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Abstract

Visual object tracking has seen significant progress
in recent years. However, the vast majority of this
work focuses on tracking objects within the image
plane of a single camera and ignores the uncer-
tainty associated with predicted object locations. In
this work, we focus on the geospatial object track-
ing problem using data from a distributed camera
network. The goal is to predict an object’s track in
geospatial coordinates along with uncertainty over
the object’s location while respecting communica-
tion constraints that prohibit centralizing raw im-
age data. We present a novel single-object geospa-
tial tracking data set that includes high-accuracy
ground truth object locations and video data from
a network of four cameras. We present a model-
ing framework for addressing this task including a
novel backbone model and explore how uncertainty
calibration and fine-tuning through a differentiable
tracker affect performance.

1 INTRODUCTION

Deep neural network models have enabled remarkable ad-
vances in visual object tracking performance across a wide
range of scenarios over the last decade [Marvasti-Zadeh
et al.| [2021]]. The task of visual object tracking involves de-
tecting and localizing objects as they move through a scene.
The vast majority of prior work on visual object tracking
considers video data from a single camera only and poses
the problem as tracking objects within the image plane of
the camera. Further, most approaches to tracking provide
outputs as a sequence of bounding boxes that lack a repre-
sentation of uncertainty over the locations of objects.

In this work, we focus on the geospatial object tracking
problem using a distributed camera network. The goal is
to predict an object’s track in geospatial coordinates along

with uncertainty over the location while accounting for com-
munication constraints that prohibit centralizing raw image
data. This problem is motivated by the proliferation of In-
ternet of Things (IoT) devices with local sensing, compute
and wireless communication capabilities. The geospatial
object tracking problem has important applications in smart
cities such as traffic monitoring and pedestrian safety that
require knowledge of where objects are in real-world map
coordinates [[Datta and Sharmal 2017]].

Importantly, the continuous deployment of camera and other
sensor networks in real-world environments introduces mul-
tiple challenges due to resource constraints and changing
environmental conditions [Pereira et al.,[2020]]. Due to re-
source constraints the set of available cameras may not cover
the entire environment of interest resulting in observability
gaps. Objects may occlude each other from some vantage
points but not others as they move through the environment.
Lighting and weather changes will also effect some or all
cameras at different times. As a result, it is essential to de-
velop models and systems that can refelect the uncertainty in
an object’s location in a meaningful way taking into account
local observability, occlusions, and environmental effects.
These aspects are often overlooked in traditional tracking
benchmarks that assume access to high-quality video data
[Dendorfer et al., [2020].

To facilitate research on this problem, we collected a novel
single-object tracking data set that includes high-quality
ground truth geospatial object locations collected at 100
samples per second using a motion capture system. These
data are combined with video from four camera nodes
with different partially overlapping views of the environ-
ment. The object tracked is a remote controlled vehicle. The
dataset spans multiple scenarios including an open environ-
ment and an environment with occluding structures, as well
as a normal and low lighting scenarios. ||

We present a modeling framework for addressing this task

!Code and data for this project are availble at: https://
github.com/colinski/geospatial-tracking
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that augments neural network object detection backbones
with adapters that translate within image-plane features into
geospatial coordinates with associated uncertainty. We re-
fer to such as model as a heteroskedastic geospatial detec-
tor (HGD). To address communication constraints, each
HGD is restricted to operate over data available locally at a
singe camera node. To solve the tracking problem, the low-
dimensional probabilistic outputs of a set of independent
HGDs are centralized and fused together using a multi-
observation Kalman filter model [[Kalman), |1960].

We experiment with both existing and custom backbones
within the HGDs. Further, we explore the effects of geospa-
tial detection calibration to improve the quality of the distri-
butions provided by individual HGDs to the Kalman filter.
Finally, we experiment with backpropagating loss through
the Kalman filter and in to individual HGD adapters as a
form of fine tuning and assess its impact on tracking perfor-
mance.

Our results show that re-calibrating the output of the HGD
models using an affine transformation of their raw covari-
ance outputs can significantly improve log likelihood of true
object locations. We show that fine tuning by backpropagat-
ing through the Kalman filter further improves performance
for most HGD models.

Finally, we show that our custom HGD backbone can pro-
vide performance on par with ResNet50 and DETR back-
bones under the normal lighting condition while simulta-
neously providing significant improvements in run time
latency. Interestingly, we show that in the low-light condi-
tion, the DETR-based model has remarkably more robust
performance than the other models considered.

The rest of the paper is organized as follows: Section [2]
discusses prior work on tracking. Section [3|presents the data
set including the data collection process and subsequent data
post-processing. Section[4|outlines our modeling framework.
Section [5] presents our experimental protocol and evaluation
metrics. Section [0 presents results. We conclude with a
discussion in Section

2 RELATED WORK

There is considerable prior work applying deep learning
to visual object detection and tracking problems. Marvasti{
Zadeh et al.| [2021]] present a survey paper that discusses
many of these approaches in depth. In this section we high-
light a handful of papers that are of particular relevance to
our work, noting that we focus on the multi-view geospa-
tial tracking problem and not the traditional single-view,
within-image-plane tracking problem.

Model Architectures: Convolutional neural networks
[Krizhevsky et al.,|2017] provide the backbone in most deep
learning object detection and tracking models. In this work,

we experiment with a ResNet50 backbone as an example
of this class of approach [He et al., [2016]. More recently,
vision transformer-based models have shown promising per-
formance on image classification [Liu et al.| 2021], object
detection [|Carion et al.,[2020], and within-image-plane ob-
ject tracking [Meinhardt et al., 2022, |[Zeng et al.,|2022} |Yan
et al., [2021]]. The attention mechanism used in the trans-
former architecture of Vaswani et al.| [2017] has proven
to be a powerful tool for reasoning about track identity
through time. We consider backbone models based on two
transformer architectures.

Multi-view Computer Vision: The task of fusing data from
multiple cameras to solve computer vision problems has a
long history. One popular application is the use of multiple
views to enable 3D object detection in autonomous driving
systems, as seen in recent work including DETR3D [Wang
et al.|[2022] and Chen et al.|[2017]]. While some approaches
predict object location in an overhead "bird’s-eye-view"
space, such as|Can et al.|[2021]], these approaches still rely
on predicting bounding boxes and do not account for object
location uncertainty. More recently, the work of [Li et al.}
2022] introduced a novel transformer architecture to fuse
multiple camera views to make "bird’s-eye-view" predic-
tions. However, this method assumes that camera data can
be centralized at no cost and thus relies on early fusion while
we focus on the communication constrained distributed cam-
era network setting.

Probabilistic Tracking: Many early approaches to track-
ing leverage probabilistic models [[Pérez et al.,|2002]]. The
Kalman filter is a commonly used approach due to its sim-
plicity [Kalman| |1960]. For example, the Simple Online
and Realtime Tracking (SORT) approach of |Bewley et al.
[2016] converts bounding boxes predicted from an object
detector into a track using a Kalman Filter. However, this
approach does not make probabilistic predictions for tracked
objects and operates within the image plane of a single cam-
era. |Danelljan et al.|[2020] pose the tracking problem as
a probabilistic regression that minimizes KL divergence.
However, unlike our approach they consider ground-truth
locations that are represented as bounding boxes where as
we represent distributions over the centroid of a tracked
object.

3 GEOSPATIAL TRACKING DATASET

In this section we present the data collection process and
data pre-processing methods used to create our data set.

Data Collection Infrastructure: The data set was collected
using RGB video data obtained from a network of four
camera nodes. Each camera node included a 1080 x 1920
resolution ZED 2i camera and a Jetson Xavier NX providing
local video compression and storage. The data collection
experiments were performed in an indoor motion capture



Figure 1: Example data from each of the four cameras in the normal lighting (top) and low lighting scenarios (bottom).

environment measuring 5 x 7 meters in size. The motion
capture system provides high-quality ground truth location
and orientation data for tracked objects at a sampling rate of
100Hz. We used a single remote control vehicle (an orange
truck) as the tracked object in all data collection experiments.
This object is 15 x 30 cm in size.

The four camera nodes were located on the four sides of the
rectangular motion capture environment looking inwards.
The ZED camera has a 2.1mm lens, producing a 120-degree
field of view. The nodes were positioned such that their
fields of view overlapped while no single node captured
the whole environment. This allows the tracked object to
be out of the field of view of different camera nodes at
different times. The locations and orientations of the cam-
era nodes remained constant throughout all data collection
experiments.

Tracking Scenarios: Data were collected under two dif-
ferent scenarios. In the first scenario the environment is
open (no occluding objects are present) and fully lit. In the
second data collection scenario, the environment is mini-
mally lit and occluding objects are also present. While the
tracked object has onboard illumination (headlights) that
make tracking it plausible under low lighting, the second
scenario is expected to be significantly more difficult than
the first scenario. Examples from both scenarios are dis-
played in Figure|l} Each data scenario has a total length of
5 minutes. We split each scenario such that 2.5 minutes are
used for training, 30 seconds are used for validation, and 2
minutes are used for testing. Video data are recorded at 15
FPS.

Data Pre-processing: We construct a multi-view tracking
data set as a sequence of instances where each instance con-
tains four images (one from each of the four camera nodes)
and the corresponding ground truth object location. Given
that the cameras are operating independently on the four
nodes, we deal with video stream synchronization dispari-
ties by initializing a buffer for each video stream as well as
for the the ground truth object location stream output by the
motion capture system. We update these buffers as the data

arrives from each source. We create individual instances in
the tracking sequence by taking a snapshot of all buffers at
a rate of 20 frames per second. Before learning models, we
downsample the image data by dividing each side length
by a factor of 4. This results in input images that have size
270 x 480. No further data augmentation is applied.

4 MODELS FOR HETEROSKEDASTIC
GEOSPATIAL TRACKING

In this section we present our proposed heteroskedastic
geospatial tracking model framework. The framework con-
sists of two primary components: a set of heteroskedastic
geospatial detection (HGD) models and a geospatial tracker
(GST) based on a multi-observation Kalman filter.

Overview: An HGD model takes an image from a single
view as input and predicts a full covariance normal distribu-
tion over the location of the object in geospatial coordinates.
Specifically, an HGD model outputs a 2-dimensional mean
object location p and a 2 X 2 object location covariance
matrix . There is one HGD model for each view and all
HGD models operate independently. The GST component
then filters a set of HGD model outputs in order to generate
smoother trajectories that fuse the predictions from each
view taking into account their associated object location
uncertainties. A block diagram illustrating this framework
is presented in Figure [2a]

HGD Models: An HGD model is further divided into three
sub-components: a backbone, an adapter, and an output
head. The backbone processes the input images in order
to generate general higher-level features. The adapter is a
small feed-forward network which converts the features into
a single 256-dimensional vector which we treat as a latent
encoding of the object’s position in geospatial coordinates.
Finally, the output head converts this encoding into the fi-
nal low-dimensional geospatial object location mean and
covariance representation using an additional feed-forward
network. We share the parameters of the backbone and out-
put head across all views. We instantiate a separate adapter
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Figure 2: (a) General model architecture. Layers with rectangular background denote model components which are shared

across views. (b) Backbone model block diagrams.

for each view. This allows the general backbone features to
be translated into view-specific features.

HGD Backbones: We provide results using two baseline
backbone models: ResNet50 [He et al., 2016 and DETR
[[Carion et al.l 2020] as well as a custom backbone. A visual
description of the three backbone models is shown in Figure

ResNet50 is a popular CNN model that was originally de-
signed for image classification [[He et al., |2016[. We tap a
pretrained model at the last feature layer. This model gener-
ates a feature map with height and width downscaled by a
factor of 32 relative to the input. The feature map has 2048
channels. The HGD adapter converts the feature map to 256
channels via a feed forward network and then flattens out
the spatial dimensions using a linear projection.

DETR is a recent object detector which performs detec-
tion end-to-end using transformers [[Carion et al., [2020].
It consists of a ResNet50 model followed by a trans-
former encoder-decoder pair. Using self-attention and cross-
attention the model learns a set of 100 query embeddings
which act as latent encodings of the predictions. We use the
output of the last decoder layer which has shape 100 x 256.
The adapter applies a feed forward network and then ap-
plies a linear layer to project the 100 query embeddings to
a single prediction (i.e. 1 x 256). We note that DETR was
originally trained for within-image-plane bounding box ob-
ject detection. Therefore, the adapter has the additional duty
of translating this information into the geospatial coordinate
space.

Lastly, we introduce an additional custom backbone model
for this task. The general design is inspired by DETR, while

being much more lightweight. We start with a custom CNN
feature extractor. First we copy the stem of a ResNet50
model, which consists of the first convolution layer of the
model and a max pooling layer. This stem was trained on
ImageNet and is left frozen throughout training and evalu-
ation. We then interleave ConvNext blocks and downsam-
pling operations. The ConvNext block [Liu et al. 2022]
is a simple residual CNN block consisting of a depthwise
and pointwise convolutional layer. Downsampling is done
via convolutional layers with stride 2. In total we apply 3
downsampling layers and 2 ConvNext layers. Along with
the stem, this results in just 8 convolutional layers. We main-
tain a feature dimension of 256 throughout the CNN and
output a feature map with height and width downscaled by
a factor of 32 relative to the input image.

Associated with this backbone is a single query embedding
with 256 dimensions. It is treated as a vector of free pa-
rameters. We take the output of the CNN stage and flatten
the spatial dimensions into a sequence of pixel values. We
then apply cross attention between the query embedding
and this pixel sequence. This has the effect of compressing
the visual information from the CNN input into a single 256
dimensional vector. This is then fed into an adapter layer.

We present a runtime analysis of these three models in Ta-
ble [T} We report only the latency of the backbone models
without taking into account the latency of the Kalman filter,
which is constant for each model and trivial compared to
the latency of the deep models. The latencies reported are
the time taken to generate a predicted distribution for every
view. We see that our custom model is 6 times faster than
DETR and 2.5 faster than ResNet50. Run time latencies
were measured using an NVIDIA 3080TI GPU.



Table 1: Runtime Results

Model Latency (ms) ({) FPS (1)
ResNet50 21.23 47.12
DETR 51.02 19.60
Ours 8.05 124.25

HGD Output Head: The HGD output head is responsible
for predicting the mean p and covariance matrix 3 of the
Gaussian distribution that represents the location of the
object. Given a 256-dimensional encoding, it outputs five
values. The first two values determine the mean location .
In our experiments, we apply a sigmoid activation to these
values and then scale them by 500 and 700 so that they
correspond to a location in centimeters within the tracking
environment’s 5 7 meter area.

The remaining three output values are used to predict the
covariance matrix 2. We apply a softplus function to two of
the values which are taken to be the diagonal elements of X.
The remaining value is then taken to be the off-diagonal ele-
ment. Finally, we multiply this intermediate matrix with its
transpose to ensure that 3 is positive definite. For numerical
stability reasons, we add the identity matrix [ to the output.
This prevents X from collapsing to 0 during learning.

GST Model: For the GST model, we use a constant-velocity
multi-observation Kalman filter-based tracker [Kalman,
1960, [Baisal, [2020]. A Kalman filter-based tracker is a dy-
namic Bayesian network model with Gaussian distributed
latent state. In the constant velocity Kalman tracker, these
latent variables represent the location and velocity of the
object being tracked. A detection is modeled as a noisy ob-
servation given the latent variables in the tracker. Posterior
inference is used to update the tracker’s latent state given a
detection.

In a multi-observation Kalman filter, any number of simulta-
neous detections can be used to update the latent state of the
tracker under the assumption that they are all mutually con-
ditionally independent given the latent state of the tracker.
The posterior inference process fuses multiple simultaneous
observations while automatically putting more weight on
the detections that have lower associated uncertainty. An
example of this effect can be seen in Figure 3]

HGD and GST Training: We train the HGD models to
minimize of the negative log likelihood of the ground-truth
object positions under the distribution output by the model.
All views are trained simultaneously with a separate loss
contribution for each view. All models are trained for 50
epochs. We use the AdamW optimizer [Loshchilov and Hut{
ter, 2019] with an initial learning rate of 10~* and weight
decay of 10~%. At the 40th epoch, the learning rate is di-
vided by 10. We train on 8 GPUs each with 4 samples per
batch for an effective batch size of 32. Batches are chosen

randomly across the training sequence as temporal informa-
tion is not used during training of the HGD models. The
gradient is clipped such that it’s L2 norm is less than 0.1.
We start from a ResNet 50 model pretrained on ImageNet
[Deng et al., 2009]] and a DETR model pretrained on the
COCO detection dataset [Lin et al., 2014]]. Parameters of
the baseline models are fine-tuned during training of the
detector.

In the experiments where we backprop through the Kalman
Filter, a batch size of 1 is used on each GPU for an effective
batch size of 8. We use time aligned sequences of length 100
for this portion of training. When training with the Kalman
Filter we use detectors that are already trained on the task.
The backbones are frozen during the Kalman Filter training
while the paramaeters of the Kalman Filter, output head and
adapters are fine-tuned. All learning hyperparameters are
the same for GST and HGD training except for the training
schedule, which is decreased in length by a factor of 10 (we
train for 5 epochs and reduce learning rate at 4th epoch).

S EVALUATION METRICS

In this section we present metrics for evaluating the perfor-
mance of models that solve the heteroskedastic geospatial
object tracking problem.

Negative Log Likelihood (NLL): Since any model that
solves the heteroskedastic geospatial object tracking prob-
lem must output a probability distribution over the locations
of tracked objects by definition, evaluating the quality of
such a model’s output using a likelihood-based evaluation
metric is natural. In this work, all tracking models output
Gaussian distributions over object location via the distribu-
tion over the Kalman tracker’s latent state. We specifically
evaluate the negative log likelihood of the Kalman tracker’s
marginal distribution over the object’s location. Note that
the individual heteroskedastic detection models also output
probabilistic detections, and thus their performance can also
be evaluated using negative log likelihood.

Object Probability Mass (OPM): Within image plane
tracking problems typically use object bounding boxes
as the ground-truth objection location representation and
within image place tracking models typically also output
bounding boxes. This leads applying an Intersection-over-
Union (IoU) metric to true and predicted bounding boxes as
a natural performance metric.

Under the assumption that it is sufficient for the probability
distribution of an object’s location to concentrate within
the geospatial extent of the object, we can derive a related
metric for the heteroskedastic geospatial tracking problem
by computing the predicted probability mass that falls within
the ground truth extent of an object.

Given a predicted distribution with mean p and covariance



Table 2: Baseline tracking results

| Normal Light | Low Light
Backbone | NLL (]) OPM (1) DetPr(1) LocA (1) | NLL(}) OPM(f) DetPr(1) LocA (1)
ResNet50 6.598 0.959 0.959 0.997 19.675 0.469 0.470 0.900
DETR 7.149 0.985 0.987 0.990 6.834 0.917 0.919 0.978
Ours 8.624 0.958 0.960 0.993 35.338 0.644 0.646 0.947

> along with the ground truth location, orientation, and
extent of the object being tracked, we compute the OPM
using a Monte Carlo estimate of the underlying integral that
defines the desired probability mass. We sample 1000 points
from the predicted distribution and check what percentage of
them fall inside the rectangle defining the object’s physical
extent. A visual depiction of the application of this metric is
shown in Figure 1 in the supplemental material.

Tracking Metrics: Like IoU, OPM has the useful propriety
of being in the range [0, 1], with 1 being a perfect score. This
allows us to use OPM as a drop-in replacement for IoU when
using evaluation code for tracking metrics. In particular, we
use evaluation code for the Higher Order Tracking Accuracy
(HOTA) suite of tracking metrics [Luiten et al.l 2021]].

In the HOTA metrics, a bijective mapping between pre-
dicted and ground-truth objects is computed. The number
of true positives (|7 P|) is the number of matched pairs. The
number of unmatched predictions is | F'P|. The number of
unmatched ground-truth objects is |F'N|. A match is only
considered valid if the similarity score (e.g. IoU) is greater
than a given threshold «. We can then compute the detec-
tion recall and precision (Det Re and Det Pr) for a single
value as shown below in Equation|l{and |2l These values are
computed for a range of o values and the mean is reported.

|TP]|
DetPry = — =11 |
e TP |FN] S
|TP|
DetRe, = — -1 2
ctlte |TP|+ |FP]| 2)

In our data set, there is one ground-truth object and predic-
tion per time step. Therefore, the only kind of error that
can occur is a similarity score less than the threshold a.
This results in an unmatched ground truth object and an
unmatched prediction, so |F'N| = |F P|. This implies that
DetPr = DetRe. We therefore chose to report DetPr
only. We reinterpret this metric to be the percent of timesteps
with OMP greater than «, averaged across a range of « val-
ues. That is, it measures how often the tracker is on track.

We additionally report the location accuracy (LocA) metric
from the HOTA suite. LocA can be defined as shown below
in Equation [3| where c is a valid ground-truth/prediction
pair. Put simply, LocA,, is the average similarity score for
pairs that are within the « threshold. That is, it measures
the tracker’s localization performance when it is on track.

We again note that an individual heteroskedastic geospatial
detection model can also be used to derive these metrics in
the single object tracking case.

1
LocA, = A > OPM(c) 3)
ceTP,

6 RESULTS

In this section we report the results of tracking experiments.
We use the two data scenarios described in Section[3|(normal
light vs. low light), the three backbone models described in
Section[d] (ResNet50, DETR, and our custom model), and
the evaluation metrics described in Section [5|(NLL, OPM,
DetPr, LocA). The supplemental material includes a table
of all results shown.

Experiment 1 - Baseline Performance: We present base-
line performance results for both data scenarios in Table
These results evaluate the performance of the Kalman
filter-based geospatial tracking (GST) model coupled with
heteroskedastic geospatial detection (HGD) models based
on each backbone. We label each model by the backbone
used as the other components are identical across models.

In terms of NLL, we see that results are fairly mixed apart
from the result that the DETR backbone achieves much
better NLL in the low light setting. In terms of OPM and
the tracking metrics, we see that the DETR backbone out-
performs the other backbones in both settings. It shows
especially strong performance relative to the other models
in the visually challenging low light setting. One possible
explanation for this is that DETR is uniquely able to fuse
global information by applying self-attention between all
pixels in the final feature map. In the easier data scenario
with normal light, we see that our more efficient model is
competitive with the ResNet50 baseline in terms of OPM
and tracking metrics.

Experiment 2 - Effect of Kalman Filtering: One benefit
of using a late fusion approach is that each HGD model can
function independently without the need of the centralized
fusion process provided by the Kalman Filter. In Tables
[3|and 4] we compare the average performance of the four
HGD models compared to the performance of the baseline
Kalman Filter model.



Table 3: Normal Light, Detectors vs. Tracker

Table 4: Low Light, Detectors vs. Tracker

| NLL (}) | OPM (1) | NLL ({) | OPM (1)
Backbone | Detector ~Tracker | Detector — Tracker Backbone | Detector ~Tracker | Detector — Tracker
ResNet50 6.361 6.598 0.803 0.959 ResNet50 11.329 19.675 0.197 0.469
DETR 5.288 7.149 0.819 0.985 DETR 7.484 6.834 0.595 0.917
Ours 7.873 8.624 0.701 0.958 Ours 17.489  35.338 0.308 0.644
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(a) Example trajectory from single view detector.

(b) Example trajectory from multi-view tracker.

Figure 3: Example trajectories. The gray rectangles denote the location of the object being tracked with an arrow indicating
the object’s current heading. The location of the camera nodes are labeled as N1 to N4. The left-hand plot shows detections
from the custom backbone using data from node N2. The black squares show the predicted mean location with an associated
95% confidence ellipse. The right-hand plot shows the same track with multi-observation Kalman Filter output shown in red.
We see that for two time points the single-view detector predicts a mean that is off track with high uncertainty. This occurs
when the object is not viewable by node N2. However, the tracker remains on tracker as it fuses data from the other nodes

that can see the object and have much higher confidence.

We can see that using the tracker leads to much better perfor-
mance on the OPM metric. This suggests that the individual
HGD models are producing higher uncertainty and larger
covariance than the Kalman tracker output. After applying
the tracker, the uncertainty is reduced and the covariance
is significantly smaller. This can be seen in Figure 3| This
results in a higher OPM score as the OPM metric is highly
sensitive to the scaling of the covariance matrix. However,
we see that the average NLL across the four HGD mod-
els per backbone is actually better than the NLL provided
by the Kalman tracker in all but one case. This suggests
that from a predictive likelihood standpoint, the baseline
Kalman tracker is actually under representing uncertainty.
We address this issue in the next experiments.

Experiment 3 - Post-Hoc Model Recalibration: As noted
in the previous section, the end-to-end output of the Kalman
tracker under-represents uncertainty in a predictive log like-
lihood sense. As a first approach to addressing this issue,
we consider post-hoc recalibration of the output of the in-
dividual HGD models. Specifically, we consider an affine
transformation of the covariance matrix output by an HGD
model: ¥’ = aX + bl. This transformation inflates the

covariance matrix for parameters ¢ > 1 and b > 0.

To select the values of a and b we perform a grid search
over a € [0.05...10] and b € [0...500]. We assess the
performance of each re-scaled distribution on a validation
set and select the a, b which minimize validation set NLL.

The results of this calibration experiment are shown in Ta-
ble 5] We report the NLL of the Kalman Tracker using
uncalibrated and calibrated input from the HGD models.
Comparing the calibrated models to the uncalibrated mod-
els, we see consistent improvements in terms of NLL. We
see particularly large improvements in the visually challeng-
ing low light scenario. On the easier normal light scenario,
we see that our customized model slightly out performs the
DETR baseline. However the ResNet50 baseline is still the
strongest model in this scenario.

We further generate histograms of the NLL values with and
without calibration across all time steps in the test data set.
These results are displayed for all backbones in Figure [}
We can see that the effect of calibration is to increase the
minimum NLL somewhat for all models, while significantly
reducing the upper tail of the NLL distribution.



Table 5: Calibration Results (NLL).

| Normal Light |  Low Light
Backbone | Uncalib. ~Calib. | Uncalib. ~ Calib.
ResNet50 6.598 4.537 19.675 7.200
DETR 7.149 5.465 6.834 4.803
Ours 8.624 5.364 35.338 7.419

o 4Histograms - Calibration Comparison - ResNet50

Histograms - Calibration Comparison - DETR

Table 6: Results with/without Kalman Filter tuning (NLL)

| Normal Light |  Low Light
Backbone | without  with | without  with
ResNet50 4.537 4.510 7.200 7.360
DETR 5.465 5.980 4.803 5.002
Ours 5.364 4.973 7.419 7.240

Histograms - Calibration Comparison - Ours
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Figure 4: NLL Histograms pre- and post-calibration. Plots are generated using all test set data cases.

Overall we find that this form of calibration is an easy way
to improve the NLL of the tracker. This is convenient as it
incurs almost no additional runtime latency compared to the
complexity of executing the HGD backbones.

Experiment 4 - Kalman Tracker Fine Tuning: Inference
in the Kalman tracker is fully differentiable. It is thus pos-
sible to learn while backpropagating the Kalman filter’s
NLL through both the parameters of the Kalman filter and
the parameters of individual HGD models. We refer to this
approach as Kalman filter fine tuning.

In our implementation of the constant velocity Kalman
tracker, the standard deviation of acceleration parameter
is the only learnable parameter. However, this parameter is
important as it determines how much the Kalman filter’s un-
certainty over its internal latent variables increases between
observations, which has implications both for the uncer-
tainty in the tracker’s output and the degree of smoothness
in the output track.

Further, Kalman filter fine tuning allows the output heads
and adapters inside the HGD models to adjust to the track-
ing scenario (for computational complexity reasons, we do
not consider full end-to-end training of the backbones). We
present results for this setting in Table [6] The results re-
ported are using calibrated HGD models as described in
the previous section. The reported NLLs are computed with
respect to the Kalman tracker’s output distribution.

We see that applying Kalman filter fine tuning results in
an improvement in out custom model on both data sce-
narios. Surprisingly, the DETR baseline sees worse NLL
performance on both data settings. After calibrating and
training through the Kalman Filter, our custom model is
able to achieve better NLL score than DETR in the normal
light scenario at six times lower latency. It is also able to

close to within 0.5 nats of the performance achieved by the
ResNet50 backbone in the normal light scenario at 2.5 times
lower latency. Lastly, despite the fact that the DETR-based
model does not improve in performance under Kalman filter
fine tuning, it remains the best performing model in the low
light scenario by a wide margin.

7 CONCLUSIONS

In this paper, we focus on the geospatial object tracking
problem using data from a distributed camera network. The
goal is to predict an object’s track in geospatial coordinates
along with uncertainty over the object’s location. We have
presented a novel single-object geospatial tracking data set
to support this work that includes high-accuracy ground
truth object locations and video data from a network of four
cameras captured under normal and low light conditions.

We have presented a modeling framework for addressing
this task that leverages a multi-observation Kalman filter-
based tracker in conjunction with a set of independent het-
eroskedastic geospatial detection models. This framework
is specifically motivated by a communication constrained
version of the tracking problem where it is too expensive
to centralize raw image data and thus late fusion of low di-
mensional representations is required. We present a custom
detection backbone with significantly reduced prediction la-
tency relative to state-of-the-art models and show that it can
achieve strong performance in the normal lighting setting
when tuned specifically to optimize tracking performance
via a combination of post-hoc recalibration and Kalman
filter based fine tuning. Our result show that a version of the
proposed framework using the DETR backbone achieves
superior performance in the low light setting, a finding that
requires further exploration.
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