27$) per question across both the single- and multi-map settings, with an average relevant-to-irrelevant maps ratio of 1:5.71.

3.2 BENCHMARK CONSTRUCTION

This section describes the construction of FRIEDA, which proceeds in four stages: map image collection, question generation, pre-annotation curation, and validity verification.

Map Image Collection To capture stylistic and geographic diversity, we curate maps from publicly available government and multilateral reports across domains including geology (SEDAR+, 2025), national park management (National Park Service, 2025), environmental assessments (U.S. Environmental Protection Agency, 2025; Environmental Protection Agency, 2025; Ministry of Agriculture Climate Change and Environment, 2025), disaster response (Federal Emergency Management Agency, 2025), urban planning (Seattle Planning and Community Development, 2024; Department of Community Development, 2025; Urban Redevelopment Authority, 2025; City of Cape Town, 2025), and infrastructure investment (AIIB, 2025). We limit the sources to documents **using the Latin characters** to focus on cartographic reasoning over translation. We extract images using Idefics3-8B (Laurençon et al., 2024) with a custom prompt (Appendix B.1) and manually verify that each extracted set contains only cartographic maps (examples of excluded non-maps appear in Appendix B.1.1). **To support FRIEDA-contextual, we retain only documents with at least four maps.** **We select contextual maps based on their page proximity to the target map; this ensures they are thematically and stylistically related to the target maps.** We then shuffle the map order to prevent LViM from using positional cues to identify the target maps.

Question Generation For each collected map, we use GPT-4 and GPT-03 (Appendix B.6) to propose candidate questions, the targeted spatial relations, and a reference answer. We do not impose templates and accept any phrasing that unambiguously represents the target relation as valid to reflect

¹As *equal* denotes identical geometry (i.e., identical location and size), the benchmark contains no single-map *equal* questions.

270 various forms of paraphrases of spatial relations (e.g., “Is A within B?” vs. “Does B contain A”).
 271 To ensure the benchmark tests visual cartographic reasoning rather than search or memorization,
 272 we discard questions answerable by text-only web search or without visual inspection of the map
 273 image.
 274

275 **Pre-Annotation Curation** All LLM-proposed candidate questions undergo a pre-annotation cu-
 276 ration stage. The two question curators (one with 7 years of GIS experience and another with 2 years
 277 of experience in geospatial data) manually verify gold answers against source maps and rewrite or
 278 discard ambiguous questions. This step ensures FRIEDA consists only of high-quality, unambigu-
 279 ous questions before the broader annotator validation phase.
 280

281 **Annotation Pipeline** We validate every question with annotations from 11 Ph.D. researchers
 282 (eight with map expertise) collected over four weeks. Annotators confirm that each question is
 283 answerable from the provided map(s) and, for multi-map questions, verify that all maps are required
 284 to answer the question. To prevent bias, curators do not validate their own edits. We only keep the
 285 question if a majority ($\geq 2/3$) agrees with the gold answer. In a rare case (currently two questions in
 286 FRIEDA) where all three annotators agree on an answer contradicting the gold answer, we conduct
 287 a secondary review to update the gold answer if consensus is reached. In total, we remove 61 ques-
 288 tions that fail to reach an agreement $\geq 2/3$. Appendix B.3 details the instruction prompt provided to
 289 the annotators, and Appendix B.5 shows the annotation interface.
 290

291 4 EXPERIMENTS

292 This section details the experimental setup, baselines, and evaluation metrics, and then presents the
 293 main result, showing that FRIEDA is a challenging benchmark even for the strongest LVLMs.
 294

295 4.1 EXPERIMENTAL SETUP

296 **Models** We evaluate 11 LVLMs with multi-image support on FRIEDA. For proprietary models,
 297 we test three models: Gemini-2.5-Pro (Gemini Team, 2025), GPT-5-Think (OpenAI, 2025), and
 298 Claude-Sonnet-4 (Anthropic, 2025). For open source models, we consider eight model families
 299 and evaluate the largest available model from each family: LLaVA-NeXT-110B (Li et al., 2024b),
 300 GLM4.5V-108B (Team et al., 2025), InternVL3-78B (Chen et al., 2024b), LLaVA-OneVision-
 301 72B (Li et al., 2024a), Qwen2.5VL-72B (Bai et al., 2025), InternVL3.5-38B (Wang et al., 2025b),
 302 Ovis2-34B (Lu et al., 2024b), and Ovis2.5-9B (Lu et al., 2025).
 303

304 To enforce determinism in open-source models, we set `do_sample=False` and
 305 `temperature=0`. For proprietary models, we use the default settings of each model with
 306 maximum reasoning enabled (e.g., `reasoning=high` for GPT-5-Think) and append the
 307 instruction “Do not use search” to turn off external retrieval. All models receive the same set of
 308 instructions that human annotators receive (Appendix B.4).
 309

310 **Evaluation metrics** Answers in FRIEDA fall into three categories: textual, distance, and direc-
 311 tion. For textual answers, we employ an LLM-as-Judge (Gu et al., 2025) method, utilizing Mistral
 312 Small 3.1 (Mistral AI, 2024) as the evaluator.³ The full judge prompt appears in Appendix E.1. This
 313 setup handles minor variation (e.g., ‘Cypress Creek’ vs. ‘Cypress’) by matching semantics rather
 314 than identifying exact string equality. For distance-based answer, we report mean absolute percent-
 315 age error (MAPE) and consider predictions within 20% error as correct, following Lewis (1982).
 316 For directional answers, we mark a response correct if it matches the target cardinal direction within
 317 one adjacent label (e.g., if the gold answer is North, accept North, North West, and North East),
 318 reflecting the perceptual nature of the labels. We validate the reliability of the evaluation method
 319 against manual annotations, achieving a Cohen’s κ of 0.9028 across all judged questions, which
 320 supports its suitability for evaluation.
 321

²We evaluate the 38B variant rather than the 241BA28B variant as the latter activates only 28B parameters during inference. We report the results for the 241BA28B setting in Appendix F.2.

³Mistral is not the language backbone of any tested LVLM, thereby reducing potential bias Panickssery et al. (2024).

4.2 EVALUATION RESULTS

Figure 3 summarizes the overall performance, and Table 2 reports accuracy by spatial relation. As FRIEDA retains questions with at least 2/3 annotator agreeing on the gold answer, we report accuracy for two subsets: *All-Agree*, where all three annotators agreed, and *Partial-Agree*, where 2/3 annotators agreed. *All-Agree* items serve as an indirect indicator of questions that are easier and less ambiguous for the annotators under our task and instructions, whereas *Partial-Agree* items may be considered as intrinsically more difficult or ambiguous to answer correctly. We also report the *Overall Accuracy*, which aggregates both subsets. Even the strongest LVLM (Gemini-2.5-Pro) remains below 40% overall accuracy, well behind human performance at 84%. The best open source result (Ovis2.5-9B-Think) achieves 24% overall accuracy, underperforming proprietary systems and far below humans. We find no clear relationship between model size and performance, suggesting that training data, training objectives, and explicit reasoning mechanisms matter more than scale for cartographic reasoning.

Figure 3: Overall accuracy of different models on the FRIEDA-direct benchmark.

	Overall (500)	Border (71)	Distance (91)	Equal (54)	Intersect (80)	Orientation (89)	Within (115)
Human Average	84.87	89.00	78.28	89.10	85.53	91.80	88.08
<i>Proprietary LVLMs</i>							
Gemini-2.5-Pro	38.20	<u>32.39</u>	<u>25.27</u>	33.33	<u>28.75</u>	71.59	35.34
GPT-5-Think	37.20	25.35	27.47	44.44	31.25	69.32	<u>28.45</u>
Claude-Sonnet-4	31.60	33.80	23.08	<u>37.04</u>	22.50	56.82	21.55
<i>Open Source LVLMs</i>							
LLaVA-NeXT-110B	8.60	4.23	10.99	11.11	16.25	0.00	9.48
GLM-4.5V-108B	6.40	5.41	2.15	21.57	6.17	1.16	7.83
InternVL3-78B	11.00	1.41	4.40	12.96	5.00	34.09	7.76
LLaVA-OneVision-72B	13.00	9.86	10.99	5.56	8.75	29.55	10.34
Qwen2.5-VL-72B	25.60	11.27	14.29	25.93	17.50	55.68	25.86
InternVL3.5-38B	14.20	11.27	8.79	14.81	2.50	36.36	11.21
Ovis2-34B	17.80	25.35	13.19	25.93	26.25	2.27	18.97
Ovis2.5-9B-Think	25.80	12.68	20.88	24.07	22.50	51.14	21.55

Table 2: Overall and per spatial relation accuracy of human and LVLMs on FRIEDA-direct.

378 5 ANALYSIS

380 **Error analysis on Gemini Pro** To pinpoint where LVLMs fail, we analyze Gemini-2.5-Pro on
 381 the *All-Agree* subset (in total, 167 questions). This ensures that our analysis targets distinct model
 382 failures on questions that humans find straightforward. We assign each incorrect answer to a single
 383 primary error category. When multiple issues co-occur, we prioritize errors that occur earlier in
 384 the reasoning pipeline that propagate to downstream steps. The largest source of error involves
 385 the misinterpretation of legends (25.61%): cases where the model assigns colors or symbols to
 386 the wrong class. The remaining 23.78% is due to cross-map interpretation failures, which reflect
 387 difficulties in aligning the map scales and shared features across maps, and 16.46% is due to spatial-
 388 relation semantics error, which arises when the model mixes up spatial relations (e.g., labeling region
 389 B *within* A when it only *touches* A at the boundary). Map-element misunderstandings include
 390 mistakes with the map scale (9.76%; unit or ratio errors), map text (8.93%; selecting the wrong
 391 place or feature from labels), geometry or shape reference (3.66%; pointing to the wrong area on the
 392 map), and orientation (3.05%; ignoring a tilted compass). Finally, we observe generic VQA errors
 393 not specific to cartography, such as miscounting (6.71%), subject-object confusion (1.82%; referring
 394 ‘A relative to B’ as ‘B relative to A’), and hallucination (1.20%). For the top three error categories,
 395 we provide examples and rationales returned by the three proprietary models in Appendix F.1.

396 **Performance by spatial relation** Figure 4 reports
 397 per-spatial relation accuracy for human annotators
 398 and the three proprietary models. LVLM performance
 399 broadly tracks the human baseline: both are
 400 most accurate on orientation and struggle most with
 401 distance. On questions where an annotator answers
 402 incorrectly, LVLMs are also incorrect 84.53% of
 403 the time. While GPT-5-Think and Gemini-2.5-Pro
 404 achieve comparable overall accuracy, GPT-5-Think
 405 is stronger on tasks that require multi-map reasoning
 406 (Table 10), indicating better integration of evidence
 407 across maps. This is most evident in the equal re-
 408 lation questions, a multi-map exclusive task, where
 409 GPT-5-Think’s accuracy is nearly 13% higher com-
 410 pared to Gemini-2.5-Pro. Notably, Claude-Sonnet-4
 411 is the strongest on distance questions, particularly
 412 those requiring interpretation of the map scale to
 413 compute exact distances.

414 **Performance on contextual setting** We observe a minimal difference in accuracy between the
 415 FRIEDA-direct (Figure 3 and Table 2) and FRIEDA-contextual (Appendix E.3). To verify
 416 that this is not an artifact of the accuracy metric, we directly compare the per-question perfor-
 417 mance of the eight open-source models under deterministic settings (i.e., `do_sample=False` and
 418 `temperature=0`). We observe 88.03% per-question performance agreement between the direct
 419 and contextual settings, indicating that contextual images (maps from the same document that are
 420 not required to answer the question) rarely affect the model’s prediction.

Model	Accuracy (%)
Ovis2.5-9B	19.00
Ovis2.5-9B-Think	24.80

426 Table 3: Performance of Ovis2.5 model
 427 on FRIEDA-direct.

428 Figure 4: Per spatial relation accuracy (%)
 429 of human annotators and three proprietary
 430 LVLMs (Gemini-2.5-Pro, Claude-Sonnet-4,
 431 and GPT-5-Think) on FRIEDA-direct.

432 **Impact of reasoning (think) on cartographic ques-
 433 tion types** Despite being the smallest model tested with
 434 FRIEDA, Ovis2.5-9B-Think attains strong results (4th
 435 overall and 1st among open source models). To iden-
 436 tify what drives this performance, we further evaluate
 437 Ovis2.5-9B with explicit reasoning (i.e., *Think*) disabled
 438 (Table 3). The overall accuracy of Ovis2.5-9B remains
 439 above the open source average, indicating that model
 440 characteristics (e.g., architecture, training data) contribute to the model’s strong results. Enabling
 441 *Think* adds an additional 5% performance gain. To identify which question types benefit from ex-
 442 plicit reasoning and whether it improves cartographic performance, we manually analyze the 60
 443 questions that only the *Think* variant answers correctly. Reasoning helps mostly with cardinal-

432 direction questions, where north faces the top of the image (48.33%), followed by multi-map align-
 433 ment (23.33%). Additional improvements come from correctly reading map text (15%), interpreting
 434 the map scale (5%), associating legend with symbol (5%), and counting (3%). Together, these pat-
 435 terns suggest that explicit reasoning primarily strengthens orientation-related and multi-map ques-
 436 tions, which are central to cartographic reasoning, while yielding smaller gains in symbol and map
 437 scale interpretation.⁴

439 6 RELATED WORK

440 **Document & Infographic/Chart VQA** Recent benchmarks established baselines for LVLM rea-
 441 soning over documents and designed graphics. In the document domain, DocVQA (Mathew et al.,
 442 2021) and DocVXQA (Souibgui et al., 2025) introduce a large-scale question-answering (QA)
 443 dataset over real forms and reports, while DocoPilot (Duan et al., 2025) extends evaluation to sci-
 444 entific articles, which involve embedded figures. For graphics, InfographicsVQA (Mathew et al.,
 445 2022) and InfoChartQA (Lin et al., 2025) test reasoning over rich layouts and charts. In general,
 446 frontier LVLMs reveal competence at high-level patterns, such as trends and extrema, but struggle
 447 with precise value extraction and robustness. FRIEDA evaluates these shortcomings in a carto-
 448 graphic setting where layout, symbols, legends, scales, and compass orientation interact tightly to
 449 measure how well LVLMs integrate these signals to answer map-based questions.

450 **Map VQA and Spatial Reasoning** While recent map VQA benchmarks have expanded the scope
 451 of evaluation, they remain constrained to single-map tasks or specific domains. MapQA (Chang
 452 et al., 2022) evaluates question answering on choropleth maps and shows that general VQA and
 453 ChartVQA systems underperform on maps. MapWise (Mukhopadhyay et al., 2025) broadens the
 454 geographic coverage, while MapIQ (Srivastava et al., 2025) extends the map type coverage to in-
 455 clude cartograms and proportional-symbol maps. MapEval (Dihan et al., 2025) assesses geospatial
 456 reasoning across various cities, and it reports consistent human-LVLMs performance gaps. Domain-
 457 specific efforts include PEACE (Huang et al., 2025) for geology, **CartoMark** (Zhou et al., 2024) for
 458 **text extraction and recognition, and MapBench** (Xing et al., 2025) and ReasonMap (Feng et al.,
 459 2025) for navigation. However, these benchmarks rarely test cross-image reasoning on heteroge-
 460 neous sources and often rely on a limited set of spatial relations. While ReMI (Kazemi et al., 2025)
 461 explores the cross-image setting, the questions lack cartographic focus. We detail key differences
 462 between prior map VQA benchmarks and FRIEDA in Appendix G.

463 Spatial reasoning benchmarks, such as SpatialVLM (Chen et al., 2024a) and SpatialRGPT (Cheng
 464 et al., 2024), have advanced spatial perception and reasoning on natural images. **In the geospatial**
 465 **domain, GeoChain** (Yerramilli et al., 2025) **enhances tasks like geolocalization by inducing step-by-**
 466 **step geographic reasoning.** However, these works do not engage with symbolic conventions unique
 467 to maps (i.e., legends, scales, compasses, and map texts). In contrast, our benchmark closes this gap
 468 by evaluating multi-step cartographic reasoning over heterogeneous, real-document maps, which re-
 469 quires models to integrate evidence across multiple figures and align legends, scales, and orientation
 470 to infer key spatial relations (i.e., border, distance, equal, intersect, orientation, and within).

473 7 CONCLUSION

474 We present FRIEDA, a benchmark for evaluating multi-step cartographic reasoning across six
 475 spatial relations, often requiring multi-image alignment. Our evaluation across 11 state-of-the-art
 476 LVLMs demonstrates a substantial gap between current performance and the proficiency required
 477 for robust map understanding. Analysis reveals that these failures extend beyond issues observed in
 478 prior VQA datasets, highlighting the need for novel architectures and effective training methods that
 479 incorporate cartographic priors and explicit reasoning over map elements. We will release the error
 480 taxonomy and baseline results, alongside FRIEDA, to catalyze progress. We encourage the com-
 481 munity to build on FRIEDA with methods that explicitly integrate text, symbology, and geospatial
 482 structure, toward LVLMs that reason reliably over real-world maps.

483 ⁴We further evaluate the association between performance and model size in Appendix F.2

486 ETHICS STATEMENT

487

488 We introduce a benchmark for evaluating cartographic reasoning in large vision-language models.
 489 We curate maps from publicly available documents (e.g., government reports, planning, and environmental studies) and retain only the figures necessary for research purposes. To the best of our knowledge, we use all materials under terms that permit research and non-commercial distribution.
 490

491 All annotators provided informed consent. We collected no personal data about annotators beyond task performance. Our institution's IRB reviewed the annotation protocol and determined that the project does not constitute human subjects research; therefore, no further IRB review was required.
 492

493 The benchmark inevitably reflects the patterns in the source documents and may exhibit representation bias, including uneven geographic coverage and map types, English-language focus, and unequal representation across regions and themes. We document these limitations and their potential impact in the dataset card (Appendix A) to aid transparency and interpretation.
 494

495

500 REPRODUCIBILITY STATEMENT

501

502 Upon the end of the anonymity period, we plan to release: (1) the benchmark (images, QA JSON, taxonomy, and provenance), (2) code for data loading, inference, evaluation, and table/figure generation, (3) code to replicate the annotation interface, and (4) all prompts and configuration files used for annotation and inference. In the meantime, we provide all details needed to reproduce our results in the main text and appendices: Section 3 describes dataset construction, Section 4 specifies models and inference settings, and Section 5 reports ablations and error analyses.
 503

504

505 REFERENCES

506

507 AIIB. Our projects, 2025. URL <https://www.aiib.org/en/projects/list/index.html>.
 508

509 Anthropic. System card: Claude opus 4 & claude sonnet 4, 2025.
 510

511 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan, Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng, Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-v1 technical report. *arXiv preprint arXiv:2502.13923*, 2025.
 512

513 Emily M. Bender and Batya Friedman. Data statements for natural language processing: Toward mitigating system bias and enabling better science. *Transactions of the Association for Computational Linguistics*, 6:587–604, 2018. doi: 10.1162/tacl_a_00041. URL <https://aclanthology.org/Q18-1041/>.
 514

515 Aileen Buckley. Make maps people want to look at: five primary design principles for cartography. *ArcNews Online*, 2006.
 516

517 L A Carlson and G D Logan. Using spatial terms to select an object. *Mem. Cognit.*, 29(6):883–892, September 2001.
 518

519 Shuachen Chang, David Palzer, Jialin Li, Eric Fosler-Lussier, and Ningchuan Xiao. MapQA: A dataset for question answering on choropleth maps. In *NeurIPS 2022 First Table Representation Workshop*, 2022. URL <https://openreview.net/forum?id=znKbVjeR0yI>.
 520

521 Boyuan Chen, Zhuo Xu, Sean Kirmani, Brain Ichter, Dorsa Sadigh, Leonidas Guibas, and Fei Xia. Spatialvlm: Endowing vision-language models with spatial reasoning capabilities. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 14455–14465, June 2024a.
 522

523 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 24185–24198, 2024b.
 524

540 An-Chieh Cheng, Hongxu Yin, Yang Fu, Qiushan Guo, Ruihan Yang, Jan Kautz, Xiaolong Wang,
 541 and Sifei Liu. Spatialrgpt: Grounded spatial reasoning in vision-language models. In *NeurIPS*,
 542 2024.

543 City of Cape Town. Document centre, 2025. URL <https://www.capetown.gov.za/Document-centre>.

544 Eliseo Clementini, Paolino Di Felice, and Peter van Oosterom. A small set of formal topological
 545 relationships suitable for end-user interaction. In David Abel and Beng Chin Ooi (eds.), *Advances
 546 in Spatial Databases*, pp. 277–295, Berlin, Heidelberg, 1993. Springer Berlin Heidelberg. ISBN
 547 978-3-540-47765-5.

548 Anthony G. Cohn and Jochen Renz. *Handbook of Knowledge Representation*. Elsevier Science, San
 549 Diego, CA, USA, 2007. ISBN 0444522115.

550 Department of Community Development. Media centre, 2025. URL <https://addcd.gov.ae/>.

551 Mahir Labib Dihan, MD Tanvir Hassan, MD TANVIR PARVEZ, Md Hasebul Hasan, Md Almash
 552 Alam, Muhammad Aamir Cheema, Mohammed Eunus Ali, and Md Rizwan Parvez. Mapeval:
 553 A map-based evaluation of geo-spatial reasoning in foundation models. In *Forty-second Interna-
 554 tional Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=hS2Ed5XYRq>.

555 Yuhao Dong, Zuyan Liu, Hai-Long Sun, Jingkang Yang, Winston Hu, Yongming Rao, and Ziwei
 556 Liu. Insight-v: Exploring long-chain visual reasoning with multimodal large language models.
 557 *arXiv preprint arXiv:2411.14432*, 2024.

558 Yuchen Duan, Zhe Chen, Yusong Hu, Weiyun Wang, Shenglong Ye, Botian Shi, Lewei Lu, Qibin
 559 Hou, Tong Lu, Hongsheng Li, et al. Docopilot: Improving multimodal models for document-level
 560 understanding. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp.
 561 4026–4037, 2025.

562 Environmental Protection Agency. Publications, 2025. URL <https://www.epa.ie/publications/>.

563 ESRI. Map elements, 2021. URL <https://desktop.arcgis.com/en/arcmap/latest/map/page-layouts/map-elements.htm>.

564 Federal Emergency Management Agency. Fema, 2025. URL <https://www.fema.gov/>.

565 Sicheng Feng, Song Wang, Shuyi Ouyang, Lingdong Kong, Zikai Song, Jianke Zhu, Huan Wang,
 566 and Xinchao Wang. Can mllms guide me home? a benchmark study on fine-grained visual
 567 reasoning from transit maps. *arXiv preprint arXiv:2505.18675*, 2025.

568 Giles M Foody. Map comparison in GIS. *Prog. Phys. Geogr.*, 31(4):439–445, August 2007.

569 Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan, Hanna Wallach,
 570 Hal Daumé III, and Kate Crawford. Datasheets for datasets. *Commun. ACM*, 64(12):86–92,
 571 November 2021. ISSN 0001-0782. doi: 10.1145/3458723. URL <https://doi.org/10.1145/3458723>.

572 Google Gemini Team. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality,
 573 long context, and next generation agentic capabilities, 2025.

574 Michael F. Goodchild. The fourth r? rethinking gis education. *ArcUser Fall*, pp. 46–51, 2012.

575 Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan
 576 Shen, Shengjie Ma, Honghao Liu, Saizhuo Wang, Kun Zhang, Yuanzhuo Wang, Wen Gao, Lionel
 577 Ni, and Jian Guo. A survey on llm-as-a-judge, 2025. URL <https://arxiv.org/abs/2411.15594>.

578 Mary Hegarty and David A. Waller. *Individual Differences in Spatial Abilities*, pp. 121–169. Cam-
 579 bridge Handbooks in Psychology. Cambridge University Press, 2005.

594 Keith J. Holyoak and Robert G. Morrison. *The Oxford Handbook of Thinking and Reasoning*. Oxford University Press, 03 2012. ISBN 9780199734689. doi: 10.1093/oxfordhb/9780199734689.001.0001. URL <https://doi.org/10.1093/oxfordhb/9780199734689.001.0001>.

595

596

597

598 Pengbo Hu, Jingxian Qi, Xingyu Li, Hong Li, Xinqi Wang, Bing Quan, Ruiyu Wang, and Yi Zhou. Tree-of-mixed-thought: Combining fast and slow thinking for multi-hop visual reasoning. *ArXiv*, abs/2308.09658, 2023. URL <https://api.semanticscholar.org/CorpusID:261031742>.

599

600

601

602

603 Yangyu Huang, Tianyi Gao, Haoran Xu, Qihao Zhao, Yang Song, Zhipeng Gui, Tengchao Lv, Hao Chen, Lei Cui, Scarlett Li, et al. Peace: Empowering geologic map holistic understanding with mllms. *arXiv preprint arXiv:2501.06184*, 2025.

604

605

606 Toru Ishikawa. Spatial thinking in geographic information science: Students' geospatial conceptions, map-based reasoning, and spatial visualization ability. *Ann. Am. Assoc. Geogr.*, 106(1):76–95, January 2016.

607

608

609

610 Toru Ishikawa and Nora S Newcombe. Why spatial is special in education, learning, and everyday activities. *Cogn. Res. Princ. Implic.*, 6(1):20, March 2021.

611

612

613 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models, 2020. URL <https://arxiv.org/abs/2001.08361>.

614

615

616 Kim A Kastens and Toru Ishikawa. Spatial thinking in the geosciences and cognitive sciences: A cross-disciplinary look at the intersection of the two fields. In *Earth and Mind: How Geologists Think and Learn about the Earth*, pp. 53–76. Geological Society of America, 2006.

617

618

619

620 Mehran Kazemi, Nishanth Dikkala, Ankit Anand, Petar Devic, Ishita Dasgupta, Fangyu Liu, Bahare Fatemi, Pranjal Awasthi, Dee Guo, Sreenivas Gollapudi, and Ahmed Qureshi. Remi: a dataset for reasoning with multiple images. In *Proceedings of the 38th International Conference on Neural Information Processing Systems*, NIPS '24, Red Hook, NY, USA, 2025. Curran Associates Inc. ISBN 9798331314385.

621

622

623

624

625 Eftychia Koukouraki, Auriol Degbeto, and Christian Kray. Assessing Map Reproducibility with Visual Question-Answering: An Empirical Evaluation. In Katarzyna Sila-Nowicka, Antoni Moore, David O'Sullivan, Benjamin Adams, and Mark Gahegan (eds.), *13th International Conference on Geographic Information Science (GIScience 2025)*, volume 346 of *Leibniz International Proceedings in Informatics (LIPIcs)*, pp. 13:1–13:12, Dagstuhl, Germany, 2025. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. ISBN 978-3-95977-378-2. doi: 10.4230/LIPIcs.GIScience.2025.13. URL <https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2025.13>.

626

627

628

629

630

631

632

633 Hugo Laurençon, Andrés Marafioti, Victor Sanh, and Léo Tronchon. Building and better understanding vision-language models: insights and future directions., 2024.

634

635

636 C.D. Lewis. *Industrial and Business Forecasting Methods: A Practical Guide to Exponential Smoothing and Curve Fitting*. Butterworth scientific. Butterworth Scientific, 1982. ISBN 9780408005593. URL <https://books.google.com/books?id=t8W4AAAAIAAJ>.

637

638

639

640 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Yanwei Li, Ziwei Liu, and Chunyuan Li. Llava-onevision: Easy visual task transfer. *arXiv preprint arXiv:2408.03326*, 2024a.

641

642

643 Feng Li, Renrui Zhang, Hao Zhang, Yuanhan Zhang, Bo Li, Wei Li, Zejun Ma, and Chunyuan Li. Llava-next-interleave: Tackling multi-image, video, and 3d in large multimodal models. *arXiv preprint arXiv:2407.07895*, 2024b.

644

645

646 Zekun Li, Malcolm Grossman, Mihir Kulkarni, Muhaoo Chen, Yao-Yi Chiang, et al. Mapqa: Open-domain geospatial question answering on map data. *arXiv preprint arXiv:2503.07871*, 2025.

647

648 Lynn S. Liben, Lauren J. Myers, and Adam E. Christensen. Identifying locations and direc-
 649 tions on field and representational mapping tasks: Predictors of success. *Spatial Cognition*
 650 & Computation, 10(2-3):105–134, 2010. doi: 10.1080/13875860903568550. URL <https://doi.org/10.1080/13875860903568550>.

652 Minzhi Lin, Tianchi Xie, Mengchen Liu, Yilin Ye, Changjian Chen, and Shixia Liu. Infochartqa:
 653 A benchmark for multimodal question answering on infographic charts, 2025. URL <https://arxiv.org/abs/2505.19028>.

655 Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
 656 Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning of
 657 foundation models in visual contexts. In *International Conference on Learning Representations*
 658 (*ICLR*), 2024a.

660 Shiyin Lu, Yang Li, Qing-Guo Chen, Zhao Xu, Weihua Luo, Kaifu Zhang, and Han-Jia Ye. Ovis:
 661 Structural embedding alignment for multimodal large language model. *arXiv:2405.20797*, 2024b.

663 Shiyin Lu, Yang Li, Yu Xia, Yuwei Hu, Shanshan Zhao, Yanqing Ma, Zhichao Wei, Yinglun Li,
 664 Lunhao Duan, Jianshan Zhao, Yuxuan Han, Haijun Li, Wanying Chen, Junke Tang, Chengkun
 665 Hou, Zhixing Du, Tianli Zhou, Wenjie Zhang, Huping Ding, Jiahe Li, Wen Li, Gui Hu, Yiliang
 666 Gu, Siran Yang, Jiamang Wang, Hailong Sun, Yibo Wang, Hui Sun, Jinlong Huang, Yuping He,
 667 Shengze Shi, Weihong Zhang, Guodong Zheng, Junpeng Jiang, Sensen Gao, Yi-Feng Wu, Sijia
 668 Chen, Yuhui Chen, Qing-Guo Chen, Zhao Xu, Weihua Luo, and Kaifu Zhang. Ovis2.5 technical
 669 report. *arXiv:2508.11737*, 2025.

670 Anthony E Lupien and William H Moreland. A general approach to map conflation. In *Proceedings*
 671 *of 8th International Symposium on Computer Assisted Cartography (AutoCarto 8)*, pp. 630–639,
 672 1987.

673 Ivan Majic, Elham Naghizade, Stephan Winter, and Martin Tomko. RIM: a ray intersection model
 674 for the analysis of the between relationship of spatial objects in a 2D plane. *Geogr. Inf. Syst.*, 35
 675 (5):893–918, May 2021.

677 Ahmedand Masry, Doand Long, Jia Qingand Tan, Shafiqand Joty, and Enamul Hoque. ChartQA: A
 678 benchmark for question answering about charts with visual and logical reasoning. In *Findings of*
 679 *the Association for Computational Linguistics: ACL 2022*, pp. 2263–2279, Dublin, Ireland, May
 680 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-acl.177. URL
 681 <https://aclanthology.org/2022.findings-acl.177>.

682 Minesh Mathew, Dimosthenis Karatzas, and C.V. Jawahar. Docvqa: A dataset for vqa on document
 683 images. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision*
 684 (*WACV*), pp. 2200–2209, January 2021.

685 Minesh Mathew, Viraj Bagal, Rubèn Tito, Dimosthenis Karatzas, Ernest Valveny, and C. V. Jawa-
 686 har. Infographicvqa. In *2022 IEEE/CVF Winter Conference on Applications of Computer Vision*
 687 (*WACV*), pp. 2582–2591, 2022. doi: 10.1109/WACV51458.2022.00264.

688 Richard E Mayer. *Multimedia learning*. Cambridge University Press, Cambridge, England, 3 edi-
 689 tion, July 2020.

691 Q McNEMAR. Note on the sampling error of the difference between correlated proportions or
 692 percentages. *Psychometrika*, 12(2):153–157, June 1947.

694 Ministry of Agriculture Climate Change and Environment. Resources, 2025. URL <https://macce.gov.sc/resources/>.

696 Mistral AI. Mistral-small-instruct-2409. <https://huggingface.co/mistralai/Mistral-Small-Instruct-2409>, 2024. Hugging Face model card. License: Mistral AI
 697 Research License (MRL).

699 M. Monmonier. *The History of Cartography, Volume Six: Cartography in the Twentieth Century*.
 700 University of Chicago Press, 2015. ISBN 9780226152127. URL <https://books.google.td/books?id=BZRfEAAQBAJ>.

702 Aiko Morita and Izumi Fukuya. Integrative processing of text and multiple maps in multimedia
 703 learning: an eye-tracking study. *Front. Psychol.*, 16(1487439):1487439, August 2025.
 704

705 Sharon Pray Muir. Understanding and improving students' map reading skills. *Elem. Sch. J.*, 86(2):
 706 207–216, November 1985.

707 Srija Mukhopadhyay, Abhishek Rajgaria, Prerana Khatiwada, Manish Shrivastava, Dan Roth, and
 708 Vivek Gupta. MAPWise: Evaluating vision-language models for advanced map queries. In Luis
 709 Chiruzzo, Alan Ritter, and Lu Wang (eds.), *Proceedings of the 2025 Conference of the Nations
 710 of the Americas Chapter of the Association for Computational Linguistics: Human Language
 711 Technologies (Volume 1: Long Papers)*, pp. 9348–9378, Albuquerque, New Mexico, April 2025.
 712 Association for Computational Linguistics. ISBN 979-8-89176-189-6. doi: 10.18653/v1/2025.
 713 naacl-long.473. URL <https://aclanthology.org/2025.naacl-long.473/>.

714 National Park Service. Publications, 2025. URL <https://www.nps.gov/aboutus/publications.htm>.

715

716 OpenAI. GPT-5 system card, 2025.

717

718 Arjun Panickssery, Samuel R. Bowman, and Shi Feng. Llm evaluators recognize and favor their
 719 own generations. In *Proceedings of the 38th International Conference on Neural Information
 720 Processing Systems*, NeurIPS '24, Red Hook, NY, USA, 2024. Curran Associates Inc. ISBN
 721 9798331314385.

722 Guo Renzhong. SPATIAL OBJECTS AND SPATIAL RELATIONSHIPS. *Geo Spat. Inf. Sci.*, 1(1):
 723 38–42, October 1998.

724

725 Eva Rexigel, Jochen Kuhn, Sebastian Becker, and Sarah Malone. The more the better? a systematic
 726 review and meta-analysis of the benefits of more than two external representations in STEM
 727 education. *Educ. Psychol. Rev.*, 36(4), December 2024.

728 A.H. Robinson. *Elements of Cartography*. Wiley, 1995. ISBN 9780471555797. URL <https://books.google.com/books?id=mUyAAAAAMAAJ>.

729

730 A.H. Robinson, R.D. Sale, and J.L. Morrison. *Elements of Cartography*. Wiley, 1978. ISBN
 731 9780471017813. URL <https://books.google.com/books?id=QknctEDueRcc>.

732

733 Seattle Planning and Community Development. Current projects, 2024. URL <https://www.seattle.gov/opcd/current-projects>.

734

735 SEDAR+. Sedar archive, 2025. URL <https://www.sedarplus.ca:5443/t/legacysedardata/views/LegacySedarReportFinalPublic/Home?%3Aembed=y&%3AisGuestRedirectFromVizportal=y>.

736

737

738 Fatemeh Shiri, Xiao-Yu Guo, Mona Golestan Far, Xin Yu, Reza Haf, and Yuan-Fang Li. An empirical
 739 analysis on spatial reasoning capabilities of large multimodal models. In Yaser Al-Onaizan,
 740 Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical
 741 Methods in Natural Language Processing*, pp. 21440–21455, Miami, Florida, USA, November 2024.
 742 Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.1195.
 743 URL <https://aclanthology.org/2024.emnlp-main.1195/>.

744

745 Oleksii Sidorov, Ronghang Hu, Marcus Rohrbach, and Amanpreet Singh. Textcaps: a dataset for
 746 image captioning with reading comprehension. 2020.

747

748 Amanpreet Singh, Vivek Natarjan, Meet Shah, Yu Jiang, Xinlei Chen, Devi Parikh, and Marcus
 749 Rohrbach. Towards vqa models that can read. In *Proceedings of the IEEE Conference on Com-
 750 puter Vision and Pattern Recognition*, pp. 8317–8326, 2019.

751

752 Terry A Slocum, Robert B McMaster, Fritz C Kessler, and Hugh H Howard. *Thematic cartography
 753 and geovisualization, fourth edition*. CRC Press, London, England, 4 edition, August 2022.

754

755 Mohamed Ali Souibgui, Changkyu Choi, Andrey Barsky, Kangsoo Jung, Ernest Valveny, and
 756 Dimosthenis Karatzas. DocVXQA: Context-aware visual explanations for document ques-
 757 tion answering. In *Forty-second International Conference on Machine Learning*, 2025. URL
 758 <https://openreview.net/forum?id=wex0vL4c2Y>.

756 Varun Srivastava, Fan Lei, Srija Mukhopadhyay, Vivek Gupta, and Ross Maciejewski. MapIQ: Evalu-
 757 uating multimodal large language models for map question answering. In *Second Conference on*
 758 *Language Modeling*, 2025. URL <https://openreview.net/forum?id=VSwRuGtB5n>.

759

760 Ryota Tanaka, Kyosuke Nishida, Kosuke Nishida, Taku Hasegawa, Itsumi Saito, and Kuniko Saito.
 761 Slidevqa: a dataset for document visual question answering on multiple images. In *Proceedings*
 762 *of the Thirty-Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth Conference on*
 763 *Innovative Applications of Artificial Intelligence and Thirteenth Symposium on Educational Ad-*
 764 *vances in Artificial Intelligence*, AAAI'23/IAAI'23/EAAI'23. AAAI Press, 2023. ISBN 978-1-
 765 57735-880-0. doi: 10.1609/aaai.v37i11.26598. URL <https://doi.org/10.1609/aaai.v37i11.26598>.

766

767 V Team, Wenyi Hong, Wenmeng Yu, Xiaotao Gu, Guo Wang, Guobing Gan, Haomiao Tang, Jiale
 768 Cheng, Ji Qi, Junhui Ji, Lihang Pan, Shuaiqi Duan, Weihan Wang, Yan Wang, Yean Cheng,
 769 Zehai He, Zhe Su, Zhen Yang, Ziyang Pan, Aohan Zeng, Baoxu Wang, Bin Chen, Boyan Shi,
 770 Changyu Pang, Chenhui Zhang, Da Yin, Fan Yang, Guoqing Chen, Jiazheng Xu, Jiale Zhu, Jiali
 771 Chen, Jing Chen, Jinhao Chen, Jinghao Lin, Jinjiang Wang, Junjie Chen, Leqi Lei, Letian Gong,
 772 Leyi Pan, Mingdao Liu, Mingde Xu, Mingzhi Zhang, Qinkai Zheng, Sheng Yang, Shi Zhong,
 773 Shiyu Huang, Shuyuan Zhao, Siyan Xue, Shangqin Tu, Shengbiao Meng, Tianshu Zhang, Tianwei
 774 Luo, Tianxiang Hao, Tianyu Tong, Wenkai Li, Wei Jia, Xiao Liu, Xiaohan Zhang, Xin Lyu,
 775 Xinyue Fan, Xuancheng Huang, Yanling Wang, Yadong Xue, Yanfeng Wang, Yanzi Wang, Yifan
 776 An, Yifan Du, Yiming Shi, Yiheng Huang, Yilin Niu, Yuan Wang, Yuanchang Yue, Yuchen Li,
 777 Yutao Zhang, Yuting Wang, Yu Wang, Yuxuan Zhang, Zhao Xue, Zhenyu Hou, Zhengxiao Du,
 778 Zihan Wang, Peng Zhang, Debing Liu, Bin Xu, Juanzi Li, Minlie Huang, Yuxiao Dong, and Jie
 779 Tang. Glm-4.5v and glm-4.1v-thinking: Towards versatile multimodal reasoning with scalable
 reinforcement learning, 2025. URL <https://arxiv.org/abs/2507.01006>.

780

781 Barbara Tversky. Navigating by mind and by body. In Christian Freksa, Wilfried Brauer, Christopher
 782 Habel, and Karl F. Wender (eds.), *Spatial Cognition III*, pp. 1–10, Berlin, Heidelberg, 2003.
 783 Springer Berlin Heidelberg. ISBN 978-3-540-45004-7.

784

785 Urban Redevelopment Authority. Master plan, 2025. URL <https://www.ura.gov.sg/Corporate/Planning/Master-Plan>.

786

787 U.S. Environmental Protection Agency. Environmental impact statement (eis) database, 2025. URL
 788 <https://www.aiib.org/en/projects/list/index.html>.

789

790 Fei Wang, Xingyu Fu, James Y Huang, Zekun Li, Qin Liu, Xiaogeng Liu, Mingyu Derek Ma,
 791 Nan Xu, Wenxuan Zhou, Kai Zhang, et al. Muirbench: A comprehensive benchmark for robust
 multi-image understanding. *arXiv preprint arXiv:2406.09411*, 2024a.

792

793 Hengyi Wang, Haizhou Shi, Shiwei Tan, Weiyi Qin, Wenyuan Wang, Tunyu Zhang, Akshay
 794 Nambi, Tanuja Ganu, and Hao Wang. Multimodal needle in a haystack: Benchmarking long-
 795 context capability of multimodal large language models. In Luis Chiruzzo, Alan Ritter, and
 796 Lu Wang (eds.), *Proceedings of the 2025 Conference of the Nations of the Americas Chapter*
 797 *of the Association for Computational Linguistics: Human Language Technologies (Volume 1:*
 798 *Long Papers*), pp. 3221–3241, Albuquerque, New Mexico, April 2025a. Association for Com-
 799 putational Linguistics. ISBN 979-8-89176-189-6. doi: 10.18653/v1/2025.nacl-long.166. URL
<https://aclanthology.org/2025.nacl-long.166>.

800

801 Weiyun Wang, Shuibo Zhang, Yiming Ren, Yuchen Duan, Tiantong Li, Shuo Liu, Mengkang Hu,
 802 Zhe Chen, Kaipeng Zhang, Lewei Lu, et al. Needle in a multimodal haystack. *arXiv preprint*
 803 *arXiv:2406.07230*, 2024b.

804

805 Weiyun Wang, Zhangwei Gao, Lixin Gu, Hengjun Pu, Long Cui, Xingguang Wei, Zhaoyang Liu,
 806 Linglin Jing, Shenglong Ye, Jie Shao, et al. Internvl3.5: Advancing open-source multimodal
 807 models in versatility, reasoning, and efficiency. *arXiv preprint arXiv:2508.18265*, 2025b.

808

809 Cathleen Wharton and Walter Kintsch. An overview of construction-integration model: a theory of
 810 comprehension as a foundation for a new cognitive architecture. *SIGART Bull.*, 2(4):169–173,
 811 July 1991. ISSN 0163-5719. doi: 10.1145/122344.122379. URL <https://doi.org/10.1145/122344.122379>.

810 Peng Xia, Siwei Han, Shi Qiu, Yiyang Zhou, Zhaoyang Wang, Wenhao Zheng, Zhaorun Chen,
811 Chenhang Cui, Mingyu Ding, Linjie Li, Lijuan Wang, and Huaxiu Yao. MMIE: Massive multi-
812 modal interleaved comprehension benchmark for large vision-language models. In *The Thirteenth*
813 *International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=HnhNRrLPwm>.

814
815 Shuo Xing, Zezhou Sun, Shuangyu Xie, Kaiyuan Chen, Yanjia Huang, Yuping Wang, Jiachen Li,
816 Dezhen Song, and Zhengzhong Tu. Can large vision language models read maps like a human?,
817 2025. URL <https://arxiv.org/abs/2503.14607>.

818
819 Sahiti Yerramilli, Nilay Pande, Rynaa Grover, and Jayant Sravan Tamarapalli. GeoChain: Multi-
820 modal chain-of-thought for geographic reasoning. In Christos Christodoulopoulos, Tanmoy
821 Chakraborty, Carolyn Rose, and Violet Peng (eds.), *Findings of the Association for Computational*
822 *Linguistics: EMNLP 2025*, pp. 23624–23639, Suzhou, China, November 2025. Association for
823 Computational Linguistics. ISBN 979-8-89176-335-7. doi: 10.18653/v1/2025.findings-emnlp.
824 1284. URL <https://aclanthology.org/2025.findings-emnlp.1284/>.

825 Xiran Zhou, Yi Wen, Zhenfeng Shao, Wenwen Li, Kaiyuan Li, Honghao Li, Xiao Xie, and Zhigang
826 Yan. Cartomark: a benchmark dataset for map pattern recognition and map content retrieval with
827 machine intelligence. *Scientific Data*, 11(1), November 2024. ISSN 2052-4463. doi: 10.1038/
828 s41597-024-04057-7. URL <http://dx.doi.org/10.1038/s41597-024-04057-7>.

829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864

A DATACARD

865
 866 We adopt the data statement framework of Bender & Friedman (2018) and integrate complementary
 867 fields from Datasheets for Datasets (Gebru et al., 2021) to centralize key information for the analysis,
 868 reuse, and deployment of FRIEDA.
 869

870

A.1 CURATION RATIONALE

871
 872 We design FRIEDA to evaluate cartographic reasoning (the ability to interpret map-specific symbols,
 873 comprehend spatial relations, and integrate evidence across one or more maps). We source questions
 874 from public documents to reflect map-reading tasks encountered in practice (e.g., planning, hazard
 875 assessment, and geology). High-level goals, task definitions, and design choices appear in the main
 876 text (Section 2 and Section 3). We further expand on the benchmark curation process in Appendix B.
 877

878

A.2 BENCHMARK COMPOSITION

- 879 • **Total size:** 500 validated questions; each question with 1 gold answer
- 880 • **Agreement:** Each question is annotated by three annotators; we record the problem-level
 881 agreement and mark items with unanimous agreement on the gold answer as *All-Agree*, and
 882 those with 2/3 agreement as *Partial-Agree*.
- 883 • **Modalities:** Every question involves one or multiple map image(s) and associated question
 884 text.
- 885 • **Spatial relations (6):** Border, Equal, Intersect, Within, Distance, Orientation
- 886 • **Answer types (3):** Textual (short text), Distance, and Direction
- 887 • **Provenance:** Public documents from 32 countries across six continents. Documents
 888 are from six domains (urban planning, environmental assessment, national park manage-
 889 ment, geologic reports, disaster and hazard reports, infrastructure and investment reports).
 890 Sources are detailed further in Section 3 and Appendix C.3.
- 891 • **Languages:** Questions and instructions are in English (en-US); source maps primarily use
 892 English labels but may include other languages written in the Latin script.

893

A.3 DATA COLLECTION PROCESS

- 894 • **Acquisition:** We collected maps from public reports, then filtered for reading map elements
 895 and task suitability.
- 896 • **Question creation:** Curators wrote questions that required reading the legend, scale, and
 897 compass, and reasoning over one or more spatial relations; questions were rejected if (1)
 898 they were solvable without using any maps or (2) if question ambiguity could not be re-
 899 solved by manual editing.

900

A.4 ANNOTATOR DEMOGRAPHIC

901 We share the annotator demographics to contextualize potential biases while preventing re-
 902 identification.
 903

- 904 • **Count:** 11 Annotators in total (2 also served as question curator)
- 905 • **Academic background:** Ph.D. Researchers [100%]
- 906 • **GIS/cartography background:** ≤ 1 year: [27%]; 1–3 years: [27%]; 3–5 years: [18%]; 5+
 907 years: [27%].
- 908 • **Language:** All authoring and communication used American English (en-US). As the task
 909 focuses on cartographic symbols and spatial relations (not dialect), we do not report in-
 910 dividual annotator nationalities. Non-native participation may introduce minor phrasing
 911 variance. We standardized question phrasing during review and removed questions flagged
 912 as ambiguous by $\geq 2/3$ annotators.

918 A.5 EVALUATION & METRICS

919

- 920 • **Primary metric:** Accuracy
- 921 • **Textual (LLM-as-Judge):** After attempting exact string match, we use an LLM-as-Judge
- 922 to compare model outputs to gold answers. Appendix E.1 provides the judging prompt for
- 923 reproducibility.
- 924 • **Distance (MAPE):** We apply mean absolute error (MAPE) and unit-aware parsing and
- 925 consider all distance answers within 20% as correct.
- 926 • **Direction:** We canonicalize directional answers to the eight cardinal directions and con-
- 927 sider all cardinal directions within one adjacent unit as correct.

928 929 A.6 KNOWN LIMITATIONS & BIASES

930

- 931 • **Regional representation bias:** As FRIEDA uses only English-language documents, re-
- 932 gions where English is a dominant language are overrepresented, and non-English conven-
- 933 tions and locales are not covered.
- 934 • **Domain skew:** The corpus emphasizes planning, environmental, and government reports
- 935 with less coverage on other types of maps, such as nautical or military charts.

936 B DETAILED BENCHMARK CONSTRUCTION

937 B.1 MAP IMAGE FILTERING

938 We use Idefics3-8B (Laurençon et al., 2024) to filter map images from the document. To produce a

939 strict Yes/No decision, we prompt the model:

940 Is this a cartographic map? Answer only with Yes or No.

941 We consider any image for which the model responds Yes as a candidate map.

942 B.1.1 NON-MAP EXAMPLES

943 We manually verify all map candidate images and remove those that we do not consider as maps.

944 For example, although Figure 5 shows a silhouette of a city with subdivision, we consider it as a

945 stylized graphic rather than a cartographic map. The image lacks essential map elements (i.e., map

946 texts, legend, scale, and compass), which are needed to support cartographic reasoning. Without

947 these components, we cannot reason about locations, distances, or spatial relationships; therefore,

948 we exclude such images from our dataset and do not treat them as maps for FRIEDA.

949 B.2 DEFINITION OF SPATIAL RELATION

950 Figure 6 visualizes the four topological spatial relations evaluated in FRIEDA: border, equal,

951 intersect, and within.

952 B.3 ANNOTATOR PROMPT

953 To standardize responses and minimize ambiguity, we supply annotators with a fixed instruction set

954 (Figure 7). We introduce these guidelines during task onboarding and repeat them at the start of

955 every question to promote a consistent answer format.

956 B.4 LVLM SYSTEM PROMPT

957 To ensure consistency, we use the same instruction set provided to human annotators as the prompt

958 for the LVLM system. As some LVLMs produce intermediate reasoning, we append a final

959 line to standardize the output: Give the final answer in 'Final answer: <your

960 answer>. For the proprietary models, we additionally include the clause Do not use online

961 search to prevent external browsing.⁵

962

963

964

965

966

967

968

969

970

971

⁵We add this clause as a precautionary measure; during the dataset construction phase, we verify that questions are not directly answerable through web search.

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993

994 Figure 5: An example of a non-map image flagged by Idefics3-8B as a candidate map. The image
995 is a graphic from the cover page of the document. We exclude it from the benchmark after manual
996 verification, as we consider it a graphical image rather than a cartographic map.

997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022

1023 Figure 6: Illustrations of the spatial relations evaluated in the benchmark. Columns show *Border*,
1024 *Equal*, *Within*, and *Intersect*; rows provide representative cases across geometry types—areas, lines,
1025 and points.

1026

1027

1028

1029

1030 For each one, please verify whether it can be answered (Q# Validation) using the provided map(s).
 1031 If an image appears too small, click on the image. For question with multiple images, please mark
 1032 whether all images were required to correctly answer the question (Q# M). You may use tools like a
 1033 ruler or calculator, but do not use online search.

1034

For each questions:

1035

General:

1036

- If question can be answered, write answer in short answer box
- If answer is a text from the map, copy it as it appears

1038

Numerical Answers:

1039

- Include units as indicated on the map (*Don't convert 1200m to 1.2km*)
- If both map frame and ruler scale is available, use the ruler scale
- If question asks for an area, use $\{\text{unit}\}^2$
- Use numerical values (e.g., 4 instead of four)

1040

1041

1042

1043

Directional Answers:

1044

- Use 8 cardinal directions only: North, North East, East, South East, South, South West, West, North West
- Write 'North' or 'South' before 'East' or 'West'
- Notice that the north arrow compass do not always point upward

1045

1046

1047

1048

1049

Multi-Part Answers:

1050

- Separate with semicolon (;) (e.g., Zone A; Zone B)

Figure 7: Instruction provided to annotators at the beginning of every question.

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

Answer the questions based on the following criteria:

1061

General:

1062

- * If question can be answered, write answer in short answer box
- * If answer is a text from the map, copy it as it appears

1063

Numerical Answers:

1064

1065

1066

- * Include units as indicated on the map (*Don't convert 1200m to 1.2km*)
- * If both map frame and ruler scale is available, use the ruler scale
- * If question asks for an area, use $\{\text{unit}\}^2$
- * Use numerical values (e.g., 4 instead of four)

1067

Directional Answers:

1068

1069

1070

- * Use 8 cardinal directions only: North, North East, East, South East, South, South West, West, North West
- * Write 'North' or 'South' before 'East' or 'West'
- * Notice that the north arrow compass do not always point upward

1071

Multi-Part Answers:

1072

- * Separate with semicolon (;) (e.g., Zone A; Zone B)

Give the final answer in 'Final answer: <your answer>'
 {Do not use online search}

1073

1074

1075

1076

Figure 8: System prompt used for LVLM inference. For readability in the figure, newline characters (\n) are shown as actual line breaks.

1077

1078

1079

1080 B.5 ANNOTATION PLATFORM
1081

1082 We built a web interface (Figure 9) to collect annotator responses. We provide the annotator instruction
1083 (Figure 7) at the top of every question similar to how LVLMs receives the system instruction
1084 for each question. For each question, annotators see the question and its associated map image(s),
1085 then (1) enter a short free-text answer if it is considered answerable, (2) mark answerability by se-
1086 lecting either “Can be answered” or “Map doesn’t contain information to answer the question” (the
1087 latter requires a brief justification), and (3) for multi-map questions, indicate whether all images are
1088 necessary to precisely answer the question without guessing.

1089
1090 B.6 LLM TO GENERATE QUESTIONS
1091

1092 We use GPT-4 and GPT-o3⁶ with a tailored prompt (Figure 10) to draft candidate questions for
1093 FRIEDA. In addition to the prompt, we supply 10 randomly selected map images for question
1094 generation. Two of the authors then manually review each candidate question, editing or discarding
1095 questions as needed to ensure correctness, clarity, and coverage of targeted spatial relations before
1096 adding them to the benchmark.

1097 C EXTENDED BENCHMARK DETAILS
1098

1100 This section provides expanded details on the distribution of questions within FRIEDA. To visualize
1101 the hierarchical nature of the task dimensions formalized in Section 2, we present a Sankey diagram
1102 (Figure 11). Additionally, we provide granular breakdown counts for other dataset attributes, in-
1103 cluding question frequency per spatial relation, national representation, and domain diversity.

1104
1105 C.1 QUESTION COUNT PER SPATIAL RELATION
1106

1107 In Table 4, we report the number of questions in FRIEDA by spatial relation, including totals as well
1108 as the counts split into single-map and multi-map questions. The distribution is roughly balanced:
1109 *Within* is the largest class (23.0%), while *Equal* is the smallest (10.8%).

Spatial Relation	Total Q Count	Single-map Q Count	Multi-map Q Count
Border	71 (14.2%)	41 (8.2%)	30 (6.0%)
Distance	91 (18.2%)	42 (8.4%)	49 (9.8%)
Equal	54 (10.8%)	0 (0.0%)	54 (10.8%)
Intersect	80 (16%)	38 (7.6%)	42 (8.4%)
Orientation	89 (17.8%)	32 (6.4%)	57 (11.4%)
Within	115 (23.0%)	49 (9.8%)	65 (13.0%)

1118 Table 4: Question statistics in FRIEDA across six spatial relations. The table reports the total num-
1119 ber of questions per relation, along with their breakdown into multi-map and single-map settings.
1120

1121
1122 C.2 EXAMPLE QUESTION PER SPATIAL RELATION
1123

1124 In Table 5, we present one sample question for each spatial relation, split by map count (single-map
1125 vs. multi-map).

1126 C.3 NATION AND DOMAIN COVERAGES
1127

1128 **Nation Coverage** FRIEDA includes maps from government documents and multilateral reports
1129 from 32 countries across six continents (Figure 12; Table 6). We also report the ten most-represented
1130 countries by question count in Figure 13.

1131
1132
1133 ⁶Questions are generated before the release of GPT-5.

1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

Map Question
 Map Survey (Fields marked * are required)

Instructions

General

- If question can be answered, write answer in short answer box
- If answer is a text from the map, copy it as it appears

Numerical Answers

- Include units as indicated on the map (*Don't convert 1200m to 1.2km*)
- If both map frame and ruler scale is available, use the ruler scale
- If question asks for an area, use $\{\text{unit}\}^2$
- Use numerical values (e.g., *4 instead of four*)

Directional Answers

- Use 8 cardinal directions only: North, North East, East, South East, South, South West, West, North West
- Write 'North' or 'South' before 'East' or 'West'
- **Notice that the north arrow compass do not always point upward**

Multi-Part Answers

- Separate with semicolon (;) (e.g., *Zone A; Zone B*)

Q24/32: Each 'Delineated Wetland' area is labeled with a unit code in the form W#. Which delineated wetland does the boundary of the 'Green Island Coastal Barrier Resource System' cross? Provide only the number.

Answer
 Type your short answer here...

Validation *

Can be answered
 Map doesn't contain information to answer the question

Please briefly explain what information was missing (required when selecting this option):

e.g., The map shows roads only; no distances or names to identify the feature.

This field is required only when selecting "Map doesn't contain information to answer the question".

Are all images necessary to answer precisely without guessing?

Yes
 No

Submit & Next

Figure 9: Annotation interface for validating questions of FRIEDA.

1188

1189

1190

1191

1192

I'm trying to create a benchmark dataset to test out generative AI's ability on complex cartographical reasoning on maps. The hard questions we should provide in this benchmark should leverage information from one or a few of the given maps above, and should involve some reasoning. Also, the questions should follow these criteria:

1196

- Answer should be self-contained, non-binary, and not-multiple choice questions.
- Question should not be solved by searching online - We assume that the image to refer to is not known when answering the question.
- We assume that the image to refer to is not known when answering the question.

1200

Give a set of questions, the maps to refer to, and the answer to the question. Target spatial relation is {Spatial Relation}.

1203

Figure 10: Question-generation prompt used to prompt for candidate questions to either GPT-4 or GPT-o3.

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

Figure 11: Sankey diagram illustrating the hierarchical structure of FRIEDA's question taxonomy. Each question is annotated with its count of maps (left), the spatial relation that defines the core reasoning objective (middle), and the specific map elements that must be interpreted to answer the question (right). The flow demonstrates how the dimensions interact in practice, highlighting that FRIEDA's questions typically require reasoning across multiple cartographic primitives.

1238

1239

1240

1241

Spatial Relation	Map Count	Question Example
Border	Single	Which DMMUs along the Inner Harbor Navigation Canal <u>share a boundary with</u> ‘DMMU 4’? Answer in the form DMMU #.
	Multi	Identify the ‘National Road [map1]’ that crosses the ‘Ou Ta Paong’ area. Which two ‘Irrigation Schemes [map2]’ does this road <u>serve as a border for</u> ? Provide the names without the word ‘Area’.
Distance	Single	What is the approximate <u>straight-line</u> distance between the SLC-6 Launch Site and the 2 psf contour of the Falcon Heavy Launch line?
	Multi	In Tinian, each ‘Heritiera longipetiolata’ species observation area is associated with a name. Which ‘observation area[map1]’ is located <u>closest</u> to the Noise Sensitive Receptor labeled ‘T15[map2]’?
Equal	Multi	Which ‘feature[map1]’ on the infrastructure map <u>corresponds to</u> ‘Existing Component 60[map2]’ of the Santander project?
Intersect	Single	How many Asanko tenement blocks does the Haul Road <u>intersect</u> ?
	Multi	Which ‘claim block(s)[map1]’ of the UEX Christie Lake Project are <u>crossed by</u> the ‘power line[map2]’?
Orientation	Single	What is the name of the <u>northernmost</u> ‘National Air Monitoring Site’ as recorded by Ordnance Survey Ireland?
	Multi	In the Lumberton Loop Project Area, what is the orientation of the ‘Crosswalk Stripping [map1]’ in relation to the ‘Walnut Street Component[map2]’?
Within	Single	Along Pine Street and Pike Street, how many ‘Future Redevelopment & Renovation Project’ areas overlap with the ‘West Focus Area’?
	Multi	Identify the area of Nighthawk Gold Property located North of the ‘Winter Road[map1]’. How many ‘Gold Deposits[map2]’ are located <u>within</u> this area?

Table 5: Example questions by spatial relation and map count. For multi-map questions, entities are annotated with [map1]/[map2] only for illustration, indicating different source maps; these tags are not part of the actual questions. We underline the word/phrase that denotes the target spatial relation.

Figure 12: Global country coverage of FRIEDA. Countries included in the dataset are shown in purple; countries where English is a primary or official working language but not covered by FRIEDA are shaded light gray. Coverage spans six continents (32 countries).

Domain Coverage We source maps from domains where spatial reasoning is essential: geologic reports (SEDAR+, 2025), national park management reports (National Park Service, 2025), investment and infrastructure reports (AIIB, 2025), disaster and hazard assessments (Federal Emergency Management Agency, 2025), city and regional planning documents (Seattle Planning and Commu-

1296	Country	Count	Country	Count
1297	United States	251	Mexico	18
1298	Canada	82	Portugal	2
1299	South Africa	32	New Zealand	1
1300	Peru	9	Chile	4
1301	Burkina Faso	1	Brazil	2
1302	Guyana	2	Guinea	3
1303	Ireland	24	Colombia	2
1304	Seychelles	14	Ecuador	1
1305	Singapore	9	Cuba	1
1306	Kazakhstan	6	Argentina	3
1307	Cambodia	5	Bolivia	2
1308	India	7	Spain	1
1309	Bangladesh	6	Sweden	1
1310	Sri Lanka	3	Australia	1
1311	United Arab Emirates	3	Namibia	2
1312	Ghana	1	Nicaragua	1

Table 6: Country coverage in FRIEDA. Count reflects the number of questions whose maps originate from each country.

Figure 13: Top 10 countries by question Count

nity Development, 2024; City of Cape Town, 2025; Department of Community Development, 2025; Urban Redevelopment Authority, 2025), and environmental reviews (U.S. Environmental Protection Agency, 2025; Ministry of Agriculture Climate Change and Environment, 2025; Environmental Protection Agency, 2025). Several of these are umbrella categories that can be further subdivided. For example, environmental assessments may target facilities, hydrology, land use/land cover, or habitat. For consistency, we retain the top-level labels used by the source repositories. Across these domains, maps employ varied symbol conventions (legends, scale bars, north arrows) and heterogeneous geometry types (areas, lines, points), encouraging generalization beyond any single map style. Figure 14 summarizes the domain coverage.

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364

1365 Figure 14: Domain distribution in FRIEDA by document category (e.g., geology, planning). Slices
1366 indicate categories, and parentheses denote question counts.

D EXAMPLES OF FRIEDA

1367
1368
1369
1370
1371
1372
1373
1374

We store each example as a JSON record containing the question, the gold answer, the required map image(s), any contextual image(s), and metadata such as the number of maps, target spatial relation, and answer type. Figure 15 illustrates an example of a single-map question, and Figure 16 shows an example of a multi-map question.

1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397

```

"question_ref": "q_1093",
"question_text": "What is the orientation of 'Bryan Palmer & Barry Maust' in relation to
'Gary Blocher' within the Meyersdale Study Area?",
"expected_answer": "South",
"image_urls": [
    "EIS/Vol-3-FEISAppendixA-M-May-2025/image21_m1.png"
],
"map_count": "Single",
"spatial.relationship": "Orientation",
"answer_type": "cardinal",
"contextual_urls": [
    "EIS/Vol-3-FEISAppendixA-M-May-2025/image21_m1.png",
    "EIS/Vol-3-FEISAppendixA-M-May-2025/image21_m0.png",
    "EIS/Vol-3-FEISAppendixA-M-May-2025/image20_1.png",
    "EIS/Vol-3-FEISAppendixA-M-May-2025/image22_1.png",
    "EIS/Vol-3-FEISAppendixA-M-May-2025/image19_1.png",
    "EIS/Vol-3-FEISAppendixA-M-May-2025/image26_1.png",
    "EIS/Vol-3-FEISAppendixA-M-May-2025/image15_1.png",
    "EIS/Vol-3-FEISAppendixA-M-May-2025/image11_1.png",
    "EIS/Vol-3-FEISAppendixA-M-May-2025/image10_1.png",
    "EIS/Vol-3-FEISAppendixA-M-May-2025/image12_1.png"
],
"domain": "Environmental review",
"map_elements": [
    "map_text",
    "compass"
]

```

Figure 15: Example question single map

1398
1399
1400
1401
1402
1403

E DETAILED BENCHMARK RESULT AND ANALYSIS

E.1 LLM-AS-JUDGE PROMPT

To evaluate free-form textual answers, we employ LLM-as-Judge (Gu et al., 2025) using Mistral-Small-3.1 (Mistral AI, 2024). Since not all models follow our requested output format (“Final answer: `<your answer>`”) and minor wording differences may occur (e.g., ‘15.00%’ vs. ‘15’), we

```

1404 "question.ref": "q.0150",
1405 "question.text": "The Aberdeen-Hoquiam North Shore Levee is classified into three
1406 categories. In which category is the 'Hoquiam Police Station' located?", 
1407 "expected_answer": "North Shore Levee (West)",
1408 "image_urls": [
1409     "FEMA/BRIC-EMS-2020-BR-102-0002_WA-NorthShoreLeveeWest-DEA-20241126/image116.1.png",
1410     "FEMA/BRIC-EMS-2020-BR-102-0002_WA-NorthShoreLeveeWest-DEA-20241126/image101.1.png"
1411 ],
1412 "map_count": "Multi",
1413 "spatial.relationship": "Intersect",
1414 "answer_type": "textual",
1415 "contextual_urls": [
1416     "FEMA/BRIC-EMS-2020-BR-102-0002_WA-NorthShoreLeveeWest-DEA-20241126/image116.1.png",
1417     "FEMA/BRIC-EMS-2020-BR-102-0002_WA-NorthShoreLeveeWest-DEA-20241126/image118.1.png",
1418     "FEMA/BRIC-EMS-2020-BR-102-0002_WA-NorthShoreLeveeWest-DEA-20241126/image136.1.png",
1419     "FEMA/BRIC-EMS-2020-BR-102-0002_WA-NorthShoreLeveeWest-DEA-20241126/image138.1.png",
1420     "FEMA/BRIC-EMS-2020-BR-102-0002_WA-NorthShoreLeveeWest-DEA-20241126/image101.1.png",
1421     "FEMA/BRIC-EMS-2020-BR-102-0002_WA-NorthShoreLeveeWest-DEA-20241126/image139.1.png",
1422     "FEMA/BRIC-EMS-2020-BR-102-0002_WA-NorthShoreLeveeWest-DEA-20241126/image140.1.png",
1423     "FEMA/BRIC-EMS-2020-BR-102-0002_WA-NorthShoreLeveeWest-DEA-20241126/image141.1.png",
1424     "FEMA/BRIC-EMS-2020-BR-102-0002_WA-NorthShoreLeveeWest-DEA-20241126/image142.1.png",
1425     "FEMA/BRIC-EMS-2020-BR-102-0002_WA-NorthShoreLeveeWest-DEA-20241126/image137.1.png"
1426 ],
1427 "domain": "Disaster/hazard",
1428 "map_elements": [
1429     "legend"
1430 ]

```

Figure 16: Example question multi map

first require the LLM to extract the answer span based on the question and then compare the extracted portion to the gold answer with tolerance for minor variants (Figure 17).

You will be given a triple consisting of a question, an expected answer, and a given response. Your task is to output either 'yes' or 'no'. Given the question and response, extract only the exact portion of the text that serves as the answer from the given response. Then output 'yes' if the user response conveys the same meaning as the expected answer in relation to the question. Output 'no' if it does not. For questions with multiple correct answers, the expected answers are separated by semicolons. The user response is correct if it matches all required answers, regardless of order. When the user provides more items than required, the response is treated as incorrect. If the user lists fewer items than expected, mark the response as incorrect. Differences in plurality, extra details such as acronyms or counts, minor typographical errors, and differences in wording style do not affect correctness. Focus only on whether the meaning matches.

Question: {Question}
 Expected answer: {Expected Answer}
 Given response: {User Response}

Does the response correctly answer the question based on the expected answer?
 Answer strictly 'yes' or 'no'

Figure 17: The input prompt to generate questions.

E.2 STATISTICAL SIGNIFICANCE OF FRIEDA-DIRECT RESULTS

As FRIEDA partitions questions into a large number of fine-grained categories, some subsets contain relatively few examples (fewer than 100). In such cases, raw accuracy comparisons can be unreliable due to limited sample size. To more rigorously assess whether observed performance differences within these smaller subcategories are statistically meaningful, we apply McNemar's test McNEMAR (1947) on the top three proprietary models. We use the exact binomial version of the test when the number of disagreements is small (< 50), and the χ^2 -squared version with correction when disagreements are larger (≥ 50). Table 7 reports the resulting p -values.

Category	Gemini 2.5 vs. GPT-5	Gemini 2.5 vs. Sonnet-4	GPT-5 vs. Sonnet-4
Single-Map	0.03	0.01	1.00*
Multi-Map	0.05*	0.02	<0.01
Border	0.17	1.00*	0.10*
Distance	0.80*	0.84	0.54
Equal	0.10*	0.63*	0.21
Intersect	0.50*	0.13	0.03
Orientation	0.82	0.02	0.08
within	0.11	<0.01	0.09

Table 7: p -values from pairwise McNemar’s tests across key subcategories. Bold values indicate statistical significance at $\alpha = 0.05$. An asterisk (*) indicates that for each pair (A vs. B), model B achieved a higher accuracy.

E.3 PERFORMANCE ON FRIEDA-CONTEXTUAL

Table 8 reports overall and per-spatial relation performance for FRIEDA-contextual. As noted in Section 5, models show little difference between the FRIEDA-direct and FRIEDA-contextual settings. Figure 18 summarizes overall accuracy across models on FRIEDA-contextual.

Figure 18: Overall accuracy across models in the FRIEDA-contextual setting.

E.4 PERFORMANCE ON ALL-AGREE SUBSET

To validate that the performance gap reported in Section 5 is not an artifact of annotation noise, we evaluate models not only on the full dataset but also on the All-agree subset, where all three annotators unanimously agreed on the gold answer. Table 9 presents the results for both the full dataset and the All-agree subset, for both the direct and contextual setting of FRIEDA.

E.5 PER MAP COUNT & ANSWER TYPE RESULT BREAKDOWN

We also report performance by map count and answer type for FRIEDA-direct (Table 10) and FRIEDA-contextual (Table 11). In the FRIEDA-direct setting, GPT-5-Think leads on multi-map questions, outperforming the next-best model (Gemini-2.5-Pro) by roughly 5%. Claude-Sonnet-4 performs best on *Distance* answers but underperforms on directional (i.e., *Orientation*) questions.

1512

1513

1514

1515

1516

1517

1518

	Overall (500)	Border (71)	Distance (91)	Equal (54)	Intersect (80)	Orientation (89)	Within (115)
<i>Proprietary LVLMs</i>							
Gemini 2.5 Pro	36.60	28.17	29.67	50.00	21.25	64.77	30.17
GPT-5-Think	37.00	28.17	27.47	40.74	36.25	61.36	30.17
Claude Sonnet 4	28.40	19.72	19.78	27.78	23.75	55.68	23.28
<i>Open Source LVLMs</i>							
LLaVA-NeXT-110B	3.80	2.86	3.30	3.64	7.50	0.00	5.17
GLM-4.5V-108B	7.40	9.46	0.00	6.00	13.41	1.12	12.82
InternVL3-78B	9.20	2.82	5.49	5.56	3.75	30.68	5.17
LLaVA-OneVision-72B	9.20	7.04	5.49	3.7	7.5	17.05	11.21
Qwen2.5-VL-72B	26.40	12.68	16.48	29.63	16.25	55.68	25.86
InternVL3-78B	9.20	2.82	5.49	5.56	3.75	30.68	5.17
InternVL3.5-38B	12.00	8.45	4.40	7.41	7.50	34.09	8.62
Ovis2-34B	16.00	21.13	14.29	18.52	18.75	2.27	21.55
Ovis2.5-9B-Think	24.80	18.31	9.89	27.78	21.25	56.82	17.24

Table 8: Performance of the 11 LVLMs across 6 spatial relationships on FRIEDA-contextual setting. Values represent performance scores (in %) for each spatial relationship and the overall accuracy.

1535

1536

1537

1538

1539

1540

	FRIEDA-direct		FRIEDA-contextual	
	Full (500)	All-agree (297)	Full (500)	All-agree (297)
Human Average	84.87	93.93 [*]	-	-
<i>Proprietary LVLMs</i>				
Gemini 2.5 Pro	38.20	46.13	33.06	15.56
GPT-5-Think	37.20	44.11	30.65	26.67
Claude Sonnet 4	31.60	24.26	25.81	28.89
<i>Open Source LVLMs</i>				
LLaVA-NeXT-110B	8.60	9.43	10.48	8.89
GLM-4.5V-108B	6.40	8.67	8.33	0.00
InternVL3-78B	11.00	13.80	6.18	4.44
LLaVA-OneVision-72B	13.00	14.48	9.41	11.11
Qwen2.5-VL-72B	25.60	28.28	21.24	8.89
InternVL3.5-38B	14.20	14.81	9.68	6.67
Ovis2-34B	17.80	20.54	22.58	11.11
Ovis2.5-9B-Think	25.80	29.97	20.43	20.00

^{*}Note: Although the All-agree subset reflects complete human consensus on the ground truth, the human average score is 93.33% rather than 100% because our evaluation pipeline relies on an LLM-as-Judge. In other words, the 93.33% accuracy reflects the LLM Judge's assessment of the human-provided answer on the All-agree items, not human disagreement.

Table 9: Performance of humans and 11 LVLMs on the All-agree subset for FRIEDA-direct and FRIEDA-contextual.

1564

1565

	Overall (500)	Map Count		Answer Types		
		Single (202)	Multi (298)	Textual (372)	Distance (45)	Direction (83)
Human Average	84.87	84.91	88.08	87.93	67.18	92.15
<i>Proprietary LVLMs</i>						
Gemini 2.5 Pro	38.20	32.67	41.95	33.06	15.56	73.49
GPT-5-Think	<u>37.20</u>	23.76	46.31	<u>30.65</u>	<u>26.67</u>	<u>72.29</u>
Claude Sonnet 4	31.60	<u>24.26</u>	36.58	25.81	28.89	<u>59.04</u>
<i>Open Source LVLMs</i>						
LLaVA-NeXT-110B	8.60	7.43	9.40	10.48	8.89	0.00
GLM-4.5V-108B	6.40	4.81	7.53	8.33	0.00	1.23
InternVL3-78B	11.00	6.93	13.76	6.18	4.44	36.14
LLaVA-OneVision-72B	13.00	15.35	11.41	9.41	11.11	30.12
Qwen2.5-VL-72B	25.60	21.78	28.19	21.24	8.89	54.22
InternVL3.5-38B	14.20	11.88	15.77	9.68	6.67	38.55
Ovis2-34B	17.80	17.33	18.12	22.58	11.11	0.00
Ovis2.5-9B-Think	25.80	22.28	28.19	20.43	20.00	53.01

Table 10: Performance of humans and 11 LVLMs across the two map count types and three answer types on FRIEDA-direct.

	Overall (500)	Map Count		Answer Types		
		Single (202)	Multi (298)	Textual (372)	Distance (45)	Direction (83)
<i>Proprietary LVLMs</i>						
Gemini 2.5 Pro	36.60	25.25	44.30	31.99	<u>17.78</u>	67.47
GPT-5-Think	37.00	26.24	44.30	31.72	28.89	65.06
Claude Sonnet 4	28.40	20.30	33.89	23.12	<u>17.78</u>	57.83
<i>Open Source LVLMs</i>						
LLaVA-NeXT-110B	3.80	1.99	5.03	4.85	2.22	0.00
GLM-4.5V-108B	7.40	6.19	8.28	9.95	0.00	0.00
InternVL3-78B	9.20	6.93	10.74	4.57	4.44	32.53
LLaVA-OneVision-72B	9.20	7.43	10.40	7.53	6.67	18.07
Qwen2.5-VL-72B	26.40	18.32	31.88	21.24	11.11	57.83
InternVL3.5-38B	12.00	8.42	14.43	7.53	4.44	36.14
Ovis2-34B	16.00	14.36	17.11	19.62	15.56	0.00
Ovis2.5-9B-Think	24.80	20.79	27.52	19.62	6.67	57.83

Table 11: Performance of the 11 LVLMs across the two map count types and three answer types on FRIEDA-contextual.

1620 **E.6 PER MAP ELEMENT & MAP ELEMENT COUNT RESULT BREAKDOWN**
16211622 We analyze performance based on the specific map elements required to answer each question,
1623 as well as the number of distinct element types involved, for both FRIEDA-direct (Table 12) and
1624 FRIEDA-contextual (Table 13). As map elements are not mutually exclusive, a single question may
1625 require interpreting multiple elements simultaneously to produce a correct answer.1626 Humans outperform every model by a large margin across all four map elements. Accuracy is high-
1627 est when only one or two elements are required, but drops substantially when four elements must be
1628 combined, indicating that even expert map readers experience increased difficulty as compositional
1629 complexity grows. On the other hand, the best proprietary model performance occurs at three ele-
1630 ments; this may be because questions involving multiple components compel the model to search
1631 the image to identify relevant elements.

	Map Element Type				Map Element Count			
	Map text (366)	Legend (417)	Compass (137)	Scale (46)	1 (132)	2 (279)	3 (80)	4 (9)
Human Average	80.97	83.61	75.91	63.78	84.09	81.84	80.00	51.85
<i>Proprietary LVLMs</i>								
Gemini 2.5 Pro	38.80	37.41	56.20	17.39	35.61	35.13	55.00	22.22
GPT-5-Think	38.52	34.05	53.28	28.26	36.36	34.41	48.75	33.33
Claude Sonnet 4	31.69	31.41	51.83	30.43	24.24	29.75	47.50	55.56
<i>Open Source LVLMs</i>								
LLaVA-NeXT-110B	7.38	8.87	0.73	8.70	14.39	8.24	0.00	11.11
GLM-4.5V-108B	5.72	5.74	3.62	0.00	12.12	5.00	2.47	0.00
InternVL3-78B	9.84	10.31	23.36	4.35	9.85	9.32	20.00	0.00
LLaVA-OneVision-72B	13.39	11.27	20.44	10.87	10.61	13.62	16.25	0.00
Qwen2.5-VL-72B	26.23	24.46	40.88	10.87	21.97	24.37	37.50	11.11
InternVL3.5-38B	14.48	12.23	25.55	6.52	12.12	14.34	17.50	11.11
Ovis2-34B	16.12	18.47	4.38	10.87	27.27	17.20	6.25	0.00
Ovis2.5-9B-Think	26.78	23.26	38.69	21.74	23.48	24.73	33.75	22.22

1651 Table 12: Performance of humans and 11 LVLMs across the map element types and count of map
1652 elements on FRIEDA-direct.

	Map Element Type				Map Element Count			
	Map text (366)	Legend (417)	Compass (137)	Scale (46)	1 (132)	2 (279)	3 (80)	4 (9)
<i>Proprietary LVLMs</i>								
Gemini 2.5 Pro	37.43	35.49	50.36	19.57	34.85	34.77	46.25	33.33
GPT-5-Think	38.25	34.53	51.09	30.43	34.09	35.48	48.75	22.22
Claude Sonnet 4	29.78	26.38	43.07	19.57	25.00	27.24	37.50	33.33
<i>Open Source LVLMs</i>								
LLaVA-NeXT-110B	3.01	4.32	0.00	2.17	6.06	3.94	0.00	0.00
GLM-4.5V-108B	5.93	6.75	4.67	0.00	10.95	6.13	3.33	0.00
InternVL3-78B	8.47	8.39	20.44	4.35	6.06	9.32	15.00	0.00
LLaVA-OneVision-72B	7.65	9.11	13.87	6.52	9.85	8.96	8.75	11.11
Qwen2.5-VL-72B	27.32	24.46	41.61	13.04	21.97	26.88	32.50	22.22
InternVL3.5-38B	13.39	10.31	23.36	4.35	6.06	13.62	17.50	0.00
Ovis2-34B	13.93	16.31	5.11	15.22	25.00	14.70	7.50	0.00
Ovis2.5-9B-Think	26.23	22.30	40.15	8.70	21.97	24.01	33.75	11.11

1672 Table 13: Performance of the 11 LVLMs across the map element types and count of map elements
1673 on FRIEDA-contextual.

1674 **E.7 PER DOMAIN RESULT BREAKDOWN**
1675

1676 In addition, we report performance by domain for FRIEDA-direct (Table 14) and FRIEDA-
1677 contextual (Table 15). The domain can serve as an indicator of map style heterogeneity. For ex-
1678 ample, reports from park maps (labeled “Parks” in the table) and disaster reports typically follow
1679 the same formalized format because they are produced by the same source (usually the government).
1680 In contrast, reports from the investment and infrastructure domain (labeled “Investment”) and the
1681 geology domain (labeled “Geology”) originate from various sources, as they are usually authored
1682 by different companies, resulting in more diverse map styles.

	Overall (500)	Planning (112)	Investment (27)	Environment (100)	Disaster (83)	Parks (22)	Geology (166)
Human Average	84.87	86.60	88.89	82.33	83.13	75.76	76.91
<i>Proprietary LVLMs</i>							
Gemini 2.5 Pro	38.20	37.25	33.33	43.00	49.40	45.45	30.12
GPT-5-Think	<u>37.20</u>	<u>35.29</u>	<u>25.93</u>	<u>40.00</u>	54.22	68.18	25.90
Claude Sonnet 4	31.60	33.33	22.22	28.00	42.17	<u>50.00</u>	<u>26.51</u>
<i>Open Source LVLMs</i>							
LLaVA-NeXT-110B	8.60	9.80	18.52	6.00	8.43	13.64	7.23
GLM-4.5V-108B	6.40	3.92	0.00	5.00	8.43	9.09	8.33
InternVL3-78B	11.00	12.75	7.41	12.00	16.87	22.73	5.42
LLaVA-OneVision-72B	13.00	16.67	11.11	11.00	7.23	22.73	13.86
Qwen2.5-VL-72B	25.60	29.41	18.52	21.00	34.94	22.73	22.89
InternVL3.5-38B	14.20	13.73	22.22	15.00	18.07	18.18	10.24
Ovis2-34B	17.80	18.63	14.81	19.00	21.69	22.73	14.46
Ovis2.5-9B-Think	25.80	21.57	22.22	23.00	33.73	40.91	24.70

1700 Table 14: Performance of humans and 11 LVLMs across the seven domain types on FRIEDA-direct.
1701

	Overall (500)	Planning (112)	Investment (27)	Environment (100)	Disaster (83)	Parks (22)	Geology (166)
<i>Proprietary LVLMs</i>							
Gemini 2.5 Pro	36.60	39.22	40.74	34.00	50.60	50.00	27.11
GPT-5-Think	37.00	<u>36.27</u>	25.93	34.00	<u>49.40</u>	72.73	30.12
Claude Sonnet 4	28.40	30.39	25.93	24.00	42.17	45.45	21.08
<i>Open Source LVLMs</i>							
LLaVA-NeXT-110B	3.80	3.92	14.81	3.00	7.23	4.55	0.60
GLM-4.5V-108B	7.40	5.61	0.00	5.66	10.23	0.00	8.29
InternVL3-78B	9.20	8.82	7.41	12.00	13.25	18.18	4.82
LLaVA-OneVision-72B	9.20	12.75	14.81	9.00	10.84	18.18	4.22
Qwen2.5-VL-72B	26.40	25.49	<u>37.04</u>	20.00	44.58	36.36	18.67
InternVL3.5-38B	12.00	10.78	14.81	13.00	15.66	27.27	7.83
Ovis2-34B	16.00	16.67	25.93	12.00	22.89	18.18	12.65
Ovis2.5-9B-Think	24.80	20.59	18.52	25.00	36.14	36.36	21.08

1719 Table 15: Performance of the 11 LVLMs across the seven domain types on FRIEDA-contextual.
17201721 **F EXTENDED ANALYSES**
17221723 **F.1 EXAMPLES OF EACH ERROR CATEGORY**
1724

1725 We illustrate the three most frequent error categories for Gemini-2.5-Pro and show each example
1726 alongside answers and reasoning from Gemini-2.5-Pro, GPT-5-Think, and Claude-Sonnet-4.
1727

Model Size	Accuracy (%)
1B	9.40
2B	12.80
4B	20.00
8B	23.20
14B	23.00
30BA3B	24.20
38B	14.20
241BA28B	11.40

Table 16: InternVL3.5 performance by size

Figure 19: Performance of InternVL3.5 by model parameter size

Misinterpretation of legend Listing 1 presents a case where the model fails to map a legend symbol or color to its intended semantic class, leading to the selection of the wrong feature despite the correct evidence being present.

Cross-map interpretation failure Listing 2 shows a failure that arises when reasoning requires aligning information across multiple maps or overlays; the model identifies the wrong subject when the maps must be cross-referenced.

Spatial-relation semantics error Listing 3 illustrates a case where the model misinterprets the key spatial relation, yielding an incorrect answer.

F.2 ANALYSES ON MODEL SIZE

In the main evaluation (Figure 3), the results deviate from the usual scaling law (Kaplan et al., 2020), which states that the performance of the model improves with size. Among open-source models, LLaVA-NeXT, despite having the most parameters, ranks near the bottom, whereas Ovis-2.5-9B, the smallest model, ranks near the top. We, therefore, hypothesize that cartographic reasoning is not an emergent ability (i.e., a capability absent in smaller models but present in larger ones). To test this, we evaluate the InternVL3.5 family (Wang et al., 2025b) on FRIEDA: 1B, 2B, 4B, 8B, 14B, 30BA3B, 38B, 241BA28B where ‘A’ denotes parameters active at inference. The trend (Figure 19, Table 16) shows modest gains up to roughly 30B parameters, followed by degradation thereafter.

G EXTENDED RELATED WORKS

To provide a comprehensive context for FRIEDA, we detail the scope of related benchmarks across three areas: general document and infographics understanding, map visual question answering, and broader spatial reasoning.

G.1 DOCUMENT AND INFOGRAPHICS VQA

Benchmarks in this domain have established baselines for LVLM reasoning over structured text and graphical images, including charts. In the document domain, DocVQA (Mathew et al., 2021) introduces a large-scale question-answering dataset over real forms and reports. DocVXQA (Souibgui et al., 2025) builds upon the benchmark to design a self-explanatory framework that produces interpretable rationales for LVLMs. Docopilot (Duan et al., 2025) evaluates LVLMs on scientific articles, which not only test text understanding but also the interpretation of embedded figures such as charts. For graphics, InfographicsVQA (Mathew et al., 2022) tests joint reasoning over text, layout, and pictorial elements in visually rich infographics. InfoChartQA (Lin et al., 2025) extends this by pairing plain charts and infographics and identifying design elements that degrade LVLM performance. In general, VQA evaluation on frontier LVLMs reveals a consistent trend: competence at

1782 high-level patterns, such as identifying trends in the data or the extrema, but struggles with precise
 1783 value extraction and robustness. FRIEDA evaluates these shortcomings in a cartographic setting,
 1784 where layout, symbols, legends, scales, and compass orientation interact tightly to measure how
 1785 well LVLMs integrate these signals to answer map-based questions.
 1786

1787 G.2 MAP VQA

1788 Research in map understanding can be categorized into general map VQA, navigation-centered rea-
 1789 soning, and domain-specific question-answering.
 1790

1791 **General Map VQA** MapQA (Chang et al., 2022) establishes a baseline for choropleth map un-
 1792 derstanding by creating question-answer pairs targeting value retrieval and region identification.
 1793 However, the dataset is limited to a single map type (i.e., choropleth maps) and geographically re-
 1794 stricted to the United States, thereby limiting the diversity of cartographic styles and toponyms.
 1795 MapWise (Mukhopadhyay et al., 2025) broadens geographic coverage to the United States, India,
 1796 and China and introduces diverse question templates for probing relative spatial relationships; yet, it
 1797 still relies solely on choropleth maps and remains constrained to single-map reasoning, which lim-
 1798 its its ability to model real-world cartographic complexity. MapIQ (Srivastava et al., 2025) further
 1799 advances visualization literacy by introducing cartograms and proportional-symbol maps, which are
 1800 commonly used in analytical tasks. While the expanded map diversity is valuable, MapIQ’s maps
 1801 are generated using map-coloring tools rather than drawn from heterogeneous, noisy real-world doc-
 1802 ments. In contrast, FRIEDA explicitly captures this real-world variability by sourcing map images
 1803 directly from government and scientific reports.
 1804

1805 **Navigation-centered Reasoning** Benchmarks centered on navigation often require more complex
 1806 reasoning than simple semantic retrieval, yet they tend to remain domain-narrow. MapEval (Dihan
 1807 et al., 2025) evaluates LVLMs’ geospatial reasoning through multiple-choice travel-planning ques-
 1808 tions spanning 180 cities. Still, it relies on standard web basemaps (e.g., Google Maps) whose clean,
 1809 uniform designs lack the layered, domain-specific symbology (e.g., variable legends, irregular pro-
 1810 jections, and customized north arrows) often found in professional cartography. ReasonMap (Feng
 1811 et al., 2025) moves beyond basemaps by using high-resolution transit maps and designing naviga-
 1812 tion tasks that closely simulate real-world subway routing, though its scope is restricted to transit
 1813 systems. MapBench (Xing et al., 2025) evaluates LVLMs’ spatial reasoning and chain-of-thought
 1814 inference by testing outdoor navigation performance on diverse map types, such as park and trail
 1815 maps. Despite their contributions, all of these benchmarks remain focused on navigation-centric
 1816 tasks. In contrast, our benchmark generalizes spatial reasoning across six distinct spatial relations
 1817 that extend well beyond navigation, capturing the broader landscape of cartographic reasoning re-
 1818 quired in professional and scientific contexts.
 1819

1820 **Domain- and Task-specific QA** Specialized benchmarks address domain-specific needs or par-
 1821 ticular visual modalities, but they tend to trade breadth for depth. PEACE (Huang et al., 2025)
 1822 introduces a benchmark focused on geologic map understanding and develops a framework for an-
 1823 swering domain-specific questions, such as identifying lithologic units, fault lines, and structural
 1824 patterns. While the benchmark and the approach is highly effective for geology-specific evalua-
 1825 tion, the scope is limited to a single scientific domain, and it lacks the thematic diversity required for
 1826 broader cartographic reasoning. CartoMark (Zhou et al., 2024) provides a wide range of maps across
 1827 various styles, but its core task centers on simple pattern recognition, such as scene classification and
 1828 text annotation. These tasks primarily test perceptual recognition and, in many cases, do not require
 1829 reasoning at all. ReMI (Kazemi et al., 2025) offers a framework for multi-image reasoning that eval-
 1830 uates how models integrate and compare information across visual inputs. However, ReMI operates
 1831 on natural images and uses simple web-based maps. Therefore, it does not assess the specialized
 1832 challenges of multi-map cartographic reasoning, such as aligning heterogeneous legends, reconcil-
 1833 ing differing spatial scales, and interpreting mismatched orientations across maps. These capabilities
 1834 form the core of FRIEDA’s multi-map setting, which reflects real-world analytical scenarios where
 1835 experts must synthesize information from multiple, heterogeneous cartographic sources.
 1836

1837 To situate FRIEDA within the broader landscape of MapVQA benchmarks, we provide a compara-
 1838 tive summary of existing works in Table 17. The table evaluates each dataset along four key dimen-
 1839 sions: (1) the types of spatial abilities evaluated, (2) diversity of map elements (measured through

country and domain coverage), (3) whether multi-map reasoning is supported, and (4) whether a contextual setting is included to emulate real-world map-use scenarios.

We use orange checkmarks (✓) to indicate partial or limited coverage within a category. For example, in the topological relation category, we treat questions such as “how many points lie along the route to location A?” partially covering topological relation as such tasks contain the notion of *intersect* while it does not examine the relation with the depth or rigor as required in FRIEDA. Overall, the comparison highlights that prior MapVQA benchmarks tend to emphasize narrow task settings, limited spatial relations, or constrained map styles, whereas FRIEDA is designed to provide comprehensive, cross-domain evaluation that reflects the complexity of real-world cartographic reasoning.

	Spatial Relation			Heterogeneity			Multi-Map	Contextual
	Topological	Metric	Directional	Country	Domain			
MapQA (Chang et al., 2022)	✗	✗	✗	1	1	✗	✗	✗
CartoMark (Zhou et al., 2024)	✗	✗	✗	13	7	✗	✗	✗
MapWise (Mukhopadhyay et al., 2025)	✓	✗	✓	3	3	✗	✗	✗
MapIQ (Srivastava et al., 2025)	✓	✗	✗	1	6	✗	✗	✗
MapBench (Xing et al., 2025)	✗	✗	✓	UNK	9	✗	✗	✗
MapEval (Dihan et al., 2025)	✓	✓	✓	54	1	✗	✗	✗
ReMi (Kazemi et al., 2025)	✗	✗	✓	100?	1	✓	✗	✗
PEACE (Huang et al., 2025)	✓	✓	✓	2	1	✗	✗	✗
ReasonMap (Feng et al., 2025)	✗	✗	✗	13	1	✗	✗	✗
FRIEDA	✓	✓	✓	32	6	✓	✓	✓

Note: ReMi (Kazemi et al., 2025) reports counts by city, not by country; consequently, the corresponding country total is less than 100.

Table 17: A comparison of FRIEDA with prior map VQA benchmarks. FRIEDA covers a broader set of map-reading abilities and exhibits greater geographic and thematic diversity.

G.3 SPATIAL REASONING

Spatial reasoning benchmarks have advanced model capabilities in perception and localization, though often outside the cartographic domain. Benchmarks such as SpatialVLM (Chen et al., 2024a) and SpatialRGPT (Cheng et al., 2024) focus on natural images, testing a model’s ability to reason about 2D and 3D spatial relationships, relative positions, and object dimensions in photographic scenes. In the geospatial domain, GeoChain (Yerramilli et al., 2025) enhances tasks such as geolocation by inducing step-by-step geographic reasoning to link visual cues to geographic entities. However, these works primarily rely on natural scene understanding or semantic knowledge retrieval and do not engage with the abstract symbolic conventions unique to maps. FRIEDA closes this gap by evaluating multi-step cartographic reasoning, in which models must not only perceive space but also decode specific symbolic rules to infer topological, metric, and directional relations across heterogeneous real-world maps.

H THE USE OF LARGE LANGUAGE MODELS

We acknowledge the use of large language models (LLMs) for benchmark question curation, revision, and polishing of this paper. The details of usage, the exact prompt used, and all related information are provided in the main paper or appendices. All questions created with the assistance of a large language model have been verified and modified by the authors. The paper’s main contribution remains with the authors.

1890 Listing 1: Legend misinterpretation example of Gemini-2.5-Pro on FRIEDA. Other models are
 1891 shown for reference. **Orange** : Task Instruction. **Green** : Correct Answer. **Red** : Incorrect Answer.
 1892

1893 **System:** :

1894 Answer the questions based on the following criteria:

1895 General:

- * If question can be answered, write answer in short answer box
- * If answer is a text from the map, copy it as it appears

1897 Numerical Answers:

- * Include units as indicated on the map (Don't convert 1200m to 1.2km)
- * If both map frame and ruler scale is available, use the ruler scale
- * If question asks for an area, use $\{unit\}^2$
- * Use numerical values (e.g., 4 instead of four)

1901 Directional Answers:

- * Use 8 cardinal directions only: North, North East, East, South East, South, South West, West, North West
- * Write 'North' or 'South' before 'East' or 'West'
- * Notice that the north arrow compass do not always point upward

1905 Multi-Part Answers:

- * Separate with semicolon (;) (e.g., Zone A; Zone B)

1907 Give the final answer in 'Final answer: <your answer>'
 1908 Do not use online search.

1909 **Images:** :

1924 **Question:** The 23rd Ave and E Union St Rezone (Draft) classifies each area into four distinct
 1925 Rezone Areas. With which Rezone Area does 'Rezone Area 4' share its westernmost boundary. Give
 1926 the name of the area in form Rezone Area #.

1927 **Gold Answer:** Rezone Area 6

1929

1930 **Gemini-2.5-Pro:**

1931 I've determined the user's objective: to find the "Rezone Area" west of "Rezone Area 4". I've
 1932 analyzed the map and deconstructed the task. "Rezone Area 4" is the blue-hatched area. Its
 1933 western border is along 22nd Ave. I've identified the adjacent pink area. Now, according to
 the legend, the pink/magenta area corresponds to "Rezone Area 5". Final answer: Rezone Area 5

1934

GPT-5-Think: The image shows a zoning map with areas labeled 4-7, and the title mentions "23rd Ave and E Cherry St Rezone (Draft)." The question asks about Rezone Area 4's westernmost boundary. I'll need to find Area 4 on the map and check which area lies directly to the west of it, likely along 23rd Ave. The map shows colored boxes for Areas 4, 5, and 6. Area 4, labeled in light blue, is near the left margin, adjacent to "NC1-30" and "NC1-40." It seems that Area 4's westernmost boundary touches Area 5, which is directly to the left of Area 4. So, I suspect Area 5 shares this boundary. Final answer: Rezone Area 5

1935

Claude-4-Sonnet: Looking at the map, I can identify Rezone Area 4 by its blue diagonal line pattern. This area is located in the western portion of the map. Examining the westernmost boundary of Rezone Area 4, I can see that it directly borders the magenta/pink colored area, which according to the legend corresponds to Rezone Area 6. Final answer: Rezone Area 6

1944 Listing 2: Cross-map interpretation failure example of Gemini-2.5-Pro on FRIEDA. Other models
 1945 are shown for reference. **Orange** : Task Instruction. **Green** : Correct Answer. **Red** : Incorrect
 1946 Answer.

1947

1948 **System:** :

1949 Answer the questions based on the following criteria:
 General:

1950

- * If question can be answered, write answer in short answer box
- * If answer is a text from the map, copy it as it appears

1951

1952 Numerical Answers:

1953

- * Include units as indicated on the map (Don't convert 1200m to 1.2km)
- * If both map frame and ruler scale is available, use the ruler scale
- * If question asks for an area, use $\{unit\}^2$
- * Use numerical values (e.g., 4 instead of four)

1954

1955 Directional Answers:

1956

- * Use 8 cardinal directions only: North, North East, East, South East, South, South West, West, North West
- * Write 'North' or 'South' before 'East' or 'West'
- * Notice that the north arrow compass do not always point upward

1957

1958 Multi-Part Answers:

1959

- * Separate with semicolon (;) (e.g., Zone A; Zone B)

1960

1961 Give the final answer in 'Final answer: <your answer>'
 1962 Do not use online search.

1963

1964 **Images:** :

1965

1966 **Question:** Identify the Air Quality Monitoring Location closest to the Noise Level Monitoring
 1967 Location 'NL 5'. What is the orientation of this point in relation to 'NL 5'?

1968

1969 **Gold Answer:** North East

1970

1971

1972

1973

1974

1975

1976

1977

1978 **Gemini-2.5-Pro:** I've determined that AQ 6 is the closest point to NL5. Now, I am analyzing
 1979 their relative orientation. It appears that from NL 5, AQ 6 lies in a west-northwest direction
 1980 . Final answer: AQ 6; West

1981

1982 **GPT-5-Think:** Looking at the maps, AQ5 seems nearest to NL5, based on their locations along
 1983 the river. AQ5 seems to be slightly northeast of NL5, just a bit to the east of it. To answer
 1984 the question, it makes sense to say AQ5 is closest to NL5. As for the orientation, I think AQ5
 1985 lies slightly southeast of NL5. The AQ5 triangle is located near the river, south of the
 1986 river bend, while NL5 is to the north. I'll go with: AQ5 lies southeast of NL5. This seems
 1987 like the most accurate conclusion. Final answer: AQ 5; southeast.

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998 **Claude-4-Sonnet:** Looking at both maps, I need to locate NL 5 on the Noise Level Monitoring
 1999 Locations Map and find the closest AQ location on the Ambient Air Quality Monitoring Locations
 2000 Map. NL 5 is located near the Karnatali River area. Examining the AQ locations on the first
 2001 map:

- AQ 5 is positioned very close to the same Karnatali River area
- AQ 6 is slightly further west
- AQ 2, AQ 3, AQ 4 are further south
- AQ 7 and AQ 8 are further north

2002 AQ 5 is clearly the closest Ambient Air Quality Monitoring Location to NL 5.

2003 Comparing the relative positions of AQ 5 and NL 5, AQ 5 appears to be positioned to the east
 2004 of NL 5. Final answer: AQ 5; East"}

Listing 3: Spatial-relation semantics error example of Gemini-2.5-Pro on FRIEDA. Other models are shown for reference. **Orange** : Task Instruction. **Green** : Correct Answer. **Red** : Incorrect Answer.

2000

2001 **System:** :

2002 Answer the questions based on the following criteria:

2003 General:

- 2004 * If question can be answered, write answer in short answer box
- 2005 * If answer is a text from the map, copy it as it appears

2006 Numerical Answers:

- 2007 * Include units as indicated on the map (Don't convert 1200m to 1.2km)
- 2008 * If both map frame and ruler scale is available, use the ruler scale
- 2009 * If question asks for an area, use $\{unit\}^2$
- 2010 * Use numerical values (e.g., 4 instead of four)

2011 Directional Answers:

- 2012 * Use 8 cardinal directions only: North, North East, East, South East, South, South West, West, North West
- 2013 * Write 'North' or 'South' before 'East' or 'West'
- 2014 * Notice that the north arrow compass do not always point upward

2015 Multi-Part Answers:

- 2016 * Separate with semicolon (;) (e.g., Zone A; Zone B)

2017 Give the final answer in 'Final answer: <your answer>'

2018 Do not use online search.

2019 **Images:** :

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

Question: Which 'National Register Districts' overlap with both the 'Ballard' and 'Interbay Dravus' Industrial Lands Subareas within the Ballard-Interbay MIC?

Gold Answer: Washington Ship Canal

2034

2035

2036

2037

2038

Gemini-2.5-Pro: I'm currently focused on dissecting the user's complex query. My goal is to determine the exact regions where the yellow "National Register Districts" overlap with both the purple "Ballard" and orange "Interbay Dravus" subareas, all contained within the "Ballard-Interbay MIC." I'm visualizing the overlay on the map. I've broken down the request into map elements and used the legend to visualize the features. I've concluded that the only district meeting all criteria is the "Chittenden Locks and Lake Washington Ship Canal." Final answer: Chittenden Locks and Lake Washington Ship Canal

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

GPI-5-Think: I need to figure out which National Register Districts overlap with both the 'Ballard' and 'Interbay Dravus' subareas within the Ballard-Interbay MIC. I've got the map, and I think the overlapping yellow polygons (representing districts) fall within both the Ballard (pink?) and Interbay Dravus (green?) subareas. I'll check for yellow dots (properties) and orange polygons (districts), focusing on labels in the north area, like the Ballard Avenue Historic District. The "Washington Ship Canal" National Register District seems to be the most likely answer, as it follows the canal and overlaps both subareas. Final answer: Washington Ship Canal

2050

2051

Claude-4-Sonnet: Looking at the map, I need to identify National Register Districts (shown in orange) that overlap with both the Ballard Industrial Lands Subarea (shown in purple) and the Interbay Dravus Industrial Lands Subarea (shown in orange/peach). After careful examination of the map, I do not see any National Register Districts that overlap with both the Ballard and Interbay Dravus Industrial Lands Subareas within the Ballard-Interbay MIC. Final answer: None