From Pixels to Pregnancies: AI-Driven Oocyte
Grading for Scalable Livestock Breeding

Parkash Singh Grace Koppelman
The Ohio State University The Ohio State University
Computer Science & Engineering Food, Agricultural & Biological Engineering
singh.20680Qosu.edu koppelman.9@osu.edu
Tanya Berger-Wolf John Fulton
The Ohio State University The Ohio State University
Computer Science & Engineering Food, Agricultural & Biological Engineering
berger-wolf.1@osu.edu fulton.20@osu.edu

"3

- 2. May or may not require e o
1. Donor selection hormonal stimulation e 9% 3.0vum Pick Up

o
|
Q"‘
o ¥

Data Collection Dataset

(N
._J .':.'l. ‘ :\l
N oo’
s'f‘: N L ~—
r Deep Learning Model > —

5. Oocytes are fertilized in
the lab. Embryos are
cultured for 7-8 days

| |

4. Oocytes are identified, classified, and
shipped to the lab

oY Y Y
g | P Y Y P Y

Input and Output : 6A. Embryos are transferred to synchronized recipients ~ 6B. Embryos are frozen

1
[

Figure 1: Overview of the in vitro embryo production (IVP) workflow (right, adapted from Gonella-
Diaza, 2023 [noa, b] ) and Al-based oocyte grading pipeline (left). The right panel shows each stage
of IVP, with Oocyte grading highlighted as a key step. Oocyte grading is a critical step where our
deep learning model integrates into IVP to enable objective and robust classification.

Abstract

Sustainable livestock breeding is essential to meeting the food demands of a
growing global population. Assisted reproductive technologies (ART), such as in
vitro fertilization(IVF), are increasingly used to enhance reproductive efficiency. A
key determinant of IVF success is the quality of the oocyte, which directly affects
fertilization, embryo development, and blastocyst yield. However, oocyte grading
today remains a subjective and inconsistent process, creating variability that affects
the entire in vitro embryo production pipeline. We introduce a deep learning
framework for automated oocyte grading, built on the first dataset of its kind:
1,140 bovine cumulus—oocyte complex (COC) images labeled according to the
International Embryo Transfer Society (IETS) scale. Our models achieve up to 65%
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accuracy across four grades, improving to over 80% when grouped into industry
relevant quality categories. By aligning with IETS guidelines, we establish the first
benchmark for standardized oocyte grading in livestock IVF. This work provides a
strong foundation for Al-based assisted livestock breeding, offering consistency,
reduced human variability, and increased throughput in livestock breeding.

1 Introduction

Feeding a projected population of nearly 10 billion people by 2050 [Nations|| requires more than
incremental improvements in agriculture and livestock farming. Livestock contributes a major share
of the global food supply through meat and dairy, yet their productivity remains limited by the
pace of natural breeding. To meet this demand, Assisted reproductive technologies (ART) are being
utilized over traditional natural breeding methods to enhance both reproductive efficiency and genetic
selection [Ferré et al.l 2020]. Among ART procedures, in vitro fertilization (IVF) plays an important
role [Hansen, 2023|]. IVF is a process where oocytes (eggs) are collected from the ovaries and
fertilized by sperm in a laboratory setting.

The success of IVF depends heavily on selecting high quality oocytes, as oocyte quality directly
influences fertilization rates, embryo development, and pregnancy outcomes [Demetrio et al.| 2022].
Currently, grading is performed manually by experienced technicians who assess subtle morphological
traits under a microscope. This process is slow, requires years of training, and is inherently subjective,
leading to inconsistency across observers and laboratories [Fjeldstad et al., 2024| |[Farin et al.| [1995].
The variability in oocyte grading reduces reproducibility and throughput, creating a bottleneck that
limits the scalability and success of IVF in livestock breeding [Boni, [2018]]. These are challenges that
Al can uniquely address through automation and standardization of oocyte evaluation.

While Al based methods have been applied to human IVF, they lack publicly available datasets and
benchmarks due to the proprietary nature of clinical data. Livestock applications face the same chal-
lenge, with no open datasets or standardized evaluation protocols [lannone et al.,[2024]. Additionally,
within livestock, grading practices also vary: many farms and laboratories collapse oocytes into two
or three categories, while the International Embryo Transfer Society (IETS) recommends four [Boni
[2018]]. This lack of standardization underscores the need for reproducible, open, and standarized
solutions.

We present the first large scale dataset and benchmark for bovine oocyte grading aligned with
IETS guidelines. This work is based on the graduate Master thesis work by the co-author Grace
Koppleman [Koppelman| [2025]], who collected the data, framed the problem, and the initial evaluation
of the computational solution. The dataset contains 1,140 expert annotated images of bovine
cumulus—oocyte complexes (COCs) commonly referred as oocytes in this paper, and we evaluate
both object detection and classification models. Baseline results show competitive performance
on 4-class IETS grading and improved accuracy under industry relevant three class and binary
schemes. As a step toward automating IVF workflows in livestock farming, our framework addresses
the foundational task of oocyte grading, reducing grading time, minimizing human variability,
and providing high clinical value for IVF practice. This work lays the groundwork for scalable,
reproducible Al benchmarks that support both academic research and industry adoption.

2 Related Work

Al has shown promise in assisted reproductive technologies (ART), particularly for oocyte and embryo
assessment. Most work has focused on human IVF, where deep learning pipelines have achieved high
accuracy in classifying oocytes by meiotic stage and predicting fertilization potential. For instance,
[Targosz et al., 2023 combined DeepLabV3Plus segmentation with a refined SqueezeNet classifier,
reaching 96% validation accuracy for human oocyte classification. While encouraging, these studies
remain constrained by small, imbalanced datasets and limited reproducibility, as clinical data are
rarely shared.

In livestock, research has largely targeted blastocyst prediction rather than direct oocyte grading.
Costa et al. (2023) proposed a semi automatic CNN based system for bovine oocyte competence,
labeling images post hoc by blastocyst outcomes. More recently, [Raes et al., 2025] reported that
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Object Detection Localized Augmentation

Grade 1 258
Grade 2 307 Figure 2: Preprocessing pipeline for oocyte images. Object detection
Grade 3 316 identifies the region of interest; localized crops are extracted, and
Grade 4 259 augmentations are applied to improve training diversity. We ablate
Total 1140 the effects of detection and augmentation are evaluated in TableEl

neural networks and random forest models outperformed embryologists in predicting blastocyst
potential from COC images, with balanced accuracy >70% compared to <45% for humans, which
validates the potential of ML models in this field. However, blastocyst formation depends on many
factors beyond oocyte morphology, making such predictions an unreliable proxy for oocyte quality.

Despite widespread use of morphological grading in practice, few Al studies address oocyte grading
directly, and none provide standardized, open benchmarks for livestock IVF. Existing approaches
lack alignment with International Embryo Transfer Society (IETS) guidelines and vary across farms
and labs [Boni, |2018]]. Our work addresses this gap by introducing the first large scale dataset and
benchmark for bovine oocyte grading, comprising 1,140 expert annotated oocyte images labeled
according to IETS standards. This benchmark reframes oocyte grading as a machine learning task,
enabling reproducibility, standardization, and practical integration into livestock breeding.

3 Methodology

3.1 Data Collection

Bovine cumulus—oocyte complexes (COCs) were collected from slaughterhouse cattle and transferred
to the laboratory for imaging and labeling. Two acquisition setups were used: (i) Leica MC120 HD
camera mounted on a Leica M80 microscope. (ii) iPhone 15 Pro Max attached to the Leica M80
microscope using a custom adapter.

Each image contained a single COC centered in the frame, captured under consistent magnification
and lighting to minimize variability. Images were labeled by experienced technicians into one of
four categories (Grades 1-4) following the International Embryo Transfer Society (IETS) guidelines,
which define morphological criteria for oocyte quality. In total, 1,140 COC images were collected
(see table[T)). To our knowledge, this represents the first dataset of bovine COCs labeled into four
categories according to IETS guidelines, providing a foundation for reproducible machine learning
benchmarks in livestock IVF.

3.2 Data Preprocessing

To ensure consistent inputs, we first localized oocytes using a lightweight YOLO based (Yol-
los)[|Ultralytics|] object detector. The motivation was that raw images frequently contained off
center oocytes along with extraneous cells and background noise, which could bias the downstream
classification task. The detector was trained on 50 manually annotated images and achieved mAP@0.5
of 0.51 on 10 val images. Once trained, it was applied to the full dataset to crop regions of interest
(ROIs), producing standardized oocyte-centered images.

Over cropped images, we further applied data augmentation on dataset for robustness. Augmentations
included (i) geometric: flips, small rotations, and scale/shift; (ii) photometric: brightness/contrast
and color shifts; and (iii) imaging artifacts: Gaussian blur and local contrast enhancement (CLAHE)
[Marimuthu, [2022]]. Augmentations were applied probabilistically to the training set only, ensuring
realistic variability while preserving morphology.



Table 2: Comparison of DINOv2+KNN, YOLOvVS, and InceptionV3 on 4-class IETS grading.
YOLOVS achieves higher mean accuracy and stronger recall/F1 across most grades, with notable
gains on Grade 1.

DINOv2+KNN YOLOvS InceptionV3
Grade Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc.
1 0.62 0.63 0.62 0.63 0.64 084 086 0.84 0.67 0.63 0.65 0.63
2 0.52 0.67 0.58 0.67 0.62 045 052 045 044 043 044 043
3 0.55 045 049 045 058 0.63 060 0.62 052 0.60 0.55 0.60
4 0.84 0.71 0.77 0.71 0.69 0.64 0.67 0.64 082 0.74 0.78 0.74

Mean 0.63 0.61 061 0.61 063 064 066 0.63 061 0.60 0.61 0.59

Table 3: Generalization on test and independent set which is outside main data corpus. Age, is the
change from Test to Independent accuracy for each model.

DINOV2+KNN YOLOVvS InceptionV3
Grade Test Indep. Agen Test Indep. Agen Test Indep. Agen
1 063 0.10 -0.53) 0.84 030 -0.54] 0.63 030 -0.33)
2 0.67 0.70 +0.031 045 090 +0.451 043 0.50 +0.071
3 045 040 -0.05, 062 040 -0.22) 060 050 -0.10)
4 071 0.67 -0.04] 0.64 055 -0.09] 0.74 045 -0.29)
Mean 0.61 0.46 - 0.63 0.53 - 0.59 043 -

3.3 Modeling

We evaluated both transfer learning and end-to-end fine tuning for oocyte image classification after
preprocessing. Following CNN and Transformer based pipelines were tested on 1,140 images
(70/15/15 split):

DINOv2 with KNN. Cropped oocyte images were embedded using DINOv2 (ViT-B/14) [Oquab
et al., [2023]], a self supervised Vision Transformer, and classified with a K-Nearest Neighbors (KNN)
model. This pipeline achieved 61% test accuracy on the 4-class IETS grading task. When categories
were grouped into binary or three-class schemes, performance improved to 70-80%, highlighting the
difficulty of fine-grained classification.

YOLOVS classifier. Using YOLO based cropping, we fine tuned YOLOv8[noa, c] as a 4-class
classifier. YOLOVS achieved 63% test accuracy, outperforming DINOv2+KNN and generalizing
more robustly across conditions. Training used AdamW with cross entropy loss, cosine learning rate
decay, and ran for 100 epochs on a single GPU.

Inception V3. Using YOLO-based cropping, we fine-tuned InceptionV3[noa, jal] as a 4-class classifier
by unfreezing the last 50 layers. InceptionV3 achieved 59% test accuracy on the held-out test set.
Training used Adam optimizer, categorical crossentropy loss, dropout, and L2 regularization. The
model was trained for up to 100 epochs with early stopping and learning rate reduction on plateau,
running on a single GPU.

Summary. YOLO based cropping proved critical for improving input quality. YOLOVS delivered the
strongest baseline for 4-class IETS grading, while grouped classification achieved higher accuracy.
This suggests a tradeoff between fine grained precision and practical deployment.

3.4 Error Analysis

We compared the classification performance of DINOv2+KNN, YOLOvVS, and IncpetionV3 on the
4-class IETS grading task (Table[2). A consistent trend is that models separate extreme classes (Grade
1 and Grade 4) more effectively, while performing only moderately on the middle grades (2 and
3). This difficulty in distinguishing intermediate categories has also been observed by [[Rocha et al.}
2017] and reflects the inherent ambiguity in human grading. Notably, many farms collapse Grades 2
and 3 into a single class, which aligns with our findings.



Table 4: Ablation study on DINOv2+KNN for 4-class oocyte grading.Results highlight that prepro-
cessing with object detection is critical, improving mean accuracy from 0.52 to 0.61.

With Preprocessing Without Preprocessing
Grade Precision Recall F1 Acc. Precision Recall F1 Acc.
1 0.62 0.63 0.62 0.63 0.38 033 035 033
2 0.52 0.67 0.58 0.67 0.50 0.57 0.53 0.57
3 0.55 045 049 045 0.56 0.52 0.54 0.52
4 0.84 0.71 0.77 0.71 0.66 0.64 0.65 0.64
Mean 0.63 0.62 0.62 0.61 0.53 0.52 052 052
1.0 q
0.8
3 0.6
@©
5
[S}
£ 0.4+
0.2
0.0 -
4-class 3-class Binary
(1,283,4) (1&2 vs 3&4)

Figure 3: YOLOVS accuracy on test set under different grading schemes.The grading reflects industry
practices where many labs use three-class grading or binary grading to reduce subjectivity.

Generalization analysis (Table 3) using an independent test set of oocytes images cropped from
group COC images (multiple oocytes with differnt grades taken in a single image) shows a consistent
performance drop across model families. This highlights the challenges of domain shift differences
in imaging setups and data distribution. This underscores the need for larger, more diverse datasets to
improve robustness.

Finally, it is important to place these results in the context of human performance.
reported only 69% agreement among six expert technicians when ranking oocyte quality, illustrating
the subjectivity of this task. Our results mirror this challenge: Al models face the same ambiguities as
humans, particularly in borderline grades, but offer the promise of reproducibility and standardization
once larger datasets and improved imaging protocols are available.

3.5 Generalization

We further evaluated model robustness on an independent test set of 40 oocyte images extracted from
group COC samples that are not part of main corpus. Despite the smaller and more challenging
dataset (because group COC sample are multiple oocytes captured in a single image and then cropped
out for evaluation) YOLOVS8 maintained competitive performance on the 4-class IETS task. Both
DINOV2+KNN and YOLOVS8 achieve even higher accuracy under practical grading schemes (three-
class and binary), consistent with industry practice. These results reinforce that while fine grained
grading remains difficult, groupings provide a reliable and scalable path for deployment. (see table[3)

4 Discussion & Conclusion

Our study demonstrates the feasibility of automating bovine oocyte grading with deep learning.
We introduce the first dataset and benchmark aligned with IETS guidelines. Among the evaluated
pipelines, YOLOVS consistently outperformed other CNN and transfer based model under the strict 4-
class IETS grading scheme, providing a strong baseline for future work. Grouped grading (three-class
that merged classes 2 and 3, as well as binary 1-2 vs 3-4) further improved accuracy, highlighting
both the challenge of fine-grained distinctions and the practical utility of coarser schemes in industry



settings. Object detection-based preprocessing also helped ensure data consistency and improved
downstream classification.

Our work highlights the importance of oocyte grading as an early stage step in in vitro embryo
production (IVP), an area less explored compared to Al applications on blastocyst stage embryos
[lannone et al., 2024]. Unlike blastocyst prediction, which depends on multiple biological and
environmental factors such as genetics, sperm quality, and culture conditions, oocyte grading provides
a standardized, immediate, and widely adopted metric in IVF. Future research should explore direct
linking oocyte grading to later developmental outcomes such as blastocyst formation and pregnancy
rates.

While our baseline models establish feasibility, further improvements in model architectures, imaging
technologies, and domain-relevant performance metrics are needed to capture subtle morphological
traits. Further work should also include multiple experts grading same set of oocytes and do inter-
and intra annotator consistency evaluations for label reliability. Our experiments showed that even
low cost setups, such as an iPhone mounted to a microscope, provide a starting point, but robust
deployment will require higher resolution imaging and standardized acquisition protocols.
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