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ABSTRACT

Semantic representations can be framed as a structured, dynamic knowledge space
through which humans navigate to retrieve and manipulate meaning. To investi-
gate how humans traverse this geometry, we introduce a framework that repre-
sents concept production as navigation through embedding space. Using different
transformer text embedding models, we construct participant-specific semantic
trajectories and extract geometric and dynamical metrics—including distance to
next, distance to centroid, entropy, velocity, and acceleration. These measures
capture both scalar and directional aspects of semantic navigation, providing a
computationally grounded view of semantic representation search as movement
in a geometric space. We evaluate the framework on four datasets across dif-
ferent languages, spanning different property generation tasks: Neurodegenera-
tive, Swear verbal fluency, Property listing task in Italian, and in German. Across
these contexts, our approach distinguishes between clinical groups and concept
types, offering a mathematical framework that requires minimal human interven-
tion compared to typical labor-intensive linguistic pre-processing methods. Crit-
ically, different embedding models were essentially similar in describing these
differences, highlighting similarities between different learned representations de-
spite different training pipelines. By framing semantic navigation as a structured
trajectory through embedding space, bridging cognitive modeling with learned
representation, thereby establishing a pipeline for quantifying semantic represen-
tation dynamics with applications in clinical research, cross-linguistic analysis,
and the assessment of artificial cognition. 1

1 INTRODUCTION

Semantic representations are the stored, structured traces of our knowledge about the world (Hills
et al., 2015). Retrieving a concept depends on context and draws jointly on experiential details and
abstract, shared knowledge—for “dog,” this might range from memories of a family pet to generic
category knowledge (Xie et al., 2024; Barsalou, 2023). Navigation in semantic representations
involves searching within a space that is both dynamic and context-dependent, including features for
sensorimotor representations, affective experiences, linguistic encodings, and contextual cues (Hills
et al., 2015; Diveica et al., 2025). We adopt the view that semantic retrieval can be understood as
navigation through a multidimensional space in which multiple features jointly define each concept.
We therefore propose a natural-language–based characterization of human semantic navigation as
trajectories in transformer-based embedding space, using the learned representation to quantify how
meaning is searched and accessed.

Classical task paradigms in cognitive sciences such as semantic fluency and property listing provide
behavioral windows into this search process (Canessa et al., 2024; Canessa & Chaigneau, 2020;
Troyer et al., 1997), and formal models have described how people balance exploitation and explo-
ration over time (Hills et al., 2012). Yet these approaches often rely on labor-intensive, heteroge-
neous pipelines that hinder comparability across studies (Chaigneau et al., 2018). Natural Language
Processing (NLP) methods—especially embedding-based analyses—offer scalable alternatives that
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have already helped differentiate clinical groups and organize conceptual structure (Garcı́a et al.,
2025); for example, word embedding metrics have separated Alzheimer’s and Parkinson’s patients
from controls, and language model (LM) embedding trajectories have characterized psychosis and
schizofrenia profiles (Toro-Hernández et al., 2024; Ferrante et al., 2025; He et al., 2024; Nour et al.,
2023; Lopes da Cunha et al., 2024; Sanz et al., 2022; Palominos et al., 2024).

Building on this foundation, our framework represents concept production as movement through
transformer-based spaces. For each participant, we construct semantic trajectories and extract geo-
metric and dynamical metrics—distance to next, velocity, acceleration, entropy, distance to centroid
—that capture both scalar and directional aspects of navigation. This computational approach min-
imizes manual intervention while preserving rich structure in the data, enabling principled tests of
hypotheses about semantic meaning and search in humans and in artificial agents (Xu et al., 2025).

We demonstrate the effectiveness of our approach by applying it to datasets that specifically chal-
lenge standard LM embeddings. Our evaluation probes: the clinical utility of embeddings for
analyzing natural language in patients with Parkinson’s disease (Linz et al., 2017); the semantic
consistency of multilingual embeddings across Italian and German (Conneau et al., 2020; Artetxe
& Schwenk, 2019); and the atypical geometric properties of swear word embeddings as revealed
through a verbal fluency task (Graumas et al., 2019). Critically, our metrics provide novel insights
in each of these established research areas by isolating the specific trajectory features that differen-
tiate between different groups and semantic categories. Notably, different embedding models yield
essentially similar patterns, suggesting convergent geometry across learned representations despite
distinct training pipelines and architectural differences (Valeriani et al., 2023; Doimo et al., 2024;
Lee et al., 2025; Wolfram & Schein, 2025). By framing human semantic retrieval as structured
trajectories in embedding space, we bridge cognitive modeling with learned representations and
establish a pipeline for quantifying semantic dynamics with applications to clinical research and
cross-linguistic analysis (Shakeri & Farmanbar, 2023). This approach hold promise for applica-
tions, including the classification of brain disorders, the differentiation between concept types, and
the testing of core hypotheses about search dynamics in artificial agents, as models that compare
human responses to linguistic data with LLMs’ generated responses.

2 METHODS

2.1 DATASETS

To evaluate our metrics, we use four open datasets that vary in language, population, and tasks.

Neurodegenerative dataset: Introduced in Toro-Hernández et al. (2024), consists of 62 Chilean
Spanish-speaking participants divided into three groups: 20 individuals with Parkinson’s disease
(PD), 16 with the behavioral variant of frontotemporal dementia (bvFTD), and 26 healthy controls
(HC). Participants completed a property listing task (PLT), in which they were asked to generate
as many attributes as possible for 10 concrete concepts (“tree,” “sun,” “clown,” “puma,” “airplane,”
“hair,” “duck,” “house,” “shark,” and “bed”). Instructions emphasized the inclusion of “physical
characteristics, internal parts, appearance, sounds, smells, textures, uses, functions, and typical lo-
cations” (Toro-Hernández et al., 2024). Finally, the data in this paper was preprocessed by only
extracting content words (nouns, verbs, adjectives, and adverbs).

Swear fluency dataset: Introduced by Reiman & Earleywine (2023), includes 274 undergraduate
native speakers of U.S. English who performed verbal fluency tasks across domains. In this case,
participants were instructed to generate as many items as possible within a given category in one
minute (e.g., if the category was “animals,” acceptable responses might include “dog,” “cat,” “lion,”
or “tiger”). The categories comprised animals, words beginning with F, A, and S, and swear words.

Italian and German datasets: Drawn from Kremer & Baroni (2011), comprising 69 Italian and
73 German students, respectively. Participants were asked to generate descriptive properties for
50 concrete concepts, divided into 10 categories: : ”Bird,” ”Body Part,” ”Building,” ”Clothing,”
”Fruit,” ”Furniture,” ”Implement,” ”Mammal,” ”Vegetable,” and ”Vehicle”. The task has a time limit
of one minute per item. Participants were encouraged to provide at least four descriptive phrases per
concept and were not allowed to return to previously described items once the time expired.
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2.2 CHARACTERIZING NAVIGATION

Participants generate concept streams—ordered lists of items (e.g., “cat,” “dog,” . . . )—of length
N . Let item t denote the t-th entry. We map each stream to a trajectory in semantic space,
X = (x1, . . . , xN ), where xt is the point associated with item t. The points are time-indexed
(x1 is the first item, x2 the second, etc.). Rather than computing embeddings independently (Linz
et al., 2017; Nour et al., 2023), we construct them cumulatively: xt summarizes items 1:t. For ex-
ample, if the first two items are “cat” then “dog,” x2 encodes “cat dog.” This design captures depen-
dencies among successive items, avoids independence assumptions, and yields a distinct trajectory
for each participant–concept pair, enabling analysis of navigation dynamics (Figure 1). Because
xt conditions on the full prefix, this approach calls for more complex, sequence-aware embedding
representations capable of modeling history-dependent semantics.

Figure 1: A schematic of the semantic trajectory analysis. (A) In a single trial, a participant generates
a cumulative word list. A text encoder then maps each sequential step to a vector embedding,
creating a trajectory in semantic space. This path is characterized using dynamical metrics like
velocity (x′), acceleration (x′′), and entropy. (B) Across multiple trials for the same subject, the
dispersion of the resulting cloud of embeddings trajectories is summarized by measuring the distance
of each point to the collective centroid.

Each trajectory is a time-ordered sequence of dense multilingual embeddings. Unless otherwise
noted, all results are reported using OpenAI’s text-embedding-3-large; results with alternative en-
coders (Google’s text-embedding-004 and Qwen-Embedding-0.6B) (Zhang et al., 2025) are reported
in the Appendix A.

2.2.1 DISTANCE TO NEXT

To quantify moment-to-moment change in semantic state, we compute the cosine distance between
each pair of successive unit-normalized embeddings, yielding an N − 1 length series of step sizes
(”semantic jumps“) per trajectory. Larger values indicate bigger shifts in meaning from one item
to the next. Because trajectories naturally differ in length, we also summarize each series with its
mean step size—the average cosine distance across steps—as a length-invariant indicator of average
memory-search breadth.

2.2.2 ENTROPY

We also summarize the information contained of the step-distance series with a scale-free approxi-
mate Shannon entropy. Distances are split at their within-trajectory median into “high” versus “low,”
forming a binary sequence whose Shannon entropy is computed and then normalized by the number
of valid steps (Pincus et al., 1991). This value is set to zero when all steps fall on a single side of
the median and is only estimated when at least three valid steps are available, ensuring stability for
short sequences. Given an embedding time series {xt}nt=1, let θ denote its within-trajectory median.
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We first binarize the sequence:

bt =

{
1, xt ≥ θ,

0, xt < θ,
t = 1, . . . , n. (1)

Let p = 1
n

∑n
t=1 bt be the fraction of ones. The Shannon entropy of the binarized sequence is

H = − p log2 p − (1− p) log2(1− p), (2)

with the convention H = 0 when p ∈ {0, 1}. This measure can be interpreted as the information
richness of fluctuation around a typical step size in a time series (Gao et al., 2008).

2.2.3 VELOCITY AND ACCELERATION

Beyond scalar cosine distances, we characterize the semantic directional dynamics by computing
discrete derivatives of the embeddings themselves, similarly to Nour et al. (2025). It is important
to remark that we are assuming an Euclidean dynamics for simplicity, which overlooks the real
anisotropic nature of the embedding spaces (Nickel & Kiela, 2017; Ethayarajh, 2019). Velocity is
defined as the vector difference between consecutive embeddings, yielding both a direction and a
magnitude for each step; the final row has no velocity. Since in the datasets tasks don’t have a time
stamp, then α = ∆t−1 = 1.

vt = α(xt+1 − xt), (t = 1, . . . , T − 1) (3)

Acceleration is defined as the difference between successive velocity vectors and quantifies changes
in direction or speed from one step to the next; the final two rows have no acceleration. These
kinematic quantities retain information about where the trajectory is heading in the high-dimensional
space—information that step-wise scalar distances alone cannot convey. By default, derivatives
assume a unit time step between items; if timestamps are available, magnitudes can be rescaled
accordingly with α.

at = α(vt+1 − vt) = α2(xt+2 − 2xt+1 + xt), (t = 1, . . . , T − 2) (4)

2.2.4 DISTANCE TO CENTROID

To capture how individual properties relate to the overall semantic context, we computed a centroid-
based measure. When categorical property labels and their embeddings were available, repeated
occurrences of the same property were collapsed to a single instance, ensuring that redundancy did
not overweight specific properties. For each unique property, we retained only its first embedding
and constructed a centroid vector representing the average position of all unique property embed-
dings over N trials in each specific concept and unique subject. Each item in the sequence was then
assigned the cosine distance between its embedding and this centroid. This measure quantifies how
far each produced property lies from the central tendency of the participant’s semantic exploration,
providing an index of dispersion that complements step-wise trajectory distances.

2.2.5 EMBEDDING MODEL COMPARISON

To compare different models, we will correlate trajectory measures for the same subject—such as
distance to the next point, distance to the centroid, entropy, velocity, and acceleration—to deter-
mine whether the trajectories are similar across the models (i.e., OpenAI’s text-embedding-3-large;
Google’s text-embedding-004; Qwen-Embedding-0.6B).

2.2.6 STATISTICAL ANALYSIS

For each metric, we evaluated group- and concept-level effects using generalized linear mixed mod-
els (GLMMs), with each metric as a fixed factor, including participants and concept as random
factors to account for repeated measures and individual variability. Models were fitted according
to the most appropriate distribution. Based on this procedure, a lognormal distribution was applied
to distance to next, entropy, velocity, and acceleration, while a Gaussian distribution was used for
the distance-to-centroid metric. Post-hoc pairwise comparisons were adjusted with Tukey’s HSD
to control the family-wise error rate. Visualizations combine raw distributions (boxplots with jit-
tered points) with model-estimated marginal means and 95% confidence intervals, annotated with
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significance levels from the Tukey tests. This approach highlights both the variability in the data
and the inferential estimates used for statistical testing. All statistical analyses were conducted in
R (v.4.3.1) using the glmmTMB package, selected for its robustness, flexibility, and ease of imple-
mentation (Brooks et al., 2017).

3 RESULTS

3.1 NEURODEGENERATIVE DATASET

There was a significant effect of category across all metrics. For distance to next, healthy controls
showed lower values than both bvFTD and PD, while bvFTD and PD did not differ. A similar pattern
emerged for velocity and for acceleration: HCs were lower than both patient groups, with bvFTD
and PD comparable. For entropy, HC again showed reduced values compared to both groups, with
no difference between bvFTD and PD. In contrast, distance-to-centroid showed the opposite pattern:
HC exhibited greater distances than both patient groups, which did not differ from each other. These
results indicate that semantic navigation in patient groups is characterized by greater spread, higher
variability, increased entropy, and more compact clustering relative to controls (see Figure 2).

Figure 2: Summary of the metrics for the Neurodegenerative dataset. From left to right: Distance
to Next, Velocity, Acceleration, Entropy, and Distance to Centroid. Each panel shows distributions
across three semantic categories using boxplots (with individual observations overlaid). Below each
panel, a matrix reports pairwise statistical comparisons between categories, with color intensity and
asterisks denoting significance levels (see scale).

3.2 SWEAR FLUENCY DATASET

For distance to next, all letter categories and swear words were higher than animals, with swear
words eliciting the longest distance to next and animals the shortest; letters occupied an intermediate
range. Velocity showed the same pattern, with navigation being faster for letters and especially for
swear words than for animals. Acceleration mirrored velocity, with letters and, most prominently,
swear words exceeding animals. For entropy, animals showed the lowest values; letters were higher,
and swear words the highest. Finally, distance-to-centroid reversed the pattern, with animals being
farther from the centroid than letters, whereas swear words were markedly closer. Overall, swear
words consistently drove the strongest responses across metrics, animals the lowest, and letters
clustered in between (see Figure 3).

3.3 ITALIAN DATASET

Relative to Bird (reference group), most categories showed shorter distance to next, with Building
and Vehicle the least separated from Bird. Velocity followed the same ordering, with Bird exceed-
ing most categories and Building and Vehicle only weakly or not separated. Acceleration mirrored
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Figure 3: Summary of the metrics for the Swear Fluency dataset. From left to right: Distance to
Next, Velocity, Acceleration, Entropy, and Distance to Centroid. Each panel shows distributions
across five semantic categories using boxplots (with individual observations overlaid). Below each
panel, a matrix reports pairwise statistical comparisons between categories, with color intensity and
asterisks denoting significance levels (see scale).

velocity, again showing Bird higher than the bulk of categories. Entropy differences were selec-
tive: several categories had lower entropy than Bird, whereas many contrasts were not significant.
Distance-to-centroid showed a partially reversed structure: some categories were farther from the
centroid than Bird, while others (e.g., Body Part, Clothing, Implement) were closer; several cate-
gories showed no difference from Bird (see Figure 4).

Figure 4: Summary of the metrics for the Italian dataset. From left to right: Distance to Next,
Velocity, Acceleration, Entropy, and Distance to Centroid. Each panel shows distributions across
ten semantic categories using boxplots (with individual observations overlaid). Below each panel, a
matrix reports pairwise statistical comparisons between categories, with color intensity and asterisks
denoting significance levels (see scale).

3.4 GERMAN DATASET

For distance next, most categories produced shorter values than Bird, with Vehicle and several others
most distinct from Bird, and Vegetable showing little to no separation. Velocity showed Bird higher
than nearly all categories, with the largest gap against Vehicle. Acceleration followed the same
pattern, with Bird exceeding most categories and the clearest separation against Vehicle. Entropy
differences were selective: several categories were lower than Bird, while Implement was higher;
many others showed no differences. Finally, distance-to-centroid revealed a different structure:
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Figure 5: Summary of the metrics for the German dataset. From left to right: Distance to Next,
Velocity, Acceleration, Entropy, and Distance to Centroid. Each panel shows distributions across
ten semantic categories using boxplots (with individual observations overlaid). Below each panel, a
matrix reports pairwise statistical comparisons between categories, with color intensity and asterisks
denoting significance levels (see scale).

some categories (e.g., Fruit, Mammal, Vegetable) were farther from the centroid than Bird, whereas
others (e.g., Body Part, Building, Clothing, Furniture, Implement, Vehicle) were closer, with the
most pronounced gaps involving Fruit compared to clothing and tool-like categories (see Figure 5).

3.5 MODEL COMPARISON

To ensure our findings were not dependent on a specific text encoder, we compared the trajectory
metrics from three different models. Figure 6 shows the Pearson correlation matrices for five metrics
across all four datasets, revealing a generally high degree of robustness. The results exhibit a block-
diagonal structure, indicating strong positive correlations for each metric across models. Kinematic
measures—velocity, acceleration, and distance-to-next—are highly correlated across models and
moderately correlated with one another, consistent with their shared capture of step-wise trajectory
dynamics. Two metrics diverge: distance to centroid shows the weakest inter-model correlation,
suggesting sensitivity to model-specific embedding geometry, whereas entropy shows near-perfect
inter-model correlation because it depends on rank ordering rather than absolute distances; median
binarization further stabilizes it when models agree on the relative size of semantic jumps.

Figure 6: Pearson correlations of metrics across datasets. From left to right: Neurodegenerative,
Swear Fluency, Italian, and German. Each heatmap reports pairwise correlations between Distance
to Next, Velocity, Acceleration, Entropy, and Distance to Centroid, computed with three embed-
ding models (O = OpenAI text-embedding-3-large, G = Google text-embedding-004, Q = Qwen-
Embedding-0.6B). Color indicates correlation strength (blue = negative, red = positive).
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4 DISCUSSION

Our results show that each metric indexed a distinct aspect of semantic navigation. Distance to
next reliably separated clinical groups from healthy controls in the neurodegenerative dataset and
graded the fluency tasks, with the swear-word task yielding the largest effect, followed by the letter
task, and then the animal task. This aligns with prior evidence that Parkinson’s disease is associated
with greater variability in semantic search compared to controls (Toro-Hernández et al., 2024).The
kinematic measures of velocity and acceleration reproduced these effects, quantifying the pace of
movement and the rate of directional change rather than step size alone. Nonetheless, in the Italian
and German datasets, these metrics also uncovered category-specific patterns. While not identical
across languages, these patterns consistently revealed an informative structure about how retrieval
unfolds within each linguistic context, a finding that complements previous work on cross-lingual
similarities (Conneau et al., 2020; Artetxe & Schwenk, 2019).

Entropy captured disorder in search and complemented the dynamic-based metrics. Neurodegen-
erative groups showed higher entropy than controls, consistent with less predictable, less routine
traversal of meaning space, possible due to executive functioning constraints (Birba et al., 2017;
Cousins & Grossman, 2017). Entropy was also higher for swear-word fluency than for animal or
letter fluency, in line with greater contextual dependence and population variability of taboo lexi-
cons. Cross-language analyses, again revealed category-specific differences without assuming the
same pattern in Italian and German, suggesting language-specific modulation of variability. Finally,
distance-to-centroid indexed positional centrality and provided information orthogonal to other mea-
sures. Healthy controls were farther from the centroid than patient groups in the neurodegenerative
dataset, indicating more dispersed searches. Swear-word fluency was more central than animal and
letter tasks, consistent with a tighter lexical neighborhood. In both Italian and German datasets,
distance-to-centroid differentiated multiple categories, with language-dependent profiles—evidence
that centrality exposes structure not fully explained by distance to next, velocity, acceleration, or
entropy.

Our findings not only corroborate previous research but also highlight the power of NLP-based ap-
proaches to address new scientific questions. Geometrically grounded analyses of language have
been useful for capturing complex semantic patterns in neurodegeneration that are often missed by
traditional methods (Mota et al., 2023; Zhang et al., 2022). This is evidenced by their successful
application in classifying patient groups (Sanz et al., 2022; Garcı́a et al., 2025), distinguishing cog-
nitive phenotypes (Aresta et al., 2025), predicting disease progression (Šubert et al., 2023), and their
extension across languages to conditions like HIV (Gattei et al., 2023) and schizophrenia (Palomi-
nos et al., 2024; He et al., 2024; Zhang et al., 2024). Furthermore, our results open new avenues in
less-explored domains, such as the semantic navigation underlying the production of swear words.
Since swear-word fluency has been linked to substance use (Reiman & Earleywine, 2023) and dif-
ferential brain activity patterns in schizophrenia (Lee et al., 2019), analyzing its semantic dynamics
could provide novel insights into behavioral regulation and inhibitory control. Thus, the continued
development of NLP metrics for semantic navigation is crucial for advancing our understanding of
human semantic search and its disruptions across diverse clinical and linguistic contexts.

Our results also proved to be discriminative of specific semantic categories. The analysis of
category-specific effects in semantic navigation has been crucial for differentiating cognitive pro-
files in brain pathologies (Shebani et al., 2017). Interestingly, although our approach was effec-
tive across contexts and languages, differences in category effects emerged between the Italian and
German datasets. This may reflect the flexible nature of lexico-semantic representations, where
linguistic structure and cultural conventions shape how meaning is accessed and organized during
semantic search (Vigliocco et al., 2009; Barsalou, 2023; Kemmerer, 2023). In this respect, different
transformer-based models, trained on distinct corpora, may be expected to capture specific manifes-
tations of semantic structure in divergent ways.

Crucially, our cross-model analyses revealed that trajectory metrics were highly correlated across
the three different embedding models, indicating that the observed dynamics are not an artifact of
a single encoder, as agrees with previous literature as they generate similar representations (Lee
et al., 2025; Wolfram & Schein, 2025). This consistency was particularly strong for metrics cap-
turing the local, step-by-step evolution of the trajectory, such as velocity, acceleration, and entropy.
In contrast, the distance-to-centroid metric consistently showed the lowest inter-model correlation,
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revealing that while models agree on a trajectory’s local dynamics (its shape and variability), they
differ significantly in its global positioning. This sensitivity arises because the metric uses a static,
global average rather than successive states, making it dependent on the unique high-level geometry
of each model’s embedding space. It might be a possible tool for comparing how different mod-
els structure knowledge. Notably, this dissimilarity between models was most pronounced in the
neurodegenerative dataset, potentially reflecting a more complex disruption in semantic navigation.

5 CONCLUSION

In sum, applying five text embedding-based trajectory metrics to fluency and property listing tasks
data revealed signatures of semantic navigation: distance-to-next, velocity, and acceleration distin-
guished neurodegenerative groups from healthy controls in their semantic search; entropy captured
irregularity in search (notably higher for swear-word fluency); and distance-to-centroid indexed
positional centrality orthogonal to the other measures, exposing category- and language-specific
structure. These effects were broadly consistent across three multilingual transformer embedding
models, indicating robustness to the choice of encoder for local trajectory dynamics, while lower
cross-model agreement for distance-to-centroid highlights model-dependent global geometry. To-
gether, these results shows a geometrically grounded NLP framework for characterizing human
semantic retrieval, through across tasks and languages, and open avenues for clinical stratification
and cross-model comparisons of how humans and generative LMs traverse meaning space.

6 LIMITATIONS AND FUTURE WORK

Although fluency and property-listing tasks are useful across a range of applications, they capture
only a partial view of human semantic navigation, in this specific case the tasks didn’t contain
the time step of the words. This could contribute to more temporal meaningful dynamics. De-
veloping richer speech-based protocols may help probe semantic search and representation more di-
rectly, especially when linked to learned representations from language models (LMs). We acknowl-
edge that our assumption of Euclidean dynamics is a simplification that overlooks the anisotropic
structure of embedding spaces (Nickel & Kiela, 2017; Ethayarajh, 2019). More mathematically ro-
bust—potentially non-Euclidean—metrics are needed to better characterize these trajectories. Fur-
thermore, we used a basic information measure (Shannon entropy); future work should broaden the
information-theoretic toolkit for semantic navigation to assess complexity in systems with many
interacting variables that jointly shape human semantic representation and retrieval.

Furthermore, future work could apply a similar framework to characterize different LLMs and as-
sess their generative semantic navigation across tasks. The goal is to develop a unified account of
trajectories in semantic space that encompasses both humans and generative language models.

REPRODUCIBILITY STATEMENT

The code and data required to reproduce the findings of this study are openly available. The source
code for all analyses and figure generation is accessible at [hidden link to repository]. The datasets
are all from public sources, which are detailed with their respective access links in Appendix A.2.
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Claudio Palominos, Rui He, Karla Fröhlich, Rieke Roxanne Mülfarth, Svenja Seuffert, Iris E. Som-
mer, Philipp Homan, Tilo Kircher, Frederike Stein, and Wolfram Hinzen. Approximating the
semantic space: word embedding techniques in psychiatric speech analysis. Schizophrenia, 10
(114), 2024. doi: 10.1038/s41537-024-00434-6.

Steven M. Pincus, Ian M. Gladstone, and Richard A. Ehrenkranz. A regularity statistic for medical
data analysis. Journal of Clinical Monitoring and Computing, 7(4):335–345, 1991. doi: 10.1007/
BF01619355.

Ann-Kathrin Reiman and Mitch Earleywine. Swear word fluency, verbal fluency, vocabulary, per-
sonality, and drug involvement. Journal of Individual Differences, 44(1):37–46, 2023. doi:
10.1027/1614-0001/a000379.

Camila Sanz, Facundo Carrillo, Andrea Slachevsky, Gonzalo Forno, Maria Luisa Gorno Tempini,
Rodrigo Villagra, Adolfo M. Garcı́a, et al. Automated text-level semantic markers of alzheimer’s
disease. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, 14(1):e12276,
2022. doi: 10.1002/dad2.12276.

Arezo Shakeri and Mina Farmanbar. Natural language processing in alzheimer’s disease research:
Systematic review of methods, data, and efficacy. Frontiers in Digital Health, 5:1250365, 2023.
doi: 10.1002/dad2.70082.

Zubaida Shebani, Karalyn Patterson, Peter J. Nestor, Lara Z. Diaz-de Grenu, Kate Dawson, and
Friedemann Pulvermüller. Semantic word category processing in semantic dementia and posterior
cortical atrophy. Cortex, 93:92–106, 2017. doi: 10.1016/j.cortex.2017.04.016.
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A APPENDIX

A.1 USE OF LARGE LANGUAGE MODELS DISCLOSURE

We used large language models (LLMs) as a code assistant and text editor to refine implementation
details, improve manuscript clarity and grammar, and identify relevant literature. All LLM outputs
were thoroughly reviewed and verified by the authors. The conceptual framework and methodology
contributions presented in this work are entirely our own.

A.2 DATA AVAILABILITY

The datasets used in this study are publicly available. The neurodegenerative dataset can be
found at https://osf.io/8pufk/, and the swear words dataset is located at https://
osf.io/w8drt/. The Italian and German datasets were sourced from the appendices of Kre-
mer & Baroni (2011), available at https://link.springer.com/article/10.3758/
s13428-010-0028-x.
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A.3 RESULTS FOR QWEN-EMBEDDING-0.6B

All the previous results were reproduced for Qwen-Embedding-0.6B, which is a small open-source
high performance embedding model (Zhang et al., 2025). For Neurodegerative dataset (Fig. 7),
swear dataset (Fig. 8), Italian (Fig. 9) and German (Fig. 10) datasets.

Figure 7: Summary of the metrics for the Neurodegenerative dataset. From left to right: Distance
to Next, Velocity, Acceleration, Entropy, and Distance to Centroid. Each panel shows distributions
across three semantic categories using boxplots (with individual observations overlaid). Below each
panel, a matrix reports pairwise statistical comparisons between categories, with color intensity and
asterisks denoting significance levels (see scale).

Figure 8: Summary of the metrics for the Swear Fluency dataset. From left to right: Distance to
Next, Velocity, Acceleration, Entropy, and Distance to Centroid. Each panel shows distributions
across five semantic categories using boxplots (with individual observations overlaid). Below each
panel, a matrix reports pairwise statistical comparisons between categories, with color intensity and
asterisks denoting significance levels (see scale).
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Figure 9: Summary of the metrics for the Italian dataset. From left to right: Distance to Next,
Velocity, Acceleration, Entropy, and Distance to Centroid. Each panel shows distributions across
ten semantic categories using boxplots (with individual observations overlaid). Below each panel, a
matrix reports pairwise statistical comparisons between categories, with color intensity and asterisks
denoting significance levels (see scale).

Figure 10: Summary of the metrics for the German dataset. From left to right: Distance to Next,
Velocity, Acceleration, Entropy, and Distance to Centroid. Each panel shows distributions across
ten semantic categories using boxplots (with individual observations overlaid). Below each panel, a
matrix reports pairwise statistical comparisons between categories, with color intensity and asterisks
denoting significance levels (see scale).

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.4 RESULTS FOR GOOGLE’S TEXT-EMBEDDING-004

All the previous results were reproduced for Google’s text-embedding-004. For Neurodegerative
dataset (Fig. 11), swear dataset (Fig. 12), Italian (Fig. 13) and German (Fig. 14) datasets.

Figure 11: Summary of the metrics for the Neurodegenerative dataset. From left to right: Distance
to Next, Velocity, Acceleration, Entropy, and Distance to Centroid. Each panel shows distributions
across three semantic categories using boxplots (with individual observations overlaid). Below each
panel, a matrix reports pairwise statistical comparisons between categories, with color intensity and
asterisks denoting significance levels (see scale).

Figure 12: Summary of the metrics for the Swear Fluency dataset. From left to right: Distance to
Next, Velocity, Acceleration, Entropy, and Distance to Centroid. Each panel shows distributions
across five semantic categories using boxplots (with individual observations overlaid). Below each
panel, a matrix reports pairwise statistical comparisons between categories, with color intensity and
asterisks denoting significance levels (see scale).
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Figure 13: Summary of the metrics for the Italian dataset. From left to right: Distance to Next,
Velocity, Acceleration, Entropy, and Distance to Centroid. Each panel shows distributions across
ten semantic categories using boxplots (with individual observations overlaid). Below each panel, a
matrix reports pairwise statistical comparisons between categories, with color intensity and asterisks
denoting significance levels (see scale).

Figure 14: Summary of the metrics for the German dataset. From left to right: Distance to Next,
Velocity, Acceleration, Entropy, and Distance to Centroid. Each panel shows distributions across
ten semantic categories using boxplots (with individual observations overlaid). Below each panel, a
matrix reports pairwise statistical comparisons between categories, with color intensity and asterisks
denoting significance levels (see scale).
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