

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 INVERT4TVG: A TEMPORAL VIDEO GROUNDING FRAMEWORK WITH INVERSION TASKS PRESERVING ACTION UNDERSTANDING ABILITY

Anonymous authors

Paper under double-blind review

Other RL based LVLMs may not have a good understanding of complex actions

Action Understanding
Temporal Video Grounding

Video description: A man unbuttons his shirt, takes it off, puts on a different one, and buttons it up.

Query: A person putting on clothes and fastening the buttons.

Ground Truth

7.1s ← → 11.5s

VideoChat-R1

0.9s ← → 6.0s

VideoChat-R1 and Time-R1 unable to discriminate buttoning and unbuttoning.

Time-R1

0s ← → 5.0s

Time-R1: <think>The action of putting on clothes occurs when the person's hand or arm touches the button.</think>

Invert4TVG (ours)

6.9s ← → 11.3s

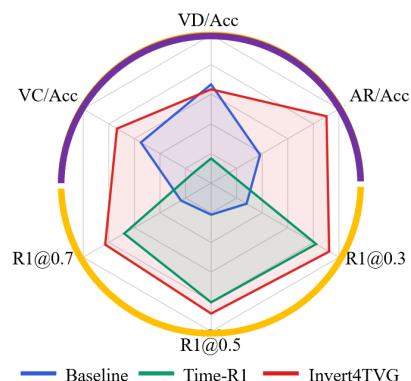


Figure 1: **Left side:** A specific example of temporal video grounding. According to the model’s reasoning process, it can be seen that our method achieves better understanding of actions in the video compared to VideoChat-R1 and Time-R1. **Right side:** statistical results demonstrating that Time-R1, which is optimized solely for the IoU loss, reduces action understanding accuracy (where VC, AR, and VD are the proposed three auxiliary inversion TVG tasks measuring multi-granularity action understanding ability). By introducing Inversion-TVG tasks, our method preserves action understanding ability and thus boosts TVG ability (as shown in R1@0.3, R1@0.5, and R1@0.7). Baseline is QWen-2.5-VL-3B.

ABSTRACT

Temporal Video Grounding (TVG) aims to localize video segments corresponding to a given textual query, which often describes human actions. However, we observe that current methods, usually optimizing for high temporal Intersection-over-Union (IoU), frequently struggle to accurately recognize or understand the underlying actions in both the video and query, thus reducing the effectiveness of these methods. To address this, we propose a novel TVG framework that integrates inversion-based TVG as auxiliary objectives to maintain the model’s action understanding ability. We introduce three kinds of inversion TVG tasks derived from the original TVG annotations: (1) Verb Completion, predicting masked verbs (actions) in queries given video segments; (2) Action Recognition, identifying query-described actions; and (3) Video Description, generating descriptions containing query-relevant actions given video segments. These inversion tasks are entirely derived from the original TVG tasks and are probabilistically integrated with them within a reinforcement learning framework. By leveraging carefully designed reward functions, the model preserves its ability to understand actions, thereby improving the accuracy of temporal grounding. Experiments show our method outperforms state-of-the-art approaches, achieving a 7.1% improvement in R1@0.7 on Charades-STA for a 3B model.

054
055
056
1 INTRODUCTION057
058
059
060
Temporal Video Grounding (TVG) is crucial for long-form video understanding (Gaidon et al., 2013;
Laptev & Pérez, 2007; Darrell & Pentland, 1993). It localizes a video segment matching a textual
query (Gao et al., 2017; Zhang et al., 2023), enabling applications like video-text retrieval (Zhang
et al., 2024) and UAV positioning (Ju et al., 2024).061
062
063
064
065
Existing TVG approaches fall into three paradigms: (1) Traditional methods using hand-crafted
features, sliding windows, and DETR-like networks (Shi et al., 2022; Gordeev et al., 2024); (2)
LVLMs (Bai et al., 2025; Li et al., 2023) that regress segment duration via pretraining; and (3) RL-
finetuned LVLMs, such as Time-R1 (Wang et al., 2025a), using Reinforcement Learning (RL) with
format rewards for structured reasoning and IoU rewards for alignment.066
067
068
069
070
071
072
073
074
075
076
077
078
079
Although significant progress has been made, we still find wrong grounding results in existing SOTA
methods, and most of these wrong cases stem from incorrect action understanding. Figure 1 left
shows one case. In the video, a man unbuttons his shirt, takes it off, puts on another one, and then
buttons it up. The query is “A person putting on clothes and fastening the buttons”, which requires
localizing the actions “putting” and “fastening”. Both VideoChat-R1 and Time-R1 notice a hand
touching a button and localize the action as “buttoning” rather than “unbuttoning”, indicating that
they seem to focus only on the button itself without distinguishing between buttoning and unbuttoning.
We conjecture that these wrong groundings occur because video grounding models are generally
optimized only for IoU. Although IoU is improved, this comes at the cost of reduced action under-
standing capability, which in turn limits their overall video grounding performance. Figure 1 right
demonstrates this statistically. Time-R1 (Wang et al., 2025a), optimized for IoU, shows improve-
ment on TVG metrics (e.g., R1@0.3/R1@0.5/R1@0.7) compared to the baseline Qwen2.5-VL-3B.
However, it exhibits degradation in action understanding tasks (VC/VD/AR), which ultimately ham-
pers its TVG accuracy.080
081
082
083
084
A key insight of this work is that training a TVG model effectively requires jointly training auxiliary
tasks to preserve the model’s action understanding capability. A naive approach to achieving this
would be to train the TVG task alongside general action understanding tasks such as action recog-
nition/detection/classification. However, these general tasks are not specifically designed for the
temporal video grounding objective, and the understanding learned from them may not align well
with the precise temporal localization required in TVG.085
086
087
088
089
090
091
092
093
Unlike general action understanding tasks, we design action understanding tasks that are specifically
tailored for the temporal video grounding task. Specifically, by inverting the input and output of the
original TVG task, we convert the localization task into understanding task, obtaining a set of Invert-
TVG tasks. A key advantage of these Invert-TVG tasks, compared to general action understanding
tasks, is that they share the same training data as the original TVG task. On the same video-query
data, our method performs both video localization (via the original TVG task) and action under-
standing (via the Invert-TVG tasks). This tight coupling enables the learned action understanding
to be directly aligned with and supportive of the temporal grounding objective, resulting in more
effective and synergistic learning.094
095
096
097
098
099
100
101
Specifically, given a video and a natural language query, the original TVG task predicts the temporal
segment duration where the action occurs. Inversely, given a video segment, the proposed Invert-
TVG tasks infer the action-related information defined in the query from the given segment. We
introduce three Invert-TVG tasks: (1) Verb Completion (VC): mask verbs (actions) in the query
and then infer the verbs from video segments. (2) Action Recognition (AR): classify the actions
in a given video segment where the ground-truth action is in the query. (3) Video Description
(VD): generate descriptions for a given video segment, and the descriptions should contain actions
provided in the query.102
103
104
105
106
107
With the well-defined Invert-TVG tasks, we then propose a reinforcement learning framework that
optimizes TVG and Invert-TVG tasks together. However, for large-scale models (e.g., 3B/7B param-
eters), simultaneously optimizing multiple objectives incurs substantial memory overhead. More-
over, the TVG and Invert-TVG tasks are conflict: the ground-truth video segment that TVG is re-
quired to produce is precisely the input to an Invert-TVG task, and the original query that an Invert-
TVG task may ask for is exactly the input to the TVG task. To address this, we adopt an alternating
optimization strategy, executing TVG and Invert-TVG tasks interleavingly. Besides, since temporal

108 video grounding is our main objective while action understanding is an auxiliary objective, we optimize
 109 the TVG task with a higher probability while using a lower probability for the Invert-TVG
 110 tasks.

111 Our contributions include:

112

- 113 • We identify action understanding degradation in TVG from IoU over-optimization, and
 114 address the problem via inversion TVG tasks.
- 115 • We design three inversion TVG tasks which are self-supervised tasks re-purposing TVG
 116 annotations for action understanding, including verb completion, action recognition, and
 117 video description.
- 118 • We propose a reinforcement learning framework dynamically balancing TVG and Invert-
 119 TVG tasks, ensuring robust grounding and understanding.

120 **Temporal Video Grounding.** Temporal Video Grounding (TVG) (Gao et al., 2017; Hendricks et al.,
 121 2017) localizes specific segments in untrimmed videos based on natural language queries. Recent
 122 methods fall into two categories: feature-based and frame-based LVLM approaches. Feature-based
 123 methods (Carreira & Zisserman, 2017; Lin et al., 2022) extract video and text features using pre-
 124 trained encoders, then predict timestamps via multimodal fusion. These rely heavily on feature quality,
 125 limiting performance. Frame-based LVLM methods have recently gained traction for their strong
 126 generalization capabilities. For instance, NumPro (Wu et al., 2025) introduces a frame-numbering
 127 mechanism akin to flipping a manga for efficient temporal grounding, while TimeSuite (Zeng et al.,
 128 2024) employs grounded tuning to enhance Large Language Models (LLMs) for long-form video
 129 understanding. While methods like these and others (Li et al., 2024; Ren et al., 2024) utilize super-
 130 vised fine-tuning to generate event sequences, they can still struggle with precise boundary detection
 131 on benchmarks like Charades-STA compared to specialized feature-based approaches. To address
 132 this, Time-R1 (Wang et al., 2025a) employs reinforcement learning (RL) with IoU rewards, achiev-
 133 ing state-of-the-art TVG performance. However, its focus on temporal metrics neglects semantic
 134 alignment, constraining long-form video understanding

135 **RL in LVLMs.** RL has advanced post-training of LVLMs through Reinforcement Learning with
 136 Human Feedback (RLHF) (Ouyang et al., 2022; Yu et al., 2024) and Reinforcement Learning with
 137 Verifiable Reward (RLVR) (DeepSeek-AI, 2025; Chen et al., 2025). RLHF aligns models with hu-
 138 man preferences, improving tasks like image captioning, while RLVR enhances deterministic tasks
 139 like visual grounding (Liu et al., 2025). However, RL applications in long-form video tasks re-
 140 main underexplored due to temporal complexity and semantic challenges. TimeZero (Wang et al.,
 141 2025b), Time-R1 (Wang et al., 2025a), VideoChat-R1 (Li et al., 2025) apply RL to TVG but over-
 142 looks semantic understanding degradation from IoU-focused rewards. Our Invert4TVG framework
 143 addresses this by repurposing TVG data into self-supervised tasks, enhancing action semantic un-
 144 derstanding and surpassing traditional RL limitations in video grounding.

146 2 METHOD

147 The TVG task aims to temporally localize video segments within long-form videos based on natural
 148 language queries. Given a video V , and a language query q , the goal is to identify the temporal
 149 boundaries $\tau = [t_s, t_e]$ of the segment of V that best corresponds to q , where $t_s, t_e \in \mathbb{R}^+$. The
 150 formal definition of the TVG task is as follows:

$$151 \quad \text{TVG}(V, q) \rightarrow \tau. \quad (1)$$

152 In this work, we introduce Invert4TVG, a framework designed to harness the potential of Large
 153 Vision-Language Model (LVLM) for the TVG task using Reinforcement Learning (RL) combined
 154 with TVG-inversion tasks. The Invert-TVG task is defined as (where q' denotes query-related con-
 155 tent):

$$156 \quad \text{Invert-TVG}(V, \tau) \rightarrow q' \quad (2)$$

157 Our approach is fundamentally a reinforcement learning algorithm that fine-tunes LVLMs (specif-
 158 ically the Qwen2.5-VL model series) by integrating both TVG and Invert-TVG tasks. In the fol-
 159 lowing, we first introduce the fundamentals of GRPO (i.e., Group Relative Policy Optimization, a

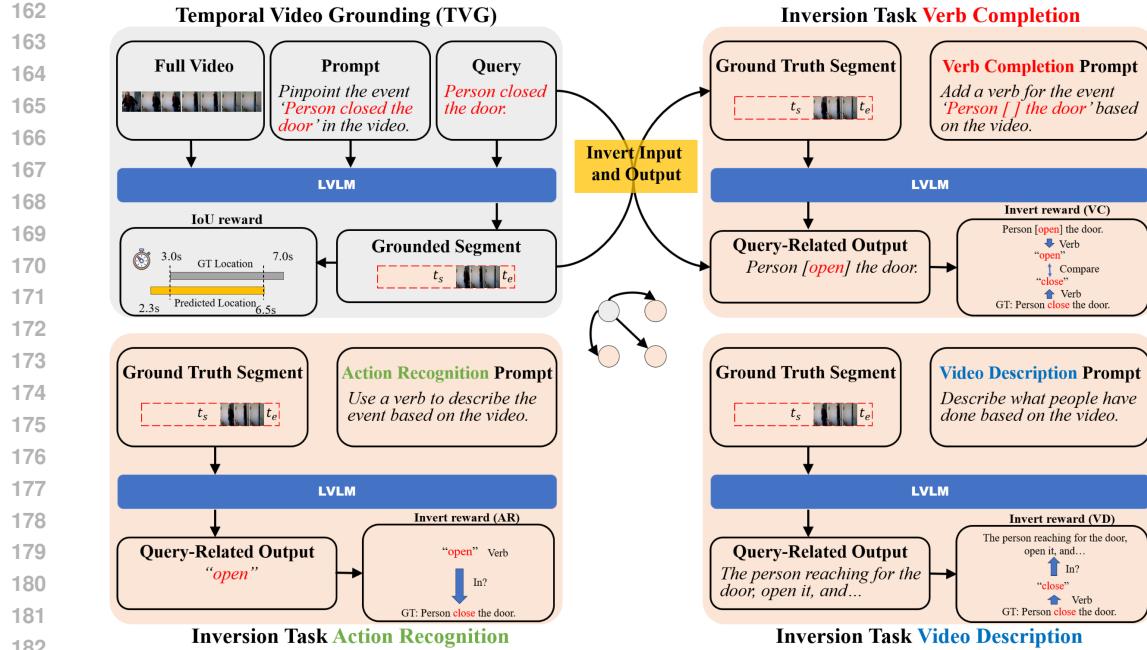


Figure 2: We propose three Invert-TVG tasks. By partially reversing the inputs and outputs of the TVG task we obtain Verb Completion, Action Recognition and Video Description, which reuse the original TVG dataset by taking ground truth video segments as input to reconstruct the target query related actions. The prompts for the three invert-TVG tasks are not identical. For VC, the verb in the query is removed, and the model is required to complete and fill in this verb. AR asks the model to directly estimate the verb in the video. VD requires the model to describe the video content containing action verbs in the query.

reinforcement learning algorithm proposed in (DeepSeek-AI, 2025)). Next, we introduce the proposed inversion TVG tasks, together with reward functions used to train the TVG and Invert-TVG tasks. Finally, we introduce our Invert4TVG reinforcement learning framework.

2.1 PRELIMINARY OF GROUP RELATIVE POLICY OPTIMIZATION

DeepSeek-R1 (DeepSeek-AI, 2025), an early R1-style open-source LLM, uses GRPO to train policy π_θ for reasoning before answers. For query q , it generates responses o_1, \dots, o_G with score with $r(\cdot)$, and maximizes:

$$R(o) = \sum_{i=1}^G \frac{\pi_\theta(o_i)}{\pi_{\theta_{\text{old}}}(o_i)} \cdot \frac{r(o_i) - \text{mean}(\{r(o_i)\}_{i=1}^G)}{\text{std}(\{r(o_i)\}_{i=1}^G)}, \quad (3)$$

where $\pi_\theta(o_i)$ is generation probability, $\pi_{\theta_{\text{old}}}$ is prior state. The full objective with KL is:

$$\max_{\pi_\theta} \mathbb{E}_{o \sim \pi_{\theta_{\text{old}}}(p)} [R(o) - \beta D_{\text{KL}}(\pi_\theta \| \pi_{\text{ref}})], \quad (4)$$

where β is a scaling coefficient. We omit the clipping operation for simplicity.

2.2 INVERT-TVG TASKS AND REWARD FUNCTIONS

In temporal video grounding, the accuracy of model inference highly depends on its understanding of both the video V and the query q . Therefore, we do not rely solely on the IoU reward but also introduce additional rewards to keep or even enhance the model’s action understanding ability. To this end, as illustrated in Figure 2, we design three Invert-TVG tasks and define reward functions measuring how these tasks are fulfilled. Thanks to advances in NLP, a wealth of mature linguistic toolkits (e.g., SpaCy) can now effortlessly convert verbs into their various tenses or even bring them

216 back to the root form, making it feasible for us to compute reward values for the following inversion
 217 tasks.

218 **Verb Completion (fine granularity).** Verb Completion is a task that masks verbs in the query
 219 and asks the model to recover the verbs from the ground truth video segment. For example, if the
 220 original query is “Person closed the door”, the masked sentence is “Person [] the door”. The prompt
 221 is “Add a verb for the event ‘Person [] the door’ based on the video”. As long as the model outputs a
 222 sentence successfully recovering the verbs of the ground truth, a reward is given. For instance, if the
 223 output sentence is “Person [closes] the door” a full reward is given. Due to the randomness in the
 224 model’s output, we are primarily concerned with whether the model comprehends the actions within
 225 the relevant segments. Therefore, we treat verbs in different tenses as equivalent using SpaCy. The
 226 reward function is as follows:

$$227 \quad r_{VC}(o) = \begin{cases} 0 & \text{SpaCy}(v_{pred}) \neq \text{SpaCy}(v_{gt}) \\ 1 & \text{SpaCy}(v_{pred}) = \text{SpaCy}(v_{gt}) \end{cases} \quad (5)$$

230 where v_{pred} represents the predicted verb in the output sentence o , and v_{gt} represents the verb in
 231 the ground truth sentence. A full reward is obtained if the root form of the verbs are equal, where
 232 $\text{SpaCy}(\cdot)$ brings a verb to its root form.

233 **Action Recognition (middle granularity).** Action Recognition task trains and preserves the
 234 model’s action perception capability, and the output of the model is fixed to a single verb. We
 235 feed the model the ground truth video segment with prompt as “Use a verb to describe the event
 236 based on the video”, then compare the predicted verb against any verbs appearing in the ground
 237 truth query description. If the model’s predicted verb is present in the reference sentence, it receives
 238 a full reward. For example, if the model outputs “walk” and the ground-truth sentence is “A person
 239 walks away and laughs”, a full reward is granted because “walk” occurs in the reference. As before,
 240 verb in different tenses are treated as equivalent. The reward function is as follows:

$$241 \quad r_{AR}(o) = \begin{cases} 0 & \text{SpaCy}(v_{pred}) \notin S_{gt} \\ 1 & \text{SpaCy}(v_{pred}) \in S_{gt} \end{cases} \quad (6)$$

244 where v_{pred} represents the predicted verb o , and S_{gt} is the set of root-formed verbs in the ground
 245 truth query.

246 **Video Description (coarse granularity).** Video Description task is employed to train and maintain
 247 the model’s holistic perception of events, yielding a complete segment level description. Specifically,
 248 we feed the model the ground-truth video segment and prompt as “Describe what people have
 249 done based on the video”. A full reward is granted as long as ground-truth verbs appear in the output
 250 sentence of the model. For instance, if the ground-truth verb is “jump” and the model produces “A
 251 person jumps and laughs” the reward is awarded because “jump” is present. The reward function is
 252 as follows:

$$253 \quad r_{VD}(o) = \begin{cases} 0 & \text{SpaCy}(v_{gt}) \notin S_{pred} \\ 1 & \text{SpaCy}(v_{gt}) \in S_{pred} \end{cases} \quad (7)$$

255 where v_{gt} represents the ground truth verb, and S_{pred} denotes the set of root-formed verbs in the
 256 sentence o predicted by the model.

257 2.3 IOU AND FORMAT REWARD FUNCTIONS

259 For the TVG task, we mainly employ the IoU reward function. Besides, we introduce a Format
 260 reward to enforce the model to output the thinking process.

262 **IoU Reward.** As stated above, TVG aims at estimating the time interval in the video that is asso-
 263 ciated with the content of a given textual query. We use the Intersection over Union (IoU) (Yuan
 264 et al., 2021) between the time interval predicted by the model and the ground-truth interval as the
 265 reward function. This reward function effectively describes the accuracy of the time interval pre-
 266 dicted by the model. Given predicted $[t_s, t_e]$ and ground-truth $[t'_s, t'_e]$ segments, the IoU reward can
 267 be calculated as follows:

$$268 \quad r_{IoU}(o) = \frac{|[t_s, t_e] \cap [t'_s, t'_e]|}{|[t_s, t_e] \cup [t'_s, t'_e]|} \quad (8)$$

269 where \cap and \cup denote set intersection and union operations.

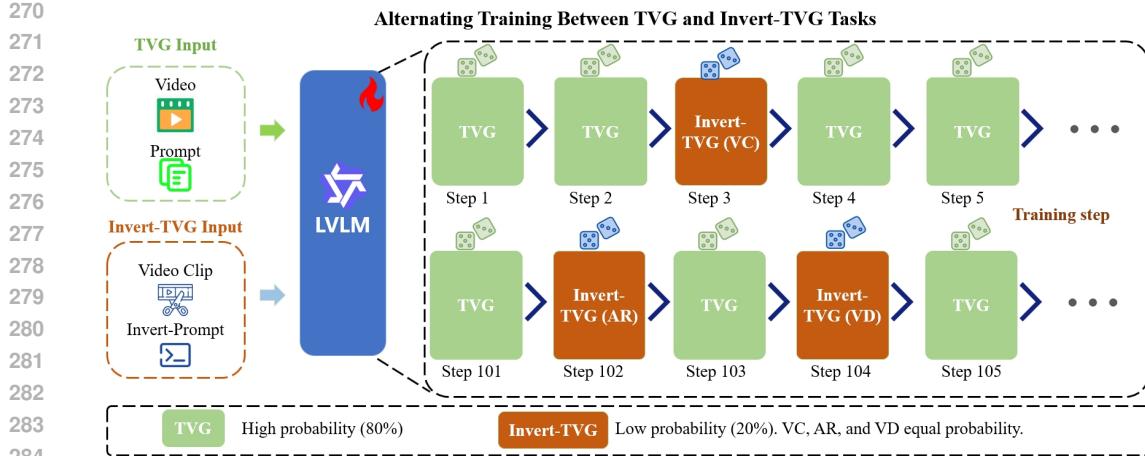


Figure 3: Overview of the proposed Invert4TVG framework. The LVLM dynamically chooses between TVG tasks and Invert-TVG tasks according to different probabilities. Whenever an Invert-TVG task is selected, one of the three variants VC, AR or VD is chosen with equal probability.

Format Reward. Recently, Time-R1 (Wang et al., 2025a) and VideoChat-R1 (Li et al., 2025) employ a Format reward making the model explicitly output its thinking process before making predictions. Following them, we introduce a template-based reasoning reward that incentivizes the model to generate intermediate reasoning steps prior to providing answers. The format is as following: `<think>***</think> <answer> t_s to t_e </answer>`. The reward is formulated as:

$$r_{\text{form}}(o) = \begin{cases} 0, & \text{if } o \text{ has wrong format} \\ 1, & \text{if } o \text{ has correct format} \end{cases} \quad (9)$$

2.4 INVERT4TVG REINFORCEMENT LEARNING FRAMEWORK

While a joint training approach that processes all TVG and Invert-TVG tasks simultaneously might seem straightforward, this method suffers from several critical limitations: (1) Memory inefficiency: maintaining separate computation graphs for multiple tasks drastically increases GPU memory consumption; (2) Optimization conflict: gradient updates from different tasks may interfere with each other, especially when their loss landscapes are not aligned; (3) Training instability: the varying convergence rates of different tasks make it challenging to balance their contributions; (4) Task bias: the model may prioritize easier tasks while neglecting others. These drawbacks motivate us to adopt the training paradigm illustrated in Figure 3.

We implement a probabilistic sampling strategy where each training iteration has a high probability (80% in default) of executing the primary TVG task (using IoU and format rewards) and a low probability of performing an Invert-TVG task. When selecting Invert-TVG, we uniformly sample among VC, AR and VD. This design ensures the model maintains its core action understanding capabilities while primarily focusing on temporal grounding. The asymmetric probability distribution prevents the auxiliary tasks from overwhelming the main objective while still providing regular semantic reinforcement. Formally, the reward for training the TVG task is:

$$r_{\text{TVG}}(o) = r_{\text{format}}(o) + r_{\text{IoU}}(o). \quad (10)$$

The reward used to train an Invert-TVG task is:

$$r_{\text{Invert-TVG}}(o) = r_{\text{format}}(o) + r_{\text{inv}}(o), \quad (11)$$

where r_{inv} is any of r_{VC} , r_{AR} , and r_{VD} . The overall reward function is defined as:

$$r(o) = \alpha r_{\text{TVG}}(o) + \beta r_{\text{Invert-TVG}}(o), \quad (12)$$

324 where the two coefficients α and β take values in $\{0, 1\}$, with the constraint $\alpha + \beta = 1$. Their joint
 325 probability distribution is defined as (where $0 \leq p \leq 1$):
 326

$$327 \quad P(\alpha, \beta) = \begin{cases} 328 \quad p & \text{if } (\alpha, \beta) = (1, 0), \\ 329 \quad 1 - p & \text{if } (\alpha, \beta) = (0, 1), \\ 330 \quad 0 & \text{otherwise.} \end{cases} \quad (13)$$

331 As mentioned above, $p = 0.8$ is an empirically determined parameter derived from experiments.
 332

334 3 EXPERIMENTS

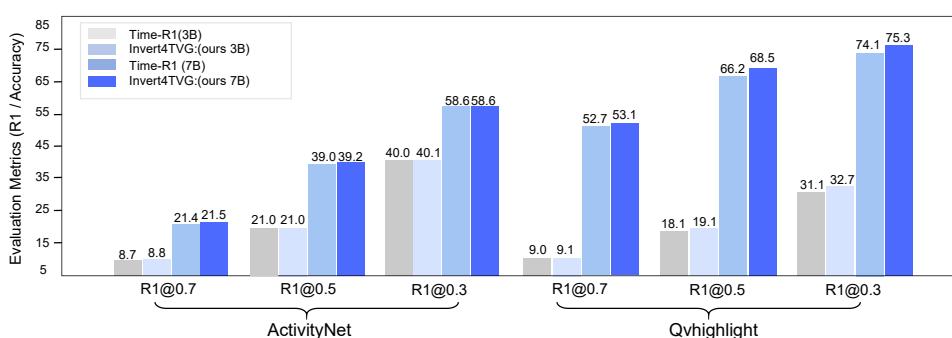
336 We now evaluate our Invert4TVG model on the task of temporal video grounding. Code is attached.
 337

338 3.1 EXPERIMENTAL SETUP

340 **Benchmarks.** We test our model on three temporal video grounding datasets: (1) Charades-STA
 341 ([Sigurdsson et al., 2016](#)) contains 6,672 long videos capturing indoor human activities. The official
 342 split for the TVG task includes 12,408 clip-query pairs for training and 3,720 for testing. (2) ActivityNet
 343 ([Heilbron et al., 2015](#)) comprises 20K long videos with an average of 3.65 clip-query pairs
 344 per video. We use the standard dataset splits with 37,421 training, 17,505 validation, and 17,031 test
 345 samples. (3) We further evaluate on QvHighlight ([Lei et al., 2021](#)), a high-resolution set of 10,460
 346 long YouTube videos paired with 48k manually annotated clip-queries. To match Charades-STA
 347 and ActivityNet formats, multi-segment localizations are split into single-segment tasks, forming a
 348 balanced benchmark for fine-grained temporal grounding.

349 **Implementation Details.** We implement our LVLM using the Qwen2.5-VL model ([Bai et al., 2025](#)),
 350 as the backbone. To balance efficiency and memory consumption, we sample video frames
 351 at 2 FPS and resize them, resulting in approximately 2.8 million pixels per video (e.g., a 50-
 352 second video yields 100 frames of size $96 \times 96 \times 3$). Our implementation utilizes SpaCy’s
 353 `en_core_web_sm-3.8.0` model (12MB) to extract verbs from sentences and transform them
 354 across different tenses. For optimization, we employ the AdamW optimizer ([Loshchilov & Hutter, 2019](#))
 355 with the following parameters: $\beta_1 = 0.9$, $\beta_2 = 0.999$, $\epsilon = 1 \times 10^{-8}$, a weight decay
 356 of 0.0, and a learning rate of 5×10^{-5} . The training time per epoch is approximately 80 hours.
 357 To ensure reproducibility, our code, configuration files, and execution scripts are available in the
 358 supplementary materials.

359 **Evaluation metrics.** For TVG, we adopt the “R1@m” evaluation protocol to compare with state-
 360 of-the-art models, which computes the percentage of samples where the top-1 predicted segment has
 361 an IoU greater than a threshold m , with $m \in \{0.3, 0.5, 0.7\}$. For brevity, we also adopt mIoU, which
 362 calculates the average IoU on all testing data as an alternative metric.



375 Figure 4: Performance of temporal video grounding on ActivityNet and QvHighlight. We compare
 376 our method with Time-R1 (the best-performing among previous methods). All the models are zero-
 377 shot tested.

378
 379 Table 1: Performance of temporal video grounding on Charades-STA. Methods labeled FT with a
 380 ✓ were fine-tuned on the Charades-STA training set. Methods marked with * were first pre-trained
 381 on extra TVG datasets¹ and then fine-tuned on the Charades-STA training set, while those without
 382 * are only trained on Charades-STA. We compare our method against existing 3B, 7B open-source
 383 LVLM. We highlight our results and the best-performing baselines using bold and underlining for
 384 clear comparison.

385 Type	386 Method	387 Size	388 FT	389 Charades-STA		
				390 R1@0.3	391 R1@0.5	392 R1@0.7
393 VLP	2D-TAN*	-	✓	57.3	45.8	27.9
	Moment-DETR*	-	✓	65.8	52.1	30.6
	EaTR*	-	✓	-	68.4	44.9
	SnAG*	-	✓	-	64.6	46.2
394 SFT	395 VideoChat-Flash	396 7B		397 74.5	398 53.1	399 27.6
	396 TRACE	397 7B		398 -	399 40.3	400 19.4
	397 HawkEye*	398 7B	✓	399 72.5	400 58.3	401 28.8
	398 TimeSuite*	399 7B	✓	400 79.4	401 67.1	402 43.0
403 RL(3B)	404 Time-R1(3B)	405 3B		406 74.6	407 53.1	408 26.0
	405 Time-R1*(3B)	406 3B	✓	407 78.7	408 <u>64.1</u>	409 <u>36.9</u>
	406 Invert4TVG (ours 3B)	407 3B	✓	408 80.8	409 69.0	410 44.0
411 RL(7B)	412 Time-R1 (7B)	413 7B		414 78.1	415 60.8	416 35.3
	412 Time-R1*(7B)	413 7B	✓	414 82.8	415 <u>72.2</u>	416 <u>50.1</u>
	413 Invert4TVG (ours 7B)	414 7B	✓	415 83.0	416 72.5	417 51.4

¹ YT-Temporal, DiDeMo, QuerYD, InternVid, HowTo100M datasets, our method is not pretrained on those datasets.

403 3.2 COMPARISON WITH STATE-OF-THE-ART APPROACHES

404 We compare Invert4TVG with state-of-the-art TVG methods, including both traditional video-
 405 language pre-training models (VLP), recent large video-language models fine-tuned via SFT and
 406 RL-based approaches.

407 **Comparisons on the Charades-STA dataset with fine-tuning.** As shown in Table 1, Invert4TVG
 408 surpasses not only VLP-based and SFT-based models but also outperforms RL-based approaches un-
 409 der identical conditions. For example, on Charades-STA, the 7B variant of Invert4TVG achieves an
 410 R1@0.7 of 51.4, exceeding TimeSuite (43.0), SnAG (46.2), and Time-R1 (50.1). The improvements
 411 are more pronounced for the 3B variant. Across R1@0.3, R1@0.5, and R1@0.7, Invert4TVG’s 3B
 412 model outperforms the 3B version of Time-R1.

413 **Comparisons on the ActivityNet and QvHighlight datasets in zero-shot settings.** As shown in
 414 Figure 4, in zero-shot settings, Invert4TVG’s 3B and 7B variants outperform Time-R1 on R1@0.3,
 415 R1@0.5, and R1@0.7 over ActivityNet. On QvHighlight, where we compare single-segment pre-
 416 dictions, Invert4TVG consistently outperforms Time-R1 across R1@0.3, R1@0.5, and R1@0.7.
 417 ActivityNet contains only 200 action categories, whereas QvHighlight covers a significantly larger
 418 and more diverse set, with far more complex scene-action correlations. This disparity underscores
 419 the superiority of our method in understanding intricate actions.

421 3.3 ABLATION STUDY

422 We conduct a detailed ablation on the Invert4TVG-3B model to investigate the contribution of the
 423 design strategies.

424 **Using different combinations of Invert-TVG tasks versus employing them in combination.** As
 425 shown in Table 2, using VC, AR, or VD alone instead of jointly yields lower performance. Only-VD,
 426 which emphasizes contextual understanding, peaks at R1@0.3 but falls short on precise localization.
 427 Only-AR, focused on immediate actions, reaches the highest R1@0.7 of 43.8. Only-VC outputs are
 428 less random than Only-VD yet less specific than Only-AR, achieving the best R1@0.5 (68.0). The
 429 mixed-task Invert4TVG surpasses all three individual tasks across all three metrics, demonstrating
 430 that joint training outperforms separate use.

432 The combination of VC and AR
 433 improves R1@0.7 to 43.8, outper-
 434 forming either task alone (VC: 42.0;
 435 AR: 43.8), indicating comple-
 436 mentary benefits between verb comple-
 437 tion and action recognition. The
 438 VC+VD pair achieves the high-
 439 est R1@0.3 (80.0) among two-task
 440 setups, suggesting that video de-
 441 scription aids verb-focused localiza-
 442 tion. Invert4TVG (integrating all
 443 three auxiliary tasks) achieves the
 444 best overall results (R1@0.7: 44.0),
 445 demonstrating that multi-task syn-
 446 ergy is maximized when all compo-
 447 nents are jointly optimized.

Table 2: Ablation study using only TVG (Time-R1), VC (verb Completion), AR (action recognition), VD (video de-
 scription), and their mixed usage.

Type	Method	Charades-STA		
		R1@0.3	R1@0.5	R1@0.7
RL	Only-TVG	78.7	64.1	36.9
	Only-VD	79.1	64.3	39.4
	Only-AR	78.2	65.2	43.8
	Only-VC	78.8	68.0	42.0
	AR+VD	79.6	67.9	43.6
	VC+AR	78.8	68.1	43.8
	VC+VD	80.0	68.5	42.1
	Invert4TVG	80.8	69.0	44.0

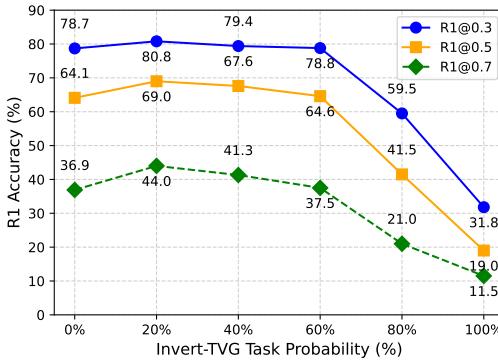


Figure 5: The R1 accuracy curves. Blue, orange, and green show how the three R1 metrics evolve as the Invert-TVG task probability ($1 - p$) gradually increases.

466 **Exploiting different probabilities for the TVG and Invert-TVG tasks.** As shown in Figure 5,
 467 Varying the task probability markedly alters training outcomes. At 20% Invert-TVG task probability,
 468 the model performs best, raising R1@0.7 from 36.9 (no Invert task) to 44.0. As the Invert-TVG task
 469 probability grows, the model increasingly emphasizes action recognition while neglecting temporal
 470 grounding. Between 60% and 80% Invert-TVG, temporal video grounding performance steadily
 471 declines, falling below the pure TVG baseline. When Invert-TVG probability reaches 100 %, the
 472 model performs only the Invert-TVG task and yields the worst results. According to the experiments,
 473 we choose to set $p = 0.8$ in Eq. 13.

474 **Binary Invert-TVG rewards vs. co-**

475 **sine similarity-based rewards.** As
 476 shown in Table 3, we observe that
 477 employing a simple binary Invert-
 478 TVG reward (0 or 1) during train-
 479 ing yields superior outcomes com-
 480 pared to more intricate reward mech-
 481 anisms. When training for the same
 482 two epochs, the employed Invert-
 483 TVG Reward outperforms the cosine
 484 similarity reward across all three eval-
 485 uation metrics (R1@0.3, R1@0.5,
 486 R1@0.7). This advantage stems from
 487 the controllability and stability of the
 488 binary reward design, whereas cosine
 489 similarity introduces higher varian-
 490 ce and optimization instability. For
 491 example, in our implementation, “run”
 492 and “eat” yield a cosine similarity of 0.2
 493 despite their weak semantic link. There-
 494 fore, binary Invert-TVG reward is a better
 495 choice.

Table 3: The results using binary Invert-TVG reward or co-sine similarity reward for training.

Reward	R1@0.3	R1@0.5	R1@0.7
Cosine Similarity	76.2	62.2	39.8
Binary 0 or 1	80.8	69.0	44.0

486 4 CONCLUSION
487488 In this work, we present Invert4TVG, an approach that introduces Invert-TVG tasks, requiring the
489 model to generate query-related content from a video and its ground-truth temporal segment. We de-
490 sign three variants of Invert-TVG, including verb completion, action recognition, and video descrip-
491 tion. These tasks encourage the model to retain and enhance its action understanding capabilities.
492 We develop a Invert4TVG RL framework that jointly optimizes TVG and Invert-TVG tasks. In addi-
493 tion to standard IoU and format rewards, we introduce Invert-TVG rewards to promote performance
494 on Invert-TVG tasks. During training, the model primarily performs TVG at a high probability,
495 while intermittently switching to Invert-TVG tasks at a lower probability. This balanced strategy
496 ensures robust temporal localization while preserving semantic action-verb alignment. Our work
497 bridges TVG-LVLM gap, unlocking higher extensions in traditional tasks. Experiments demon-
498 strate the effectiveness of our method over existing approaches, achieving significant improvements
499 of grounding accuracy. The reasoning process also shows that the proposed method indeed under-
500 stands actions better than compared approaches.
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540
541

ETHICS STATEMENT

542
543
544
545
546
547
This study exclusively utilizes publicly available open-source models and datasets; no proprietary
or sensitive information is involved, and all data are free of personally identifiable content. We have
strictly followed the corresponding licenses and usage guidelines. Although the present work poses
no apparent ethical risks, we caution that—like many machine learning models—its outputs could
be misapplied in unforeseen contexts. We therefore advocate responsible use and encourage ongoing
efforts to identify and mitigate potential biases inherent in open-source datasets.548
549

REPRODUCIBILITY STATEMENT

550
551
552
553
554
555
We are committed to ensuring the reproducibility of our work. The models, training datasets,
prompts, and hyperparameters used in our experiments are fully documented in Section 4.1 and
Appendix C. These descriptions should allow researchers to replicate our experimental setup an-
d results without requiring additional resources beyond those specified.556
557

REFERENCES

558
559
Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, and Song. Qwen2.5-VL technical
report, 2025.
560
561
Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the kinetics
dataset. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 6299–6308, Honolulu, HI, 2017. IEEE.
562
563
Liang Chen, Lei Li, Haozhe Zhao, Yifan Song, and Vinci. R1-V: Reinforcing super generalization
ability in vision-language models with less than \$3, 2025. URL <https://github.com/Deep-Agent/R1-V>.
564
565
Trevor Darrell and Alex Pentland. Space-Time gestures. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 335–340, New York, NY, USA, June 1993. IEEE.
566
567
DeepSeek-AI. DeepSeek-R1: Incentivizing reasoning capability in LLMs via reinforcement learn-
ing, 2025. URL <https://arxiv.org/abs/2501.12948>.
568
569
Adrien Gaidon, Zaid Harchaoui, and Cordelia Schmid. Temporal localization of actions with Ac-
toms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(11):2782–2795, 2013.
doi: 10.1109/TPAMI.2013.65.
570
571
Jiyang Gao, Chen Sun, Zhenheng Yang, and Ram Nevatia. TALL: Temporal activity localization
via language query. In Proceedings of the IEEE International Conference on Computer Vision,
pp. 5267–5275, 2017.
572
573
Aleksandr Gordeev, Vladimir Dokholyan, Irina Tolstykh, and Maksim Kuprashevich. Saliency-
Guided DETR for moment retrieval and highlight detection, 2024.
574
575
Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem, and Juan Carlos Niebles. ActivityNet:
A large-scale video benchmark for human activity understanding. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 961–970, Boston, Mass., 2015.
IEEE.
576
577
Lisa Anne Hendricks, Oliver Wang, Eli Shechtman, Josef Sivic, Trevor Darrell, and Bryan Russell.
Localizing moments in video with natural language. In Proceedings of the IEEE International
Conference on Computer Vision, pp. 5803–5812, Venice, Italy, 2017. IEEE.
578
579
Hao Ju, Shaofei Huang, Si Liu, and Zhedong Zheng. Video2BEV: Transforming drone videos to
BEVs for video-based geo-localization, 2024.
580
581
Ivan Laptev and Patrick Pérez. Retrieving actions in movies. In 2007 IEEE 11th International
Conference on Computer Vision, pp. 1–8. IEEE, 2007.

594 Jie Lei, Tamara L. Berg, and Mohit Bansal. QVHighlights: Detecting moments and highlights in
 595 videos via natural language queries. In *Advances in Neural Information Processing Systems*,
 596 volume 34, pp. 12611–12623, 2021.

597

598 Kunchang Li, Yinan He, Yi Wang, Yizhuo Li, Wenhui Wang, Ping Luo, Yali Wang, Limin Wang,
 599 and Yu Qiao. VideoChat: Chat-centric video understanding, 2023.

600

601 Xinhao Li, Yi Wang, Jiashuo Yu, Xiangyu Zeng, Yuhua Zhu, Haian Huang, Jianfei Gao, Kunchang
 602 Li, Yinan He, Chenting Wang, Yu Qiao, Yali Wang, and Limin Wang. Videochat-flash: Hierar-
 603 chical compression for long-context video modeling, 2024.

604

605 Xinhao Li, Ziang Yan, Desen Meng, Lu Dong, Xiangyu Zeng, Yinan He, Yali Wang, Yu Qiao,
 606 Yi Wang, and Limin Wang. VideoChat-R1: Enhancing spatio-temporal perception via reinforce-
 607 ment fine-tuning, 2025. URL <https://arxiv.org/abs/2504.06958>.

608

609 Kevin Qinghong Lin, Jinpeng Wang, Mattia Soldan, Michael Wray, Rui Yan, Eric Z Xu, Difei Gao,
 610 Rong-Cheng Tu, Wenzhe Zhao, and Weijie Kong. Egocentric video-language pretraining. In
 611 *Advances in Neural Information Processing Systems*, volume 35, pp. 7575–7586, 2022.

612

613 Ziyu Liu, Zeyi Sun, Yuhang Zang, Xiaoyi Dong, Yuhang Cao, Haodong Duan, Dahua Lin, and Jiaqi
 614 Wang. Visual-RFT: Visual reinforcement fine-tuning, 2025.

615

616 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International
 Conference on Learning Representations*. OpenReview.net, 2019. URL <https://openreview.net/forum?id=Bkg6RiCqY7>.

617

618 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 619 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 620 low instructions with human feedback. In *Advances in Neural Information Processing Systems*,
 621 volume 35, pp. 27730–27744. NeurIPS, 2022.

622

623 Shuhuai Ren, Linli Yao, Shicheng Li, Xu Sun, and Lu Hou. TimeChat: A time-sensitive multimodal
 624 large language model for long video understanding. In *Proceedings of the IEEE/CVF Conference
 625 on Computer Vision and Pattern Recognition*, pp. 14313–14323. IEEE, 2024.

626

627 Dingfeng Shi, Yujie Zhong, Qiong Cao, Jing Zhang, Lin Ma, Jia Li, and Dacheng Tao. ReAct:
 628 Temporal action detection with relational queries. In *Proceedings of the European Conference on
 629 Computer Vision (ECCV)*, pp. 105–120. Springer, 2022. doi: 10.1007/978-3-031-20080-9_7.

630

631 Gunnar A. Sigurdsson, Gülcin Varol, Xiaolong Wang, Ali Farhadi, Ivan Laptev, and Abhinav Gupta.
 632 Hollywood in homes: Crowdsourcing data collection for activity understanding. In *Proceedings
 633 of the European Conference on Computer Vision (ECCV)*, 2016.

634

635 Ye Wang, Ziheng Wang, Boshen Xu, Yang Du, Kejun Lin, Zihan Xiao, Zihao Yue, Jianzhong Ju,
 636 Liang Zhang, Dingyi Yang, Xiangnan Fang, Zewen He, Zhenbo Luo, Wenxuan Wang, Junqi Lin,
 637 Jian Luan, and Qin Jin. Time-R1: Post-training large vision language model for temporal video
 638 grounding, 2025a. URL <https://arxiv.org/abs/2503.13377>.

639

640 Ye Wang, Ziheng Wang, Boshen Xu, Yang Du, Kejun Lin, Zihan Xiao, Zihao Yue, Jianzhong Ju,
 641 Liang Zhang, Dingyi Yang, Xiangnan Fang, Zewen He, Zhenbo Luo, Wenxuan Wang, Junqi Lin,
 642 Jian Luan, and Qin Jin. TimeZero: Temporal video grounding with Reasoning-Guided LVLM,
 643 2025b. URL <https://arxiv.org/abs/2503.13377v1>.

644

645 Yongliang Wu, Xinting Hu, Yuyang Sun, Yizhou Zhou, Wenbo Zhu, Fengyun Rao, Bernt Schiele,
 646 and Xu Yang. Number it: Temporal grounding videos like flipping manga. In *Proceedings of the
 647 Computer Vision and Pattern Recognition Conference*, pp. 13754–13765, 2025.

648

649 Tianyu Yu, Yuan Yao, Haoye Zhang, Taiwen He, Yifeng Han, Ganqu Cui, Jinyi Hu, Zhiyuan
 650 Liu, Hai-Tao Zheng, Maosong Sun, et al. RLHF-V: Towards trustworthy MLLMs via behav-
 651 ior alignment from fine-grained correctional human feedback. In *Proceedings of the IEEE/CVF
 652 Conference on Computer Vision and Pattern Recognition*, pp. 13807–13816, Seattle, WA, 2024.
 653 IEEE.

648 Yitian Yuan, Xiaohan Lan, Xin Wang, Long Chen, Zhi Wang, and Wenwu Zhu. A closer look at tem-
649 poral sentence grounding in videos: Dataset and metric. In Proceedings of the 2nd International
650 Workshop on Human-Centric Multimedia Analysis, pp. 13–21, 2021.

651

652 Xiangyu Zeng, Kunchang Li, Chenting Wang, Xinhao Li, Tianxiang Jiang, Ziang Yan, Songze
653 Li, Yansong Shi, Zhengrong Yue, Yi Wang, et al. Timesuite: Improving mllms for long video
654 understanding via grounded tuning. arXiv preprint arXiv:2410.19702, 2024.

655 Gengyuan Zhang, Mang Ling Ada Fok, Jialu Ma, Yan Xia, Daniel Cremers, Philip Torr, Volker
656 Tresp, and Jindong Gu. Localizing events in videos with multimodal queries, 2024.

657

658 Hao Zhang, Aixin Sun, Wei Jing, and Joey Tianyi Zhou. Temporal sentence grounding in videos:
659 A survey and future directions. IEEE Transactions on Pattern Analysis and Machine Intelligence,
660 45(8):10443–10465, 2023. doi: 10.1109/TPAMI.2023.3258628.

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A PRINCIPLE OF ALGORITHM FOR INVERT4TVG
703704 **Algorithm 1** GRPO Training with Randomized Invert-TVG Task Selection
705

706 1: **Input:** Video V , query q , LVLM parameters θ , probability p , reward function $r_{\text{TVG}}(o)$, a list of
707 Invert-TVG tasks $T_{\text{Invert-TVG}} = \{\text{Invert-TVG}_i\}_{i=1}^N$ with corresponding rewards $\{r_i\}_{i=1}^N$, learning
708 rate η .
709 2: **Output:** Optimized LVLM parameters θ balancing localization accuracy and video-language
710 alignment.
711 3: Define forward TVG task: $\text{TVG}(V, q) \rightarrow \tau$
712 4: Define a list of Invert-TVG tasks, where each $\text{Invert-TVG}_i(V, \tau) \rightarrow q'_i$
713 5: **while** not converged **do**
714 6: Sample a random value $u \sim \text{Uniform}(0, 1)$
715 7: **if** $u \leq p$ **then**
716 8: Select reward $r = r_{\text{TVG}}(o)$ {Optimize parameters related to τ (localization accuracy)}
717 9: Compute gradient $\nabla_{\theta} r$ w.r.t. parameters affecting τ
718 10: **else**
719 11: Randomly sample an Invert-TVG task $\text{Invert-TVG}_i \sim T_{\text{Invert-TVG}}$ {Select a task from the
720 list}
721 12: Generate its output $q'_i \leftarrow \text{Invert-TVG}_i(V, \tau)$
722 13: Select the corresponding reward $r = r_i(o)$ {Optimize for the sampled Invert-TVG task}
723 14: Compute gradient $\nabla_{\theta} r$ w.r.t. parameters affecting q'_i
724 15: **end if**
725 16: Update parameters: $\theta \leftarrow \theta + \eta \nabla_{\theta} r$ {Gradient ascent to maximize reward}
726 17: **end while**
727 18: **Result:** The model retains both localization accuracy (via τ) and diverse video-language align-
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

729 B THEORETICAL JUSTIFICATION FOR MULTI-TASK RL IN INVERT4TVG
730

To demonstrate the advantages of incorporating the Invert-TVG task into the RL framework, we provide a theoretical analysis showing that the multi-task approach improves semantic alignment and generalization compared to single-task TVG training. We follow the Pareto optimality framework in multi-task reinforcement learning, adapted to our setting where the joint reward balances temporal localization and semantic fidelity.

Let π_{θ} denote the policy (LVLM), and D the data distribution over videos V , queries q , and ground-truth segments τ . The single-task objective (TVG-only, as in prior works like Time-R1) maximizes:

$$\max_{\pi_{\theta}} \mathbb{E}_{o \sim \pi_{\theta}} [R_{\text{TVG}}(o)] - \beta D_{\text{KL}}(\pi_{\theta} \parallel \pi_{\text{ref}}), \quad (14)$$

where $R_{\text{TVG}}(o) = r_{\text{IoU}}(o) + r_{\text{form}}(o)$.

In our multi-task setting, we introduce the joint reward $R_{\text{joint}}(o) = R_{\text{TVG}}(o) + \lambda R_{\text{Invert}}(o)$, with $\lambda > 0$ balancing the tasks. The objective becomes:

$$\max_{\pi_{\theta}} \mathbb{E}_{o \sim \pi_{\theta}} [R_{\text{joint}}(o)] - \beta D_{\text{KL}}(\pi_{\theta} \parallel \pi_{\text{ref}}). \quad (15)$$

Lemma 1 (Semantic Alignment Improvement). *The Invert-TVG task minimizes a semantic loss $L_{\text{sem}} = \mathbb{E}_{(V, \tau) \sim D} [d(q', q)]$, where $d(\cdot, \cdot)$ is a distance metric (e.g., verb matching or KL divergence on embeddings). Then, the joint loss satisfies $L_{\text{joint}} \leq L_{\text{TVG}} + C$ for some constant $C > 0$, as R_{Invert} provides positive feedback on semantic fidelity.*

Proof. By Jensen's inequality and non-negativity of $R_{\text{Invert}} \geq 0$ (binary rewards in our design), $\mathbb{E}[R_{\text{joint}}] \geq \mathbb{E}[R_{\text{TVG}}] + \lambda \min R_{\text{Invert}} \geq \mathbb{E}[R_{\text{TVG}}]$, assuming $R_{\text{Invert}} \geq 0$. This implies the multi-task policy reduces semantic drift, as Invert rewards enforce alignment (e.g., verb recovery). \square

theorem 1 (Pareto Superiority). *The multi-task policy π_{joint}^* is Pareto superior to the single-task policy π_{TVG}^* if there exists θ such that $R_{\text{TVG}}(\pi_{\theta}) \geq R_{\text{TVG}}(\pi_{\text{TVG}}^*)$ and $R_{\text{Invert}}(\pi_{\theta}) > 0$.*

756 *Proof.* Consider the convex optimization formulation: minimize $L_{\text{TVG}} + \lambda L_{\text{Invert}}$. Assuming L_{Invert} is convex (e.g., cross-entropy-like semantic loss), the Pareto frontier dominates the single-task optimum. The KL regularizer ensures the multi-task solution lies on a superior frontier, as feedback from Invert reduces divergence: $D_{\text{KL}}(\pi_{\text{joint}} \parallel \pi_{\text{ref}}) \leq D_{\text{KL}}(\pi_{\text{TVG}} \parallel \pi_{\text{ref}}) - \Delta$ for $\Delta > 0$ from semantic regularization. \square

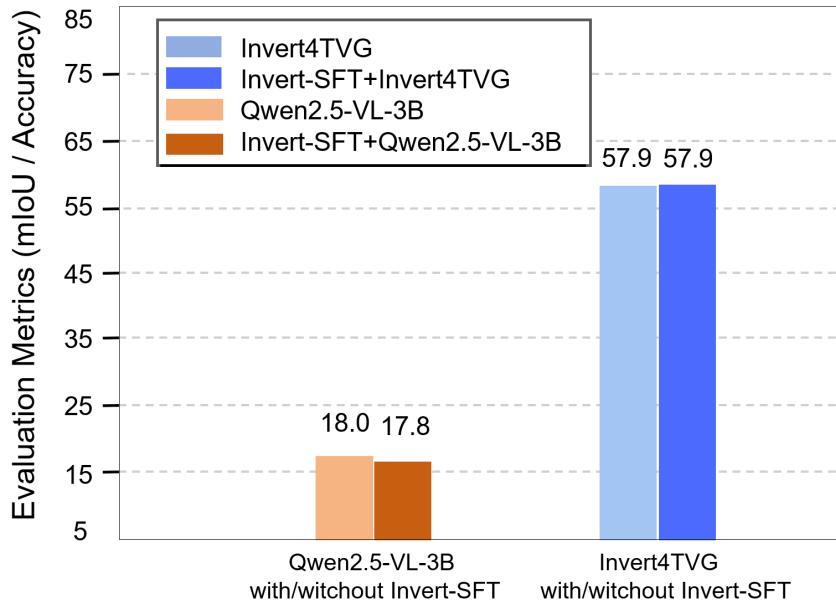
761 **Corollary 1** (Generalization Bound). *In migrating TVG to LVLMs, semantic drift is reduced by*
 762 *Invert tasks, yielding a generalization error bound: $\text{Err}_{\text{joint}} \leq \text{Err}_{\text{TVG}} - \eta\lambda$, where η is a learning*
 763 *rate factor derived from multi-task boosting.*

765 This analysis justifies the inclusion of Invert-TVG, showing improved alignment and generalization
 766 on the Pareto front.

768 C MORE IMPLEMENTATION DETAILS

770 We implement our model using the Qwen2.5-VL model as the backbone, selected for its robust fea-
 771 ture extraction capabilities in video understanding tasks. To balance training efficiency and memory
 772 constraints, we sample video frames at 2 frames per second (FPS), adaptively resizing each frame
 773 to maintain approximately 2.8 million pixels per video. For example, a 50-second video yields 100
 774 frames, each with a resolution of approximately $96 \times 96 \times 3$ pixels. During the reinforcement fine-
 775 tuning phase, we train the model for 2 epochs with a batch size of 4. All experiments are conducted
 776 on a cluster equipped with eight NVIDIA A100 GPUs (40GB memory each), using CUDA 11.8
 777 and Python 3.10. For natural language processing tasks, we employ the `en_core_web_sm-3.8.0`
 778 model from the SpaCy library (12MB) to extract verbs from sentences. Random numbers between 0
 779 and 1 are generated using `numpy.random`. The model is optimized using the AdamW optimizer with
 780 parameters $\beta_1 = 0.9$, $\beta_2 = 0.999$, and a weight decay of 0.0. The learning rate is set to 5×10^{-5} .
 781 Training requires about 80 hours. All code, configurations, and preprocessing scripts are provided
 782 in the supplementary materials to ensure reproducibility.

783 D ABLATION STUDY



805 Figure 6: After Invert-SFT, the mIoU of Qwen2.5-VL-3B model and our Invert4TVG method are
 806 compared with those without Invert SFT.

808 **Impact of Invert-SFT on Model Training.** Invert-SFT refers to feeding ground-truth video clips
 809 into the model and requiring the model to output the corresponding event description based on these
 810 clips. The ground-truth clips are directly cropped from annotated temporal segments in temporal

810 video grounding datasets, while the "corresponding event" is the query to be localized. After Invert-
 811 SFT, the model's outputs become more stable, facilitating subsequent training for Invert tasks. As
 812 shown in Figure 6, for the Qwen2.5-VL-3B model initialized with Invert-SFT, the mean Intersection-
 813 over-Union (mIoU) slightly decreased from 18.0 to 17.8 initially. However, after sufficient training,
 814 both Invert4TVG models, with and without Invert-SFT, reached convergence, achieving identical
 815 mIoU scores of 57.9.

816

817 E QUALITATIVE RESULT

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

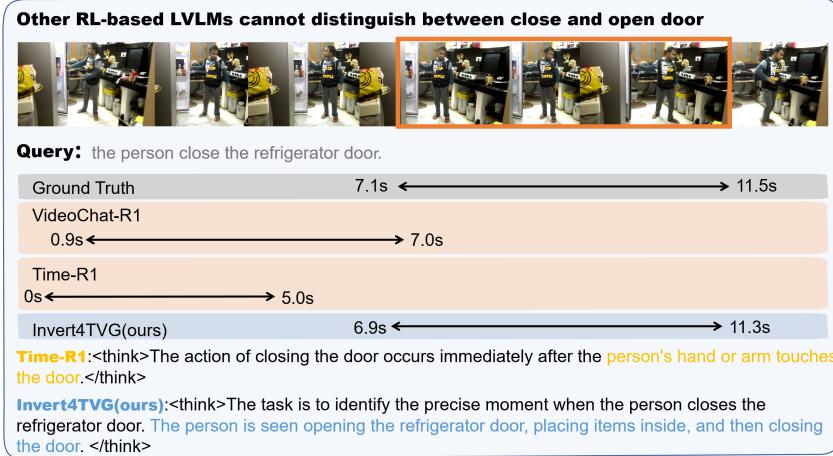


Figure 7: success case 1

837

Time localization of similar actions. As shown in Figure 7, our method can more accurately identify similar actions, such as opening and closing doors. Many other models have insufficient understanding of similar actions, such as picking up and putting things in a box. In the model's judgment, it is likely to be classified as the same action because the model does not fully recognize the state in which the action occurs and continues. Our method can help the model understand actions more deeply and distinguish similar actions.

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

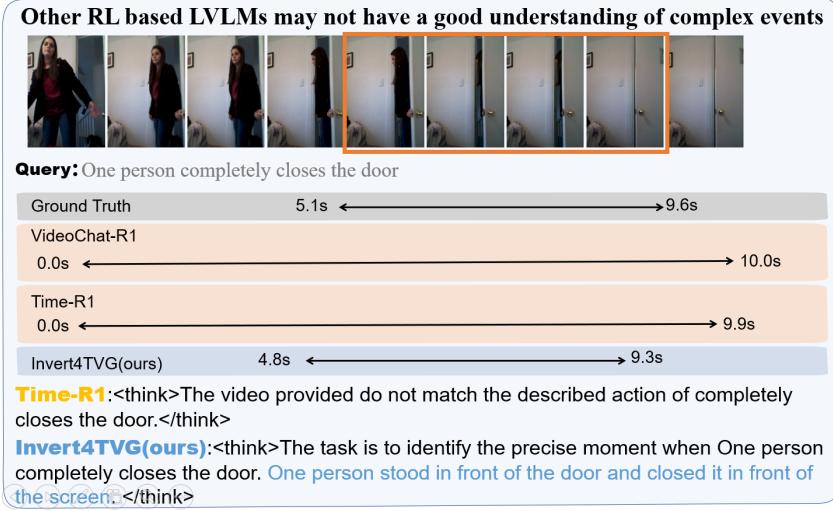


Figure 8: success case 2

864

Time localization of complex actions. As shown in Figure 8, our model recognizes the completion of the door closing action better. For some complex events, the time point we need to locate

864 may occur at the completion of the action, rather than the beginning of the action. Other models
 865 sometimes consider the beginning of the action as the time point to be located, and then proceed
 866 with subsequent positioning from this time point. Our model has a clearer understanding of the start
 867 and end of the action and can effectively locate the time period when the action is in such a state
 868 of completion. Meanwhile, a correct understanding of the beginning and end of an action is also
 869 helpful for contextual reasoning.

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

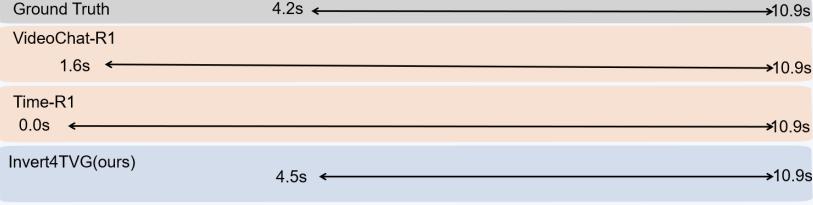
886

887

888

Our method is capable of handling situations involving multi-person

Query: A person took out a bottle



Time-R1: <think>A person walked towards the door, opened it, and took out the bottle.</think>

Invert4TVG(ours): <think>The task is to identify the precise moment when A person took out a bottle. A person bent down, opened the door, and took out a bottle. </think>

Figure 9: success case 3

889 **Situations involving multi-person.** As shown in Figure 9, our method demonstrates a strong capa-
 890 bility in handling situations involving multiple persons. When two individuals appear in the frame,
 891 other models are often susceptible to interference from the secondary person, leading to extended
 892 temporal localization periods. In contrast, our model possesses a more accurate understanding of
 893 actions, enabling it to precisely identify the core action to be localized and the state of the target
 894 person, thereby achieving superior results.

895

896

897

898

899

900

901

902

903

904

905

906

907

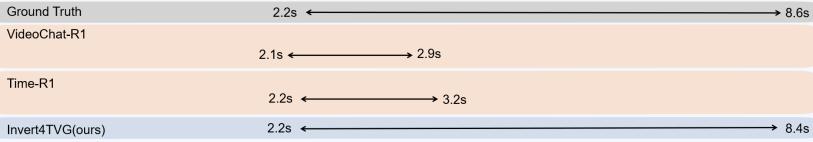
908

909

910

Our method is capable of handling situations involving non-human object

Query: An eggplant is put into the fire



Time-R1: <think>Someone was quickly put into the fire.</think>

Invert4TVG(ours): <think>The task is to identify the precise moment when An eggplant is put into the fire. The video shows that something, possibly eggplants, was put into the fire. </think>

Figure 10: success case 4

911 **Situations involving non-human object.** As shown in Figure 10, our method is capable of handling
 912 scenarios where no person is present in the frame, such as when only a bonfire is shown and an
 913 eggplant is thrown into the fire. Other models, upon recognizing the keyword "fire," tend to predict
 914 very short temporal segments. Even if these predictions are accurate in timing, their Intersection
 915 over Union (IoU) remains low. In contrast, our approach focuses on understanding the action itself,
 916 resulting in predicted segments that are longer and closer to the ground truth temporal annotations.

917

A person performing multiple actions. As shown in Figure 11, the event to be localized involves
 a person reading a book while standing up. Other models focus only on a single action, namely

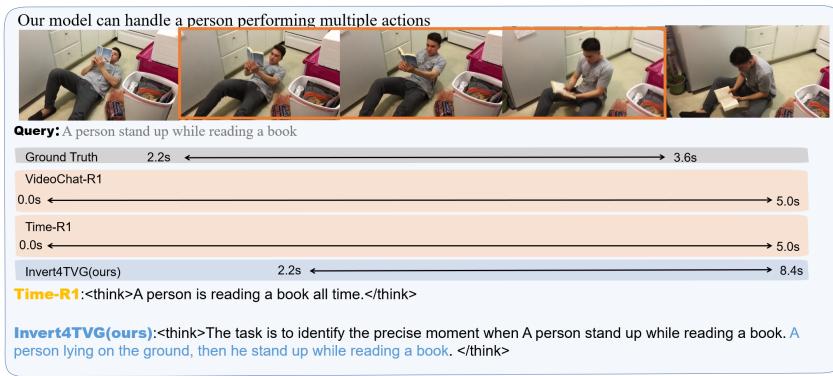
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933

Figure 11: success case 5

“reading,” whereas our model disambiguates the actions, accurately identifying both the reading and the simultaneous act of standing up.

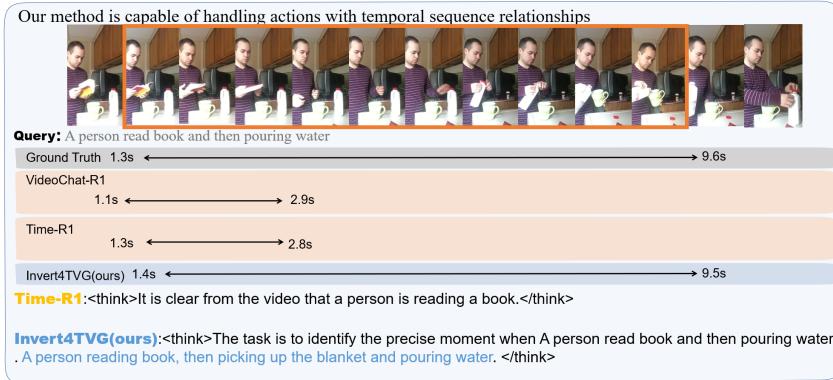
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968

Figure 12: success case 6

A person performing multiple actions. As shown in Figure 12, the query contains a temporal cue such as “and then.” While other models treat the consecutive actions as a single event and attend more to the earlier action, our model recognizes both actions and their temporal order, yielding a more accurate localization.

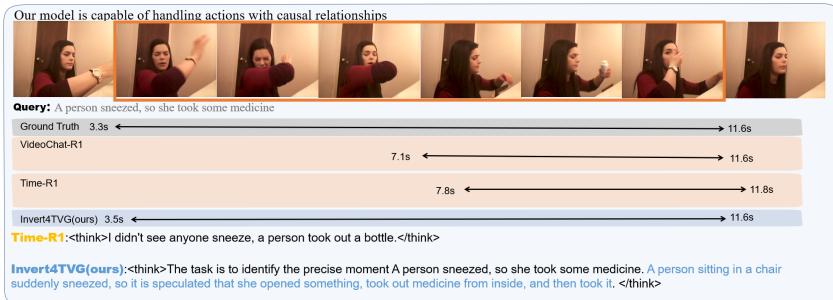


Figure 13: success case 7

A person performing multiple actions. As shown in Figure 13, the event to be localized involves a causal relationship: a person in the video first sneezes and then takes medicine. Other models fail to accurately recognize the action of sneezing, leading them to rely on speculation and only localize the action of taking medicine. In contrast, our model successfully identifies both sneezing and

972 taking medicine, understands the causal relationship between them, and achieves superior temporal
 973 localization results.
 974

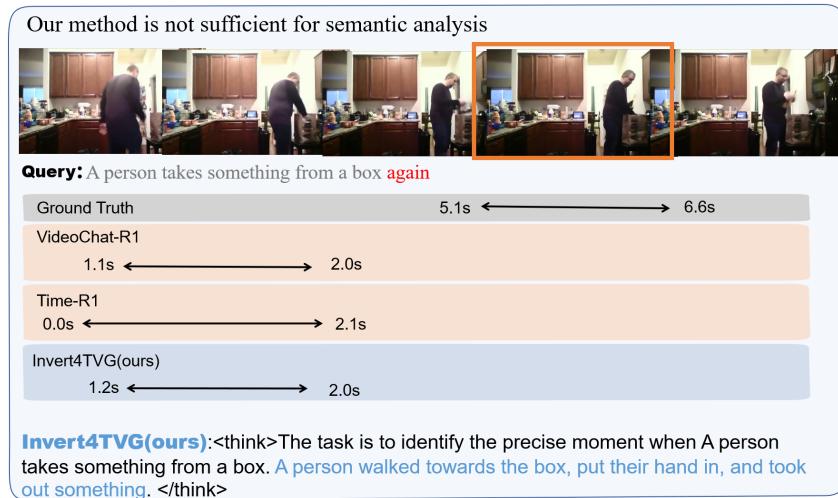


Figure 14: failure case

994 **Deep understanding of event semantics.** As shown in Figure 14, our method is not sensitive
 995 enough to some qualifiers, such as "again" representing the second occurrence of an action, which
 996 requires the model to accurately identify the action while also accurately finding the time period dur-
 997 ing which the second action occurred. Our method, as well as other models, has some shortcomings
 998 in this aspect. When locating time, we may find the first occurrence time as the final answer. This is
 999 because the model does not have a deep understanding of the meaning of qualifiers in the query and
 1000 fully considers it when locating video time.

F USE OF LARGE LANGUAGE MODELS

1001 We used large language models (LLMs) in a limited and auxiliary manner during the preparation
 1002 of this paper. Specifically, LLMs were employed to improve the fluency and readability of the
 1003 manuscript by polishing grammar and style, without altering the technical content. Importantly,
 1004 LLMs were not involved in formulating research ideas, designing methods, conducting experiments,
 1005 analyzing results, or drawing conclusions. All technical contributions of this paper are solely the
 1006 work of the authors.