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Abstract

Driver activity classification is crucial for ensuring road
safety, with applications ranging from driver assistance
systems to autonomous vehicle control transitions. In
this paper, we present a novel approach leveraging gen-
eralizable representations from vision-language models for
driver activity classification. Our method employs a Se-
mantic Representation Late Fusion Neural Network (SRLF-
Net) to process synchronized video frames from multiple
perspectives. Each frame is encoded using a pretrained
vision-language encoder, and the resulting embeddings are
fused to generate class probability predictions. By leverag-
ing contrastively-learned vision-language representations,
our approach achieves robust performance across diverse
driver activities. We evaluate our method on the Natu-
ralistic Driving Action Recognition Dataset, demonstrating
strong accuracy across many classes. Our results suggest
that vision-language representations offer a promising av-
enue for driver monitoring systems, providing both accu-
racy and interpretability through natural language descrip-
tors. We make our code available at [anonymized].

1. Introduction

Distracted driving is a common factor in many vehicle
accidents [1]. Systems which monitor the driver can offer
advisories to the driver which encourage maintained focus
on the road [2–7]. These advisories can be effective at re-
ducing the occurrence or severity of related accidents [8].

Another solution to individual transportation lies in au-
tonomous vehicles, with a distant goal that distracted driv-
ing is no longer a problem if the person in the driver’s seat is
not expected to be controlling the vehicle. However, current
systems encounter failure cases and novel scenarios [9, 10].
Systems cannot safely transfer control without awareness
of the driver, as the driver may be sleeping or pre-occupied
with a distracting activity. For this reason, in-cabin driver
monitoring and understanding of the driver state is critical

for control transitions in autonomous systems too [11–13].

2. Related Research

Models which treat driver monitoring as a closed-set task
[14,15] have found success on benchmark datasets [16,17].

However, the real environment is open-set [18, 19].
While our provided method is not open-set in its training
data, by using a foundation model backbone, the encod-
ing network has already learned representations of nearly
any activity class. This makes the method highly adapt-
able to any visual activity class, though learning to classify
those encoded representations may still require closed-set
supervised learning (or, an unsupervised or active method
to identify novel classes [20]) to provide desired predictions
suitable to the open-set world.

Further, the real environment contains drivers which are
out-of-distribution for a fixed set of training subjects. This
is a problem when using data-driven methods which are
tuned based on visual features. Some solutions lie in ab-
stractions which remove the driver identity from the im-
age [21, 22]. Related to this problem is the challenge of
generalizing to drivers without training data; for most sit-
uations, it is infeasible that the vehicle monitoring system
capture input of the driver, annotate this input, and use it
to finetune a system. This motivates the need for zero-shot
learning, where the system is expected to perform with zero
prior training instances of the test subject [23, 24].

In this research, we introduce a method which represents
the driver in a language-based visual descriptor. Though
this representation utilizes image-based features, the fea-
tures are learned in relationship to verbal descriptors, which
pushes the representation from one based purely on pixel
values to a representation which is based on the meaning of
patterns found in those pixels, to the extent that they can be
described by natural language.
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3. Methodology
3.1. Algorithm

Our algorithm for driver activity classification is pre-
sented in Algorithm 1, including encoding, network approx-
imation, and post-processing.

Algorithm 1: SRLF Activity Classification Algo-
rithm

Input: Synchronized video frames
Output: Filtered probabilities per instance
foreach triplet of frames do

foreach frame do
Create an embedding for the image using the

CLIP pretrained vision encoder;
Pass the three embeddings as input to the SRLF

neural network;
Take argmax over output to receive single class

probability per frame;
Apply a mode filter with window size w over the

resulting probabilities;

We use w = 141 for our inference data sampled at 30
Hz, but this parameter should be tuned to match the typical
duration of the driver activities, relative to the rate at which
the network generates predictions or processes input.

3.2. Semantic Representation Late Fusion Neural
Network

Our network, Semantic Representation Late Fusion Neu-
ral Network (SRLF-Net) is presented in Figure 1. The net-
work consists of N = 3 parallel CLIP ViT image encoders,
followed each by an FCN encoder, after which the outputs
of the N tracks are fused before entering a deep FCN net-
work to generate class probability output.

3.3. Leveraging Generalizable Representations
from Language-Vision Foundation Models

With this representation, rather than the descriptor of
each driver being a specific array of pixels which may repre-
sent that driver’s facial structure, hairstyle, skin color, size,
and other non-relevant traits, the information bottleneck and
pretraining mechanism instead reduce the amount of infor-
mation and preserve (at least, to the ability of the optimizer)
only features which are useful in organizing the images in
a latent space that is separable by language. Of course,
it is possible that with language we can describe concepts
like facial structure, hairstyle, skin color, etc., but what is
important is that the verbal description of these properties
is a much lower amount of information than having the
complete set of pixels which define that facial structure or
hairstyle or skin color. With this representation, it is our

hypothesis that the model becomes significantly more gen-
eralizable when trained, as it loses its ability to overfit to the
very-individual properties of specific drivers.

Taken to an extreme, we can view the act of classify-
ing an image as a reduction to the minimal number of bits
to represent the information we care about from an image.
With this in mind, we can view the image itself as the rep-
resentation with the most information (which may be more
than is required to solve the problem, containing both noise
and irrelevant detail), and the class itself as the most com-
pact. It is possible to use a large language model to directly
output a prediction of a class, but this relies on the tun-
ing of many components, in particular, the text encoder of
the classification-request prompt and the associated prompt
phrasing, and the ability of the model which learns to de-
code the image to a class according to this prompt. In our
results, we show that current large language models strug-
gle to learn this task satisfactorily. Because the image en-
coding representation is a less-reduced representation, we
suggest that this can be used as an intermediate (not too
large, not too small) representation of the relevant informa-
tion, from which we can learn appropriate patterns with-
out requiring the tuning of a text encoder or the finetuning
of the model parameters which connect a prompt encoding
and vision encoding, significantly reducing computational
and data requirements while still maintaining the necessary
level of information to solve the classification problem.

3.4. Separating Visual and Semantic Information
using Order-based Augmentation

While we would ideally extract a semantic-level repre-
sentation of the images and remove the ability to overfit
to pixel configurations, the CLIP representation still car-
ries some image features forward. However, we introduce
a method which mitigates the overfitting possibility by a
specialized data augmentation. If we treat the order in
which the three views are passed to the network as ran-
dom, we may be able to push the model to learn features
within the 768-vector which represent semantic information
as opposed to image-feature information, since the image-
feature information would vary for each view while the se-
mantic feature information should remain consistent. This
method can also be extended to any number of views. While
an overparameterized model may simply learn additional
representations (for each permutation of image order), an
appropriately-parameterized model may show better gener-
alizability performance through this semantic-pass-filter in-
formation bottleneck.
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Figure 1. The Semantic Representation Late Fusion Network (SRLF-Net) takes images from multiple perspectives as input. Each image
is sent to a CLIP encoder. Our experiments use the Vision Transformer backbone, base size, with size 32 patches. These representations
are then further encoded using independent (non-shared-weight) fully-connected layers, each followed by batch normalization, ReLU
activation, and dropout (rates 0.5 and 0.6 respectively). We use input size 768, and use two layers, compressing once to 512 and then to
256. These representations are then concatenated and used as input to another series of fully-connected layers (fusion step), again using
batch normalization and ReLU activation between each. The size of these layers are 768, 768, 512, 256, 128, then n (number of classes),
which is 16 for our experiments.

4. Experimental Evaluation

4.1. Dataset

We utilize the Naturalistic Driving Action Recognition
Dataset from the AI City Challenge [25], which consists of
approximately 62 hours of footage, acquired from 69 par-
ticipants. Each participant performed 16 different tasks, in-
cluding but not limited to telephonic conversations, eating,
and reaching backward, in a randomized order, as specified
in Table 1.

The data includes three camera positions installed within
a vehicle, as in Figure 2, positioned to capture from varied
angles and synchronized to record simultaneously. The data
collection was executed in two phases for each participant:
the first without any visual obstructions and the second in-
corporating visual obstructions to appearance (e.g., sun-
glasses, hats). Thus, six videos were collected per partic-
ipant—three from the non-obstructed phase and three from
the obstructed phase.

Class Activity Label Dist. %
0 Normal Forward Driving 59.01
1 Drinking 1.49
2 Phone Call(right) 2.78
3 Phone Call(left) 2.97
4 Eating 3.29
5 Text (Right) 3.44
6 Text (Left) 3.56
7 Reaching behind 1.40
8 Adjust control panel 2.42
9 Pick up from floor (Driver) 1.31

10 Pick up from floor (Passenger) 2.15
11 Talk to passenger at the right 3.52
12 Talk to passenger at backseat 3.46
13 Yawning 1.87
14 Hand on head 3.45
15 Singing or dancing with music 3.85

Table 1. Table of Driver Activity Classifications.
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Figure 2. Illustration of multi-perspective in-cabin camera views
for monitoring driver behavior under the class ’0: Normal Forward
Driving’. (1) Dashboard view. (2) Rear-view. (3) Side view.

4.2. Training Details

We detail our evaluation data splits in the following sec-
tions, with care to have images of individuals binned only
to one set out of training and test. We divide our training
set into two groups; 80% to train and 20% to validation,
with possible overlap in individuals (though no same frames
are shared). With our training set, we train SRLF-Net for
up to 100 epochs, employing early stopping on a valida-
tion loss criteria. We use the adam optimizer (learning rate
of 0.0001), 1cycle learning rate schedule policy [26], and
cross-entropy loss.

For testing, we utilize the 7-fold data split provided in
the dataset, dividing into 7 near-even groups of participants.
This allows us to approximate generalizability with a 7-fold
average.

4.3. Evaluation Over All Classes

The results for 7-fold test are seen in Table 2. We achieve
an average accuracy of 71.64 %, showcasing the promising
use of the method, notable in comparison to 6.25% expected
accuracy of random selection for sixteen classes.

K-fold Accuracy
1 68.09 %
2 74.40 %
3 73.60 %
4 71.37 %
5 70.15 %
6 75.34 %
7 68.53 %

Average: 71.64
Standard Deviation: 2.88

Table 2. Table of k-fold cross-validation accuracies and average
accuracy.

As illustrated in Figure 3, the model observes a large fa-
vorability for class 0 (Normal Forward Driving) likely due

Figure 3. Confusion matrix for best performing k-fold 6 including
a mode filter, resulting in a performance of 77.10 %.

to the skewed distributions of the data, as portrayed in Ta-
ble 1, with phone call and hand-on-head the next most-
correctly-classified classes. Adjusting the control panel
shows the most confusion with the default driving class.
Straight forward driving accounts for 59.01 % of the data,
resonating binary test to differentiate between straight for-
ward driving and all other classes in Figure 4. For more
accurate classification, it would be beneficial to mitigate
the effects of the confounding majority class (“normal driv-
ing”); we explore experiments in class-weighting, but find
these effects to not be strong enough to counter the adverse
learning effect. As another solution, we consider the use of
an early-stage binary classifier to separate normal driving
from distracted driving. The binary classifier is imperfect
(as shown in Figure 4, and in the next section, we carry out
an additional distraction-classification experiment exclud-
ing the ”normal driving” class, on the assumption that some
strong binary classifier may be achieved with further archi-
tectural exploration.

4.4. Distracting Activities Only: Evaluating With-
out Normal Driving Class

Our architecture, in combination with a dataset heavily
skewed towards normal driving, tends to overpredict the
normal driving class. To understand how well the model
separates between the distracting activity classes, we run an
experiment by which we assume there is some “perfect” bi-
nary classifier which can distinguish between normal driv-
ing and distracted driving, and then use our model to clas-
sify only between these distraction classes. The results of

4
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Figure 4. Binary Confusion matrix for best performing k-fold 6
only including class 0 for straight forward driving and a combina-
tion of all other activity classes, performing 77.22 % accuracy.

this experiment are illustrated in Figure 5. The model, in
general, predicts the correct class with the greatest likeli-
hood for any given activity class, though for some individ-
ual classes, this likelihood may be less than >50%. Phone
call and hand-on-head again show the best performance.

We also highlight the importance of the mode-filter post-
processing step; without the mode filter, the accuracy is
63.66%, and with the mode filter, this accuracy rises to
70.06%. This filter leverages the knowledge that there is
a certain rate at which a driver can reasonably change be-
tween tasks (i.e. it would be unexpected for a driver to os-
cillate between different distracting activities at 30 Hz, even
if the camera captures and model infers at that rate).

5. Concluding Remarks and Future Research
To begin, we highlight some recommended opportunities

for future research:

1. Comparison to text-encoding methods, such as vector
products between text and image encodings, or even
the evaluation of prompted vision-language systems to
determine classes of images. We note that we have
began a series of experiments using LLaVA, but the
computation time on such methods significantly ex-
ceeds the method shown in this paper, without offer-
ing stronger preliminary results. In relation to these
methods, our presented algorithm does carry the bene-
fit of immediate applicability to multiple simultaneous
views.

2. The integration of temporal information (either as
post-processing, or addition of LSTM or Transformer
models early in the architecture) may be very useful,
since driver activities occur over time, with valuable
information in these action dynamics.

3. Evaluation on combinations of non-consistent views.
It would be interesting to merge multiple datasets

Figure 5. Confusion matrix for best performing k-fold 6 without
class 0 for straight forward driving and including a mode filter,
performing 70.06% accuracy. By removing the forward driving
class, the accuracy metric decreases slightly (simply because the
over-predicted forward driving class accounted for a majority of
the dataset), but the average performance over classes actually in-
creases from 50.44% to 70.13%. The alignment of average per-
class accuracy and overall accuracy is a strong indicator of the
model’s effective learning.

which share some classes in common, so that we can
evaluate generalizability to further views and subjects.

4. Integration into open-set novelty detection methods,
such that the system can expand its number of classes,
retraining if necessary, when new activities are intro-
duced.

In this research, we present a new perspective of the
vision-language contrastively-learned encoding as a funda-
mental new representation of an image, which contains both
visual information as well as semantic information. We
show that from this information, it is possible to classify
driver activity into a variety of distraction classes with fairly
strong accuracy, and further, that our algorithm can adapt to
any number of simultaneous views. Vision-language mod-
els may lead to driver monitoring systems which are more
accurate, robust, and generalizable; suitable for an open-set
of possible distractions; and directly explainable [27] via
language.
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