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Abstract

A central challenge for adaptive agents is achieving behavioral flexibility without losing
stability, especially during goal-directed learning in uncertain environments. Flexibility
enables rapid adjustment when goal changes, while stability prevents overreaction to noisy
outcomes— these properties often trade off. To examine how the brain resolves this
dilemma, we combined reinforcement learning simulations, human behavior, and fMRI
study during a sequential decision task with varying goals and uncertainty. Simulations
showed that model-free agents suffered a flexibility—stability trade-off, while model-based
agents were flexible but with a range of stability. Human participants, in contrast, displayed
both high flexibility and high stability. fMRI analyses revealed the underlying representa-
tional mechanism: goals and uncertainty were encoded as partly independent dimensions
in lateral prefrontal and orbitofrontal cortex. Importantly, the separability and robustness
of goal representations in these regions correlated with individual behavioral flexibility and
stability, pointing to a geometric account of robust goal pursuit beyond value-learning
models.

Keywords: Representational geometry; cognitive flexibility; stability; uncertainty; LPFC;
OFC; MVPA; fMRI; reinforcement learning.

1. Introduction

Robust goal pursuit in uncertain environments requires balancing two opposing demands:
flexibility, the ability to adapt when goals change, and stability, the ability to resist noise
and avoid erratic behavior. Overemphasizing one typically compromises the other, creating
a long-recognized stability—flexibility dilemma (Goschke, 2013; Hommel, 2015; Dreisbach
and Frober, 2019; Musslick and Cohen, 2021; Qiao et al., 2023).

The prefrontal cortex (PFC) plays an important role in this problem. It encodes task-
relevant information, adapts its representations to goals, and tracks environmental uncer-
tainty through regions such as the lateral PFC (LPFC) and orbitofrontal cortex (OFC)
(Huettel et al., 2005; Soltani and Izquierdo, 2019; Hsu et al., 2005; Soltani and Koechlin,
2022). Yet theories of neural coding suggest a tension: high-dimensional mixed selectiv-
ity supports flexible readouts (Rigotti et al., 2013; Tang et al., 2019; Sheng et al., 2022),
while low-dimensional abstraction promotes stable performance (Mack et al., 2020; Bernardi
et al., 2020; Flesch et al., 2022). How the brain reconciles these conflicting representational
demands during sequential, goal-directed learning under uncertainty remains unclear (Fusi
et al., 2016; Badre et al., 2021; Jazayeri and Ostojic, 2021; Chung and Abbott, 2021).

In this work, we approach the problem by combining behavioral analysis, reinforcement
learning models, and fMRI-based geometry of neural codes. This framework allows us to ask
whether the PFC organizes goal and uncertainty signals in a way that preserves goal stability
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while enabling adaptive control under noise. More broadly, it provides a representational
perspective that can address aspects of robust goal pursuit not explained by value-learning
theories alone.

2. Methods

Task Twenty adults performed a two-stage Markov decision task with manipulations of
goal (specific: only one designated coin color rewarded; non-specific: any color rewarded)
and uncertainty (low: 0.9/0.1 transitions; high: 0.5/0.5; Fig. 1a-b). This design isolated the
effects of goal specificity and environmental predictability. Human behavior was compared
with model-based (MB) and model-free (MF) reinforcement learning agents simulated on
the identical block schedules. See Appendix A for details.

Behavioral metrics We quantified behavioral flexibility (switching choices when goals
changed; choice versatility), stability (repeating choices when goals stayed constant despite
noise; choice consistency), and performance (trial-wise optimality relative to an oracle agent;
choice optimality). These metrics allowed us to test whether humans and RL agents achieve
robust goal pursuit by balancing adaptation with consistency.

ROI-based fMRI analysis and neural metrics BOLD activity was analyzed using
multivoxel pattern analysis (MVPA) with linear SVMs in eight predefined anatomical ROIs
(VIPFC, dIPFC, OFC, ACC, preSMA, V1, HPC, vStr; Fig. 5). We assessed four neural
properties: (i) decoding accuracy for goal and uncertainty, (ii) shattering dimensionality
(SD) (Rigotti et al., 2013), which tested the linear separability of all dichotomies based
on the combination of the two variables, (iii) cross-condition generalization performance
(CCGP) (Bernardi et al., 2020), which measured whether a linear decoder trained at one
context level generalized to the other, and (iv) parallelism score (PS), the cosine similarity
between coding directions estimated separately in different contexts.

3. Results

Robust human behavior emerges only under explicit goal pursuit. Value-based
decision-making theory predicts that larger action-value differences facilitate optimal choices,
whereas uncertainty reduces these differences (Fig. 1c¢). Consistent with this, human par-
ticipants exhibited reduced behavioral performance when no specific goal was provided;
however, when pursuing a specific goal, their performance remained robust against un-
certainty (Fig. 1d), indicating that stability emerges during goal-directed learning beyond
value-based accounts.

High flexibility and stability in human goal-directed learning To examine this
robustness, we quantified flexibility (adapting to changing goals) and stability (resilience
under uncertainty; Fig. le) and compared humans with simulated MB and MF agents. No-
tably, MF agents exhibited a flexibility—stability trade-off, whereas MB agents and humans
did not. Flexibility and stability both supported optimality in humans and MB agents.
Strikingly, humans achieved the highest levels of both flexibility and stability. These find-
ings provided strong motivation to investigate how humans overcome the trade-off. We
therefore probed the neural code supporting this profile.
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Figure 1: (a) Task structure. (b) Goal conditions: specific (colored box) vs. non-specific
(white box). (c) Action-value differences under low vs. high uncertainty. (d) Effect of
goal and uncertainty on performance (n = 20). (e) Definitions of behavioral flexibility and
stability. (f) Human vs. simulated MB/MF agents (20k different parameter sets).

Uncertainty is encoded only during goal pursuit, and neural dimensionality
expands with specific goals. We next asked where goal and uncertainty are repre-
sented. Goal decoding was significant in the vIPFC, dIPFC, OFC, ACC, preSMA, and
V1 (Fig. 2a-b), while uncertainty was reliably encoded only in the vIPFC, dIPFC, and
OFC, only under specific goals (Fig. 2c—d). Thus, uncertainty sensitivity was conditional
on goal pursuit. Moreover, neural effective dimensionality increased in the vIPFC, dIPFC,
OFC, and ACC during specific goals (Fig. 6), suggesting that PFC regions expand into
higher-dimensional codes to support robust goal pursuit.
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Figure 2: (a, ¢) Goal/uncertainty decoding across trial events (dashed line: chance level).
Error bars = SEM. (b, d) Average goal/uncertainty decoding accuracy.

Factorized embedding of goal and uncertainty in the LPFC To test how goals
remain stable under uncertainty, we analyzed representational geometry, considering three
regimes (Fig. 3a): compression (only one variable represented, stable but limited), factor-
ized mizing (variables linearly independent, generalizable across each other), and nonlinear
mizing (axes rotate, higher dimensionality but poor generalization). The nature of possible
linear separations depends on the complexity of the underlying neural embedding (Vapnik
and Chervonenkis, 2015; Abu-Mostafa, 1989). Using shattering analysis of fMRI data, we
tested the separability of all possible dichotomies (Fig. 3a) and grouped them into four
categories (goal, uncertainty, linear, nonlinear; Fig. 7) to derive region-specific shattering
profiles (Fig. 3b). The vIPFC, dIPFC, and OFC showed factorized profiles, jointly encod-
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ing goal and uncertainty while maintaining stable embeddings. The ACC, preSMA, and
V1 exhibited compression, encoding goals alone; consistent with decoding results (Fig. 2).
Neural goal separability predicted individual flexibility, stability, and optimality, with the
vIPFC and dIPFC explaining variance in all three measures (Fig. 3c).
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Figure 3: (a) Hypothetical embedding regimes. (b) Shattering dimensionality (SD) across
dichotomy types. (c) Correlation coefficients between goal SD and behavior.

Neurally stable goal embedding in LPFC guides stably flexible learning Goal
representations remained robust across uncertainty: CCGP and SD were comparable be-
tween conditions (Fig. 4a). Despite representing uncertainty, the vIPFC, dIPFC, and OFC
preserved stable goal axes, and higher robustness in the vIPFC and dIPFC correlated with
behavioral flexibility, stability, and overall performance (Fig. 4b). PS further confirmed
aligned goal-encoding directions across uncertainty in the vIPFC, dIPFC, OFC, and preSMA
(Fig. 4c-d), supporting minimal reorientation. Together, CCGP and PS demonstrate that
PFC maintains invariant goal readouts, enabling stably flexible behavior.
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Figure 4: (a) Goal CCGP and SD across uncertainty levels. (b) Correlations between goal
CCGP and behavioral measures. (c) PS: schematic and definition. (d) ROI-wise PS results.

4. Discussion

Prior works located goal- and uncertainty-related signals in PFC but rarely addressed how
stable performance is maintained under uncertainty; our data indicate that factorized goal
x uncertainty codes in the LPFC and OFC mitigate the flexibility—stability dilemma and
offer a tractable representational account that complements value-learning models. By
independently encoding uncertainty (for strategy selection) and goal (for action selection),
LPFC can organize a stable hierarchy of strategy and action across contexts and stages;
an aspect left open by many single-context studies. Looking forward, testing agents with
factorized goal-uncertainty embeddings and extending to longer timescales and richer tasks
will clarify when this geometry reproduces human-like robustness.
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Appendix A. Methods (expanded)

Task and participants We analyzed the behavioral and fMRI dataset from a two-stage
Markov decision task with uncertainty-changing blocks. Twenty-two right-handed adults
were recruited; two were excluded (one for invariant Stage-1 choices, one for sub-chance
performance), yielding n = 20. Each trial comprised two left/right choices to reach a
colored coin outcome; coins (red/yellow/blue) had participant-specific values. After 100
pretraining trials with 0.5/0.5 transitions, participants completed five scanning sessions
(about 80 trials each, total 400). Block contexts crossed goal (specific: only the cued color
pays; non-specific: any color pays) with uncertainty (low: 0.9/0.1; high: 0.5/0.5) in short
alternating blocks. Choices timed out at 4s; I'TIs were 1-4s; outcomes were displayed for
2s. Participants were told that goals and transition probabilities could change but not the
numeric probabilities.
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Behavioral measures We summarized behavior with three trial-level metrics and aver-
aged them per participant. Choice optimality scored 1 when the chosen action matched an
oracle agent’s optimal action for that state and context (ties excluded). Choice versatility
(flexibility) scored 1 when, at the same state, the current choice switched relative to the
previous trial only when the goal changed. Choice consistency (stability) scored 1 when, at
the same state, the current choice repeated the previous choice only when the goal stayed
the same, indexing resistance to noise-induced switching.

Simulated agents We simulated two reinforcement-learning agents under the exact block
schedules used by humans (same trial counts, goal sequences, and uncertainty switches) to
benchmark flexibility, stability, and performance. The model-based (MB) agent combined
(i) FORWARD learning of transition dynamics via a state-prediction error (SPE) and (ii)
BACKWARD planning that re-evaluates action values when the trial goal changes. Con-
cretely, with transition matrix T'(s,a, s’) and terminal rewards r(s) = R for goal states (0
otherwise), the MB values were computed by dynamic programming

QMB(s,a) = ZT(S, a,s') [r(s') + ’ym:%xQMB(S', a')]7 y=1,
and the model was updated online using

dspe = 1 —T(s,a,s"), AT(s,a,s") =ndspE,

with 7 the SPE learning rate. The model-free (MF) agent used SARSA with a reward-prediction
error (RPE)

orpe = () + 7 QMF (s, d) — QM (s,a), AQMF(s,a) = adrpr,

where « is the value-learning rate and v = 1. Both agents chose stochastically via a
softmax policy

exp{7 Q(s,a)}
S exp{r Q(s, @)}’

with inverse temperature 7 (decision noise/exploitation). For each of the 20 human
schedules we drew 1,000 random parameter sets per model (yielding 20,000 MB and 20,000
MF agents across schedules); each model had two free parameters: a learning rate (n or
a) and 7. Agent behavior was scored with the same trial-wise metrics as humans: choice
optimality, choice versatility, and choice consistency.

Pr(a|s) =

fMRI acquisition and ROIs Scanning used a 3T Siemens Trio (32-channel coil). Struc-
tural images: MPRAGE (TR = 1,500 ms; TE = 2.63 ms; flip 10°; 1 mm isotropic). Func-
tional images: EPI (45 slices tilted 30° from AC-PC; TR = 2,800 ms; TE = 30 ms; flip 80°; 3
mm isotropic). Preprocessing in SPMS8 included slice-timing correction, realignment, coreg-
istration, and normalization to MNI152. For MVPA, voxel time series were detrended and
z-scored within session. Eight bilateral ROIs were analyzed (Fig. 5): the ventrolateral pre-
frontal cortex (vIPFC), dorsolateral prefrontal cortex (dIPFC), orbitofrontal cortex (OFC),
anterior cingulate cortex (ACC), pre-supplementary motor area (preSMA), primary visual
cortex (V1), hippocampus (HPC), and ventral striatum (vStr). ROIs were defined from
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AAL3, except preSMA (JuBrain); vIPFC: triangular inferior frontal gyrus; dIPFC: middle
frontal gyrus; OFC: inferior, middle, superior orbital gyri 4+ rectal gyrus; ACC: pregen-
ual + supracallosal. Hemispheres were averaged; preliminary checks confirmed voxel-count
differences did not drive results.

I vIPFC Il dIPFC @ OFC [l ACC
(inferior frontal gyrus, (middle frontal gyrus) (bilateral inferior, middle, and (pregenual,
triangular part) superlor orbital gyri and bilateral supracallosal)

rectal gyri)

- §

x=-34

y—26 g gx- 42 y=39

-

[] preSMA w1 [ Hippocampus I Ventral striatum
(Calcarine fissure and (nucleus accumbens)

surrounding cortex)
“y=-36 W ; x=26

z=29

2760 z=12

Figure 5: Anatomically defined ROIs. Binary masks for the eight ROIs—ventrolateral
prefrontal cortex (vVIPFC), dorsolateral PFC (dIPFC), orbitofrontal cortex (OFC), anterior
cingulate cortex (ACC), pre-supplementary motor area (preSMA), primary visual cortex
(V1), hippocampus (HPC), and ventral striatum (vStr)—are overlaid bilaterally on the
MNI152 T1-weighted template (coronal, sagittal, and axial views). All masks were taken
from the AAL3 atlas (Rolls et al., 2020) except the preSMA, which was obtained from the
JuBrain Anatomy Toolbox (Eickhoff et al., 2007).

Unsupervised dimensionality For each ROI, goal condition (specific vs. non-specific),
and uncertainty level (low vs. high), we quantified neural dimensionality with the effective
rank of the PCA eigenspectrum (Roy and Vetterli, 2007). Trial-locked multivoxel patterns
were extracted at S1, A1, S2, A2, S3, and the post-trial fixation (fix"); within each ses-
sion voxel time series were detrended and z-scored. For a given condition we stacked all
event-locked patterns, computed the voxelwise covariance, and performed PCA. Let {\;}
denote the non-negative eigenvalues (variance explained) of this covariance; we formed nor-
malized weights p; = Ai/ >_; A; and the spectral entropy H = — 3, p;logp; (natural log).
The effective rank is ER = exp(H), which ranges from 1 (all variance in a single compo-
nent) to the number of components (uniform spectrum); higher ER indicates greater usable
dimensionality. ER was computed separately per event and then averaged across events
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and hemispheres to yield one value per ROI per participant. Group effects of goal, uncer-
tainty, and their interaction were tested with a two-way repeated-measures ANOVA per

ROLI (Fig. 6).
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Figure 6: Effect of goal and uncertainty condition on the neural dimensionality of brain
regions. (a) The neural dimensionality of brain regions measured under different goal and
uncertainty conditions. The dimensionality was quantified using the effective rank measure
(Roy and Vetterli, 2007). This measure involves performing PCA on the BOLD signal
from each brain region to obtain the eigenspectrum, calculating its entropy H, and then
exponentiating the result. As defined by the previous work (Roy and Vetterli, 2007), the
effective rank ER = exp (H). Error bars represent the standard error across participants.
Effective rank values were averaged across the left and right hemispheres. (b) The effect
sizes obtained from a two-way repeated measures ANOVA. GC represents the goal condition,
UC represents the uncertainty condition, and GC*UC denotes the interaction between these

two conditions. Only significant effects are shown with filled bars (*: p < 0.05).

Decoding pipeline (events and cross-validation) All multivoxel analyses used linear
SVMs trained and tested within each ROI with leave-one-session-out validation (five folds).
Event-locked patterns were extracted at eight timestamps per trial: Fix1, S1, Al, Fix2,
S2, A2, Fix3, S3. To respect hemodynamic lag and sequence timing, the volume immedi-
ately after an event indexed its response; because choices were followed by fixation cues,
A1/A2 responses were taken from volumes after Fix2/Fix3. We decoded goals (3-way),
uncertainty (binary), and dichotomies (see SD below) at each informative event; the initial
fixation (Fix1) was excluded from SD, while the subsequent trial’s fixation (fix’) was used
to capture residual post-outcome signals. Class imbalance was controlled by 100 rounds of
undersampling with different seeds; reported accuracies are means across rounds and folds.
Chance levels were 1/3 (goal) and 0.5 (binary tasks). Shuffled-label controls confirmed all
metrics fell to chance.

Shattering dimensionality (SD): procedure and geometric rationale To diagnose
representational geometry, we considered the six goal x uncertainty classes (3 goals x 2
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uncertainty levels) and evaluated all unique binary labelings (31 dichotomies). Dichotomies
were grouped into four types: goal (three one-vs-rest goal splits), uncertainty (low vs high
across goals), linear (dichotomies linearly separable under a generic linear mixing of goal
and uncertainty), and nonlinear (nine dichotomies empirically not linearly separable under
that model). For each ROI and event (S1-fix’), we trained SVMs on every dichotomy and
defined SD as the mean test accuracy within each type (chance level: 0.5). Predicted profiles:
compression (high SD for only one variable), factorized mizing (high goal /uncertainty /linear
SD; lower nonlinear SD), and nonlinear mizing (high SD for all types). This taxonomy links
linear readout availability to embedding structure and generalization.
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Figure 7: Categorization of all dichotomies. (a) The six classes determined by the specific
goal and uncertainty conditions. (b) A schematic of a dichotomy based on the six classes.
(c) The four categories (goal, uncertainty, linear, and nonlinear) for all dichotomies. There
are 2% ways of binary labeling with the six classes. The actual number of dichotomies
reduces to 267_2 by excepting the two cases of all positive or negative labeling and removing
half of the duplicated cases due to the symmetry of binary labeling. (d) Visualization of all

categorized dichotomies.

Cross-condition generalization (CCGP) and parallelism CCGP tests whether a
single goal readout transfers across uncertainty. For each ROI/event, we trained three goal
dichotomies (e.g., red vs {blue,yellow}) in low uncertainty and tested in high, and vice
versa; CCGP is the mean of the six cross-directions. Comparing CCGP to within-condition
SD quantifies context sensitivity: large CCGP implies an uncertainty-invariant goal axis. A
complementary parallelism score (PS) assessed alignment of coding directions: within each
uncertainty level we formed mean patterns per goal and computed vectors between goal
pairs; PS is the cosine similarity between corresponding low- vs high-uncertainty vectors,

11



AUTHORS

averaged across pairs, events, and sessions (with undersampling for class balance). Positive
PS indicates minimal axis rotation across uncertainty.

Statistics Participant-level accuracies (or ranks) were averaged across events as speci-
fied, yielding one value per ROI per metric. Hypothesis-driven tests were two-tailed at
a = 0.05 and conducted per predefined ROI without family-wise correction (no exploratory
search across ROIs). Where multiple event types or SD categories were compared within
an ROI, planned comparisons are reported without additional correction. Exploratory
brain—behavior correlations were corrected across the eight ROIs using Benjamini—-Hochberg
FDR (¢ = 0.05); adjusted g values are reported. Chance levels were 1/3 (3-way goal) and
0.5 (binary tasks).
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