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ABSTRACT

We introduce a simple yet effective token merging method for ViTs that is compat-
ible with modern spatial ViT architectures like SAM or DINOv3, by maintaining
spatial integrity of merged tokens. Our proposal reconciles two seemingly con-
flicting requirements: (i) exploiting the uneven information distribution across the
spatial layout while (ii) preserving the spatial structure post-merging. Our ap-
proach employs (i) a 2D reduction strategy to enforce structured token layouts,
(ii) a spatial-aware merging algorithm that maintains relative token positions, and
(iii) a novel max-magnitude-per-dimension token representation that preserves
salient features. Our method demonstrates strong performance both off-the-shelf
and with fine-tuning, achieving state-of-the-art results on spatial and non-spatial
architectures across various vision tasks. Specifically, we achieve 1.25x speedup
on SAM-H with only 0.7% mIOU drop evaluated on COCO oft-the-shelf, and
1.15x speedup on DeiT-B with no top-1 accuracy drop on ImageNet within just
one epoch of fine-tuning.

1 INTRODUCTION

Vision Transformers have become the leading architecture across various vision tasks such as clas-
sification (Dosovitskiy et al., 2021; Touvron et al., 2021; He et al., 2022), object detection (Li et al.,
2022a; Ryali et al., 2023; Cheng et al., 2022) and semantic segmentation (Kirillov et al., 2023; Ravi
et al., 2025; Strudel et al., 2021). However, their memory and computational demands pose major
challenges, especially with the growing sizes of recent models (Siméoni et al., 2025).

Token reduction methods offer an attractive solution by leveraging the input-agnostic nature of trans-
formers to dynamically reduce the number of tokens during processing. However, the vast majority
of existing token reduction methods face fundamental incompatibilities with spatial architectures,
such as 2D positional embeddings (Li et al., 2022b; Heo et al., 2024) at every attention layer, and
window attention (Liu et al., 2021; Li et al., 2022a). Most techniques (Rao et al., 2021; Liang et al.,
2022b; Kong et al., 2022; Bolya et al., 2023; Lee et al., 2024a; Tran et al., 2024; Long et al., 2023;
Kim et al., 2024; Norouzi et al., 2024; Chen et al., 2023) produce unstructured token layouts that
break spatial coherence (see Figure 1). The resulting unstructured token layouts break both win-
dow attention, which requires consistent token counts across all windows, as well as 2D positional
embeddings, which depend on structured arrangements to compute spatial relationships correctly.
The impact of breaking spatial coherence is shown in Figure 2(b): non-spatial-preserving methods
like ToMe severely distort attention patterns of models with relative positional bias. In contrast, our
spatial-preserving approach maintain attention patterns that closely resemble the baseline model, as
shown in Figure 2(a).

Expedite (Liang et al., 2022a) is the only existing method that maintains spatial integrity, doing so
by pooling across the structured feature map to initialize cluster centroids. However, the resulting
clusters are distributed evenly across the feature maps, without regard to information density variation
across different regions; this causes information loss and significant performance degradation (see
Section 4.1).

In this paper, we show how to reconcile two seemingly conflicting requirements: (i) preserving
spatial structure of merged tokens while (ii) exploiting the uneven information distribution across the
spatial layout. We propose CubistMerge, a spatial-preserving token merging method that selectively
joins redundant tokens using an information-preserving representation, while leaving distinct tokens
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Figure 1: (a—b): Most token merging methods, like ToMe shown here, fail to preserve spatial layouts.
(a—c): Expedite preserves spatial structure, but fails to exploit information density unevenness across
regions, losing information. (a—d): CubistMerge preserves spatial coherence while focusing token
reduction on regions with low information density.

untouched. Our 2D reduction strategy maintains structured spatial token layouts in the resulting
tokens after merging, enabling compatibility with spatial architectures. CubistMerge can operate as
an off-the-shelf solution and also shows strong fine-tuning performance within a small number of
epochs.

The key contributions we make in this paper are:

* a 2D token reduction strategy that maintains consistent token counts per row and column;
* a spatial-aware token merging that maintains relative spatial relationships; and

* amax-magnitude-per-dimension token representation that preserves salient features without
requiring layer-wise attention rescaling.

We demonstrate generalizability through comprehensive evaluation across several influential ViT
backbones on diverse tasks including classification, detection, and segmentation. On spatial archi-
tectures, we consistently outperform Expedite (Liang et al., 2022a) across every task and model.
To compare against existing methods more broadly, we also conducted experiments on vanilla ViT
backbones, achieving state-of-the-art results, both off-the-shelf and with fine-tuning, on DeiT-B com-
pared against 5 other token reduction techniques. Notably, we achieve no accuracy loss on ImageNet
at 1.15x speedup within just one epoch of fine-tuning. Even compared against specialized methods
like ALGM (Norouzi et al., 2024) which targets segmentation, we achieve similar performance while
maintaining broader applicability.

2  REeLATED WORK

Token Pruning. Early token reduction methods primarily focused on token pruning (Rao et al.,
2021; Liang et al., 2022b; Kong et al., 2022). While effective for early classification models, these
approaches suffer from critical limitations: (1) they cannot recover discarded tokens, rendering
them incompatible with modern backbones that require dense token layouts at the output (Li et al.,
2022b;a; Ryali et al., 2023), and (2) they introduce extra learned parameters, necessitating retraining
of additional modules alongside the backbone model.

Retraining-Based Token Reduction. Some token reduction approaches require extensive retrain-
ing (Long et al., 2023; Lu et al., 2023; Liu et al., 2024b; Lee & Hong, 2024; Liu et al., 2024a), which
presents challenges for modern large-scale models due to computational costs of training and limited
data availability: foundation models such as DINOv3 (Siméoni et al., 2025) rely on massive datasets
and scale architectures up to 7B parameters. While effective, these retraining-based approaches are
prohibitively expensive, creating a need for training-free solutions.

Graph-based Token Merging. Token Merging (ToMe) (Bolya et al., 2023) addresses both limita-
tions above: it merges tokens rather than discarding them, enabling recovery for dense outputs, and
can operate off-the-shelf without retraining. ToMe employs a graph-based approach with bipartite
matching to selectively combine similar tokens through weighted averaging. This approach demon-
strates success across several models and tasks, becoming the foundation for subsequent works with
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Figure 2: Attention patterns with relative positional bias towards 5 different token positions (indicated
by red star) on SAM-B. (a) shows attention map of baseline model. (b) shows effective attention
pattern with ToMe applied (c) shows effective attention pattern with our method applied. Our method
preserves attention patterns better than non-spatial-preserving method like ToMe.

incremental improvements such as adaptive merging rates (Norouzi et al., 2024; Chen et al., 2023),
importance-based token selection (Lee et al., 2024a; Tran et al., 2024; Long et al., 2023), and hybrid
pruning-merging approaches (Kim et al., 2024). However, ToMe and these subsequent works all fail
to maintain spatial structure after merging, which is critical for architectures with spatial components.
Despite some works adopting spatial-aware strategies (Norouzi et al., 2024; Xu et al., 2024), they
only focus on merging spatially near tokens but do not maintain structured spatial layouts in resulting
tokens.

Clustering-based Token Merging. Expedite (Liang et al., 2022a) represents the only existing
method that preserves spatial structure by employing a k-means clustering approach on superpixels
initialized through adaptive average pooling, producing structured 2D layouts compatible with spatial
architectures. However, Expedite fails to exploit information density unevenness across feature
maps, and consequently fails to preserve semantically distinct tokens. The information loss on
distinct tokens leads to performance drops especially when applied to early layers (see Section 4.1).
AiluRus (Li et al., 2023) also noted this weakness and built upon Expedite’s clustering approach,
addressing this limitation by identifying cluster centers based on semantic importance rather than
spatial organization. However, this improvement consequently fails to maintain the structured spatial
layouts required by spatial architectures.

Task-specific Token Reduction. Recent token reduction techniques have increasingly targeted com-
plex tasks, but many are designed for specific tasks or models, such as video understanding (Lee
et al., 2024b; Shen et al., 2025; Choi et al., 2024), segmentation (Lu et al., 2023; Norouzi et al.,
2024), or vision-language models (Ye et al., 2025; Hu et al., 2024; Alvar et al., 2025). While these
methods have shown success in their specialized domains, they do not address the fundamental
spatial compatibility challenge we tackle: maintaining structured token layouts essential for spatial
architectures. A gap remains for general-purpose token reduction methods that can work effectively
with the growing prevalence of spatial architectures.

3 METHODS

Existing token reduction methods face a fundamental dilemma: they either fail to preserve spatial
structure or fail to exploit uneven information density across the spatial layout (see Figure 1). To
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Figure 3: 2D token reduction with spatial-aware merging: (1) original 14x14 tokens, (2) select
horizontal tokens to merge, (3) merge horizontally to 14x12 tokens, (4) select vertical tokens to
merge, (5) merge vertically to 12x12 tokens.'

address this, we employ (i) a 2D token reduction strategy to enforce structured spatial layout, (ii) a
spatial-aware token merging that selectively targets redundant tokens while preserving relative spatial
relationships, and (iii) a max-magnitude-per-dimension token representation that preserves salient
features without requiring layer-wise attention rescaling.

3.1 2D REDUCTION STRATEGY

We observe that existing token reduction methods break 2D spatial coherence due to uneven token
counts across rows and columns (see Figure 1(b)). To address this, we reduce tokens in each dimension
sequentially, to ensure consistent token counts per row and column.

To operate on HxW tokens representing a 2D spatial layout, the 2D reduction performs two sequential
phases (illustrated in Figure 3):

1. Horizontal Reduction: Reduce r,, tokens from each row, resulting in H X (W —r,,,) tokens.

2. Vertical Reduction: Reduce rj, tokens from each column, resulting in (H —r) X (W —ry,)
tokens.

To better adapt to window attention, we perform 2D reduction independently within each window,
restricting token merging among tokens within the same window. This is achieved by first partitioning
the feature map into non-overlapping windows, then applying our 2D reduction algorithm to each
window’s token set independently.

Both phases use our spatial-aware token matching algorithm described in Section 3.2.

3.2 SpATIAL-AWARE TOKEN MATCHING

Graph Construction. Since our 2D reduction operates on each row and column independently,
tokens within each subset naturally form a linear arrangement based on their spatial positions.
Motivated by this, we use a path graph to further preserve spatial coherence, where each token
only connects to its adjacent neighbors within the same row or column. This design ensures that
merged tokens maintain the original relative spatial positions of their constituent tokens, which is
critical for 2D positional embeddings (Li et al., 2022b; Heo et al., 2024). Additionally, path graphs
minimize the number of edges by connecting only adjacent tokens, reducing the complexity of
computing similarity scores from O(N?) to O(N) compared to global token merging algorithms
such as ToMe (Bolya et al., 2023) that computes all pairwise token similarities.

Our path graph construction enforces a strict adjacency constraint: tokens can only merge with
their immediate spatial neighbors. This guarantees that the merged token’s position maintains the
original spatial ordering of its constituent tokens. In contrast, global matching approaches like
ToMe (Bolya et al., 2023) merging across the entire token sequence: a token at position 0 may merge
with one at position W — 1, with the resulting merged token placed at (W — ry,) — 1. Such long-
range merging fundamentally disrupts the spatial correspondence between token positions and their
original locations. While some spatially-aware methods like GTP-ViT (Xu et al., 2024) incorporate
spatial proximity as a factor of consideration, they do not enforce adjacency as a hard constraint.



Under review as a conference paper at ICLR 2026

Consequently, these methods still permit merging between spatially distant tokens when similarity
scores favor such pairings, failing to guarantee preservation of relative spatial relationship in the
output token arrangement.

Edge Selection. The naive optimal approach would be to select the top-k most similar edges from the
path graph for merging. However, this can create processing dependencies which limit parallelization
when three or more adjacent tokens must be merged. For example, three adjacent tokens must be
merged as either ((Z, j), k) or (i, (J, k)), which requires two steps. In general, these dependency chains
can grow, requiring either a linear or logarithmic number of steps, depending on the implementation.

To enable better parallelization, we adopt ToMe’s (Bolya et al., 2023) node bipartition approach,
which alternates token role assignments so that adjacent tokens have complementary roles (source
and destination). Each source token then nominates its most similar adjacent neighbor as its merge
destination, and we select the top-k edges from these nominations. This guarantees that no more than
three tokens are ever merged, so merging never takes more than two steps. However this does not
strictly guarantee the selection of the most similar edges.”

Ablation Studies. We conducted ablation experiments to evaluate the trade-off between paralleliza-
tion efficiency and edge selection optimality. As shown in Table 1, comparing our bipartite approach
(“bipartite, local”’) against naive top-k edge selection (“naive, local”) reveals minimal performance
differences, and the bipartite approach achieves same or better mIOU in 5 out of 8 experimental
settings, while the parallelization enables higher speedups compared to the naive approach. Based
on this, we adopt bipartite edge selection with path graph as our design. Additionally, we eval-
uate against global bipartite matching (“bipartite, global”) from ToMe (Bolya et al., 2023). This
comparison validates that our spatially-constrained approach outperform the conventional global
matching.(See Table 1)

Table 1: Ablation studies comparing design choices for CubistMerge against alternative design
choices and commonly used existing methods. Experiments were conducted on 500 randomly selected
COCO training images with token merging methods applied off-the-shelf on SAM-H and SAM-B
across different token reduction rates and application depths. Results show mIOU drop and speedup

relative to the baseline model without token reduction. Our chosen design is highlighted .

Application Depth 0 1/4 | 172
Th =Ty 4 8 4
Method mIOU drop | Speedup | mIOU drop | Speedup | mIOU drop | Speedup | mIOU drop | Speedup
bipartite, local -2.23% 1.68 -3.61% 2.05 -1.47% 1.47 -0.72% 1.31
SAM-H naive, local [ -207% 1.64 -3.53% 1.99 -1.57% 1.44 -0.72% 1.25
bipartite, global ‘ -2.47% 1.63 -3.84% 2.03 -1.63% 1.46 -0.77% 1.29
bipartite, local -1.49% 1.69 -2.48% 1.94 -1.15% 1.44 -0.47% 1.27
SAM-B naive, local ‘ -1.60% 1.55 -2.42% 1.70 -1.16% 1.36 -0.51% 1.15
bipartite, global | -1.62% 1.69 -2.59% 1.95 -1.16% 1.43 -0.51% 1.27
(a) Graph construction and edge selection methods, discussed in Section 3.2
Application Depth 0 1/4 | 172
Th =Ty 4 8 4
Method mIOU drop | Speedup | mIOU drop | Speedup | mIOU drop | Speedup | mIOU drop | Speedup
Max-Per-Dim -2.23% 1.68 -3.61% 2.05 -1.47% 1.47 -0.73% 1.31
SAM-H Max-Vector [ -2.54% 1.68 -3.84% 2.04 -1.66% 1.47 -0.93% 1.30
Weighted Average ‘ -2.48% 1.63 -3.74% 2.00 -1.63% 1.44 -0.83% 1.28
Max-Per-Dim -1.49% 1.69 -2.48% 1.94 -1.15% 1.44 -0.47% 1.27
SAM-B Max-Vector ‘ -1.67% 1.68 -2.92% 1.92 -1.29% 1.45 -0.60% 1.27
Weighted Average | -1.57% 1.55 -2.92% 1.83 -1.29% 1.38 -0.44% 1.24

(b) Token representation methods, discussed in Section 3.3

3.3 MAxX-MAGNITUDE-PER-DIMENSION TOKEN REPRESENTATION

Another key contribution lies in how we represent merged tokens. The most commonly used to-
ken representation is weighted averaging introduced in ToMe (Bolya et al., 2023), creating merged
representations that are insufficient to attract appropriate attention for the multiple tokens they rep-
resent. ToMe addresses this using proportional attention scaling, which can introduce computational
overhead of up to 3% of runtime for DeiT-B and complicating adoption in models with optimized
attention implementations.

2See Section A.4 for visualization.
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To address this issue, we observe that (i) high-magnitude values in token embeddings naturally attract
more attention, reflecting more salient features; and (ii) averaging among multiple tokens reduces
those highest-magnitude values. Instead of averaging, therefore, we perform max-magnitude-per-
dimension operations across tokens being merged, preserving the most prominent values from each
dimension. This eliminates the need for token size tracking and layer-by-layer attention scaling while
ensuring merged tokens remain representative.

Formally, for a set of tokens {¢1,12,...,1,} to be merged, where each token ¢; € R4, the merged
token t,, is computed as
tmli] = tc[i] where c = argmax (|¢;[i]])
je{l.,2,...,n}

for each dimension i € {0,1,2,...,d}. This operation selects, for each dimension independently,
the value from whichever token has the maximum absolute value in that dimension, effectively
preserving the most salient feature across all candidate tokens while maintaining both magnitude
and sign information.

Ablation Studies. We compare our approach against two other methods: (1) weighted average, the
most commonly used token representation method introduced in ToMe (Bolya et al., 2023), and (2)
max-magnitude-vector, which selects the token with the highest L1 norm, serves to validate whether
our method’s superior performance stems from the per-dimension selection principle or merely
from choosing more values from tokens that happen to be more informative. As shown in Table 1,
per-dimension consistently outperforms both methods across different settings in both accuracy and
speedup. This validates that our max-magnitude-per-dimension approach is genuinely superior to the
standard averaging method and not merely benefiting from selecting tokens that are more suitable
for preservation during merging.

4 EXPERIMENTS

We conduct comprehensive experiments across various architectures and vision tasks to evaluate the
effectiveness of CubistMerge. Our experimental design addresses three primary research questions:
(i) Does our method effectively preserve spatial relationships across diverse spatial architectures?
(i1) How does our approach generalize across different vision tasks? and (iii) How does our method’s
performance compare against existing token reduction methods?

To answer the first question, we include spatial architectures with diverse spatial components in our
evaluation. We include models that use both shifting (Liu et al., 2021) and non-shifting (Li et al.,
2022a) window attention. For 2D positional embeddings, we include models that use decomposed
relative positional embeddings (Li et al., 2022b) and RoPE (Heo et al., 2024). This diversity evaluates
our method’s compatibility across the spectrum of modern spatial architectural designs.

To address generalizability, we evaluate across diverse vision tasks including image classification,
object detection, instance segmentation and panoptic segmentation.

To assess the competitiveness of our method, we conduct comprehensive comparisons against Ex-
pedite (Liang et al., 2022a), the only prior method capable of preserving spatial structure, across
every spatial architecture experiment. To enable even broader comparative evaluation against a wider
range of existing methods, we extend our evaluation to non-spatial architectures, where more existing
methods sare compatible.

Experiment Setup and Metrics. We use performance metrics and datasets consistent with the
original baseline models. Speedups are calculated from runtime measurements conducted on RTX
2080 Ti, except for DINOv3 experiments which were measured on V100. FLOPS are computed
using the fvcore library (Meta Research, 2023). By default, all experiments apply token reduction
methods off-the-shelf without additional training, with fine-tuning results specifically noted where
applicable.

Experiment Configuration. The experiment configuration involves two key variables: the layer /
where token reduction is applied and the reduction rate. The reduction rate is specified by parameters
ry, and r,, which denote how many tokens are reduced from every row and column respectively. Given
H x W input tokens, we use integer values r, = m, r,, = n for models with consistent token counts
across all inputs, resulting in (H — m) X (W — n) tokens. For models where token counts vary based
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on input image size, we use fractional values r, = a, r,, = b, resulting in (H—ax H) X (W —bx W)
tokens.

4.1 SPATIAL ARCHITECTURES

We evaluate across classification, object detection, instance segmentation and panoptic segmentation
on models with spatial architectures including DINOv3 (Siméoni et al., 2025), MViTv2 (Li et al.,
2022b), ViTDet (Li et al., 2022a), SAM (Kirillov et al., 2023), SAM2 (Ravi et al., 2025) and
Mask2Former (Cheng et al., 2022).

Prior Works Comparison. We primarily compare against Expedite (Liang et al., 2022a) as it’s
the only existing method suitable for spatial architectures. Additionally, we include ToMe (Bolya
et al., 2023) in selected experiments to demonstrate the performance gap between spatial-preserving
and non-spatial-preserving methods. We exclude ToMe results when the performance degradation
exceeds 20% as such large drops preclude meaningful comparison.

To assess layer sensitivity, we conduct experiments with token reduction inserted at different layers
within each architecture, examining how performance varies when merging is applied at early vs.
later layers. Throughout our experiments, we demonstrate that CubistMerge consistently outperforms
existing methods while maintaining more consistent performance across different layers.

Layer Selection. We ensure all of our evaluations include results from Expedite’s optimal configura-
tion to guarantee fair comparison. When available, we use the recommended layer settings from the
original Expedite paper or official repository. Otherwise, we systematically test Expedite across 4—6
different layers to identify its best-performing configuration. We ensure all selected layers maintain
reasonable performance without substantial metric degradation. Additionally, we conduct layer sen-
sitivity analysis using a default early layer configuration, typically the first layer, or for architectures
with multiple stages, the first layer of the deepest stage.

4.1.1 MoDEL SWEEP

MViTv2. We evaluate MViTv2 (Li et al., 2022b), which uses decomposed relative positional em-
beddings, on image classification. Table 2 presents layer sensitivity results and includes fine-tuning
results for MViTv2-B, with fine-tuning limited to 3 epochs. For meaningful comparisons, we use
[ = 10 for MViTv2-B and I = 20 for MViTv2-L, where Expedite and ToMe achieve more reasonable
performance, and vary 7y, r, to produce the results shown in Figure 4.

DINOvV3. We evaluate image classification and object detection using ViT7B backbone (Siméoni
et al., 2025), which incorporates RoPE for 2D positional embeddings. Classification results are
shown in Table 2 and Figure 4, while object detection results are shown in Table 3 and Figure 5. We
experimented at / = 10 and [ = 20, and selected / = 20 where Expedite and ToMe exhibits more
reasonable results, for further experiments varying r; and r,,. Despite using the same pretrained
backbone, ToMe and Expedite exhibit much worse layer sensitivity for object detection at [ = 10,
while CubistMerge maintains consistent performance across both tasks.

ViTDet. We further evaluate object detection using ViTDet (Li et al., 2022a), which employs
window attention and decomposed relative positional embedding (Li et al., 2022b). We used the best
performing backbone (ViT-H) with Mask R-CNN and Cascade Mask R-CNN as baseline. We apply
CubistMerge with / = 0 by default. However, Expedite performs poorly at / = 0 with over 40 in AP
drop, so we use / = 2 for Expedite (determined experimentally as the best performing configuration
for Expedite). Results are shown in Figure 5.

SAM. We evaluate instance segmentation on SAM (Kirillov et al., 2023) which uses ViTDet backbone
architecture. Figure 6(a) shows layer sensitivity analysis demonstrating CuMe’s superior consistency
across layers compared to Expedite. We conduct full evaluations on COCO (Figure 6(b)) and ADE20K
(Figure 6(c)) across all model variants using bounding box prompts, with CuMe applied at / = 0 and
Expedite at its recommended layer>.

3Expedite only provided recommended settings (/ = 6 and [ = 16) for SAM-H. We scale the relative depth
accordingly for SAM-L and SAM-B.
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Figure 5: Object detection results. For DINQVS-V1T7B, we Expedite ;=19 | 37.2 1.11x
vary rp, =1, = 0.1,0.15,0.2 at [ = 20. For ViTDet, we vary CuMe ;-0 55.5 1.12x
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Figure 6: Instance segmentation results on SAM. (a) shows sensitivity analysis by applying CuMe
and Expedite at 7 different layers of SAM-H evaluated on COCO. (b) and (c) shows full evaluation
on COCO and ADE20K, applying CuMe at layer / = 0 and Expedite at/ = 6 and [/ = 16.
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Figure 4: Image classification results on spatial
architectures, varying r, = ry,, = 1,2,3 with
[ = 10on MViTv2-B, [ = 20 on DINOvV3-ViT7B
and MViTv2-L.

Table 2: Image classification results on spatial

architectures, with r, = r,, = 1. Fine-tuned re-
sults are included for MViTv2-B within 3 epochs

of training.
DINOV3-ViT7B
Method Top1(%) Top5(%o) Speedup GFLOPS
Baseline 88.0 98.4 1.00x 1349.9
ToMe ;- 10 343 971 T12x 12140
Expedite ;10 87.1 982 1.12x 12153
CuMe ;_1g 87.7 982 1.12x 1213.9
ToMe ;20 36.9 98.1 1.07x 12593
Expedite 750 877 98.4 1.07x 1259.2
CuMe ;79 87.9 98.4 1.09% 1259.2
MVilv2-B
Method Top1(%c) Top5(%e) Speedup GFLOPS
Baseline 84.2 96.8 1.00x 10.2
ToMe ;—7 69.8 883 T.07x 93
Expedite 77 81.4 95.5 1.05x 9.5
CuMe ;7 82.6 96.2 1.07x 9.3
ToMe ;-1 79.8 94.6 1.06x 95
Expedite 710 83.6 96.5 1.03x 9.6
CuMe ;=19 83.8 96.6 1.06x 9.5
Expedite j—1( 83.8 96.7 1.03x 9.6
CuMe ;-0 84.1 96.7 1.06x 9.5
MViTv2-L

Method Top1(%c) Top5(%e) Speedup GFLOPS
Baseline 85.3 97.1 1.00x 43.9
ToMe j—9 68.5 87.6 1.24x 39.8
Expedite j—g 83.8 96.4 1.20x 40.0
CuMe j_g 843 96.6 1.26x 39.8
ToMe j—20 83.9 96.6 1.20x 41.1
Expedite 7 84.8 97.0 1.19x 413
CuMe j— 85.0 97.0 1.22x 41.1
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Figure 7: Results on Mask2Former(Swin-L), varying rj, = r,, = 1,2,3

Table 4: Segmentation results on
Segmenter(ViT-S), comparing CuMe
LI against ALGM on Cityscapes and Pas-
cal Context
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SAM2. We extend our evaluation to SAM2 (Ravi et al., 2025), which uses Hiera (Ryali et al., 2023)
backbone that employs window attention. Expedite generally performs poorly on SAM2 with 20+%
mlIOU drops; we experimented Expedite on 6 different layers and reported the best performance
found. To provide additional baselines, we leverage the fact that SAM2 does not use 2D positional
embeddings and has consistent window partition within its deepest stage, allowing ToMe to operate
on each window individually to achieve reasonable results. We apply CuMe and ToMe at [ = 9 (the
first layer of the deepest stage). Figure 8 presents instance segmentation results on SAM2-L across
COCO and ADE20K datasets.

Mask2Former. Mask2Former (Cheng et al., 2022) is an architecture capable of addressing any image
segmentation task, with Swin-L (Liu et al., 2021) being its best performing backbone which we adopt
for our evaluation. We evaluate CuMe against Expedite on both panoptic and instance segmentation
tasks using the COCO dataset, with results presented in Figure 7. We conduct experiments at two
layers: the layer from Expedite’s recommended settings and at the first layer of Swin-L’s deepest
stage (I = 4).

Our method consistently outperforms Expedite and ToMe, often by significant margins, across all
experiments conducted in this section, while showing superior consistency across different layers.

4.2 NON-SPATIAL ARCHITECTURES

To enable comparison against more existing token reduction methods, we extend our evaluation to
vanilla ViT without spatial components. In this section, we select models based on their established
compatibility with existing methods: DeiT (Touvron et al., 2021) due to its foundational role and
widespread adoption across token reduction literature, and Segmenter (Strudel et al., 2021) to enable
comparison with ALGM (Norouzi et al., 2024) which targets segmentation tasks.

DeiT We evaluate on DeiT-B compared against ToMe (Bolya et al., 2023), PiToMe (Tran et al., 2024),
ToFu (Kim et al., 2024), MCTF (Lee et al., 2024a), GTP-ViT (Xu et al., 2024) and DynamicViT (Rao
etal., 2021). We evaluate both off-the-shelf and with fine-tuning limited to 5 epochs. Figure 9 shows
results using existing methods’ recommended merging schedules and CuMe applied at [ = 1. Fine-
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Figure 9: Image classification results on DeiT-B compared CuMe 8138 132x 1323

against prior token reduction methods.

tuned results are shown in Table 5. CuMe achieves state-of-the-art results with no accuracy loss
at 1.15x speedup within just one epoch of fine-tuning, while maintaining competitive performance
across higher speedup ratios.

Interestingly, CuMe demonstrates superior speedups despite having slightly higher GFLOPS in some
settings. We attribute this to computational overhead not captured by GFLOPS calculations: existing
methods require attention scaling and token size tracking during inference, while our max-magnitude-
per-dimension approach (Section 3.3) eliminates these overheads entirely. This observation is sup-
ported by our finding that fvcore GFLOPS measurements remain identical whether attention scaling
is enabled or disabled, indicating that such runtime overheads are not reflected in theoretical GFLOP
counts.

Segmenter We evaluate on Segmenter (Strudel et al., 2021) with ViT-S backbone compared against
ALGM (Norouzi et al., 2024) on Cityscapes and Pascal Context datasets, applying both methods
off-the-shelf. We adopt a merging schedule similar to ALGM’s configuration. However, ALGM uses
an adaptive method that automatically determines a similarity threshold for token merging, which
we cannot directly adopt for our graph-based approach due to fundamental algorithmic differences.
Instead, we apply CuMe at the same layers as ALGM (I = | and ! = 5) with the same r;, and r,,
values at both layers. Results are shown in Table 4.

Results demonstrate that CuMe achieves competitive performance against this broader range of
existing methods on non-spatial architectures as well.

5 CoONCLUSION

In this paper, we proposed CubistMerge, a novel token merging method that preserves spatial in-
tegrity through structured 2D reduction, spatial-aware merging, and max-magnitude-per-dimension
representation. Extensive experiments demonstrate state-of-the-art performance and broad general-
izability across diverse vision tasks and architectures.

REFERENCES

Saeed Ranjbar Alvar, Gursimran Singh, Mohammad Akbari, and Yong Zhang. Divprune: Diversity-
based visual token pruning for large multimodal models. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR 2025, Nashville, TN, USA, June 11-15, 2025, pp. 9392—
9401, 2025.

Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and Judy
Hoffman. Token merging: Your vit but faster. In The Eleventh International Conference on
Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023, 2023.

Mengzhao Chen, Wenqi Shao, Peng Xu, Mingbao Lin, Kaipeng Zhang, Fei Chao, Rongrong Ji,
Yu Qiao, and Ping Luo. Diffrate : Differentiable compression rate for efficient vision transformers.
In IEEE/CVF International Conference on Computer Vision, ICCV 2023, Paris, France, October
1-6, 2023, pp. 17118-17128, 2023.

Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, and Rohit Girdhar. Masked-
attention mask transformer for universal image segmentation. In IEEE/CVF Conference on Com-

10



Under review as a conference paper at ICLR 2026

puter Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp.
1280-1289, 2022.

Joonmyung Choi, Sanghyeok Lee, Jaewon Chu, Minhyuk Choi, and Hyunwoo J. Kim. vid-tldr:
Training free token merging for light-weight video transformer. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR 2024, Seattle, WA, USA, June 16-22, 2024, pp.
18771-18781, 2024.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021, 2021.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollar, and Ross B. Girshick. Masked
autoencoders are scalable vision learners. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979-15988,
2022.

Byeongho Heo, Song Park, Dongyoon Han, and Sangdoo Yun. Rotary position embedding for vision
transformer. In Ales Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler,
and Giil Varol (eds.), Computer Vision - ECCV 2024 - 18th European Conference, Milan, Italy,
September 29-October 4, 2024, Proceedings, Part X, volume 15068 of Lecture Notes in Computer
Science, pp. 289-305, 2024.

Taihang Hu, Linxuan Li, Joost van de Weijer, Hongcheng Gao, Fahad Shahbaz Khan, Jian Yang,
Ming-Ming Cheng, Kai Wang, and Yaxing Wang. Token merging for training-free semantic binding
in text-to-image synthesis. In Amir Globersons, Lester Mackey, Danielle Belgrave, Angela Fan,
Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), Advances in Neural Information
Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024,
NeurlIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024, 2024.

Minchul Kim, Shangqian Gao, Yen-Chang Hsu, Yilin Shen, and Hongxia Jin. Token fusion: Bridging
the gap between token pruning and token merging. In IEEE/CVF Winter Conference on Applica-
tions of Computer Vision, WACV 2024, Waikoloa, HI, USA, January 3-8, 2024, pp. 1372-1381,
2024.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloé Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollér, and Ross B. Girshick.
Segment anything. In IEEE/CVF International Conference on Computer Vision, ICCV 2023,
Paris, France, October 1-6, 2023, pp. 3992-4003, 2023.

Zhenglun Kong, Peiyan Dong, Xiaolong Ma, Xin Meng, Wei Niu, Mengshu Sun, Xuan Shen,
Geng Yuan, Bin Ren, Hao Tang, Minghai Qin, and Yanzhi Wang. Spvit: Enabling faster vision
transformers via latency-aware soft token pruning. In Shai Avidan, Gabriel J. Brostow, Moustapha
Cissé, Giovanni Maria Farinella, and Tal Hassner (eds.), Computer Vision - ECCV 2022 - 17th
European Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part XI, volume 13671
of Lecture Notes in Computer Science, pp. 620-640, 2022.

Dong Hoon Lee and Seunghoon Hong. Learning to merge tokens via decoupled embedding for
efficient vision transformers. In Amir Globersons, Lester Mackey, Danielle Belgrave, Angela
Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), Advances in Neural Information
Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024,
NeurlIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024, 2024.

Sanghyeok Lee, Joonmyung Choi, and Hyunwoo J. Kim. Multi-criteria token fusion with one-step-
ahead attention for efficient vision transformers. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition, CVPR 2024, Seattle, WA, USA, June 16-22, 2024, pp. 15741-15750,
2024a.

Seon-Ho Lee, Jue Wang, Zhikang Zhang, David Fan, and Xinyu Li. Video token merging for long
video understanding. In Amir Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich

11



Under review as a conference paper at ICLR 2026

Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), Advances in Neural Information Processing
Systems 38: Annual Conference on Neural Information Processing Systems 2024, NeurIPS 2024,
Vancouver, BC, Canada, December 10 - 15, 2024, 2024b.

Jin Li, Yaoming Wang, Xiaopeng Zhang, Bowen Shi, Dongsheng Jiang, Chenglin Li, Wenrui Dai,
Hongkai Xiong, and Qi Tian. Ailurus: A scalable vit framework for dense prediction. In Alice
Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.),
Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information
Processing Systems 2023, NeurlPS 2023, New Orleans, LA, USA, December 10 - 16, 2023, 2023.

Yanghao Li, Hanzi Mao, Ross B. Girshick, and Kaiming He. Exploring plain vision transformer back-
bones for object detection. In Shai Avidan, Gabriel J. Brostow, Moustapha Cissé, Giovanni Maria
Farinella, and Tal Hassner (eds.), Computer Vision - ECCV 2022 - 17th European Conference,
Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part IX, volume 13669 of Lecture Notes in
Computer Science, pp. 280-296, 2022a.

Yanghao Li, Chao-Yuan Wu, Haoqi Fan, Karttikeya Mangalam, Bo Xiong, Jitendra Malik, and
Christoph Feichtenhofer. Mvitv2: Improved multiscale vision transformers for classification and
detection. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022,
New Orleans, LA, USA, June 18-24, 2022, pp. 4794-4804, 2022b.

Weicong Liang, Yuhui Yuan, Henghui Ding, Xiao Luo, Weihong Lin, Ding Jia, Zheng Zhang, Chao
Zhang, and Han Hu. Expediting large-scale vision transformer for dense prediction without fine-
tuning. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.),
Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022a.

Youwei Liang, Chongjian Ge, Zhan Tong, Yibing Song, Jue Wang, and Pengtao Xie. Not all
patches are what you need: Expediting vision transformers via token reorganizations. CoRR,
abs/2202.07800, 2022b.

Dongyang Liu, Meina Kan, Shiguang Shan, and Xilin Chen. A simple romance between multi-exit
vision transformer and token reduction. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024, 2024a.

Yifei Liu, Mathias Gehrig, Nico Messikommer, Marco Cannici, and Davide Scaramuzza. Revisiting
token pruning for object detection and instance segmentation. In IEEE/CVF Winter Conference
on Applications of Computer Vision, WACV 2024, Waikoloa, HI, USA, January 3-8, 2024, pp.
2646-2656, 2024b.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In 2021 IEEE/CVF
International Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada, October 10-
17, 2021, pp. 9992-10002, 2021.

Sifan Long, Zhen Zhao, Jimin Pi, Shengsheng Wang, and Jingdong Wang. Beyond attentive tokens:
Incorporating token importance and diversity for efficient vision transformers. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition, CVPR 2023, Vancouver, BC, Canada,
June 17-24, 2023, pp. 10334-10343, 2023.

Chenyang Lu, Daan de Geus, and Gijs Dubbelman. Content-aware token sharing for efficient semantic
segmentation with vision transformers. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2023, Vancouver, BC, Canada, June 17-24, 2023, pp. 23631-23640, 2023.

Meta Research. fvcore, 2023. https://github.com/facebookresearch/fvcore.

Narges Norouzi, Svetlana Orlova, Daan de Geus, and Gijs Dubbelman. ALGM: adaptive local-
then-global token merging for efficient semantic segmentation with plain vision transformers. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024, Seattle, WA,
USA, June 16-22, 2024, pp. 15773-15782, 2024.

12


https://github.com/facebookresearch/fvcore

Under review as a conference paper at ICLR 2026

Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, and Cho-Jui Hsieh. Dynamicvit:
Efficient vision transformers with dynamic token sparsification. pp. 13937-13949, 2021.

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
Khedr, Roman Rédle, Chloé Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Va-
sudev Alwala, Nicolas Carion, Chao-Yuan Wu, Ross B. Girshick, Piotr Dollar, and Christoph
Feichtenhofer. SAM 2: Segment anything in images and videos. In The Thirteenth International
Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025, 2025.

Chaitanya Ryali, Yuan-Ting Hu, Daniel Bolya, Chen Wei, Haoqi Fan, Po-Yao Huang, Vaibhav
Aggarwal, Arkabandhu Chowdhury, Omid Poursaeed, Judy Hoffman, Jitendra Malik, Yanghao
Li, and Christoph Feichtenhofer. Hiera: A hierarchical vision transformer without the bells-and-
whistles. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato,
and Jonathan Scarlett (eds.), International Conference on Machine Learning, ICML 2023, 23-29
July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine Learning Research,
pp- 29441-29454, 2023.

Leqi Shen, Tianxiang Hao, Tao He, Sicheng Zhao, Yifeng Zhang, Pengzhang Liu, Yongjun Bao, and
Guiguang Ding. Tempme: Video temporal token merging for efficient text-video retrieval. In The
Thirteenth International Conference on Learning Representations, ICLR 2025, Singapore, April
24-28, 2025, 2025.

Oriane Siméoni, Huy V. Vo, Maximilian Seitzer, Federico Baldassarre, Maxime Oquab, Cijo Jose,
Vasil Khalidov, Marc Szafraniec, Seungeun Yi, Michaél Ramamonjisoa, Francisco Massa, Daniel
Haziza, Luca Wehrstedt, Jianyuan Wang, Timothée Darcet, Théo Moutakanni, Leonel Sentana,
Claire Roberts, Andrea Vedaldi, Jamie Tolan, John Brandt, Camille Couprie, Julien Mairal, Hervé
Jégou, Patrick Labatut, and Piotr Bojanowski. Dinov3, 2025.

Robin Strudel, Ricardo Garcia, Ivan Laptev, and Cordelia Schmid. Segmenter: Transformer for
semantic segmentation. In 2021 IEEE/CVF International Conference on Computer Vision, ICCV
2021, Montreal, QC, Canada, October 10-17, 2021, pp. 7242-7252, 2021.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. Training data-efficient image transformers & distillation through attention. In Marina Meila
and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning,
ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning
Research, pp. 10347-10357, 2021.

Chau Tran, Duy M. H. Nguyen, Manh-Duy Nguyen, TrungTin Nguyen, Ngan Le, Pengtao Xie,
Daniel Sonntag, James Y. Zou, Binh Nguyen, and Mathias Niepert. Accelerating transformers
with spectrum-preserving token merging. In Amir Globersons, Lester Mackey, Danielle Belgrave,
Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), Advances in Neural
Information Processing Systems 38: Annual Conference on Neural Information Processing Systems
2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15, 2024, 2024.

Yancheng Wang and Yingzhen Yang. Efficient visual transformer by learnable token merging. IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2025.

Xuwei Xu, Sen Wang, Yudong Chen, Yanping Zheng, Zhewei Wei, and Jiajun Liu. Gtp-vit: Efficient
vision transformers via graph-based token propagation. In IEEE/CVF Winter Conference on
Applications of Computer Vision, WACV 2024, Waikoloa, HI, USA, January 3-8, 2024, pp. 86-95,
2024.

Xubing Ye, Yukang Gan, Yixiao Ge, Xiao-Ping Zhang, and Yansong Tang. Atp-llava: Adaptive
token pruning for large vision language models. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition, CVPR 2025, Nashville, TN, USA, June 11-15, 2025, pp. 24972-24982,
2025.

13



Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 LLM UsaGe

LLM was used only to polish writing at small scale (a few sentences).

A.2 REPRODUCIBILITY

Code will be made available at an anonymous GitHub account: https://github.com/
0118-999-88999-9119-725-3.

A.3 CHALLENGES OF SPATIAL ARCHITECTURES
A.3.1 WiINDOW ATTENTION

Background. The Swin Transformer (Liu et al., 2021) introduced sliding window attention to
address the quadratic complexity of global self-attention in vanilla ViT (Dosovitskiy et al., 2021).
By restricting self-attention to non-overlapping local windows, Swin achieves linear complexity
while maintaining modeling capacity through shifted windowing for cross-window connections (see
Figure 10). This mechanism has since become foundational in subsequent architectures. ViTDet (Li
et al., 2022a) validated the effectiveness of window attention for dense prediction tasks, and showed
that simpler window attention without shifting is sufficient when aided by a few cross-window
propagation blocks. This non-shifting variant was then adopted by state-of-the-art models (Kirillov
et al., 2023; Ravi et al., 2025; Ryali et al., 2023).

Why Preserving Spatial Layout is Critical. Window attention operates on local spatial regions,
leveraging the high correlation of nearby visual features (Liu et al., 2021). This requires tokens to
maintain a coherent 2D spatial arrangement to be partitioned into windows, otherwise tokens may
lose opportunities to attend to tokens in local regions, as shown in Figure 10’s demo of ToMe.
The shifted windowing scheme further depends on this structured layout to enable cross-window
connections.

Token reduction methods that fail to preserve spatial structure break this assumption: unstructured
methods like ToMe (Bolya et al., 2023) produce irregular token layouts where different windows re-
duce varying numbers of tokens after merging. This leads to two unpalatable options: (1) maintaining
the original window grouping — so that each window contains a different number of tokens — is at
odds with the regular SIMD dataflow properties that accelerators like GPUs rely on for performance;
while (2) padding all windows to the same length would offset the computation reduction benefit of
token merging.

Another naive solution might be to reduce H X W tokens to H X W’ tokens and treat the reduced
set as a new 2D token layout that can be partitioned into windows. This naive approach has also
been used in LTM (Wang & Yang, 2025). However, as shown in Figure 10, this approach destroys
the spatial correspondence between the original and reduced layouts, as windows may now group
spatially distant tokens together while placing spatially local tokens in different windows, defeating
the purpose of local window attention.

A.3.2 2D PositioNAL EMBEDDING

Background. Decomposed relative positional embeddings were introduced in MViTv2 (Li et al.,
2022b), encoding spatial relationships based on relative spatial distances between tokens. Unlike
absolute positional embeddings in vanilla ViT (Dosovitskiy et al., 2021), these learned parameters are
injected into each attention layer and computed separately along height and width dimensions. SAM
adopts this strategy, combining it with window attention for strong zero-shot capabilities (Kirillov
et al., 2023). RoPE (Heo et al., 2024), on the other hand, encodes 2D spatial relationships through
axial frequency operations applied, again, separately for x and y dimensions. DINOv3 (Siméoni
et al., 2025) demonstrates RoPE’s effectiveness for self-supervised visual representation learning.

4See Section A.7 for details on attention visualization methodology.
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Original 14x14 tokens

Figure 10: Window attention with shifted window partitioning. Cyan lines indicate window bound-
aries. Top row shows the original token layout with regular and shifted window partitioning. Middle
and bottom rows demonstrate how token merging methods interact with window attention: ToMe
(middle) destroys spatial structure, causing misalignment with window boundaries after merging,
while CuMe (bottom) preserves the structured layout, maintaining compatibility with both regular
and shifted window partitions.

Why Preserving Spatial Layout is Critical. 2D positional embeddings require tokens to maintain
their relative spatial positions to correctly compute spatial relationships. When token reduction
methods destroy the spatial structure, the positional embeddings can no longer accurately represent
the spatial relationships between tokens, leading to significant performance degradation.

We demonstrate this with decomposed relative positional embeddings (Li et al., 2022b). As illustrated
in Figure 11, positional bias (a) enhances attention from spatially near regions, as seen in the
comparison between (b) and (c).

To understand the impact of token merging on spatial architectures that use positional embeddings,
we visually compare attention patterns that appear in ToMe (Bolya et al., 2023) (non-spatial) and
CuMe (spatial). For ToMe (d,e), we observe significant distortion from the baseline attention patterns,
as the irregular token arrangement after merging disrupts the relative positional relationships that
the embeddings depend on. In contrast, CuMe (f,g) maintains structured token layouts that preserve
relative positions, and yields attention patterns that closely align with the baseline. This demonstrates
why preserving spatial structure is critical for architectures relying on 2D positional embeddings.
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(a) positional
bias

(b) w/o
positional bias

Baseline Model

(c) w/
positional bias
(baseline)

ToMe
(d) merged

(e) recovered

CuMe (Ours)
(f) merged

(g) recovered

Figure 11: Visualization of relative positional embedding with attention heat map towards 5 different
token positions indicated by red stars. Baseline (top): (a) positional bias component, (b) attention score
without positional bias, and (c) attention score with positional bias (actual attention score). ToMe
(middle): (d) attention score and (e) effective attention score on original spatial layout, recovered
from attention score on merged layout. CuMe (bottom): (f) and (g) similarly for CuMe. Collected
from block 2 of SAM-B.#

A.4 DEetAILS oN GRAPH CONSTRUCTION AND EDGE SELECTION

Figure 12 provides visualization of the path graph construction and edge selection approaches
discussed in Section 3.2. Our path graph construction (Figure 12(a-c)) connects only spatially
adjacent tokens within each row or column, preserving relative spatial relationships. This differs
from ToMe’s (Bolya et al., 2023) global bipartite matching (Figure 12(d)), which matches tokens
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globally without spatial constraints; as demonstrated by our ablation results in Table 1, ToMe’s global
approach is less effective for spatial architectures.

Naive Edge Selection. The naive optimal approach would select the top-k most similar edges from
the path graph. However, this creates processing dependencies when a token serves as both source
and destination of selected edges. For example, if edges b—c, c—d, and d—e are selected, token c
must first receive b before merging into d, forcing sequential execution with O (N) time complexity
(Figure 12(a)).

Reduction tree approaches can theoretically improve this to O(log N) by organizing merging op-
erations (Figure 12(b)): tokens b—c and d—e merge simultaneously in the first step, then c—d is
redirected to merge c—e in the second step. However, such tree-structured computations are not a
good match for SIMD execution in GPUs, and are less well supported by frameworks like PyTorch.
Moreover, even with logarithmic complexity, the sequential dependencies still limit parallelization.

Bipartite Solution. To resolve the complexity bottleneck, we adopt ToMe’s parallelization technique
through node bipartition. We alternate token role assignments so that adjacent tokens have com-
plementary roles (source and destination). Each source token nominates its most similar adjacent
neighbor, and we select the top-k edges from these nominations (Figure 12(c)). This guarantees
that no token participates in more than one merge operation at each step, eliminating processing
dependencies and enabling parallel execution with scatter-reduce operations. While this does not
strictly guarantee selecting the most similar edges, Table 1 shows minimal performance differences
while achieving better speedups.

(d) bipartite,global
(a) naive,local (b) naive,local (log N) (c) bipartite,local (ours)  (ToMe)
@ 0 C @ 00 O
@® @ @® @
@ @® iy
d
en)

) @®

o 00 ©0° 060" 0O

Figure 12: Illustration of edge selection algorithms. Arrows on selected edges (in orange) indicate
the direction of token merging, pointing from the source token to the destination token. The numbers
on edges represent execution order of merging required by dependencies. (a) Path graph with naive
edge selection, requiring sequential execution. (b) Path graph with naive edge selection, optimized
with reduction tree to O (log N) complexity. (c) Path graph with bipartite edge selection to eliminate
dependencies by ensuring each source token (in red) can only merge to one destination (in blue). (d)
Bipartite Soft Matching, the global bipartite matching approach from ToMe.

A.5 DeTtAILS oN 2D REDUCTION IMPLEMENTATION

We implement the 2D reduction strategy described in Section 3.1 with explicit tensor operations
below:
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Algorithm: 2D Token Reduction

Input: X € RV*HXWxD

Output: X" e RNX(H—r;,)x(W—rw)xD

// Horizontal Reduction

X = X.transform([N,H,W,D] — [N x H,W, D])

X’ = BATcHTOKENMERGE(X, )

// Vertical Reduction

X’ = X’ transform([N x H, (W - ry,),D] — [N x (W —-r,,),H, D])
X" = BatrcHToKENMERGE(X', 1)

return X'’ transform([N x (W —ry,), (H —ry),D] — [N, (H —rp), (W = ry), D])

The BaArcHTokENMERGE operations in both phases reduce r,, or rj tokens from each sample of the
batch, using our spatial-aware token matching algorithm described in Section 3.2.

A.6 ToxkeN REcoOVERY FOR DENSE PrREDICTION TASKS

(a) Reduced (b) Vertical Recovery (c) Horizontal Recovery
12x12 tokens 14x12 tokens 14x14 tokens

Figure 13: Token recovery process for CubistMerge. Starting from (a) the reduced 12x12 layout, we
(b) first recover the vertical dimension to 14x12, then (c) recover the horizontal dimension to the
original 14x14 layout. Grid lines show token boundaries at each stage.

A.6.1 2D TokeN RECOVERY

Token recovery is performed in reverse order of the reduction process: we first recover the vertical
dimension, then the horizontal dimension, as illustrated in Figure 13.

A.6.2 TokeN REcovErY WITHIN Row/CoLuMN

We employ the simple token recovery that has been implicitly used in ToMe (Bolya et al., 2023).
Given multiple source tokens {Xgc,, Xsrc,s - - - » Xsre, } € R that merge into a single destination token,
we define:

Xmerged = MERGETOKENS( [xsrcl s Xsreps - - ’xSer]) ()

For recovery, each source token is recovered by duplicating the merged token:
Xgre; = Xmerged Vi € {1,2,...,k} 2)

Note that our MERGETOKENS operation uses max-magnitude-per-dimension representation (see Sec-
tion 3.3), which differs from the weighted averaging used in ToMe (Bolya et al., 2023).

A.7 DETAILS ON ATTENTION RESCALING / PROPORTIONAL ATTENTION

Following the recommendations from ToMe (Bolya et al., 2023), we do not apply attention rescaling
on MAE (He et al., 2022) pretrained models in all of our experiments, whether measuring ToMe
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performance or the weighted average experiment from our ablation studies in Table 1, since the
model used (SAM (Kirillov et al., 2023)) is MAE pretrained. We still observed slight computational
overhead in ablation experiments from Table 1 because token size tracking was still needed.

A.8 DETAILS ON MEASUREMENTS OF PRIOR WORKS

All experimental results presented in this manuscript, including those of prior works, are from our
own execution of the code and represent measurements that we have independently measured and
verified. We conducted these experiments with scientific rigor and ethical responsibility, following
best practices to ensure reproducibility and fairness:

* We always use the official implementation released by the original authors if provided.

* We always use the recommended environment and library versions specified by the authors
if provided.

* We measure all experiments on the same NVIDIA GeForce RTX 2080 Ti hardware to
ensure consistency, except for DINOv3 experiments which exceed the memory capacity of
this GPU. For DINOv3 experiments, we use the NVIDIA Tesla V100 model borrowed from
a shared compute cluster (we cannot guarantee the same physical hardware instance across
all runs due to cluster scheduling).

* For wall clock runtime measurements, we always pre-heat the GPU by running a certain
number of iterations before measurement to ensure that factors such as GPU temperature
do not introduce inconsistencies.

Despite these efforts, some of our measurements cannot reproduce what the original papers reported.

A.8.1 DISCREPANCIES IN ACCURACY MEASUREMENTS

In several cases, we found that the accuracy reported in the original papers is not reproducible,
sometimes even with the code setup and evaluation scripts they provided. We also discovered instances
where evaluation scripts used different crop rates or preprocessing parameters than those used for
the baseline models, leading to inflated performance metrics. The accuracy results we report for
prior works represent verified measurements produced under controlled and consistent experimental
conditions, which may differ from originally published results due to corrected evaluation protocols.

A.8.2 Discrepancies IN GFLOPs MEASUREMENTS

To ensure fairness and consistency, all GFLOPs results presented in this manuscript are mea-
sured using the fvcore library (Meta Research, 2023), a state-of-the-art and commonly-used library
for GFLOPs measurements. This provides a standardized and reproducible method for computing
GFLOPS across all methods, allowing for accurate comparisons.

We cannot reproduce the GFLOPs counts reported in some papers. In some cases, the paper and
released code do not include the details on how reported GFLOPS were calculated. In other cases,
prior works’ source code uses custom FLOP calculation code that differs from results measured with
fvcore.

A.8.3 DIscrREPANCIES IN WALL-cLOCK TIME MEASUREMENTS

We report wall-clock time measured on NVIDIA GeForce RTX 2080 Ti, with the exception of
DINOV3’s results measured on V100. To ensure fairness, we measure all experiments (including
baseline) on the same RTX 2080 Ti for all experiments except DINOv3. For DINOv3, we cannot
guarantee using the same physical V100 instance across all runs due to cluster scheduling, but we
ensured using the same V100 model. We always pre-heat the GPU by running a certain number
of iterations before measurement to ensure that factors such as GPU temperature do not introduce
inconsistencies. This allows us to provide consistent and reproducible runtime comparisons across
all methods.

However, the absolute values may differ from originally published results in prior works: they may
have used different hardware or CUDA versions. We are not able to reproduce some of the speedups
reported in prior works.
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