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Figure 1: Left side: A specific example of temporal video grounding. According to the model’s
reasoning process,it can be seen that our method achieves better understanding of actions in the
video compared to VideoChat-R1 and Time-R1. Right side: statistical results demonstrating that
Time-R1, which is optimized solely for the IoU loss, reduces action understanding accuracy (where
VC, AR, and VD are the proposed three auxiliary inversion TVG tasks measuring multi-granularity
action understanding ability). By introducing Inversion-TVG tasks, our method preserves action
understanding ability and thus boosts TVG ability (as shown in R1@0.3, R1@0.5, and R1@0.7).
Baseline is QWen-2.5-VL-3B.

ABSTRACT

Temporal Video Grounding (TVG) aims to localize video segments correspond-
ing to a given textual query, which often describes human actions. However, we
observe that current methods, usually optimizing for high temporal Intersection-
over-Union (IoU), frequently struggle to accurately recognize or understand the
underlying actions in both the video and query, thus reducing the effectiveness of
these methods. To address this, we propose a novel TVG framework that inte-
grates inversion-based TVG as auxiliary objectives to maintain the model’s action
understanding ability. We introduce three kinds of inversion TVG tasks derived
from the original TVG annotations: (1) Verb Completion, predicting masked verbs
(actions) in queries given video segments; (2) Action Recognition, identifying
query-described actions; and (3) Video Description, generating descriptions con-
taining query-relevant actions given video segments. These inversion tasks are
entirely derived from the original TVG tasks and are probabilistically integrated
with them within a reinforcement learning framework. By leveraging carefully
designed reward functions, the model preserves its ability to understand actions,
thereby improving the accuracy of temporal grounding. Experiments show our
method outperforms state-of-the-art approaches, achieving a 7.1% improvement
in R1@0.7 on Charades-STA for a 3B model.
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1 INTRODUCTION

Temporal Video Grounding (TVG) is crucial for long-form video understanding (Gaidon et al., 2013;
Laptev & Pérez, 2007; Darrell & Pentland, 1993). It localizes a video segment matching a textual
query (Gao et al., 2017; Zhang et al., 2023), enabling applications like video-text retrieval (Zhang
et al., 2024) and UAV positioning (Ju et al., 2024).

Existing TVG approaches fall into three paradigms: (1) Traditional methods using hand-crafted
features, sliding windows, and DETR-like networks (Shi et al., 2022; Gordeev et al., 2024); (2)
LVLMs (Bai et al., 2025; Li et al., 2023) that regress segment duration via pretraining; and (3) RL-
finetuned LVLMs, such as Time-R1 (Wang et al., 2025a), using Reinforcement Learning (RL) with
format rewards for structured reasoning and IoU rewards for alignment.

Although significant progress has been made, we still find wrong grounding results in existing SOTA
methods, and most of these wrong cases stem from incorrect action understanding. Figure 1 left
shows one case. In the video, a man unbuttons his shirt, takes it off, puts on another one, and then
buttons it up. The query is “A person putting on clothes and fastening the buttons”, which requires
localizing the actions “putting” and “fastening”. Both VideoChat-R1 and Time-R1 notice a hand
touching a button and localize the action as “buttoning” rather than “unbuttoning”, indicating that
they seem to focus only on the button itself without distinguishing between buttoning and unbutton-
ing. We conjecture that these wrong groundings occur because video grounding models are generally
optimized only for IoU. Although IoU is improved, this comes at the cost of reduced action under-
standing capability, which in turn limits their overall video grounding performance. Figure 1 right
demonstrates this statistically. Time-R1 (Wang et al., 2025a), optimized for IoU, shows improve-
ment on TVG metrics (e.g., R1@0.3/R1@0.5/R1@0.7) compared to the baseline Qwen2.5-VL-3B.
However, it exhibits degradation in action understanding tasks (VC/VD/AR), which ultimately ham-
pers its TVG accuracy.

A key insight of this work is that training a TVG model effectively requires jointly training auxiliary
tasks to preserve the model’s action understanding capability. A naive approach to achieving this
would be to train the TVG task alongside general action understanding tasks such as action recog-
nition/detection/classification. However, these general tasks are not specifically designed for the
temporal video grounding objective, and the understanding learned from them may not align well
with the precise temporal localization required in TVG.

Unlike general action understanding tasks, we design action understanding tasks that are specifically
tailored for the temporal video grounding task. Specifically, by inverting the input and output of the
original TVG task, we convert the localization task into understanding task, obtaining a set of Invert-
TVG tasks. A key advantage of these Invert-TVG tasks, compared to general action understanding
tasks, is that they share the same training data as the original TVG task. On the same video-query
data, our method performs both video localization (via the original TVG task) and action under-
standing (via the Invert-TVG tasks). This tight coupling enables the learned action understanding
to be directly aligned with and supportive of the temporal grounding objective, resulting in more
effective and synergistic learning.

Specifically, given a video and a natural language query, the original TVG task predicts the temporal
segment duration where the action occurs. Inversely, given a video segment, the proposed Invert-
TVG tasks infer the action-related information defined in the query from the given segment. We
introduce three Invert-TVG tasks: (1) Verb Completion (VC): mask verbs (actions) in the query
and then infer the verbs from video segments. (2) Action Recognition (AR): classify the actions
in a given video segment where the ground-truth action is in the query. (3) Video Description
(VD): generate descriptions for a given video segment, and the descriptions should contain actions
provided in the query.

With the well-defined Invert-TVG tasks, we then propose a reinforcement learning framework that
optimizes TVG and Invert-TVG tasks together. However, for large-scale models (e.g., 3B/7B param-
eters), simultaneously optimizing multiple objectives incurs substantial memory overhead. More-
over, the TVG and Invert-TVG tasks are conflict: the ground-truth video segment that TVG is re-
quired to produce is precisely the input to an Invert-TVG task, and the original query that an Invert-
TVG task may ask for is exactly the input to the TVG task. To address this, we adopt an alternating
optimization strategy, executing TVG and Invert-TVG tasks interleavingly. Besides, since temporal
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video grounding is our main objective while action understanding is an auxiliary objective, we op-
timize the TVG task with a higher probability while using a lower probability for the Invert-TVG
tasks.

Our contributions include:

• We identify action understanding degradation in TVG from IoU over-optimization, and
address the problem via inversion TVG tasks.

• We design three inversion TVG tasks which are self-supervised tasks re-purposing TVG
annotations for action understanding, including verb completion, action recognition, and
video description.

• We propose a reinforcement learning framework dynamically balancing TVG and Invert-
TVG tasks, ensuring robust grounding and understanding.

Temporal Video Grounding. Temporal Video Grounding (TVG) (Gao et al., 2017; Hendricks et al.,
2017) localizes specific segments in untrimmed videos based on natural language queries. Recent
methods fall into two categories: feature-based and frame-based LVLM approaches. Feature-based
methods (Carreira & Zisserman, 2017; Lin et al., 2022) extract video and text features using pre-
trained encoders, then predict timestamps via multimodal fusion. These rely heavily on feature qual-
ity, limiting performance. Frame-based LVLM methods have recently gained traction for their strong
generalization capabilities. For instance, NumPro (Wu et al., 2025) introduces a frame-numbering
mechanism akin to flipping a manga for efficient temporal grounding, while TimeSuite (Zeng et al.,
2024) employs grounded tuning to enhance Large Language Models (LLMs) for long-form video
understanding. While methods like these and others (Li et al., 2024; Ren et al., 2024) utilize super-
vised fine-tuning to generate event sequences, they can still struggle with precise boundary detection
on benchmarks like Charades-STA compared to specialized feature-based approaches. To address
this, Time-R1 (Wang et al., 2025a) employs reinforcement learning (RL) with IoU rewards, achiev-
ing state-of-the-art TVG performance. However, its focus on temporal metrics neglects semantic
alignment, constraining long-form video understanding

RL in LVLMs. RL has advanced post-training of LVLMs through Reinforcement Learning with
Human Feedback (RLHF) (Ouyang et al., 2022; Yu et al., 2024) and Reinforcement Learning with
Verifiable Reward (RLVR) (DeepSeek-AI, 2025; Chen et al., 2025). RLHF aligns models with hu-
man preferences, improving tasks like image captioning, while RLVR enhances deterministic tasks
like visual grounding (Liu et al., 2025). However, RL applications in long-form video tasks re-
main underexplored due to temporal complexity and semantic challenges. TimeZero (Wang et al.,
2025b), Time-R1 (Wang et al., 2025a), VideoChat-R1 (Li et al., 2025) apply RL to TVG but over-
looks semantic understanding degradation from IoU-focused rewards. Our Invert4TVG framework
addresses this by repurposing TVG data into self-supervised tasks, enhancing action semantic un-
derstanding and surpassing traditional RL limitations in video grounding.

2 METHOD

The TVG task aims to temporally localize video segments within long-form videos based on natural
language queries. Given a video V , and a language query q, the goal is to identify the temporal
boundaries τ = [ts, te] of the segment of V that best corresponds to q, where ts, te ∈ R+. The
formal definition of the TVG task is as follows:

TVG(V, q)→ τ. (1)

In this work, we introduce Invert4TVG, a framework designed to harness the potential of Large
Vision-Language Model (LVLM) for the TVG task using Reinforcement Learning (RL) combined
with TVG-inversion tasks. The Invert-TVG task is defined as (where q′ denotes query-related con-
tent):

Invert-TVG(V, τ)→ q′ (2)

Our approach is fundamentally a reinforcement learning algorithm that fine-tunes LVLMs (specif-
ically the Qwen2.5-VL model series) by integrating both TVG and Invert-TVG tasks. In the fol-
lowing, we first introduce the fundamentals of GRPO (i.e., Group Relative Policy Optimization, a
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Figure 2: We propose three Invert-TVG tasks. By partially reversing the inputs and outputs of the
TVG task we obtain Verb Completion, Action Recognition and Video Description, which reuse the
original TVG dataset by taking ground truth video segments as input to reconstruct the target query
related actions. The prompts for the three invert-TVG tasks are not identical. For VC, the verb
in the query is removed, and the model is required to complete and fill in this verb. AR asks the
model to directly estimate the verb in the video. VD requires the model to describe the video content
containing action verbs in the query.

reinforcement learning algorithm proposed in (DeepSeek-AI, 2025)). Next, we introduce the pro-
posed inversion TVG tasks, together with reward functions used to train the TVG and Invert-TVG
tasks. Finally, we introduce our Invert4TVG reinforcement learning framework.

2.1 PRELIMINARY OF GROUP RELATIVE POLICY OPTIMIZATION

DeepSeek-R1 (DeepSeek-AI, 2025), an early R1-style open-source LLM, uses GRPO to train policy
πθ for reasoning before answers. For query q, it generates responses o1, . . . , oG with score with r(·),
and maximizes:

R(o) =

G∑
i=1

πθ (oi)

πθold (oi)
·
r (oi)−mean

(
{r (oi)}Gi=1

)
std

(
{r (oi)}Gi=1

) , (3)

where πθ(oi) is generation probability, πθold is prior state. The full objective with KL is:

max
πθ

Eo∼πθold (p) [R(o)− βDKL (πθ∥πref)] , (4)

where β is a scaling coefficient. We omit the clipping operation for simplicity.

2.2 INVERT-TVG TASKS AND REWARD FUNCTIONS

In temporal video grounding, the accuracy of model inference highly depends on its understanding
of both the video V and the query q. Therefore, we do not rely solely on the IoU reward but also
introduce additional rewards to keep or even enhance the model’s action understanding ability. To
this end, as illustrated in Figure 2, we design three Invert-TVG tasks and define reward functions
measuring how these tasks are fulfilled. Thanks to advances in NLP, a wealth of mature linguistic
toolkits (e.g., SpaCy) can now effortlessly convert verbs into their various tenses or even bring them
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back to the root form, making it feasible for us to compute reward values for the following inversion
tasks.

Verb Completion (fine granularity). Verb Completion is a task that masks verbs in the query
and asks the model to recover the verbs from the ground truth video segment. For example, if the
original query is “Person closed the door”, the masked sentence is “Person [ ] the door”. The prompt
is “Add a verb for the event ‘Person [ ] the door’ based on the video”. As long as the model outputs a
sentence successfully recovering the verbs of the ground truth, a reward is given. For instance, if the
output sentence is “Person [closes] the door” a full reward is given. Due to the randomness in the
model’s output, we are primarily concerned with whether the model comprehends the actions within
the relevant segments. Therefore, we treat verbs in different tenses as equivalent using SpaCy. The
reward function is as follows:

rVC(o) =

{
0 SpaCy(vpred) ̸= SpaCy(vgt)
1 SpaCy(vpred) = SpaCy(vgt)

(5)

where vpred represents the predicted verb in the output sentence o, and vgt represents the verb in
the ground truth sentence. A full reward is obtained if the root form of the verbs are equal, where
SpaCy(·) brings a verb to its root form.

Action Recognition (middle granularity). Action Recognition task trains and preserves the
model’s action perception capability, and the output of the model is fixed to a single verb. We
feed the model the ground truth video segment with prompt as “Use a verb to describe the event
based on the video”, then compare the predicted verb against any verbs appearing in the ground
truth query description. If the model’s predicted verb is present in the reference sentence, it receives
a full reward. For example, if the model outputs “walk” and the ground-truth sentence is “A person
walks away and laughs”, a full reward is granted because “walk” occurs in the reference. As before,
verb in different tenses are treated as equivalent. The reward function is as follows:

rAR(o) =

{
0 SpaCy(vpred) /∈ Sgt

1 SpaCy(vpred) ∈ Sgt
(6)

where vpred represents the predicted verb o, and Sgt is the set of root-formed verbs in the ground
truth query.

Video Description (coarse granularity). Video Description task is employed to train and maintain
the model’s holistic perception of events, yielding a complete segment level description. Specifi-
cally, we feed the model the ground-truth video segment and prompt as “Describe what people have
done based on the video”. A full reward is granted as long as ground-truth verbs appear in the output
sentence of the model. For instance, if the ground-truth verb is “jump” and the model produces “A
person jumps and laughs” the reward is awarded because “jump” is present. The reward function is
as follows:

rVD(o) =

{
0 SpaCy(vgt) /∈ Spred

1 SpaCy(vgt) ∈ Spred
(7)

where vgt represents the ground truth verb, and Spred denotes the set of root-formed verbs in the
sentence o predicted by the model.

2.3 IOU AND FORMAT REWARD FUNCTIONS

For the TVG task, we mainly employ the IoU reward function. Besides, we introduce a Format
reward to enforce the model to output the thinking process.

IoU Reward. As stated above, TVG aims at estimating the time interval in the video that is asso-
ciated with the content of a given textual query. We use the Intersection over Union (IoU) (Yuan
et al., 2021) between the time interval predicted by the model and the ground-truth interval as the
reward function. This reward function effectively describes the accuracy of the time interval pre-
dicted by the model. Given predicted [ts, te] and ground-truth [t′s, t

′
e] segments, the IoU reward can

be calculated as follows:

rIoU(o) =
|[ts, te] ∩ [t′s, t

′
e]|

|[ts, te] ∪ [t′s, t
′
e]|

(8)

where ∩ and ∪ denote set intersection and union operations.
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Figure 3: Overview of the proposed Invert4TVG framework. The LVLM dynamically chooses
between TVG tasks and Invert-TVG tasks according to different probabilities. Whenever an Invert-
TVG task is selected, one of the three variants VC, AR or VD is chosen with equal probability.

Format Reward. Recently, Time-R1 (Wang et al., 2025a) and VideoChat-R1 (Li et al., 2025) em-
ploy a Format reward making the model explicitly output its thinking process before making predic-
tions. Following them, we introduce a template-based reasoning reward that incentivizes the model
to generate intermediate reasoning steps prior to providing answers. The format is as following:
<think>***</think> <answer> ts to te </answer>. The reward is formulated as:

rform(o) =

{
0, if o has wrong format
1, if o has correct format

(9)

2.4 INVERT4TVG REINFORCEMENT LEARNING FRAMEWORK

While a joint training approach that processes all TVG and Invert-TVG tasks simultaneously might
seem straightforward, this method suffers from several critical limitations: (1) Memory inefficiency:
maintaining separate computation graphs for multiple tasks drastically increases GPU memory con-
sumption; (2) Optimization conflict: gradient updates from different tasks may interfere with each
other, especially when their loss landscapes are not aligned; (3) Training instability: the varying
convergence rates of different tasks make it challenging to balance their contributions; (4) Task bias:
the model may prioritize easier tasks while neglecting others. These drawbacks motivate us to adopt
the training paradigm illustrated in Figure 3.

We implement a probabilistic sampling strategy where each training iteration has a high probability
(80% in default) of executing the primary TVG task (using IoU and format rewards) and a low prob-
ability of performing an Invert-TVG task. When selecting Invert-TVG, we uniformly sample among
VC, AR and VD. This design ensures the model maintains its core action understanding capabilities
while primarily focusing on temporal grounding. The asymmetric probability distribution prevents
the auxiliary tasks from overwhelming the main objective while still providing regular semantic
reinforcement. Formally, the reward for training the TVG task is:

rTVG(o) = rformat(o) + rIoU(o). (10)

The reward used to train an Invert-TVG task is:

rInvert-TVG(o) = rformat(o) + rinv(o), (11)

where rinv is any of rVC, rAR, and rVD. The overall reward function is defined as:

r(o) = αrTVG(o) + βrInvert-TVG(o), (12)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

where the two coefficients α and β take values in {0, 1}, with the constraint α+ β = 1. Their joint
probability distribution is defined as (where 0 ≤ p ≤ 1):

P (α, β) =


p if (α, β) = (1, 0),

1− p if (α, β) = (0, 1),

0 otherwise.
(13)

As mentioned above, p = 0.8 is an empirically determined parameter derived from experiments.

3 EXPERIMENTS

We now evaluate our Invert4TVG model on the task of temporal video grounding. Code is attached.

3.1 EXPERIMENTAL SETUP

Benchmarks. We test our model on three temporal video grounding datasets: (1) Charades-STA
(Sigurdsson et al., 2016) contains 6,672 long videos capturing indoor human activities. The official
split for the TVG task includes 12,408 clip-query pairs for training and 3,720 for testing. (2) Activ-
ityNet (Heilbron et al., 2015) comprises 20K long videos with an average of 3.65 clip-query pairs
per video. We use the standard dataset splits with 37,421 training, 17,505 validation, and 17,031 test
samples. (3) We further evaluate on QvHighlight (Lei et al., 2021), a high-resolution set of 10,460
long YouTube videos paired with 48k manually annotated clip-queries. To match Charades-STA
and ActivityNet formats, multi-segment localizations are split into single-segment tasks, forming a
balanced benchmark for fine-grained temporal grounding.

Implementation Details. We implement our LVLM using the Qwen2.5-VL model (Bai et al.,
2025) as the backbone. To balance efficiency and memory consumption, we sample video frames
at 2 FPS and resize them, resulting in approximately 2.8 million pixels per video (e.g., a 50-
second video yields 100 frames of size 96 × 96 × 3). Our implementation utilizes SpaCy’s
en core web sm-3.8.0 model (12MB) to extract verbs from sentences and transform them
across different tenses. For optimization, we employ the AdamW optimizer (Loshchilov & Hut-
ter, 2019) with the following parameters: β1 = 0.9, β2 = 0.999, ϵ = 1 × 10−8, a weight decay
of 0.0, and a learning rate of 5 × 10−5. The training time per epoch is approximately 80 hours.
To ensure reproducibility, our code, configuration files, and execution scripts are available in the
supplementary materials.

Evaluation metrics. For TVG, we adopt the “R1@m” evaluation protocol to compare with state-
of-the-art models, which computes the percentage of samples where the top-1 predicted segment has
an IoU greater than a threshold m, with m ∈ 0.3, 0.5, 0.7. For brevity, we also adopt mIoU, which
calculates the average IoU on all testing data as an alternative metric.
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Figure 4: Performance of temporal video grounding on ActivityNet and QvHighlight. We compare
our method with Time-R1 (the best-performing among previous methods). All the models are zero-
shot tested.
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Table 1: Performance of temporal video grounding on Charades-STA. Methods labeled FT with a
✓were fine-tuned on the Charades-STA training set. Methods marked with * were first pre-trained
on extra TVG datasets1 and then fine-tuned on the Charades-STA training set, while those without
* are only trained on Charades-STA. We compare our method against existing 3B, 7B open-source
LVLM. We highlight our results and the best-performing baselines using bold and underlining for
clear comparison.

Type Method Size FT Charades-STA
R1@0.3 R1@0.5 R1@0.7

VLP

2D-TAN* - ✓ 57.3 45.8 27.9
Moment-DETR* - ✓ 65.8 52.1 30.6
EaTR* - ✓ - 68.4 44.9
SnAG* - ✓ - 64.6 46.2

SFT

VideoChat-Flash 7B 74.5 53.1 27.6
TRACE 7B - 40.3 19.4
HawkEye* 7B ✓ 72.5 58.3 28.8
TimeSuite* 7B ✓ 79.4 67.1 43.0

RL(3B)
Time-R1(3B) 3B 74.6 53.1 26.0
Time-R1*(3B) 3B ✓ 78.7 64.1 36.9
Invert4TVG (ours 3B) 3B ✓ 80.8 69.0 44.0

RL(7B)
Time-R1 (7B) 7B 78.1 60.8 35.3
Time-R1*(7B) 7B ✓ 82.8 72.2 50.1
Invert4TVG (ours 7B) 7B ✓ 83.0 72.5 51.4

1 YT-Temporal, DiDeMo, QuerYD, InternVid, HowTo100M datasets, our method is not pretrained
on those datasets.

3.2 COMPARISON WITH STATE-OF-THE-ART APPROACHES

We compare Invert4TVG with state-of-the-art TVG methods, including both traditional video-
language pre-training models (VLP), recent large video-language models fine-tuned via SFT and
RL-based approaches.

Comparisons on the Charades-STA dataset with fine-tuning. As shown in Table 1, Invert4TVG
surpasses not only VLP-based and SFT-based models but also outperforms RL-based approaches un-
der identical conditions. For example, on Charades-STA, the 7B variant of Invert4TVG achieves an
R1@0.7 of 51.4, exceeding TimeSuite (43.0), SnAG (46.2), and Time-R1 (50.1). The improvements
are more pronounced for the 3B variant. Across R1@0.3, R1@0.5, and R1@0.7, Invert4TVG’s 3B
model outperforms the 3B version of Time-R1.

Comparisons on the ActivityNet and QvHighlight datasets in zero-shot settings. As shown in
Figure 4, in zero-shot settings, Invert4TVG’s 3B and 7B variants outperform Time-R1 on R1@0.3,
R1@0.5, and R1@0.7 over ActivityNet. On QvHighlight, where we compare single-segment pre-
dictions, Invert4TVG consistently outperforms Time-R1 across R1@0.3, R1@0.5, and R1@0.7.
ActivityNet contains only 200 action categories, whereas QvHighlight covers a significantly larger
and more diverse set, with far more complex scene–action correlations. This disparity underscores
the superiority of our method in understanding intricate actions.

3.3 ABLATION STUDY

We conduct a detailed ablation on the Invert4TVG-3B model to investigate the contribution of the
design strategies.

Using different combinations of Invert-TVG tasks versus employing them in combination. As
shown in Table 2, using VC, AR, or VD alone instead of jointly yields lower performance. Only-VD,
which emphasizes contextual understanding, peaks at R1@0.3 but falls short on precise localization.
Only-AR, focused on immediate actions, reaches the highest R1@0.7 of 43.8. Only-VC outputs are
less random than Only-VD yet less specific than Only-AR, achieving the best R1@0.5 (68.0). The
mixed-task Invert4TVG surpasses all three individual tasks across all three metrics, demonstrating
that joint training outperforms separate use.
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Table 2: Ablation study using only TVG (Time-R1), VC
(verb Completion), AR (action recognition), VD (video de-
scription), and their mixed usage.

Type Method Charades-STA
R1@0.3 R1@0.5 R1@0.7

RL

Only-TVG 78.7 64.1 36.9
Only-VD 79.1 64.3 39.4
Only-AR 78.2 65.2 43.8
Only-VC 78.8 68.0 42.0
AR+VD 79.6 67.9 43.6
VC+AR 78.8 68.1 43.8
VC+VD 80.0 68.5 42.1

Invert4TVG 80.8 69.0 44.0

The combination of VC and AR
improves R1@0.7 to 43.8, outper-
forming either task alone (VC: 42.0;
AR: 43.8), indicating complemen-
tary benefits between verb comple-
tion and action recognition. The
VC+VD pair achieves the high-
est R1@0.3 (80.0) among two-task
setups, suggesting that video de-
scription aids verb-focused localiza-
tion. Invert4TVG (integrating all
three auxiliary tasks) achieves the
best overall results (R1@0.7: 44.0),
demonstrating that multi-task syn-
ergy is maximized when all compo-
nents are jointly optimized.
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Figure 5: The R1 accuracy curves. Blue, orange, and green show how the three R1 metrics evolve
as the Invert-TVG task probability (1− p) gradually increases.

Exploiting different probabilities for the TVG and Invert-TVG tasks. As shown in Figure 5,
Varying the task probability markedly alters training outcomes. At 20% Invert-TVG task probability,
the model performs best, raising R1@0.7 from 36.9 (no Invert task) to 44.0. As the Invert-TVG task
probability grows, the model increasingly emphasizes action recognition while neglecting temporal
grounding. Between 60% and 80% Invert-TVG, temporal video grounding performance steadily
declines, falling below the pure TVG baseline. When Invert-TVG probability reaches 100 %, the
model performs only the Invert-TVG task and yields the worst results. According to the experiments,
we choose to set p = 0.8 in Eq. 13.

Table 3: The results using binary Invert-TVG reward or co-
sine similarity reward for training.

Reward R1@0.3 R1@0.5 R1@0.7
Cosine Similarity 76.2 62.2 39.8
Binary 0 or 1 80.8 69.0 44.0

Binary Invert-TVG rewards vs. co-
sine similarity-based rewards. As
shown in Table 3, we observe that
employing a simple binary Invert-
TVG reward (0 or 1) during train-
ing yields superior outcomes com-
pared to more intricate reward mech-
anisms. When training for the same
two epochs, the employed Invert-
TVG Reward outperforms the cosine similarity reward across all three evaluation metrics (R1@0.3,
R1@0.5, R1@0.7). This advantage stems from the controllability and stability of the binary reward
design, whereas cosine similarity introduces higher variance and optimization instability. For ex-
ample, in our implementation, “run” and “eat” yield a cosine similarity of 0.2 despite their weak
semantic link. Therefore, binary Invert-TVG reward is a better choice.
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4 CONCLUSION

In this work, we present Invert4TVG, an approach that introduces Invert-TVG tasks, requiring the
model to generate query-related content from a video and its ground-truth temporal segment. We de-
sign three variants of Invert-TVG, including verb completion, action recognition, and video descrip-
tion. These tasks encourage the model to retain and enhance its action understanding capabilities.
We develop a Invert4TVG RL framework that jointly optimizes TVG and Invert-TVG tasks. In addi-
tion to standard IoU and format rewards, we introduce Invert-TVG rewards to promote performance
on Invert-TVG tasks. During training, the model primarily performs TVG at a high probability,
while intermittently switching to Invert-TVG tasks at a lower probability. This balanced strategy
ensures robust temporal localization while preserving semantic action-verb alignment. Our work
bridges TVG-LVLM gap, unlocking higher extensions in traditional tasks. Experiments demon-
strate the effectiveness of our method over existing approaches, achieving significant improvements
of grounding accuracy. The reasoning process also shows that the proposed method indeed under-
stands actions better than compared approaches.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This study exclusively utilizes publicly available open-source models and datasets; no proprietary
or sensitive information is involved, and all data are free of personally identifiable content. We have
strictly followed the corresponding licenses and usage guidelines. Although the present work poses
no apparent ethical risks, we caution that—like many machine learning models—its outputs could
be misapplied in unforeseen contexts. We therefore advocate responsible use and encourage ongoing
efforts to identify and mitigate potential biases inherent in open-source datasets.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work, The models, training datasets,
prompts, and hyperparameters used in our experiments are fully documented in Section 4.1 and
Appendix C. These descriptions should allow researchers to replicate our experimental setup an-
dresults without requiring additional resources beyond those specifed.
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A PRINCIPLE OF ALGORITHM FOR INVERT4TVG

Algorithm 1 GRPO Training with Randomized Invert-TVG Task Selection

1: Input: Video V , query q, LVLM parameters θ, probability p, reward function rTVG(o), a list of
Invert-TVG tasks TInvert-TVG = {Invert-TVGi}Ni=1 with corresponding rewards {ri}Ni=1, learning
rate η.

2: Output: Optimized LVLM parameters θ balancing localization accuracy and video-language
alignment.

3: Define forward TVG task: TVG(V, q)→ τ
4: Define a list of Invert-TVG tasks, where each Invert-TVGi(V, τ)→ q′i
5: while not converged do
6: Sample a random value u ∼ Uniform(0, 1)
7: if u ≤ p then
8: Select reward r = rTVG(o) {Optimize parameters related to τ (localization accuracy)}
9: Compute gradient ∇θr w.r.t. parameters affecting τ

10: else
11: Randomly sample an Invert-TVG task Invert-TVGi ∼ TInvert-TVG {Select a task from the

list}
12: Generate its output q′i ← Invert-TVGi(V, τ)
13: Select the corresponding reward r = ri(o) {Optimize for the sampled Invert-TVG task}
14: Compute gradient ∇θr w.r.t. parameters affecting q′i
15: end if
16: Update parameters: θ ← θ + η∇θr {Gradient ascent to maximize reward}
17: end while
18: Result: The model retains both localization accuracy (via τ ) and diverse video-language align-

ment (via various q′i), which are complementary.

B THEORETICAL JUSTIFICATION FOR MULTI-TASK RL IN INVERT4TVG

To demonstrate the advantages of incorporating the Invert-TVG task into the RL framework, we
provide a theoretical analysis showing that the multi-task approach improves semantic alignment and
generalization compared to single-task TVG training. We follow the Pareto optimality framework in
multi-task reinforcement learning, adapted to our setting where the joint reward balances temporal
localization and semantic fidelity.

Let πθ denote the policy (LVLM), and D the data distribution over videos V , queries q, and ground-
truth segments τ . The single-task objective (TVG-only, as in prior works like Time-R1) maximizes:

max
πθ

Eo∼πθ
[RTVG(o)]− βDKL(πθ∥πref), (14)

where RTVG(o) = rIoU(o) + rform(o).

In our multi-task setting, we introduce the joint reward Rjoint(o) = RTVG(o) + λRInvert(o), with
λ > 0 balancing the tasks. The objective becomes:

max
πθ

Eo∼πθ
[Rjoint(o)]− βDKL(πθ∥πref). (15)

Lemma 1 (Semantic Alignment Improvement). The Invert-TVG task minimizes a semantic loss
Lsem = E(V,τ)∼D[d(q′, q)], where d(·, ·) is a distance metric (e.g., verb matching or KL divergence
on embeddings). Then, the joint loss satisfies Ljoint ≤ LTVG +C for some constant C > 0, as RInvert
provides positive feedback on semantic fidelity.

Proof. By Jensen’s inequality and non-negativity of RInvert ≥ 0 (binary rewards in our design),
E[Rjoint] ≥ E[RTVG] + λminRInvert ≥ E[RTVG], assuming RInvert ≥ 0. This implies the multi-task
policy reduces semantic drift, as Invert rewards enforce alignment (e.g., verb recovery).

theorem 1 (Pareto Superiority). The multi-task policy π∗
joint is Pareto superior to the single-task

policy π∗
TVG if there exists θ such that RTVG(πθ) ≥ RTVG(π

∗
TVG) and RInvert(πθ) > 0.

14
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Proof. Consider the convex optimization formulation: minimize LTVG + λLInvert. Assuming LInvert
is convex (e.g., cross-entropy-like semantic loss), the Pareto frontier dominates the single-task op-
timum. The KL regularizer ensures the multi-task solution lies on a superior frontier, as feedback
from Invert reduces divergence: DKL(πjoint∥πref) ≤ DKL(πTVG∥πref)−∆ for ∆ > 0 from semantic
regularization.

Corollary 1 (Generalization Bound). In migrating TVG to LVLMs, semantic drift is reduced by
Invert tasks, yielding a generalization error bound: Errjoint ≤ ErrTVG − ηλ, where η is a learning
rate factor derived from multi-task boosting.

This analysis justifies the inclusion of Invert-TVG, showing improved alignment and generalization
on the Pareto front.

C MORE IMPLEMENTATION DETAILS

We implement our model using the Qwen2.5-VL model as the backbone, selected for its robust fea-
ture extraction capabilities in video understanding tasks. To balance training efficiency and memory
constraints, we sample video frames at 2 frames per second (FPS), adaptively resizing each frame
to maintain approximately 2.8 million pixels per video. For example, a 50-second video yields 100
frames, each with a resolution of approximately 96 × 96 × 3 pixels. During the reinforcement fine-
tuning phase, we train the model for 2 epochs with a batch size of 4. All experiments are conducted
on a cluster equipped with eight NVIDIA A100 GPUs (40GB memory each), using CUDA 11.8
and Python 3.10. For natural language processing tasks, we employ the en core web sm-3.8.0
model from the SpaCy library (12MB) to extract verbs from sentences. Random numbers between 0
and 1 are generated using numpy.random. The model is optimized using the AdamW optimizer with
parameters β1 = 0.9, β2 = 0.999, and a weight decay of 0.0. The learning rate is set to 5 × 10−5

. Training requires about 80 hours. All code, configurations, and preprocessing scripts are provided
in the supplementary materials to ensure reproducibility.

D ABLATION STUDY

Figure 6: After Invert-SFT, the mIoU of Qwen2.5-VL-3B model and our Invert4TVG method are
compared with those without Invert SFT.

Impact of Invert-SFT on Model Training. Invert-SFT refers to feeding ground-truth video clips
into the model and requiring the model to output the corresponding event description based on these
clips. The ground-truth clips are directly cropped from annotated temporal segments in temporal
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video grounding datasets, while the ”corresponding event” is the query to be localized. After Invert-
SFT, the model’s outputs become more stable, facilitating subsequent training for Invert tasks. As
shown in Figure 6, for the Qwen2.5-VL-3B model initialized with Invert-SFT, the mean Intersection-
over-Union (mIoU) slightly decreased from 18.0 to 17.8 initially. However, after sufficient training,
both Invert4TVG models, with and without Invert-SFT, reached convergence, achieving identical
mIoU scores of 57.9.

E QUALITATIVE RESULT

Figure 7: success case 1

Time localization of similar actions. As shown in Figure 7, our method can more accurately
identify similar actions, such as opening and closing doors. Many other models have insufficient
understanding of similar actions, such as picking up and putting things in a box. In the model’s
judgment, it is likely to be classified as the same action because the model does not fully recognize
the state in which the action occurs and continues. Our method can help the model understand
actions more deeply and distinguish similar actions.

Figure 8: success case 2

Time localization of complex actions. As shown in Figure 8, our model recognizes the comple-
tion of the door closing action better. For some complex events, the time point we need to locate
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may occur at the completion of the action, rather than the beginning of the action. Other models
sometimes consider the beginning of the action as the time point to be located, and then proceed
with subsequent positioning from this time point. Our model has a clearer understanding of the start
and end of the action and can effectively locate the time period when the action is in such a state
of completion. Meanwhile, a correct understanding of the beginning and end of an action is also
helpful for contextual reasoning.

Figure 9: success case 3

Situations involving multi-person. As shown in Figure 9, our method demonstrates a strong capa-
bility in handling situations involving multiple persons. When two individuals appear in the frame,
other models are often susceptible to interference from the secondary person, leading to extended
temporal localization periods. In contrast, our model possesses a more accurate understanding of
actions, enabling it to precisely identify the core action to be localized and the state of the target
person, thereby achieving superior results.

Figure 10: success case 4

Situations involving non-human object. As shown in Figure 10, our method is capable of handling
scenarios where no person is present in the frame, such as when only a bonfire is shown and an
eggplant is thrown into the fire. Other models, upon recognizing the keyword ”fire,” tend to predict
very short temporal segments. Even if these predictions are accurate in timing, their Intersection
over Union (IoU) remains low. In contrast, our approach focuses on understanding the action itself,
resulting in predicted segments that are longer and closer to the ground truth temporal annotations.

A person performing multiple actions. As shown in Figure 11, the event to be localized involves
a person reading a book while standing up. Other models focus only on a single action, namely
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Figure 11: success case 5

”reading,” whereas our model disambiguates the actions, accurately identifying both the reading
and the simultaneous act of standing up.

Figure 12: success case 6

A person performing multiple actions. As shown in Figure 12, the query contains a temporal cue
such as “and then.” While other models treat the consecutive actions as a single event and attend
more to the earlier action, our model recognizes both actions and their temporal order, yielding a
more accurate localization.

Figure 13: success case 7

A person performing multiple actions. As shown in Figure 13, the event to be localized involves
a causal relationship: a person in the video first sneezes and then takes medicine. Other models fail
to accurately recognize the action of sneezing, leading them to rely on speculation and only localize
the action of taking medicine. In contrast, our model successfully identifies both sneezing and
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taking medicine, understands the causal relationship between them, and achieves superior temporal
localization results.

Figure 14: failure case

Deep understanding of event semantics. As shown in Figure 14, our method is not sensitive
enough to some qualifiers, such as ”again” representing the second occurrence of an action, which
requires the model to accurately identify the action while also accurately finding the time period dur-
ing which the second action occurred. Our method, as well as other models, has some shortcomings
in this aspect. When locating time, we may find the first occurrence time as the final answer. This is
because the model does not have a deep understanding of the meaning of qualifiers in the query and
fully considers it when locating video time.

F USE OF LARGE LANGUAGE MODELS

We used large language models (LLMs) in a limited and auxiliary manner during the preparation
of this paper. Specifically, LLMs were employed to improve the fluency and readability of the
manuscript by polishing grammar and style, without altering the technical content. Importantly,
LLMs were not involved in formulating research ideas, designing methods, conducting experiments,
analyzing results, or drawing conclusions. All technical contributions of this paper are solely the
work of the authors.
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