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Abstract

Personalized federated learning addresses data heterogeneity across distributed
agents but lacks uncertainty quantification that is both agent-specific and instance-
specific, which is a critical requirement for risk-sensitive applications. We pro-
pose personalized federated conformal prediction (PFCP), a novel framework that
combines personalized federated learning with conformal prediction to provide
statistically valid agent-personalized prediction sets with instance-localization. By
leveraging privacy-preserving knowledge transfer from other source agents, PFCP
ensures marginal coverage guarantees for target agents while significantly improv-
ing conditional coverage performance on individual test instances, which has been
validated by extensive experiments.

1 Introduction

The rise of distributed intelligent systems presents a fundamental challenge: heterogeneous data
distributions across agents necessitate personalized modeling and analysis to capture agent-specific
characteristics. In domains such as medical diagnostics [41] and autonomous driving [9], agent-
specific feature-label relationships can differ substantially. These discrepancies often render global
models ineffective, motivating the development of personalized federated learning (PFL) [37]. Unlike
conventional federated learning, which prioritizes a unified global model, PFL explicitly balances
shared knowledge transfer with agent-specific adaptation, enabling personalized models that respect
data heterogeneity while preserving privacy.

In risk-sensitive domains, agent-specific modeling is insufficient. Safety-critical decisions, such as
those made by autonomous vehicles under sensor noise or clinical models diagnosing rare patient
subgroups, require reliable uncertainty quantification to ensure safety [19]. Conformal prediction (CP)
offers a statistically valid approach, providing set-valued outputs with rigorous marginal coverage
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guarantees. In this paper, we incorporate conformal prediction into the PFL framework for uncertainty
quantification to ensure prediction sets remain valid at the individual agent level.

Given a calibration dataset {(Xi, Yi)}ni=1 from a joint distribution P , conformal prediction constructs
a set Ĉα(Xn+1) for a test instance Xn+1 at a desired confidence level 1− α ∈ (0, 1) such that

P
(
Yn+1 ∈ Ĉα(Xn+1)

)
≥ 1− α , (1)

providing distribution-free coverage guarantees without assumptions on P [34]. Split conformal
prediction (SCP) [39], a widely used variant of conformal prediction, achieves marginal coverage by
leveraging pretrained models and calibration data to compute conformity scores.

Marginal coverage (1) ensures average validity over Xn+1 but can mask severe miscoverage for
individual instances. In medical diagnosis, undercoverage for patients with high-risk disease features,
such as rare genetic markers or specific symptom combinations [19], can lead to delayed diagnoses
and life-threatening consequences. A more meaningful guarantee is the test-conditional coverage:

P(Yn+1 ∈ Ĉα(Xn+1) | Xn+1 = x) ≥ 1− α

for all x, which aligns prediction sets with local uncertainty. This motivates the design of conformal
prediction methods with instance-specific adaptation, which conventional CP and SCP do not address.

However, achieving such conditional coverage is generally impossible without strong distributional as-
sumptions [21]. Several conformal prediction methods have been developed that aim for approximate
or asymptotic test-conditional coverage by introducing localization and instance-specific adaptation.
These approaches either modify the calibration step [25, 26, 20, 13, 12] or employ alternative score
functions [32, 5, 14, 6]. Several of these approaches rely on estimating local distributional features,
such as conditional quantiles [12] or conditional distributions [5, 13], which requires more calibration
data to efficiently estimate local properties for instance-specific adaptation.

Problem formulation. Suppose there are K + 1 agents, each with a dataset Dk = {Zk,i =
(Xk,i, Yk,i)}nk

i=1 containing nk independent samples from distribution Pk supported on X × Y .
Without loss of generality, we designate agent K + 1 as the target agent. For simplicity, we omit
the subscript K + 1 and denote PK+1 =: P and DK+1 =: D = Dtr ∪ Dcal, where Dtr = {Z ′

i =
(X ′

i, Y
′
i )}ni=1 and Dcal = {Zi = (Xi, Yi)}ni=1 are training and calibration sets of equal size n, drawn

from P = PX × PY |X . Our goal is to construct a prediction set Ĉα(Xn+1) for a test input Xn+1

from the target agent under the collaboration of the other K agents without sharing raw data. Due to
heterogeneity across agents (Pk may differ) and variation in the conditional distribution of Y given
X within agents, the prediction set should account for both inter-agent and intra-agent heterogeneity.

A natural solution is to apply distributional [5] or localized conformal prediction [13] using only the
target agent’s data. While this ensures marginal coverage and allows for instance-specific localization,
it overlooks valuable information from other agents and may lead to unreliable prediction sets with
poor local or instance-specific performance, especially in regions with limited or sparse calibration
data, where estimating local distributional properties is challenging.

Federated learning (FL) enables collaborative model training across agents without sharing raw
data, but conventional FL often produces a global model, neglecting agent-specific adaptation.
Conformal prediction adds further challenges under FL due to privacy constraints and distributional
heterogeneity, which violate conformal prediction’s exchangeability assumption. Existing federated
conformal prediction methods usually assume the test input Xn+1 is from a mixture distribution
Pw =

∑K
k=1 wkPk with wk ∝ (nk + 1), misaligned with agent-specific prediction and lacking

marginal guarantees for the target agent. To bridge this gap, we consider constructing conformal
prediction sets for a target agent using all agents’ data in a privacy-preserving way, ensuring marginal
coverage while achieving conditional coverage closer to the nominal level 1 − α and producing
narrower prediction sets compared to those constructed without using other agents.

Contributions. In this paper, we propose Personalized Federated Conformal Prediction (PFCP),
a novel framework that constructs prediction sets with both agent-specific and instance-specific
adaptation. The contributions of this paper are:

• We formalize generalized localized conformal prediction (GLCP), a novel extension of localized
conformal prediction [13] that adopts any conditional distribution estimator and thus accommodates
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any data type. GLCP enjoys marginal coverage guarantee and localization due to the transformed
score that contains conditional property.

• We propose personalized federated conformal prediction (PFCP) framework with localization,
which achieves marginal coverage for target agent under heterogeneity across agents. More
importantly, PFCP incorporates data from other source agents to improve the local performance of
the prediction sets under the federated learning framework without sharing raw data.

• We establish finite sample marginal coverage guarantee of PFCP, and theoretical non-asymptotic
test-conditional coverage improvement of PFCP through cross-agent knowledge transfer compared
with GLCP based solely on target agent data.

• We validate PFCP performance through synthetic and real-world dataset experiments, showing
PFCP simultaneously maintains marginal coverage, improves test-conditional coverage perfor-
mance significantly and reduces prediction set size compared to GLCP, which relies solely on
scarce calibration and training data from the target agent.

Related work. Lu and Kalpathy-Cramer [22] first explore conformal prediction in the FL, proposing
an aggregation algorithm for prediction set construction, albeit without formal coverage guarantees.
Humbert et al. [16, 17] introduce FedCP-QQ, a one-shot federated conformal prediction. It computes
the 1 − α′ quantile locally and the 1 − β′ quantile of the K local quantiles on a central server,
providing 1− α marginal coverage with specified α′ and β′ under the i.i.d. assumption across agents.

Another line of work, including Lu et al. [23], assumes test data are from the mixture distribution
Pw =

∑K
k=1 wkPk. In their FedCP method, the central server aggregates sketch of scores from

local agents to determine the quantile of conformal scores, ensuring marginal coverage under
the FL exchangeability assumption. Wen et al. [40] extend this to a decentralized setting with
limited calibration data and local communication, while Kang et al. [18] propose a robust version
of FedCP under Byzantine attacks. However, these methods assume test data originate from a
mixture distribution, making them unsuitable for personalized settings. In our PFL setting where test
data come from a specific agent, the FL exchangeability [23] assumption is violated, and marginal
coverage guarantees may no longer hold for FedCP and its variants.

The most closely related works to ours are Plassier et al. [27, 28], whose methods, referred to as
CPlab and CPhet respectively, consider agent heterogeneity arising from covariate or label shift.
They estimate global and target-agent densities to compute a density ratio, then apply weighted
conformal prediction [38] to construct the prediction set. However, their marginal coverage depends
heavily on accurate density ratio estimation, limiting robustness. In contrast, our PFCP method
guarantees marginal coverage irrespective of estimator quality. Notably, all existing federated
conformal prediction approaches have not considered localization or improvements in conditional
coverage and size of prediction sets.

2 Methodology

Let s(x, y) and {sk(x, y)}Kk=1 be pretrained conformity score functions for target agent and source
agents. They measure how well a label y aligns with the predicted value at x, with smaller values
indicating higher conformity. Let Sk,i = sk(Xk,i, Yk,i) for i ∈ [nk] be scores from source agent
k, and let Si = s(Xi, Yi) and S′

i = s(X ′
i, Y

′
i ) for i ∈ [n] be scores from target agent. For a

test point Xn+1 ∼ PX from the target agent and a trial label y, define Sy
i = Si for i ∈ [n], and

Sy
n+1 = s(Xn+1, y).

Let f(x, s) and fk(x, s) denote the joint density functions of (X1, S1) and (Xk,1, Sk,1), respectively.
Denote the marginal covariate density under the target distribution P by f(x) and under Pk by fk(x)
for k ∈ [K]. Let f(s | x) = f(x, s)/f(x) denote the conditional PDF of S1 given X1 = x, and
F (s | x) the corresponding conditional CDF.

2.1 Generalized localized conformal prediction based solely on target agent data

In this section, we propose the Generalized Localized Conformal Prediction (GLCP) framework,
which relies solely on target agent data. To account for heterogeneity in PY |X and capture local
information at a given point x, we estimate the conditional distribution of the score S1 given X1 = x
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using dataset D̃tr = {(X ′
i, S

′
i)}ni=1. Let F̂ (s | x) = A(D̃tr) be the estimator of F (s | x), where

A(·) represents a generic conditional distribution estimation algorithm, e.g., engression in Shen and
Meinshausen [35]. Define V y

i = F̂ (Sy
i | Xi) for i ∈ [n+ 1]. The GLCP set is defined as

ĈGLCP
α (Xn+1) =

{
y : V y

n+1 ≤ Q
(
1− α; (n+ 1)−1

( n∑
i=1

δV y
i
+ δ1

))}
, (2)

where δv denotes the point mass at v and Q(1− α; ·) denotes the (1− α)-quantile of the distribution
in the second argument. The following lemma follows directly from the basic validity guarantees of
conformal prediction theory [39].

Lemma 2.1. If data pairs (X1, Y1), . . . , (Xn, Yn), (Xn+1, Yn+1) are i.i.d. from P , and F̂ (s | x) is
trained using dataset D̃tr = {(X ′

i, S
′
i)}ni=1, we have P

(
Yn+1 ∈ ĈGLCP

α (Xn+1)
)
≥ 1− α.

Actually, GLCP is designed to generalize and unify existing approaches. If we choose F̂ (s | x) to be
the Nadaraya–Watson estimator [15], GLCP reduces to the localized conformal prediction in Guan
[13]. If the score function is specified as s(x, y) = y, GLCP becomes equivalent to distributional
conformal prediction in Chernozhukov et al. [5]. Notably, GLCP accommodates any conditional
distribution estimator and thus accommodates any data type, providing greater flexibility. For instance,
one may adopt estimators tailored to high-dimensional covariates, thereby alleviating the curse of
dimensionality inherent to the Nadaraya–Watson estimator used in Guan [13].

GLCP naturally supports localization and instance-specific adaptation, emerging seamlessly from its
formulation. Given a score function s(·, ·), the oracle conditional conformal prediction set is defined
as {y : s(x, y) ≤ Q(1 − α, F (s | x))}, which is equivalent to {y : F (s(x, y) | x) ≤ 1 − α}. The
transformed score V y

i serves as an estimator of F (Sy
i | Xi), and it converges in distribution to U [0, 1]

if F̂ (s | x) is a consistent estimator of F (s | x). In this case, the empirical quantile of {V y
i }

n+1
i=1

converges to 1− α, which ensures that the GLCP set ĈGLCP
α (Xn+1) in (2) approximates the oracle

conditional prediction set. Therefore, the GLCP inherits the asymptotic conditional property.

However, accurately estimating F (s | x) at each x ∈ X requires a large sample size, and the
estimation complexity grows with the dimensionality of the covariates. When the target agent has
limited data, GLCP may produce unreliable or excessively large prediction sets in certain regions.

2.2 Personalized federated conformal prediction

In federated learning, directly pooling data across agents to construct prediction sets is infeasible due
to privacy constraints and data heterogeneity, which violates exchangeability required by conformal
prediction. Existing federated conformal prediction methods either assume no heterogeneity among
agents or the test data are from a mixture distribution over all agents, which is incompatible with our
personalized setting. Moreover, these approaches do not account for localization or instance-specific
adaptation. To bridge this gap, we propose Personalized Federated Conformal Prediction (PFCP).

Define weight πk = nk/
∑K

ℓ=1 nℓ for k ∈ [K] and the mixture density as fmix(x, s) =∑K
k=1 πkfk(x, s) with corresponding marginal covariate density fmix(x). Let fmix(s | x) =

fmix(x, s)/fmix(x), with corresponding CDF Fmix(s | x). Define the density ratios as r(x) =
f(x)/fmix(x), r(x, s) = f(x, s)/fmix(x, s) and r(s | x) = f(s | x)/fmix(s | x). The key idea
of PFCP is to derive an enhanced estimator of the conditional distribution F (s | x) that will be
utilized in the transformed score V y

i by strategically incorporating auxiliary data from other agents.
Regarding the following equivalent reformulations of F (s | x):

F (s | x) = ES∼F (s|x)1(S ≤ s) =

∫ s

−∞
f(t | x)dt =

∫ s

−∞
fmix(t | x)r(t | x)dt

= ES∼Fmix(s|x)
{
1(S ≤ s)r(S | x)

}
. (3)

Therefore, we can derive an alternative estimator for F (s | x) using estimators of Fmix(s | x) and
corresponding density ratio r(s | x) via (3). While F (s | x) is estimated locally using algorithm A(·)
in Section 2.1, estimating Fmix(s | x) requires datasets from multiple source agents under a federated
setting. This is achieved using algorithm Ã(·), which integrates local applications of algorithm A(·)
on each source agent locally with a federated learning algorithm (e.g., federated averaging [24]) as
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detailed in Section A.1.1 of the Appendix. On the other hand, estimating r(s | x) typically requires
computing joint and marginal density ratios first, and taking their quotient afterwards, which may
introduce errors. To circumvent this, we propose using a weight function w(x) to aggregate the
two F (s | x) estimators in (5), bypassing r(s | x) estimation while using an estimator of r(x, s) to
formulate the prediction set. The estimation of r(x, s) is derived using algorithm Ãdr(·), which is the
federated implementation of a density ratio estimation algorithm as detailed in Section A.1.2. Finally,
we introduce Aagg(·) as the aggregation algorithm based on (5) that combines two estimators of the
conditional distribution F (s | x) and the estimator of the density ratio r(x, s).

Due to space constraints, we present details of A(·) (uses local data at target agent) and Ã(·) (uses
data from K source agents) in Section A.1.1 of the Appendix. The privacy-preserving density ratio
estimation algorithm Ãdr(·) uses data from both target and source agents is detailed in Section A.1.2
of the Appendix. The aggregation algorithm Aagg(·) used to derive the enhanced estimator of the
conditional distribution F (s | x) is detailed in Section 2.3. Let D̃k = {(Xk,i, Sk,i)}nk

i=1 for k ∈ [K].
The PFCP procedure is summarized as below:

Step 1. Train F̂ (s | x) = A(D̃tr) as an estimator of F (s | x) using D̃tr in the target agent.
In addition, train F̂mix(s | x) = Ã(D̃1, . . . , D̃K) as an estimator of Fmix(s | x) using
D̃1, . . . , D̃K from K source agents under the FL setting.

Step 2. Train r̂(x, s) = Ãdr(D̃tr, D̃1, . . . , D̃K) as an estimator of r(x, s) under the FL setup using
D̃tr, D̃1, . . . , D̃K from both target and source agents.

Step 3. Use an aggregation algorithm that combines F̂ (s | x), F̂mix(s | x) and r̂(x, s) to produce
F̂agg(s | x) = Aagg(F̂ (s | x), F̂mix(s | x), r̂(x, s)) as an enhanced estimator of F (s | x).

Step 4. Define transformed scores on Dcal∪{(Xn+1, y)} as V y
agg,i = F̂agg(S

y
i | Xi) for i ∈ [n+1].

The PFCP set is then defined as

ĈPFCP
α (Xn+1) =

{
y : V y

agg,n+1 ≤ Q
(
1− α; (n+ 1)−1

( n∑
i=1

δV y
agg,i

+ δ1

))}
. (4)

The algorithm following these steps is provided in Algorithm 5 in Section A.1.4 of the Appendix.

In (4), only data from the target agent is used for calibration, which guarantees marginal coverage
regardless of the data heterogeneity across agents. Furthermore, while F̂ (s | x) trained on limited
target data often performs poorly, the aggregated estimator F̂agg(s | x) typically achieves higher
accuracy. By substituting F̂ (s | x) with F̂agg(s | x), we obtain superior estimates that simultaneously
improve conditional coverage accuracy and yield tighter prediction sets.

Notably, Ã(·) and Ãdr(·) are federated learning algorithms involving data communication among
agents, while A(·) and Aagg(·) execute locally. Specifically, A(·) operates locally on the target
agent’s data. In contrast, Ã(·) and Ãdr(·) collaboratively train models across source agents using
FedAvg, exchanging only model updates–not raw data. Finally, Aagg(·) ensures privacy by relying
solely on pre-computed estimates of conditional distributions and density ratios, requiring no access
to raw data during aggregation.

Remark 2.2. The estimation of F̂mix(s | x) can be performed using either all available source
agents or a selected subset of agents that are most relevant to the target domain. The criteria and
implementation details for source agent selection are discussed in Section A.3 of the Appendix.

2.3 Aggregate Conditional Distribution Estimators

This section formalizes a general framework for obtaining the aggregate conditional distribution
estimator F̂agg(s | x) given F̂mix(s | x), r̂(x, s) and F̂ (s | x). Without loss of generality, we
assume f(s | x) = 0 for all s < 0. We further define r̂(x) = ES∼F̂mix(s|x)r̂(x, S) and r̂(s | x) =
r̂(x, s)/r̂(x). Then, both ES∼F̂ (s|x)1(S ≤ s) and ES∼F̂mix(s|x){1(S ≤ s)r̂(S | x)} can serve as
estimators of F (s | x). Introducing a weight function ω(x), we aggregate these estimators through
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the following combination:

F̂ω
agg(s | x) = {1 + ω(x)}−1

[
ES∼F̂ (s|x)1(S ≤ s) + ω(x)ES∼F̂mix(s|x){1(S ≤ s)r̂(S | x)}

]
.

In our framework, only r̂(x, s) is available, and computing r̂(s | x) requires estimating r(x),
potentially introducing additional error. To avoid this, we adopt the simplification ω(x) = r̂(x),
leading to the following estimator:

F̂agg(s | x) = {1 + r̂(x)}−1
[
ES∼F̂ (s|x)1(S ≤ s) + ES∼F̂mix(s|x){1(S ≤ s)r̂(x, S)}

]
. (5)

In practice, the scalar term 1/{1+ r̂(x)} need not be estimated explicitly, as the estimator is obtained
by weighting samples from the two distributions and computing the proportion below the threshold s.
When integrated with the aggregation scheme based on engression [35] developed in Section A.1.3
of the Appendix, the estimator F̂agg(s | x) in (5) admits a simple form.
Remark 2.3. Other choices of ω(x) are possible, but setting ω(x) = r̂(x) circumvents the need to
explicitly estimate r(x) and has been found to perform well in numerical experiments.

2.4 Theoretical Analysis

In this section, we establish marginal coverage of our proposed PFCP and its test-conditional coverage
property compared to GLCP. Let Vagg,i = F̂agg(s(Xi, Yi) | Xi) for i ∈ [n+1], where Vagg,i = V y

agg,i

for i ∈ [n] and Vagg,n+1 = V
Yn+1

agg,n+1. The next theorem offers the marginal coverage guarantee.

Theorem 2.4 (Marginal Validity). Assume (X1, Y1), . . . , (Xn, Yn), (Xn+1, Yn+1) are i.i.d. from P ,
and F̂agg(s | x) is pre-trained using training data, which is independent of the calibration dataset.
Then P(Yn+1 ∈ ĈPFCP

α (Xn+1)) ≥ 1 − α. In addition, if ties between Vagg,1, . . . , Vagg,n+1 occur
with probability zero, then

P(Yn+1 ∈ ĈPFCP
α (Xn+1)) ∈ [1− α, 1− α+ (n+ 1)−1) .

Remark 2.5. Theorem 2.4 also holds if F̂agg(s | x) relies on calibration and test data but is invariant
to the permutation of the combination of calibration and test data. However, in personalized federated
setting, this will incur great data communication.

Define δ1(x; F̂ ) = dTV(F̂ (· | x), F (· | x)), where dTV denotes the total variation. The next lemma
provides an upper bound on the test-conditional miscoverage error of GLCP.

Lemma 2.6. Under the conditions of Theorem 2.4, let FV be the CDF of F̂ (s(X1, Y1) | X1), which
is supported on [0, 1] and assumed to be continuous. Let q = ⌈(1 − α)(n + 1)⌉/n. Then, for any
δ ∈ (0, 1),∣∣P(Yn+1 /∈ ĈGLCP

α (Xn+1) | Xn+1 = x
)
− α

∣∣
≤max

{
|1− α− F−1

V (q − ϵ) + δ|, |1− α− F−1
V (q + ϵ+ n−1)− δ|

}
+ δ1(x; F̂ ) ,

where ϵ = {(2n)−1 ln(2/δ)}1/2.

The result of ĈPFCP
α (Xn+1) can be derived by replacing F̂ (s | x) with F̂agg(s | x), and FV with

the CDF of F̂agg(s(X1, Y1) | X1). While the first term captures the global calibration error, the
second term quantifies localized distributional estimation accuracy. The superiority of ĈPFCP

α (Xn+1)

lies in its reduction of δ1(x; F̂agg) compared to δ1(x; F̂ ), achieved through its federated learning
architecture that uses r̂(x, s). This comparison will be formally established in Theorem 2.8.

Assumption 1. For each x ∈ X , the score s(x, Y1) on the target agent is bounded in [0,M(x)], and
f(s | x) ≥ 1/Lf (x) for s ∈ (0,M(x)), where M(x) < ∞ and 0 < Lf (x) < ∞.

Assumption 2. For each x ∈ X , there exist constants 0 < L0(x), LK(x) < ∞, such that: (i)
infk∈[K] πkfk(x)/{

∑K
l=1 πlfl(x)} ≥ 1/LK(x); (ii) for any s, there exists k ∈ [K] satisfies f(s |

x)/fk(s | x) ≤ L0(x).

Assumption 3. The support of s under r̂(x, s) is bounded in [0,M1(x)]. For any x ∈ X , there exists
s ∈ [0,M1(x)] such that r̂(x, s) > 0, and r̂(x, s) is Lipschitz continuous in s on its support with
constant L(r̂, x).
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Remark 2.7. If the distribution of Y1 conditional on X1 = x is bounded with density bounded
away from zero, and the conformity score function is s(x, y) = |y − µ̂(x)|, where the pretrained
predictor µ̂(x) estimates E(Y1 | X1 = x) and lies within the support of Y1, then Assumption 1
holds. Assumption 2 has two key implications. First, each source’s covariate distribution contributes
nontrivially to the overall mixture (non-negligible mixture weight). Second, the scores for a given x in
the target agent are also observable in at least one source agent. Intuitively, this requires the source
agents to possess richer or more informative data than the target agent, or more precisely, what we
truly require is that the mixture of source distributions contains sufficient information about the target,
meaning the

∑K
k=1 πkfk(s | x)/f(s | x) has a positive lower bound, which is a necessary condition

for the source data to meaningfully assist the target. Finally, Assumption 3, which requires the
estimated density ratio r̂(x, s) to have bounded support and be Lipschitz continuous, can be enforced
in practice by truncating extreme score and ratio values, a straightforward step when employing
continuous neural networks or predictors with bounded parameters.

Define δ̃(x; r̂) =
∫∞
0

fmix(s | x)|r̂(x, s)− r(x, s)|ds, and δ2(x; F̂mix) as the L2-distance between
the density of F̂mix(· | x) and Fmix(· | x), and L2(x; r̂) = {

∫∞
0

r̂2(s | x)ds}−1/2.

Theorem 2.8. Under the conditions of Theorem 2.4, Assumptions 1–3, we have L2(x; r̂) < ∞ and
F̂agg(s | x) in Section 2.3 satisfies that 2δ1(x; F̂agg) is bounded by

2δ1(x; F̂agg) ≤ {1 + r̂(x)}−1
[
2δ1(x; F̂ ) + δ̃(x; r̂) + |r̂(x)− r(x)|+ L2(x; r̂)δ2(x; F̂mix)

]
.

Theorem 2.8 implies that δ1(x; F̂agg) < δ1(x; F̂ ) holds when L2(x; r̂)δ2(x; F̂mix)+δ̃(x; r̂)+|r̂(x)−
r(x)| < 2r̂(x)δ1(x; F̂ ). In practice, this condition is attainable under mild settings. With access to
sufficient data from source agents, the estimation error δ2(x; F̂mix) becomes asymptotically negligible.
Moreover, density ratio estimation can be framed as a binary classification task, which is often easier
to learn than conditional distribution estimation under similar conditions. Taken together, these
observations suggest that F̂agg(s | x) is likely to yield improved estimation of F (s | x) over F̂ (s | x),
and thus PFCP is expected to outperform GLCP.

On the other hand, if the density ratio is poorly estimated, the federated conditional distribution
estimator may not be more accurate, i.e. δ1(x; F̂agg) ≥ δ1(x; F̂ ), then the aggregation may not result
in any improvement. Furthermore, if the source distribution significantly differs from the target
distribution, for instance, when the support of P and any Pk do not intersect, the information from
source agents cannot help improve the conformal set on the target agent. Additionally, when the data
on the target agent is extremely limited, insufficient to yield a reliable estimate of the conditional
distribution F (s | x), both GLCP and PFCP may fail to deliver conformal sets with satisfying
test-conditional coverage, though PFCP may still outperform GLCP in this regard.

3 Experiments

We conduct experiments on synthetic data and five real datasets to demonstrate marginal coverage
validity of our proposed PFCP compared to FedCP [23], FedCP-QQ [16], CPlab [27] and CPhet [28]
and its local coverage improvement relative to GLCP. The nominal coverage level is set to 1− α =

90%. For a prediction set Ĉα(Xn+1), the following criteria are used for comparison: (1) marginal
coverage P

(
Yn+1 ∈ Ĉα(Xn+1)

)
; (2) test-conditional miscoverage error E

{∣∣P(Yn+1 ∈ Ĉα(Xn+1) |
Xn+1

)
− (1−α)

∣∣}; and (3) average size of the prediction set. All simulation results are based on 100
replications. The codes are available in the repository https://github.com/OswinMin/PFCP.

3.1 Synthetic Data

In our synthetic experiments, the regression model for target agent data is Yi = µ(Xi) + ϵ(Xi),
where µ(x) = E(Yi | Xi = x) is the conditional mean function and the residual ϵ(Xi) may depend
on Xi. For agent k ∈ [K], the model is Yk,i = µk(Xk,i) + ϵk(Xk,i). We set µ(x) =

∑d
i=1 xi and

µk(x) = 2/3
∑d

i=1 xi for x = (x1, . . . , xd)
⊤ ∈ Rd. The covariates Xi and Xk,i are sampled from

the d-dimensional standard normal distribution Nd(0d, Id). We consider two setting of heterogeneity
across agents:
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S1: ϵ(x) ∼ N
(
0,
∣∣∑d

i=1 |xi|/
√
d−
√

2d/π
∣∣2), ϵk(x) ∼ N

(
0, γk

∣∣∑d
i=1 |xi|/

√
d−
√
2d/π

∣∣2).
S2: ϵ(x) ∼ N

(
0,
∣∣ cos (∑d

i=1 xi

)∣∣2), ϵk(x) ∼ N
(
0, γk

∣∣ cos (∑d
i=1 xi

)∣∣2).
Here, γk controls the level of heterogeneity across agents. The target agent dataset is divided into
four parts: a predictor training set (I), a conditional distribution training set (II), a calibration dataset
(III), and a test dataset (IV), where the first three datasets share the same data volume n. To ensure
each agent has the same volume of available data, the source agent data set is divided into two parts
(I) and (II), each with a data volume 3n/2.

We set n = 100 in this experiment. The pretrained predictors µ̂(·) and {µ̂k(·)}Kk=1 are obtained using
neural networks with same hidden layers 30 → 30. The score function is defined as the residue
s(x, y) = |y − µ̂(x)| and sk(x, y) = |y − µ̂k(x)|. We report the experimental results evaluating the
performance of PFCP across different covariate dimensions, with d ∈ {10, 15, 20, 25, 30}. Additional
simulations exploring different source agent heterogeneity, quantities of source agents, and required
coverage level and source agent selection methods can be found in Section A.4 in the Appendix.
We consider two different sampling schemes for generating γk, applied under settings S1 and S2.
Specifically, in scenarios S1.1 and S2.1, we sample γk ∼ U [0.8, 1], while in S1.2 and S2.2, we use
γk ∼ U [1, 1.4]. We compare two density ratio estimation methods within the PFCP framework.
PFCP1 uses logistic regression, while PFCP2 employs a neural network with a 30-unit hidden layer,
followed by Platt calibration. In case PFCP2, the training data are randomly split in a 9:1 ratio for
classifier training and Platt calibration.

Results. The top row of Figure 1 presents the marginal coverage rates of all methods across four
configurations. It shows that both GLCP and PFCP achieve valid marginal coverage, whereas FedCP
and FedCP-QQ fail to meet this guarantee. Consequently, the bottom row of Figure 1 focuses
exclusively on GLCP and PFCP for test-conditional miscoverage error comparison. The results
demonstrate that PFCP consistently outperforms GLCP in terms of conditional coverage, with the
performance gap getting larger as the covariate dimension d increases, highlighting the robustness
of PFCP in high-dimensional settings. Additionally, PFCP2, which employs a calibrated classifier
via Platt scaling after neural feature extraction, generally exhibits slightly lower test-conditional
miscoverage error than PFCP1, which uses the logistic regression-based density ratio estimation
method, especially in high-dimensional settings.
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Figure 1: Marginal coverage (top row) and test-conditional miscoverage error (bottom row) under
scenarios S1.1, S1.2, S2.1, and S2.2.

3.2 Real data analysis

We evaluate our proposed PFCP method on five public-domain regression datasets also considered
by [32, 33, 16]: physicochemical properties of protein tertiary structure (BIO) [30], bike sharing
(BIKE) [8], communities and crimes (CRIME) [31], Tennessee’s student teacher achievement ratio
(STAR) [1], concrete compressive strength (CONCRETE) [43], and a derma image classification
dataset (DERMA) [42].
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We first partition each dataset into multiple agents, with the partitioning strategy detailed in Section
A.5 in the Appendix. We set n = 50 for the CONCRETE dataset and n = 100 for other four datasets.
In each repeated experiment, the number of source agents (excluding the target) varies across
benchmark datasets: 20 for BIO, 12 for BIKE, 4 for CRIME, 8 for STAR, 5 for CONCRETE and 4
for DERMA. To ensure fair comparison, all agents use neural networks with identical architectures
for point estimation, with hidden layers of size 30 → 30, and the engressor [35] is trained using
the same network structure with hidden layers of 100 → 100, all trained for the same number of
epochs and learning rate. For regression tasks, the score function still uses the residue score. For
classification problem, the point estimate µ̂ and µ̂k output a probability vector, and the score is
denoted as s(x, y) = 1− {µ̂(x)}y, sk(x, y) = 1− {µ̂k(x)}y , where the subscript indicates the y-th
element of the probability vector.

Results: The Marginal Coverage part of Table1 summarizes the marginal coverage rates of four
methods across 100 repeats. Both GLCP and PFCP achieve reliable marginal coverage close to the
required 1− α = 90% level, while FedCP, FedCP-QQ, CPlab and CPhet deviate significantly from
the target in most scenarios. This highlights substantial data heterogeneity across agents in real-world
settings, where achieving nominal marginal coverage relies on rare coincidental alignment–a high-risk
strategy lacking robustness. Results violating marginal validity are boldfaced and marked with ×.
The conditional miscoverage error requires the calculation of conditional coverage rates, with the
computation method detailed in Section A.5 in the Appendix. Additionally, the Miscoverage and
Size part of Table1 reports the conditional miscoverage errors and mean set size of GLCP and PFCP.
Across all scenarios, PFCP consistently outperforms GLCP, with improvement percentages shown in
parentheses.

Table 1: Marginal Coverage, miscoverage rate, and size of prediction sets.
Dataset GLCP PFCP FedCP FedCP-QQ CPlab CPhet

Marginal BIO 0.902 0.903 0.993× 0.970× 0.978× 0.981×
BIKE 0.900 0.900 0.885× 0.890 0.885× 0.883×

CRIME 0.900 0.896 0.866× 0.852× 0.862× 0.864×
STAR 0.898 0.899 0.897 0.892 0.897 0.898

CONCRETE 0.903 0.905 0.947× 0.963× 0.949× 0.946×
DERMA 0.895 0.899 0.824× 0.809× 0.880× 0.868×

Miscoverage BIO 0.0315 0.0199 0.0941 0.0753 0.0822 0.0844
BIKE 0.0234 0.0193 0.0678 0.0647 0.0681 0.0690

CRIME 0.0387 0.0268 0.0426 0.0495 0.0439 0.0429
STAR 0.0392 0.0244 0.0502 0.0507 0.0498 0.0493

CONCRETE 0.0366 0.0238 0.0582 0.0675 0.0600 0.0580
DERMA 0.0300 0.0230 0.0884 0.0976 0.0616 0.0659

Size BIO 0.5144 0.5032 0.9991 0.7087 0.8054 0.8271
BIKE 4.0968 3.9645 4.0044 4.0910 3.9959 3.9671

CRIME 5.1830 4.4961 3.9176 3.7724 3.8802 3.8855
STAR 48.4987 43.2931 42.7556 42.1185 42.8081 43.0090

CONCRETE 34.4859 28.3797 34.7115 38.9746 35.1545 34.6905
DERMA 2.4926 2.4430 1.2490 1.1943 1.5649 1.4810

To intuitively demonstrate PFCP’s improvement in conditional coverage over GLCP, Figure 2
visualizes the conditional miscoverage errors across subspaces for the CONCRETE dataset (results
for other datasets are in the Appendix, see Figure 12 to 16). The figure shows that GLCP exhibits
highly heterogeneous coverage across subspaces, while PFCP achieves more stable and better
controlled miscoverage rates closer to the target α.

To further investigate how the number of source agents impacts target agent performance, we
hypothesize that increasing the number of source agents with distributional alignment to the target
should enhance task performance, while using an optimal subset of source agents becomes critical
when distribution shifts are significant. Figure 3 demonstrates this phenomenon on the CRIME dataset
with α = 0.1 (with n = 75 adjusted to accommodate more source agents), where target performance
improves steadily as the number of source agents grows. Results for other datasets are provided in
the Appendix (see Figure 17 to 21), reinforcing that task-specific distributional alignment–rather than
simply maximizing source agents–drives reliable performance gains.
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Figure 2: Conditional coverage over all subspace for CONCRETE dataset.
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Figure 3: Impact of source agent quantity on target task performance for CRIME dataset.

4 Conclusion

We present Personalized Federated Conformal Prediction (PFCP), a novel framework that addresses
both agent-specific and instance-specific uncertainty quantification in federated learning. By in-
tegrating localized conformal prediction with personalized federated models, PFCP guarantees
marginal coverage for target agents while significantly improving test-conditional coverage through
privacy-preserving knowledge transfer from source agents. Theoretical analysis and empirical results
demonstrate that PFCP achieves tighter prediction sets and better conditional reliability compared to
methods relying solely on local data. This work bridges the critical gap between federated learning’s
privacy constraints and risk-sensitive applications’ demand for instance-aware uncertainty quantifica-
tion. The framework’s robustness to distribution shifts and its compatibility with arbitrary data types
position PFCP as a principled solution for safety-critical federated systems requiring personalized
reliability guarantees.

Acknowledgments and Disclosure of Funding

Peng was supported by ARC (Grant No. LP240100101). Zou was supported by the National Key
R&D Program of China (Grant No. 2022YFA1003703) and the National Natural Science Foundation
of China (Grant Nos. 12231011 and 12531011).

References
[1] Charles M Achilles, Helen Pate Bain, Fred Bellott, Jayne Boyd-Zaharias, Jeremy Finn, John

Folger, John Johnston, and Elizabeth Word. Tennessee’s student teacher achievement ratio (star)
project. Harvard Dataverse, 1:2008, 2008.

[2] Eric Bazan, Petr Dokládal, and Eva Dokladalova. Quantitative analysis of similarity measures
of distributions. In British Machine Vision Conference (BMVC), 2019.

10



[3] Christopher Briggs, Zhong Fan, and Peter Andras. Federated learning with hierarchical cluster-
ing of local updates to improve training on non-iid data. In 2020 international joint conference
on neural networks (IJCNN), pages 1–9. IEEE, 2020.

[4] Sung-Hyuk Cha. Comprehensive survey on distance/similarity measures between probability
density functions. City, 1(2):1, 2007.

[5] Victor Chernozhukov, Kaspar Wüthrich, and Yinchu Zhu. Distributional conformal prediction.
In Proceedings of the National Academy of Sciences, volume 118. National Acad Sciences,
2021.

[6] Tiffany Ding, Anastasios Angelopoulos, Stephen Bates, Michael Jordan, and Ryan J Tibshirani.
Class-conditional conformal prediction with many classes. In Advances in Neural Information
Processing Systems, volume 36, 2024.

[7] Fernanda Famá, Charalampos Kalalas, Sandra Lagen, and Paolo Dini. Measuring data similarity
for efficient federated learning: a feasibility study. In 2024 International Conference on
Computing, Networking and Communications (ICNC), pages 394–400. IEEE, 2024.

[8] Hadi Fanaee-T and Joao Gama. Event labeling combining ensemble detectors and background
knowledge. Progress in Artificial Intelligence, 2:113–127, 2014.

[9] Lidia Fantauzzo, Eros Fanì, Debora Caldarola, Antonio Tavera, Fabio Cermelli, Marco Ciccone,
and Barbara Caputo. Feddrive: Generalizing federated learning to semantic segmentation in
autonomous driving. In 2022 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 11504–11511. IEEE, 2022.

[10] Yann Fraboni, Richard Vidal, Laetitia Kameni, and Marco Lorenzi. Clustered sampling:
Low-variance and improved representativity for clients selection in federated learning. In
International Conference on Machine Learning, pages 3407–3416. PMLR, 2021.

[11] Swier Garst and Marcel Reinders. Federated k-means clustering. In International Conference
on Pattern Recognition, pages 107–122. Springer, 2024.

[12] Isaac Gibbs, John J Cherian, and Emmanuel J Candès. Conformal prediction with conditional
guarantees. arXiv preprint arXiv:2305.12616, 2023.

[13] Leying Guan. Localized conformal prediction: A generalized inference framework for confor-
mal prediction. Biometrika, 110(1):33–50, 2023.

[14] Chirag Gupta, Arun K Kuchibhotla, and Aaditya Ramdas. Nested conformal prediction and
quantile out-of-bag ensemble methods. Pattern Recognition, 127:108496, 2022.

[15] Peter Hall, Rodney CL Wolff, and Qiwei Yao. Methods for estimating a conditional distribution
function. Journal of the American Statistical association, 94(445):154–163, 1999.

[16] Pierre Humbert, Batiste Le Bars, Aurélien Bellet, and Sylvain Arlot. One-shot federated
conformal prediction. In International Conference on Machine Learning, pages 14153–14177.
PMLR, 2023.

[17] Pierre Humbert, Batiste Le Bars, Aurélien Bellet, and Sylvain Arlot. Marginal and training-
conditional guarantees in one-shot federated conformal prediction, 2024.

[18] Mintong Kang, Zhen Lin, Jimeng Sun, Cao Xiao, and Bo Li. Certifiably Byzantine-Robust
Federated Conformal Prediction. In Proceedings of the 41st International Conference on
Machine Learning, pages 23022–23057. PMLR, 2024.

[19] Benjamin Kompa, Jasper Snoek, and Andrew L Beam. Second opinion needed: communicating
uncertainty in medical machine learning. NPJ Digital Medicine, 4(1):4, 2021.

[20] Jing Lei and Larry Wasserman. Distribution-free prediction bands for non-parametric regression.
Journal of the Royal Statistical Society Series B: Statistical Methodology, 76(1):71–96, 2014.

[21] Jing Lei, James Robins, and Larry Wasserman. Distribution-free prediction sets. Journal of the
American Statistical Association, 108(501):278–287, 2013.

11



[22] Charles Lu and Jayasheree Kalpathy-Cramer. Distribution-Free Federated Learning with
Conformal Predictions, 2022.

[23] Charles Lu, Yaodong Yu, Sai Praneeth Karimireddy, Michael Jordan, and Ramesh Raskar.
Federated conformal predictors for distributed uncertainty quantification. In International
Conference on Machine Learning, pages 22942–22964. PMLR, 2023.

[24] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial
intelligence and statistics, pages 1273–1282. PMLR, 2017.

[25] Harris Papadopoulos, Alex Gammerman, and Volodya Vovk. Normalized nonconformity
measures for regression conformal prediction. In Proceedings of the IASTED International
Conference on Artificial Intelligence and Applications, pages 64–69, 2008.

[26] Harris Papadopoulos, Vladimir Vovk, and Alex Gammerman. Regression conformal prediction
with nearest neighbours. Journal of Artificial Intelligence Research, 40:815–840, 2011.

[27] Vincent Plassier, Mehdi Makni, Aleksandr Rubashevskii, Eric Moulines, and Maxim Panov.
Conformal prediction for federated uncertainty quantification under label shift. In International
Conference on Machine Learning, pages 27907–27947. PMLR, 2023.

[28] Vincent Plassier, Nikita Kotelevskii, Aleksandr Rubashevskii, Fedor Noskov, Maksim Velikanov,
Alexander Fishkov, Samuel Horvath, Martin Takac, Eric Moulines, and Maxim Panov. Efficient
conformal prediction under data heterogeneity. In International Conference on Artificial
Intelligence and Statistics, pages 4879–4887. PMLR, 2024.

[29] John Platt et al. Probabilistic outputs for support vector machines and comparisons to regularized
likelihood methods. Advances in large margin classifiers, 10(3):61–74, 1999.

[30] Prashant S Rana. Physicochemical properties of protein tertiary structure data set. UCI Machine
Learning Repository, 2013.

[31] Michael Redmond. Communities and Crime Unnormalized. UCI Machine Learning Repository,
2009. DOI: https://doi.org/10.24432/C5PC8X.

[32] Yaniv Romano, Evan Patterson, and Emmanuel Candès. Conformalized quantile regression. In
Advances in Neural Information Processing Systems, volume 32, 2019.

[33] Matteo Sesia and Yaniv Romano. Conformal prediction using conditional histograms. Advances
in Neural Information Processing Systems, 34:6304–6315, 2021.

[34] Glenn Shafer and Vladimir Vovk. A tutorial on conformal prediction. Journal of Machine
Learning Research, 9(3), 2008.

[35] Xinwei Shen and Nicolai Meinshausen. Engression: extrapolation through the lens of distribu-
tional regression. Journal of the Royal Statistical Society Series B: Statistical Methodology,
page qkae108, 2024.

[36] Masashi Sugiyama, Taiji Suzuki, and Takafumi Kanamori. Density ratio estimation in machine
learning. Cambridge University Press, 2012.

[37] Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. Towards personalized federated
learning. IEEE transactions on neural networks and learning systems, 34(12):9587–9603, 2022.

[38] Ryan J Tibshirani, Rina Foygel Barber, Emmanuel Candes, and Aaditya Ramdas. Conformal
prediction under covariate shift. Advances in neural information processing systems, 32, 2019.

[39] Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. Algorithmic learning in a random
world. New York: Springer Science & Business Media, 2005.

[40] Haifeng Wen, Hong Xing, and Osvaldo Simeone. Distributed Conformal Prediction via Message
Passing, 2025.

12



[41] Jie Xu, Benjamin S Glicksberg, Chang Su, Peter Walker, Jiang Bian, and Fei Wang. Federated
learning for healthcare informatics. Journal of healthcare informatics research, 5:1–19, 2021.

[42] Jiancheng Yang, Rui Shi, and Bingbing Ni. Medmnist classification decathlon: A lightweight
automl benchmark for medical image analysis. In IEEE 18th International Symposium on
Biomedical Imaging (ISBI), pages 191–195, 2021.

[43] I-C Yeh. Modeling of strength of high-performance concrete using artificial neural networks.
Cement and Concrete research, 28(12):1797–1808, 1998.

[44] Bianca Zadrozny and Charles Elkan. Transforming classifier scores into accurate multiclass
probability estimates. In Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 694–699, 2002.

13



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The formulation of GLCP can be found in section 2.1 and PFCP can be found
in section 2.2. Theoretical analysis can be found in section 2.4 and experiments can be
found in section 3.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of our proposed method are discussed in section A.6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: All assumptions are represented in section 2.4 and all proofs can be found in
section A.2.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide detailed descriptions and formulations required to reproduce the
main experimental results, including information on the model, datasets, baselines, and
evaluation metrics. Additionally, we present the algorithms and implementation details in
section A.1 to offer clearer implementation guidance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The datasets utilized in this study are publicly accessible via the cited refer-
ences, and the implementation code is available upon request.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification:The experimental settings are detailed in Section 3, and additional experiments
are presented in Section A.4 to provide further insights into the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For experimental results on both synthetic and real-world datasets we include 3-
sigma error bars in the coverage rate and prediction interval size plots to illustrate variability.
Due to computational constraints, we omit error bars of miscoverage plots which would
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• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Experiments Compute Resources are clearly stated in Section 3
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
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experimental runs as well as estimate the total compute.
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NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have carefully reviewed the NeurIPS Code of Ethics and have ensured that
all aspects of our research fully comply with its guidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
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societal impacts of the work performed?

Answer: [Yes]

Justification: The societal impacts of our proposed method are discussed in Section A.7
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being used as intended and functioning correctly, harms that could arise when the
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from (intentional or unintentional) misuse of the technology.
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strategies (e.g., gated release of models, providing defenses in addition to attacks,
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Answer: [NA]
Justification: We believe that our work poses no foreseeable risk of misuse.
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: : All datasets used in our experiments are properly cited, and source links are
provided for reference.
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our code is well documented with the documentation provided.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
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Answer: [NA]

Justification: Our work does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We do not use LLM to impact the core methodology, scientific rigorousness,
or originality of the research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Technical Appendices and Supplementary Material

A.1 Implementation Details

A.1.1 Engression as Conditional Distribution Estimator

Engression consider the problem of estimating the conditional distribution Y | X = x via a generative
approach. Let X ∈ X ⊆ Rd, Y ∈ Y ⊆ R and ε ∈ E ⊆ Rd′

be the input, output variables and random
noise, respectively. Engression constructs a generator G(x, ε; θ) : X × E → Y that maps a covariate
x and a random noise variable ε ∼ Pε to a sample from the conditional distribution P (Y |X = x),
where Pε is a pre-defined distribution and θ ∈ Θ is the parameter space. The randomness of ε enables
the generator to produce diverse outputs for a fixed x, thereby approximating the full conditional
distribution [35].

To evaluate the quality of the generated distribution, engression uses the energy score, a strictly
proper scoring rule. For a distribution P and an observation y, the energy score is defined as

ES(P, y) =
1

2
EZ,Z′∼P ∥Z − Z ′∥ − EZ∼P ∥Z − y∥ ,

where ∥ · ∥ denotes the Euclidean norm. A scoring rule S(P, y) is strictly proper if it satisfies

EY∼P0
[S(P0, Y )] < EY∼P0

[S(Q,Y )] ,

for any candidate distribution Q ̸= P0, where P0 is the true data-generating distribution. This
property ensures that the oracle objective minQ E(X,Y ) [S(Q,Y )] is uniquely minimized at Q = P0.
The energy score is a strictly proper scoring rule that can be employed to identify the true underlying
distribution.

Local Training Procedure A(·): Given n observed data pairs {(Xi, Yi)}ni=1, engression defines an
empirical loss function to approximate the oracle objective. For each Xi, we generate m independent
noise samples {εi,j}mj=1 with εi,j ∼ Pε, and compute the loss LEng(θ) as

LEng(θ)

=
1

n

n∑
i=1

 1

m

m∑
j=1

∥Yi −G(Xi, εi,j ; θ)∥ −
1

2m(m− 1)

∑
j ̸=j′

∥G(Xi, εi,j ; θ)−G(Xi, εi,j′ ; θ)∥

 .

(6)

The first term measures the alignment between generated samples and the observed data, while
the second term regularizes the dispersion of the generated distribution by encouraging pairwise
differences between samples. Minimizing this loss jointly optimizes both fidelity and diversity of the
estimated conditional distribution. The pseudocode of A(·) is provided in Algorithm 1.

Algorithm 1 Local Training Procedure of Engression

Input: Data pairs {(Xi, Yi)}ni=1, initial parameter θ̂0, training steps T , learning rate ζ0, noise
distribution Pϵ, number of noise samples m

For t = 1 to T do
1: Generate m i.i.d. samples {εt,i,j}mj=1 with εt,i,j ∼ Pε for each i ∈ [n]

2: Replace εi,j by εt,i,j in (6) of LEng(θ̂t−1), and take gradient of θ at θ̂t−1 as ∇θLEng(θ̂t−1)

3: Update parameters by θ̂t = θ̂t−1 − ζ0∇θLEng(θ̂t−1)

4: return θ̂T .

Federated Training Procedure Ã(·): We extend the engression algorithm to a federated version.
Given K groups of observed data pairs {(Xk,i, Yk,i)}nk

i=1, k = 1, . . . ,K, generate independent noise
samples {εk,i,j}1≤k≤K,1≤i≤nk

with εi,j ∼ Pε. Define LEng
k (θ) as the engression loss function for

agent k, obtained by replacing all instances of Xi, Yi, εi,j with Xk,i, Yk,i, εk,i,j , and the sample size
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n with nk in LEng(θ):

LEng
k (θ) =

1

nk

nk∑
i=1

{
1

m

m∑
j=1

∥Yk,i −G(Xk,i, εk,i,j ; θ)∥−

1

2m(m− 1)

∑
j ̸=j′

∥G(Xk,i, εk,i,j ; θ)−G(Xk,i, εk,i,j′ ; θ)∥

}
. (7)

Thus the federated empirical loss can be represented as

L̃Eng(θ) =

(
K∑

k=1

nk

)−1 K∑
k=1

nkLEng
k (θ).

To minimize loss L̃Eng(θ), each agent computes the average gradient over its local dataset and
participates in the aggregation of K gradients to iteratively update the model G(·, ·; θ) [24]. The
parameter updating procedure is similar to that in Section A.1.2. The pseudocode of Ã(·) is provided
in Algorithm 2.

Algorithm 2 Federated Training Procedure of Engression

Input: Data pairs {(Xk,i, Yk,i)}nk
i=1, k ∈ [K], initial parameter θ̂0, training steps T , learning rate ζ0,

noise distribution Pϵ, number of noise samples m
For t = 1 to T do

For k = 1 to K do
1: Generate m i.i.d. samples {εt,k,i,j}mj=1 with εt,k,i,j ∼ Pε for each i ∈ [nk]

2: Replace εk,i,j by εt,k,i,j in (7) of LEng
k (θ̂t−1), and take gradient of θ at θ̂t−1 as

∇θLEng
k (θ̂t−1)

3: Communicate and aggregate K gradients with weights proportion to n1, . . . , nK , the
aggregated gradient is denoted as (

∑K
k=1 nk)

−1
∑K

k=1 nk∇θLEng
k (θ̂t−1)

4: Update parameters by θ̂t = θ̂t−1 − ζ0(
∑K

k=1 nk)
−1
∑K

k=1 nk∇θLEng
k (θ̂t−1)

5: return θ̂T .

A.1.2 Federated Density Ratio Estimation

The density ratio r(x, s) = f(x, s)/fmix(x, s), which quantifies the discrepancy between the target
distribution P and the mixture

∑K
k=1 πkPk, can be reduced to a binary classification problem

[36]. Specifically, we first train a classifier to distinguish samples from the target versus mixture
distributions, then apply calibration methods [44], i.e., Platt-calibration [29] to convert classifier
outputs into well-calibrated probability estimates. This framework naturally extends to federated
settings: the classification component is implemented through standard FedAvg optimization across
agents, while Platt calibration–performed locally using only prediction scores–requires no exchange
of private data.

We formulate a binary classification task where samples from the target distribution (X, s(X,Y )) ∼
f(x, s) are assigned label l = 1, while those from the mixture distribution (Xk,·, sk(Xk,·, Yk,·)) ∼
fmix(x, s) receive label l = 0. A global probabilistic classifier f̃(x, s; γ), where γ ∈ Γcl is the model
parameter, implemented as a neural network, is trained collaboratively across all K + 1 agents (one
target and K auxiliary) using federated averaging [24]. During each communication round, local
updates are computed by minimizing the cross-entropy loss:

Lcl
k (γ) = −n−1

k

∑
(x,y)∈Dk

log
{
1− f̃(x, sk(x, y); γ)

}
, (8)

Lcl
0 (γ) = −n−1

∑
(x,y)∈Dtr

log f̃(x, s(x, y); γ) . (9)
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The federated loss can be written as

L̃cl(γ) =
{
Lcl
0 (γ) +

( K∑
k=1

nk

)−1( K∑
k=1

nkLcl
k (γ)

)}
/2 .

Model parameters are updated with gradient ∇γL̃
cl(γ̂t−1), where

∇γL̃
cl(γ̂t−1) =

{
∇γLcl

0 (γ̂t−1) +
( K∑

k=1

nk

)−1( K∑
k=1

nk∇γLcl
k (γ̂t−1)

)}
.

After T training epochs, the final parameter is denoted by γ̂ = γ̂T .

To calibrate the classifier outputs into reliable density ratio estimates, we apply Platt scaling on a
hold-out subset Dhold from the target agent and other source agents. This involves fitting a logistic
regression model to adjust the raw predictions by f̂(x, s) = σ

(
a · f̃(x, s; γ̂) + b

)
, where σ(·) is the

sigmoid function and (a, b) are calibration parameters optimized on Dhold. The density ratio is then
estimated as r̂(x, s) = f̂(x, s)/

{
1− f̂(x, s)

}
.

Data privacy is preserved by ensuring raw covariates X and responses Y never leave their originating
agents — only logits f̃(X, s(X,Y ); γ̂) and model gradients are shared. This federated implementa-
tion adheres to data isolation constraints while mitigating distributional shifts through collaborative
learning.

Algorithm 3 Federated Density Ratio Estimation Procedure
Input: Datasets D0 = Dtr and {Dk}Kk=1, initial parameter γ̂0, training steps T , learning rate ζ0,
pretrained score function s(·, ·) and {sk(·, ·)}Kk=1, hold-out ratio η

1: Compute conformity scores s(x, y) for all (x, y) ∈ D0

2: Split dataset D0 = D0,1 ∪ D0,2, where D0,1 ∩ D0,2 = ∅ and |D0,2| = ⌈η|D0|⌉
For k = 1 to K do

3: Compute conformity scores sk(x, y) for all (x, y) ∈ Dk

4: Split dataset Dk = Dk,1 ∪ Dk,2, where Dk,1 ∩ Dk,2 = ∅ and |Dk,2| = ⌈η|Dk|⌉
For t = 1 to T do

For k = 1 to K do
5: Calculate the gradients of Lcl

k (γ) with respect to γ at γ̂t−1 and denote the gradients as
∇γLcl

k (γ̂t−1) using dataset Dk,1.
6: Communicate and aggregate K + 1 gradients, the aggregated gradient is denoted as

∇γL̃
cl(γ̂t−1) = {∇γLcl

0 (γ̂t−1) + (
∑K

k=1 nk)
−1(
∑K

k=1 nk∇γLcl
k (γ̂t−1))}

7: Update parameters by γ̂t = γ̂t−1 −∇γL̃
cl(γ̂t−1).

8: Construct raw predictor f̃(x, s; γ̂T )
9: Locally calculate and construct logits data pairs (f̃(x, s(x, y); γ̂T ), 1) for (x, y) ∈ D0,2

For k = 1 to K do
10: Locally calculate (f̃(x, sk(x, y); γ̂T ), 0) for (x, y) ∈ Dk,2

11: Communicate the K+1 logits data pairs and fit logistic regression f̂(x, s) = σ
(
a · f̃(x, s; γ̂)+b

)
12: return Density ratio estimation r̂(x, s) = f̂(x, s)/

{
1− f̂(x, s)

}
A.1.3 Aggregate Engression-Based Conditional Distribution Estimators

Let G(x, ε; θ̂0) and G(x, ε; θ̂K) denote the empirical estimators of the conditional distributions
corresponding to densities f(x, s) and fmix(x, s), respectively. The true underlying parameters θ0
and θK are defined such that, for any fixed x, the random variables G(x, ε; θ0) and G(x, ε; θK)
follow distributions with conditional densities f(s | x) and fmix(s | x) respectively. Given covariate
x, reweight samples from G(x, ε; θK) with weight proportion to r(x, s) and we get samples with
density f(s | x).
Let ε0,m0

= (ε0,1, . . . , ε0,m0
), εK,mK

= (εK,1, . . . , εK,mK
) be sampled i.i.d. from (Pε)

m0 and
(Pε)

mK . We propose estimating P(s(X,Y ) ≤ s | X = x) by aggregating G(x, ε; θ̂0) and
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G(x, ε; θ̂K) with r̂(·, ·) by:

βr̂,θ̂0,θ̂K
(s;x, ε) = CK(x, ε0,m, εK,m)

∑
k=0,K

mk∑
j=1

r̂k(x,G(x, εk,j ; θ̂k))1(G(x, εk,j ; θ̂k) ≤ s) ,

(10)

where CK(x, ε0,m, εK,m) =
{∑

k=0,K

∑mk

j=1 r̂k(x,G(x, εk,j ; θ̂k))
}−1

, and r̂0 ≡ 1, r̂K = r̂.

Therefore, the conformal score on calibration can be written as V y
i = βr̂,θ̂0,θ̂K

(s(Xi, Yi);Xi, ε), for
i = 1, . . . , n+ 1 and Yn+1 = y.

Algorithm 4 Conditional Distribution Estimator Aggregation Procedure

Input: Two conditional distribution estimators G(x, ε; θ̂0) and G(x, ε; θ̂K), density ratio estimator
r̂K = r̂, noise distribution Pϵ, number of noise samples m0,mK

1: Sample independent noise vectors ε0,m0 = (ε0,1, . . . , ε0,m0), εK,mK
= (εK,1, . . . , εK,mK

)
from (Pε)

m0 and (Pε)
mK

2: Calculate βr̂,θ̂0,θ̂K
(s;x, ε) in (10) as an aggregated estimator of P(s(X,Y ) ≤ s | X = x)

3: return βr̂,θ̂0,θ̂K
(s;x, ε)

A.1.4 PFCP Algorithm

We provide the algorithm that follows PFCP procedure in Algorithm 5.

Algorithm 5 Personalized Federated Conformal Prediction (PFCP)
Input: Training and calibration datasets from target agent Dtr,Dcal, datasets from K source agents
D1, . . . ,DK , pretrained score functions s(·, ·) and {sk(·, ·)}Kk=1, algorithms A, Ã, Ãdr and Aagg,
test point Xn+1, nominal coverage rate 1− α.

Preparing Step:
1: Calculate conformity scores {Si}ni=1, {S′

i}ni=1 and {Sk,i}nk
i=1 for k ∈ [K].

2: Obtain datasets D̃tr = {(X ′
i, S

′
i)}ni=1 and D̃k = {(Xk,i, Sk,i)}nk

i=1 for k ∈ [K].
3: Train F̂ (s | x) = A(D̃tr) and F̂mix(s | x) = Ã(D̃1, . . . , D̃K).
4: Train r̂(x, s) = Ãdr(D̃tr, D̃1, . . . , D̃K).

Conformal Prediction Step:
5: Obtain aggregate estimator F̂agg(s | x) = Aagg(F̂ (s | x), F̂mix(s | x), r̂(x, s)).
6: Calculate transformed scores V y

i = F̂agg(S
y
i | Xi) for i ∈ [n+ 1].

7: Construct PFCP set ĈPFCP
α (Xn+1) using (4).

8: return ĈPFCP
α (Xn+1).

A.2 Proofs

A.2.1 Proof of Theorem 2.4

For notation simplicity, we omit the superscript Yn+1 of V Yn+1

i , that is, the transformed scores
Vi = F̂agg(s(Xi, Yi) | Xi), i = 1, . . . , n+1. Due to the i.i.d. data pairs (X1, Y1), . . . , (Xn+1, Yn+1)

drawn from P , and their independence from D̃tr and D̃k, k = 1, . . . ,K, the transformed scores
{Vi}n+1

i=1 are exchangeable. Let V(k,n) denote the k-th smallest value in {Vi}ni=1. By definition, as
long as ⌈(1− α)(n+ 1)⌉ < n+ 1, we have:

Q

(
1− α; (n+ 1)−1

(
n∑

i=1

δVi
+ δ1

))
= V(⌈(1−α)(n+1)⌉,n). (11)

24



Therefore,

P
(
Vn+1 ≤ V(⌈(1−α)(n+1)⌉,n)

) (i)
=P

(
Vn+1 ≤ V(⌈(1−α)(n+1)⌉,n+1)

)
(ii)
=

1

n+ 1

n+1∑
i=1

P
(
Vi ≤ V(⌈(1−α)(n+1)⌉,n+1)

)
=

1

n+ 1
E

[
n+1∑
i=1

1
{
Vi ≤ V(⌈(1−α)(n+1)⌉,n+1)

}]
(iii)
=

⌈(1− α)(n+ 1)⌉
n+ 1

.

Here, (i) is because Vn+1 ≤ V(k,n) if and only if Vn+1 ≤ V(k,n+1). Indeed, if Vn+1 ≤ V(k,n),
then V(k,n+1) is the larger of V(k−1,n) and Vn+1; therefore, V(k,n+1) ≥ Vn+1. Conversely, if
Vn+1 ≤ V(k,n+1), then also Vn+1 ≤ V(k,n) because V(k,n+1) ≤ V(k,n). (ii) follows from the
exchangeability of {Vi}n+1

i=1 , and (iii) follows from the no-tie assumption.

Then by the fact 1 − α ≤ ⌈(1−α)(n+1)⌉
n+1 < (1−α)(n+1)+1

n+1 = 1 − α + 1
n+1 , we achieve the second

result. If the no-tie assumption does not hold, the equality in (iii) can be replaced by an inequality "≥"
based on the definition of V(k,n+1). Consequently, we still obtain marginal validity of ĈPFCP

α (Xn+1).

A.2.2 Proof of Lemma 2.6

Recall that

ĈGLCP
α (Xn+1) =

{
y : V y

n+1 ≤ Q
(
1− α; (n+ 1)−1

( n∑
i=1

δV y
i
+ δ1

))}
,

the probability of test-conditional miscoverage error can be written as

P
(
Yn+1 /∈ ĈGLCP

α (Xn+1) | Xn+1 = x
)

=P
(
Vn+1 > Q

(
1− α; (n+ 1)−1

( n∑
i=1

δVi + δ1

))
| Xn+1 = x

)
. (12)

From equation (11), we let

V̂q := Q
(
1− α; (n+ 1)−1

( n∑
i=1

δVi + δ1

))
= V(⌈nq⌉,n),

where q = ⌈(1 − α)(n + 1)⌉/n. Notably, V̂q is the q-th quantile of empirical distribution F̂V =
n−1

∑n
i=1 δVi

. DKW inequality gives that for any δ ∈ (0, 1):

P
(
sup
x

|F̂V (x)− FV (x)| > ϵ

)
≤ δ ,

where ϵ = {(2n)−1 ln(2/δ)}−1/2. The definition of quantile gives

q ≤ F̂V (V̂q) < q +
1

n
.

Denote Aϵ =
{
sup
x

|F̂V (x)− FV (x)| ≤ ϵ
}

. On Aϵ we have

q − ϵ ≤ FV (V̂q) < ϵ+ q +
1

n
,

F−1
V (q − ϵ) ≤ V̂q < F−1

V (ϵ+ q + n−1) .
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Define Un+1 = F (s(Xn+1, Yn+1) | Xn+1) with Xn+1 = x, such that Un+1 ∼ U [0, 1]. Therefore,
the total variation between the distribution of Vn+1 and Un+1 is δ1(x; F̂ ). We have

(12) ≤ δ1(x; F̂ ) + P
(
Un+1 > Q

(
1− α; (n+ 1)−1

( n∑
i=1

δVi
+ δ1

))
| Xn+1 = x

)
≤ δ1(x; F̂ ) + P(AC

ϵ ) + P
(
Aϵ, Un+1 > V̂q | Xn+1 = x

)
≤ δ1(x; F̂ ) + δ + P

(
Un+1 > F−1

V (q − ϵ) | Xn+1 = x
)

= δ1(x; F̂ ) + δ + 1− F−1
V (q − ϵ) .

On the other hand, we can similarly derive that

(12) ≥ P
(
Un+1 > Q

(
1− α; (n+ 1)−1

( n∑
i=1

δVi
+ δ1

))
| Xn+1 = x

)
− δ1(x; F̂ )

≥ P
(
Aϵ, Un+1 > V̂q | Xn+1 = x

)
− δ1(x; F̂ )

≥ P
(
Aϵ, Un+1 > F−1

V (ϵ+ q + n−1) | Xn+1 = x
)
− δ1(x; F̂ )

≥ P
(
Un+1 > F−1

V (ϵ+ q + n−1) | Xn+1 = x
)
− P(AC

ϵ )− δ1(x; F̂ )

≥ 1− F−1
V (ϵ+ q + n−1)− δ1(x; F̂ )− δ .

Therefore,∣∣P(Yn+1 /∈ ĈGLCP
α (Xn+1) | Xn+1 = x

)
− α

∣∣
≤max

{
|1− α− F−1

V (q − ϵ) + δ|, |1− α− F−1
V (q + ϵ+ n−1)− δ|

}
+ δ1(x; F̂ ) .

A.2.3 Proof of Theorem 2.8

Part 1.

For any (x, s), based on the first inequality of Assumption 2, we have

fmix(s | x) =
∑K

k=1 πkfk(x, s)∑K
k=1 πkfk(x)

=

∑K
k=1 πkfk(x)fk(s | x)∑K

k=1 πkfk(x)
≥ L−1

K

K∑
k=1

fk(s | x) .

Moreover, based on the second property of Assumption 2, there exists k ∈ [K] such that fk(s | x) ≥
f(s | x)/L0. Therefore, considering Assumption 1, we have

fmix(s | x) ≥ (L0LK)−1f(s | x) ≥ {Lf (x)L0LK}−1 .

Based on Assumption 3, we denote

sx(r̂) = argmax
s∈[0,M1(x)]

r̂(x, s) .

Based on the Lipschitz property we can derive that∫ ∞

0

r̂(x, t)dt ≥
∫ sx(r̂)+r̂(x,sx(r̂))/L(r̂,x)

{sx(r̂)−r̂(x,sx(r̂))/L(r̂,x)}∨0

r̂(x, t)dt

≥
∫ r̂(x,sx(r̂))/L(r̂,x)

0

L(r̂, x)t dt =
{r̂(x, sx(r̂))}2

2L(r̂, x)
.

Therefore

r̂(s | x) = r̂(x, s)∫∞
0

fmix(t | x)r̂(x, t)dt
≤ 2Lf (x)L0LKL(r̂, x)

r̂(x, sx(r̂))
,

which does not rely on s and δ2(x; F̂mix) < ∞.
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Part 2.

In the following proof we assume the conditional distribution estimators F̂ (s | x) and F̂mix(s | x)
are continuous with respect to s and differentiable. The derivative with respect to s is denoted as
conditional density estimators f̂(s | x) and f̂mix(s | x). We rewrite the aggregated conditional
distribution estimator as follows:

F̂agg(s | x) = {1 + r̂(x)}−1

∫ s

0

f̂(t | x) + f̂mix(t | x)r̂(t | x)r̂(x)dt ,

which is derived by

F (s | x) =
∫ s

0

f(t | x)dt =
∫ s

0

fmix(t | x)r(t | x)dt ,

and weight two estimators with 1 and r̂(x).

Notably, the total variation can be written as the integration of the abstract difference of densities:

δ1(x; F̂ ) =
1

2

∫ ∞

0

∣∣f̂(s | x)− f(s | x)
∣∣ds ,

δ(x; F̂mix, Fmix) =
1

2

∫ ∞

0

∣∣f̂mix(s | x)− fmix(s | x)
∣∣ds .

The derivative of F̂agg(s | x) with respect to s is

f̂agg(s | x) = {1 + r̂(x)}−1
{
f̂(s | x) + f̂mix(s | x)r̂(s | x)r̂(x)

}
.

Thus the δ1(x; F̂agg) can be calculated as

δ1(x; F̂agg) =

∫ ∞

0

∣∣f̂agg(s | x)− f(s | x)
∣∣ds

≤ {1 + r̂(x)}−1
{∫ ∞

0

∣∣f̂(s | x)− f(s | x)
∣∣ds+

r̂(x)

∫ ∞

0

∣∣f̂mix(s | x)r̂(s | x)− f(s | x)
∣∣ds}

= {1 + r̂(x)}−1
{
2δ1(x; F̂ ) + r̂(x)

∫ ∞

0

∣∣f̂mix(s | x)r̂(s | x)− f(s | x)
∣∣ds}

= {1 + r̂(x)}−1
{
2δ1(x; F̂ )+∫ ∞

0

∣∣f̂mix(s | x)r̂(x, s)− fmix(s | x)r(x, s)
r̂(x)

r(x)

∣∣ds}
≤ {1 + r̂(x)}−1

{
2δ1(x; F̂ ) +

∫ ∞

0

∣∣f̂mix(s | x)r̂(x, s)− fmix(s | x)r(x, s)
∣∣ds+∫ ∞

0

∣∣fmix(s | x)r(x, s)− fmix(s | x)r(x, s)
r̂(x)

r(x)

∣∣ds}
≤ {1 + r̂(x)}−1

[
2δ1(x; F̂ ) +

∫ ∞

0

f(s | x)r(x)
∣∣1− r̂(x)/r(x)

∣∣ds+∫ ∞

0

∣∣fmix(s | x){r̂(x, s)− r(x, s)}
∣∣ds+∫ ∞

0

∣∣r̂(x, s){f̂mix(s | x)− fmix(s | x)}
∣∣ds]

≤ {1 + r̂(x)}−1
(
2δ1(x; F̂ ) +

∣∣r(x)− r̂(x)
∣∣+ δ̃(x; r̂)+[ ∫ ∞

0

r̂2(x, s)ds

∫ ∞

0

{f̂mix(s | x)− fmix(s | x)}2ds
]−1/2)

= {1 + r̂(x)}−1
[
2δ1(x; F̂ ) + δ̃(x; r̂) +

∣∣r̂(x)− r(x)
∣∣+ δ2(x; F̂mix)L2(x; r̂)

]
.
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A.3 One-Shot Agent Similarity Matching

In real-world federated learning scenarios where the number of source agents can scale to thousands
(e.g., smart device ecosystems with thousands of user-level agents), two critical challenges arise: (1)
the computational infeasibility of utilizing all agents, and (2) the potential presence of distributional
outliers that degrade model performance. Our framework addresses both issues through efficient
agent selection—first reducing computational costs by prioritizing top-K ′ agents via lightweight
distributional alignment metrics. We test our similarity metric in Section A.4.4

A.3.1 Federated Data Similarity: A Survey

In federated learning for classification tasks, a common approach measures agent similarity by
computing class label distributions (or marginal response distributions in regression settings) as
feature vectors, then comparing these vectors across agents [7]. However, this method oversimplifies
distributional alignment by solely considering label/response statistics, failing to account for the
joint distributional relationships between inputs X and outputs Y . Such marginal matching proves
insufficient when covariate shifts or feature-label dependency mismatches exist across agents.

Briggs et al. [3], Fraboni et al. [10] proposed gradient-similarity-aware clustering. Here, clients
are grouped by the similarity of their model weight updates compared to the global joint model
[3], or representative gradients [10], defined as the difference between their locally updated model
parameters and the global model. These gradients implicitly capture the direction and magnitude of
client-specific updates, reflecting underlying data distributions. A hierarchical clustering algorithm
partitions clients into clusters such that those within a cluster share similar gradient profiles, ensuring
that each cluster represents a distinct data pattern.

Existing gradient-based methods for measuring similarity among federated agents require partic-
ipation in global task training, which imposes substantial computational overhead. However, in
our framework, we propose a lightweight alternative that directly screens source agents during
preliminary analysis to accelerate similarity quantification. This paradigm shift enables rapid identi-
fication of inter-agent correlations without full model deployment, permitting selectively utilizing
a subset of source agents with higher similarity for model training. We subsequently introduce
an efficient Kmeans-driven similarity metric that operates on parameter distributions rather than
gradient interactions, achieving comparable discriminative power while significantly reducing time
complexity.

A.3.2 K-means-Driven Similarity Metric

A classical approach for measuring distributional similarity [4, 2] between two datasets D1 and D2

involves binning the data into M intervals. This produces histogram vectors Π1 = (π11, . . . , π1M )
and Π2 = (π21, . . . , π2M ), where πim represents the proportion of data points from Di falling into
the m-th bin. Standard bin-to-bin similarity measures can then be applied to quantify distribution
alignment based on these frequency vectors. We list several classical measurements here:

1. Total Variation: This index measures the L1 distance of two input bins:

dTV(Π1,Π2) =
1

2

M∑
i=1

|π1i − π2i| .

2. Histogram Intersection: This index is expressed by a min function to get the overlap of
two input bins:

dInter(Π1,Π2) = 1−
M∑
i=1

min(π1i, π2i) .

3. Histogram Correlation: This index measures the correlation of two input bins:

dCorr(Π1,Π2) =

∑M
i=1(π1i − π1)(π2i − π2)√∑M

i=1(π1i − π1)2
∑M

i=1(π2i − π2)2
.
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Existing approaches for dataset similarity assessment in federated learning often rely on raw data
interactions, posing privacy risks and communication bottlenecks. We address this by developing a
privacy-preserving binning strategy: instead of exchanging original data samples, all agents collabo-
ratively construct a global codebook through K-means clustering on aggregated data distributions,
partitioning the feature space into M non-overlapping subspaces where each point belongs to its
nearest cluster center. By converting local datasets into cluster-indexed histograms through simple
counting operations, agents can efficiently compute distribution similarities using histogram distances.

Following the established federated clustering paradigm [11], each source agent k ∈ {1, ...,K}
initially identifies M0 local cluster centers {C(1)

k , ..., C
(M0)
k } through localized K-means clustering

on its dataset Dk, while recording corresponding sample counts {N (1)
k , ..., N

(M0)
k }. These locally

optimized cluster centers and their associated cardinalities are securely transmitted to the central
server, which aggregates all K ×M0 centers and performs weighted K-means clustering – using
the transmitted sample counts as importance weights – to derive M global cluster centroids. Upon
receiving these consensus cluster centroids, each source agent constructs a distribution histogram by
mapping its local samples to the nearest cluster centroids. The histogram of source agent k is denoted
by Πk = (πk1, . . . , πkM0). Therefore we measure the distance of Di and Dj by

dKm(Di,Dj) = dTV(Πi,Πj) .

A.4 Additional Experiments: Synthetic Data

A.4.1 Experiments on Different Extent of Source Agent Data Heterogeneity

Our second experiment quantifies how varying degrees of source agent heterogeneity (γk distribution
shifts) affect target task performance. We design two regimes: S1.3 & S2.3: γk ∼ U [1− c1, 1] and
S1.4 & S2.4: γk ∼ U [1, 1 + c2], where c1 ∈ [0, 1] and c2 ∈ [0, 5] control heterogeneity intensity
(larger values indicate stronger distributional mismatch). Density ratio estimation is fixed to the
calibrated classifier approach to isolate heterogeneity effects. This setup systematically probes how
under-provisioned (c1-driven) versus over-provisioned (c2-driven) source agent distributions influence
federated conformal prediction robustness.

Figure 4 demonstrates that PFCP exhibits notable robustness to distributional heterogeneity, achieving
consistent performance improvements compared to baseline methods across a broad spectrum of γk
variation magnitudes. This empirically verifies PFCP’s capability to leverage useful source agents
while automatically discounting those with severely mismatched distributions. Furthermore, the
performance degradation remains gradual even under extreme heterogeneity, highlighting practical
reliability in real-world federated scenarios where precise prior knowledge of agent distributions is
often unavailable.
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Figure 4: Results of synthetic data with varying source agent distribution.
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A.4.2 Experiments on Different Source Agents Quantities

Central to PFCP is leveraging auxiliary data from source agents to enhance data-scarce target
tasks. Follow the setting of S1 and S2 and denote the setting with γk ∼ U [0.6, 1] as S1.5 and
S2.5, we systematically investigate how performance scales with increasing numbers of source
agents (K ∈ {2, 4, . . . , 20}). Each agent, including the target, maintains identical data volume (3n
samples: for the source agents n for point estimation, 2n for conditional distribution calibration).
This controlled experiment isolates the effect of collaborative scale, revealing an empirical scaling
law where PFCP’s prediction interval width decreases sublinearly with K, achieving improvements
in sample efficiency over single-agent baselines.

Figure 5 demonstrates that even minimal collaboration (2 source agents) delivers substantial
improvements–reducing conditional miscoverage by 19.7% (S1.5) and 25.6% (S2.5), and prediction
interval widths by 10.5% (S1.5) and 3.9% (S2.5) compared to isolated learning. The enhancements
scale sublinearly with agent count K. This quantifies PFCP’s data-efficiency in leveraging sparse yet
distributed knowledge sources.
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Figure 5: Results of synthetic data with varying source agent quantities.

A.4.3 Experiments on Different Required Coverage Levels

To rigorously assess PFCP’s robustness beyond the conventional α = 0.1 setting, we systematically
evaluate its performance across α ∈ [0.05, 0.95]. We still follow the setting of S1 and S2 and denote
the varying α setting as S1.6 and S2.6, where we set γk ∼ U [0.6, 1].

Figure 6 reveals that GLCP exhibits slight over-coverage tendencies at extreme α values (α ≥ 0.9),
due to instability in prediction set construction under sparse calibration scenarios. In contrast,
PFCP maintains coverage rates tightly clustered around the target 1 − α level across the entire
spectrum. Also Figure 6 reveals that PFCP maintains superior reliability over GLCP throughout
this parametric spectrum: while both methods achieve nominal marginal coverage, PFCP reduces
conditional miscoverage across extreme quantiles (α < 0.3 or α > 0.8) through adaptive density
ratio reweighting. Simultaneously, the prediction interval size analysis demonstrates that while both
methods show monotonically increasing interval lengths with higher 1 − α requirements, PFCP
achieves systematically tighter intervals.

This systematic evaluation demonstrates PFCP’s unique capability to preserve both marginal validity
and conditional calibration across diverse coverage requirements while achieving dual improvements:
exact coverage maintenance and statistically efficient interval growth. By adaptively balancing
reliability and precision, PFCP enhances statistical efficiency without compromising robustness–a
critical advantage for real-world applications demanding flexible yet rigorous error rate control.
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Figure 6: Results of synthetic data with varying required coverage.

A.4.4 Efficiency of K-means-Driven Similarity Metric: A Toy Example

In this toy example, we consider 40 source agents with pcor-controlled corruption levels, where
each agent’s distribution similarity parameter γk follows the mixture model γk ∼ pcorU [0, 0.2] +
(1− pcor)U [0.6, 1]. Following S1 and S2, two experimental scenarios (S1.7 & S2.7) are designed
to simulate varying proportions of corrupted agents exhibiting distributional divergence from the
target domain (γ = 1). The ranking efficacy of similarity metric dKm is quantified by verifying
whether the sorted agent sequence maintains decreasing γk values – monotonic ordering indicates
that d successfully prioritizes agents with higher distributional alignment to the target.

For each repeat, we denote the order statistics of γ1, . . . , γK by γ(1) ≥ . . . ≥ γ(K). The corresponding
similarity parameter of the sorted agent sequence is denoted by γ̃1, . . . , γ̃K . First we compare
Eγ(1), . . . ,Eγ(K) and Eγ̃1, . . . ,Eγ̃K in Figure 7. The experimental results demonstrate that our
similarity metric achieves effective distributional discrimination, as evidenced by the monotonic
ranking of source agents – those prioritized by the method exhibit significantly closer alignment
to the target distribution (γ = 1). Notably, the curve reveals a steep decline phase where our
selective screening coincides perfectly with the oracle selection, indicating that prior knowledge
of the corruption ratio pcor enables near-perfect identification of distributionally divergent agents
through this approach.

When utilizing filtered source agents as an aggregated composite distribution, next we focus on
evaluating the collective alignment through average similarity parameters. Specifically, upon selecting
the top K ′ agents ranked by dKm, we quantify their ensemble relevance by computing γ̄K′ =∑K′

k=1 γ̃k/K
′. We compare γ̄K′ with optimal γ̂K′ =

∑K′

k=1 γ(k)/K
′ in Figure 8.

A.4.5 Efficiency of K-means-Driven Similarity Metric

We test the performance of PFCP with similarity agent matching using setting S1.7 and S2.7. We
consider 40 source agents and select top nsel to serve as the auxiliary agents. We test pcor =
0.1, 0.3, 0.5, 0.7, 0.9 and nsel = 10, 20, 30 respectively.

Figure 9 demonstrates the performance across four methods under fixed selected agent numbers nsel,
where the marginal coverage of FedCP and FedCP-QQ progressively degrade as the corrupted agent
ratio pcor increases. These methods exhibit increasing susceptibility to distributionally divergent
agents at higher corruption levels.

Figure 10 illustrates the conditional miscoverage dynamics of PFCP under varying corrupted ra-
tios p, demonstrating that our similarity-aware matching mechanism effectively desensitizes the
algorithm to distributional outliers. The density ratio estimation intrinsically mitigates adverse
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Figure 7: Similarity of the k-th selected agent.
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Figure 8: Average similarity of the top k selected agent.

impacts from corrupted agents by reweighting samples according to their distributional congruence
with the target domain. Complementing these findings, Figure 11 confirms PFCP’s robustness in
high-corruption regimes – even under severe data erosion, incremental improvements in predictive
reliability emerge through expanded dataset aggregation, though such gains remain statistically
marginal due to fundamental limitations in information recovery from corrupted sources.

A.5 Additional Results of Real Data

This section presents the agent partitioning strategy and supplementary visual analyses omitted from
the main text, including conditional coverage uniformity across feature subspaces for the BIO, BIKE,
CRIME, and STAR datasets, and the scaling laws of transfer efficiency with respect to the number of
source agents on BIO, BIKE, CRIME, STAR, and CONCRETE datasets, quantifying the diminishing
returns of agent aggregation under domain heterogeneity.

Agent Partitioning Strategy: For the BIO dataset (feature dimension d = 9, response: Size
of the residue) and the CONCRETE dataset (d = 8, response: Concrete compressive strength),
the features themselves do not exhibit clear distinctions for agent partitioning. However, domain-
specific scenarios may lead to systematic variations—for instance, certain protein studies may involve
residues with atypically large sizes, while some concrete manufacturers may produce materials with
lower compressive strength due to varying equipment or processes. To capture such distributional
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Figure 9: Marginal coverage with varying pcor.
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Figure 10: Conditional miscoverage with varying pcor.

differences, we adopt a response-based partitioning scheme. Given a dataset {(x1, y1), . . . , (xn, yn)},
we first compute the α0-quantile y0 of the response variable. Each sample (xi, yi) is then assigned a
weight proportional to K(|yi−y0|/σ0), where K(·) is the Gaussian kernel function and σ0 scales the
deviation. Finally, we perform probability-proportional sampling without replacement to construct
the agent-specific dataset. To induce meaningful distribution shifts across agents, we set the quantile
parameter α0 to 0.9 for the Protein dataset and 0.3 for the Concrete dataset. The scale parameter σ0

is defined as the difference between the (α0 + 0.1) and (α0 − 0.1) quantiles of the response variable,
ensuring adaptive bandwidth for kernel weighting.

For the BIKE dataset (feature dimension d = 9, response: user count per record), we partition the
data by month since it is recorded chronologically, using the last four months as the target agent and
each remaining month as a separate agent. For the CRIME dataset (d = 20, response: violent crimes
per 100K population per district), where existing research primarily focuses on densely populated
metropolitan areas leaving less-populated regions understudied, we designate the district with the
smallest population as the target agent and randomly partition the others. In the STAR dataset
(d = 20, response: ACT score), given that many studies examine the impact of early education on
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Figure 11: Conditional miscoverage with varying nsel.

future achievement - particularly the negative effects of resource deprivation - we define students
from rural schools in their early age as the target agent and randomly partition the remaining students.

For the classification dataset DERMA, the input image format for each sample is 28× 28× 3. There
are a total of 7 classes, and the class distribution is highly imbalanced, with some classes accounting
for a very small proportion (e.g., some specific symptoms are rare). To simulate the prediction of
disease susceptibility for a particular high-risk group, where such a group contains a relatively higher
proportion of rare classes, we sample from all classes as uniformly as possible to form the target data
pool, while the remaining samples constitute the auxiliary data pool. When partitioning the auxiliary
data, it is divided evenly according to the number of agents.

Conditional Coverage Calculation: Computing conditional coverage for prediction sets requires
knowing the exact conditional distribution of Y given X , which is unavailable in real-world experi-
ments. For each test sample (X,Y ) and prediction set Ĉα(X), we evaluate coverage via the indicator
1(Y ∈ Ĉα(X)). We evaluate our method using relaxed conditional coverage. We partition the feature
space into Nx disjoint subspaces, ensuring each test sample belongs to exactly one subspace. Over
100 trials, we compute the average coverage rate within each subspace as the conditional coverage
metric. Let p1, . . . , pNx

denote the conditional coverage rates and w1, . . . , wNx
the proportions of

samples in each subspace. The conditional miscoverage is then defined as
∑Nx

i=1 wi|pi − (1− α)|.
The partitioning strategy in this work first applies K-means clustering to the target agent’s data to
identify Nx centroids, then divides the spatial domain into Nx disjoint sub-regions based on these
centroids, ensuring spatially coherent and interpretable partitions while maintaining alignment with
the underlying data distribution.

For classification datasets, the test-conditional coverage is directly partitioned based on the class
labels of the samples. Assume there exist Ny classes for the dataset, and let p1, . . . , pNy

denote
the conditional coverage rates and w1, . . . , wNy the proportions of samples in each class. The gap
between the coverage and 1 − α is computed separately for each class, and then weighted by the
proportion of each class to obtain the conditional miscoverage

∑Ny

i=1 wi|pi − (1− α)|.

A.6 Limitations

The method is designed to enhance conformal prediction in a federated setting by leveraging auxiliary
data from multiple source agents to support conformal prediction on the target agent. While effective
under certain conditions, this strategy assumes that the data distributions of the source and target
agents are relatively aligned. If the distributional shift between source and target is extremely
significant, the effectiveness of the auxiliary data may degrade. The estimated r̂ can be approximately
0 on the support of source agent data and makes source agent data useless.

34



1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930
Subset Group Index

0.0

0.1

0.2

0.3

0.4

1
co

ve
ra

ge

Miscoverage of GLCP = 0.032
Miscoverage of PFCP = 0.020

Required GLCP PFCP

Figure 12: Conditional coverage over all subspace for BIO dataset.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Subset Group Index

0.00

0.05

0.10

0.15

0.20

1
co

ve
ra

ge

Miscoverage of GLCP = 0.023
Miscoverage of PFCP = 0.019

Required GLCP PFCP

Figure 13: Conditional coverage over all subspace for BIKE dataset.
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Figure 14: Conditional coverage over all subspace for CRIME dataset.
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Figure 15: Conditional coverage over all subspace for STAR dataset.
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Figure 16: Conditional coverage over all subspace for DERMA dataset.
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Figure 17: Impact of source agent quantity on target task performance for BIO dataset.
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Figure 18: Impact of source agent quantity on target task performance for BIKE dataset.
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Figure 19: Impact of source agent quantity on target task performance for STAR dataset.
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Figure 20: Impact of source agent quantity on target task performance for CONCRETE dataset.

Moreover, incorporating a large volume of auxiliary data from multiple sources introduces significant
computational overhead. This includes communication costs in federated settings and increased com-
putational requirements for estimating F̂agg. Future work could address these issues by developing
adaptive strategies that weigh source contributions based on distributional similarity or by designing
more efficient protocols for federated uncertainty quantification.

A.7 Societal Impact

The methods proposed have implications that can be interpreted as having both positive and negative
societal consequences. On the positive side, the proposed conformal prediction methods enable more
reliable uncertainty quantification in complex predictive tasks. This has the potential to significantly
enhance decision-making in high-stakes domains such as healthcare, finance, and environmental mod-
eling, where accurate assessments of predictive uncertainty are crucial. Furthermore, by improving
the reliability and fairness of predictions, these methods may help foster greater trust in AI systems,
especially when applied in sensitive settings involving diverse population groups.
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Figure 21: Impact of source agent quantity on target task performance for DERMA dataset.
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On the other hand, there are potential negative impacts to consider. A key concern is that overreliance
on conformal prediction techniques–particularly without sufficient domain expertise–may lead to
overly simplistic or misinformed interpretations of the uncertainty information provided. This could
result in suboptimal or even harmful decisions if the limitations of the method are not fully understood
or communicated. As such, while the work contributes valuable tools for uncertainty quantification,
its responsible deployment requires careful consideration of context, assumptions, and the broader
social environment in which such tools are used.
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