

SHUFFLING THE DATA, STRETCHING THE STEP-SIZE: SHARPER BIAS IN CONSTANT STEP-SIZE SGD

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 From adversarial robustness to multi-agent learning, many machine learning tasks
 012 can be cast as finite-sum min–max optimization or, more generally, as variational
 013 inequality problems (VIPs). Owing to their simplicity and scalability, stochastic
 014 gradient methods with constant step size are widely used, despite the fact that they
 015 converge only up to a bias term. Among the many heuristics adopted in practice,
 016 two classical techniques have recently attracted attention to mitigate this issue:
 017 *Random Reshuffling* of data and *Richardson–Romberg extrapolation* across iterates.

018 In this work, we show that their composition not only cancels the leading lin-
 019 ear bias term, but also yields an asymptotic cubic refinement. To the best of our
 020 knowledge, our work provides the first theoretical guarantees for such a synergy in
 021 structured non-monotone VIPs. Our analysis proceeds in two steps: (i) by smooth-
 022 ing the discrete noise induced by reshuffling, we leverage tools from continuous-
 023 state Markov chain theory to establish a law of large numbers and a central limit
 024 theorem for its iterates; and (ii) we employ spectral tensor techniques to prove that
 025 extrapolation debiases and sharpens the asymptotic behavior even under the biased
 026 gradient oracle induced by reshuffling. Finally, extensive experiments validate our
 027 theory, consistently demonstrating substantial speedups in practice.

1 INTRODUCTION

030 Mathematical optimization is one of the pillars of modern machine learning (ML), equipping us with
 031 the numerical tools needed to compute parameters for large-scale decision systems. In this work, we
 032 focus on *variational inequality problems* (VIPs) (Stampacchia, 1964)—a unifying framework that
 033 extends beyond classical loss minimization to encompass min–max optimization, complementarity
 034 problems (Dantzig & Cottle, 1968; Facchinei & Pang, 2003), equilibrium computation in games, and
 035 general fixed-point formulations (Bauschke & Combettes, 2017). In recent years, VIPs have gained
 036 significant traction in ML and data science, especially due to their broad potential applicability in
 037 domains where minimizing a single empirical loss is insufficient, with notable examples including
 038 generative adversarial networks (Goodfellow et al., 2014; Arjovsky et al., 2017), multi-agent and
 039 robust reinforcement learning (Namkoong & Duchi, 2016; Wang et al., 2021; Giannou et al., 2022),
 040 and auction theory (Syrgkanis et al., 2015).

041 In practice, many of these tasks reduce to finite-sum formulations, where the objective depends on a
 042 large collection of data samples or agents. In such settings, *stochastic gradient methods* have become
 043 the workhorse of large-scale learning (Bottou et al., 2018). By exploiting the finite-sum structure,
 044 stochastic gradient descent (SGD) and its variants replace expensive full-gradient computations with
 045 inexpensive updates on a few components, enabling scalability to massive datasets.

046 While the theoretical underpinnings of SGD have been extensively studied (Rakhlin et al., 2011;
 047 Raginsky et al., 2017; Azizian et al., 2024; Malick & Mertikopoulos, 2024), much of its practical
 048 success can be traced to a handful of seemingly “low-level” heuristics (Bottou, 2012b): step-size
 049 schedules (constant vs. decaying), data ordering (with vs. without resampling), and iterate selection
 050 (average vs. last iterate). To facilitate analysis, the community has typically adopted a *ceteris paribus*
 051 perspective—isolating one design choice at a time while holding the rest fixed—an approach that
 052 clarifies individual effects but obscures their interaction.

053 A particularly important case is the use of a *constant step size*, popular in practice since it simplifies
 tuning, quickly erases dependence on initialization, and yields fast early progress (Yu et al., 2021).

Its drawback is fundamental: convergence halts at a non-vanishing error. Even in strongly convex problems with unique solution x^* , the last iterate of SGD typically satisfies:

$$\text{MSE}(\text{SGD}) = \limsup_{k \rightarrow \infty} \mathbb{E}[\|x_k - x^*\|^2] = \mathcal{O}(\gamma) \text{ and } \text{bias}(\text{SGD}) = \limsup_{k \rightarrow \infty} \|\mathbb{E}[x_k] - x^*\| = \mathcal{O}(\gamma).$$

Thus, the iterates stabilize in the long run at distance from the optimum on the order of the step size.

► To mitigate this limitation, practitioners often turn to debiasing heuristics. A prominent example is *random reshuffling* (RR₁), or *without-replacement* sampling, where each data point is visited exactly once per epoch. Unlike classical *with-replacement* SGD, which may resample or skip points, RR₁ enforces a random full pass that closely mirrors large-scale training in practice (Bottou et al., 2018). Despite the dependence it induces across samples, recent work has established faster convergence guarantees for RR₁ in both minimization (Ahn et al., 2020; Gürbüzbalaban et al., 2021; Cai et al., 2023) and VIPs (Mishchenko et al., 2020b; Emmanouilidis et al., 2024), along with sharper MSE bounds from $\mathcal{O}(\gamma)$ to $\mathcal{O}(\gamma^2)$, while leaving open the question of whether the bias term itself improves. Indeed, recall that for any estimator \hat{x} , the mean squared error decomposes as

$$\text{MSE}(\hat{x}) = \mathbb{E}[\|\hat{x} - x^*\|^2] = \|\mathbb{E}[\hat{x}] - x^*\|^2 + \text{Var}(\hat{x}),$$

so that $\text{bias}(\hat{x}) \leq \sqrt{\text{MSE}(\hat{x})}$. Under this trivial bound, SGD–RR₁ guarantees improved MSE compared to vanilla SGD, but does not necessarily yield smaller bias.

► Orthogonal to reshuffling, another classical idea from numerical analysis has recently re-emerged in stochastic optimization: *Richardson–Romberg* (RR₂) extrapolation. Its principle is simple yet powerful: *Run the algorithm of your choice at two different step sizes and combine their outputs so that the leading bias term cancels*. Concretely, whenever the bias admits an expansion of the form $\text{bias}(\gamma) = \Delta\gamma + \mathcal{O}(\gamma^\kappa)$ with $\kappa > 1$, running the stochastic approximation at two step sizes gives:

$$x_\infty^\gamma - x^* = \Delta\gamma + \mathcal{O}(\gamma^\kappa) \text{ and } x_\infty^{2\gamma} - x^* = 2\Delta\gamma + \mathcal{O}(\gamma^\kappa).$$

Extrapolating these iterates then yields :

$$x_{\text{extr}} - x^* = 2x_\infty^\gamma - x_\infty^{2\gamma} - x^* = 2\cancel{\Delta\gamma} - \cancel{2\Delta\gamma} + \mathcal{O}(\gamma^\kappa) = \mathcal{O}(\gamma^\kappa).$$

Originally introduced for accelerating discretization schemes in stochastic differential equations (Hildebrand, 1987; Talay & Tubaro, 1990; Bally & Talay, 1996), RR₂ has since been applied to optimization, improving constant-step methods from SGD (Durmus et al., 2016; Dieuleveut et al., 2020; Mangold et al., 2024; Sheshukova et al., 2024) to Q-learning and two-timescale stochastic approximation (Huo et al., 2023; Kwon et al., 2024; Zhang & Xie, 2024; Allmeier & Gast, 2024). Despite its conceptual simplicity and empirical success, its theoretical foundations for stochastic VIPs remain nascent (Vlatakis-Gkaragkounis et al., 2024).

Despite this progress, the known *bias* rates of these heuristics remain limited when applied in isolation. For unconstrained strongly monotone VIPs, RR₂ alone attains $\mathcal{O}(\gamma^{3/2})$ bias (Vlatakis-Gkaragkounis et al., 2024)¹, whereas RR₁ is known to sharpen MSE bounds (from $\mathcal{O}(\gamma)$ to $\mathcal{O}(\gamma^2)$) but does not, in general, guarantee an improved bias order. This raises a natural challenge: can one synthesize the two so as to surpass both, ideally reaching $\mathcal{O}(\gamma^3)$ bias?

What new phenomena arise when these heuristics

— constant step sizes, random reshuffling, and Richardson extrapolation— (★)
interact simultaneously?

Addressing this question is delicate. Reshuffling introduces a biased stochastic oracle whose discrete, permutation-driven noise structure lies outside the reach of existing analyses of extrapolation, which predominantly assume unbiased or continuously distributed perturbations (Dieuleveut et al., 2020; Sheshukova et al., 2024; Vlatakis-Gkaragkounis et al., 2024).

Our model’s assumptions. While variational inequalities provide a unifying language for optimization, learning, and game dynamics, *no single structural assumption can capture the full complexity of all modern nonconvex–nonconcave problems*. From a computational standpoint, even smooth VIPs are intractable in full generality—being tightly connected to Nash equilibria (Papadimitriou et al., 2022; Goldberg & Katzman, 2022), linear complementarity (IEOR, 2011), and constrained

¹The $\mathcal{O}(\gamma^2)$ rate in Vlatakis-Gkaragkounis et al. (2024, Sec. 5, Thm. 6) is obtained via a reduction to Dieuleveut et al. (2020, Sec. 3, Thm. 4), which requires additional noise assumptions not met in our setting.

108 saddle-point problems (Daskalakis et al., 2021). Consequently, much of the theoretical literature
 109 adopts *structured* assumptions (strong convexity, quasi-strong monotonicity, quasar or weak con-
 110 vexitity, PL/KL conditions, Minty conditions, error bounds, etc.), each expressive in specific regimes
 111 but not universal.

112 Our work is based on *quasi-strong monotonicity* which falls squarely within this class: it captures
 113 stabilizing behaviors of many smooth systems, while remaining far more permissive than strong
 114 convexity or global monotonicity. At the same time, it is helpful to clarify that this assumption is
 115 not meant as a universal model for all adversarial or fully nonconvex–nonconcave settings. Certain
 116 modern ML applications—including GANs, adversarial robustness, and multi-agent RL—can ex-
 117 hibit fundamentally unstable or rotational dynamics (Jin et al., 2020; Han et al., 2023; Kim & Seo,
 118 2022; Bukharin et al., 2023), where even *local* monotonicity surrogates fail. As such, our theoretical
 119 guarantees should be viewed as pertaining to regimes where a minimum amount of local structure is
 120 present, rather than to the most adversarial or unstructured cases.²

121 **Our contributions.** Motivated by this gap, we undertake in this work what is, to the best of our
 122 knowledge, the first systematic study demonstrating that these heuristics can be synthesized into a
 123 principled algorithmic framework. Our main result shows that their composition yields a level of
 124 bias reduction unattainable by either heuristic alone. To this end, we extend and refine previous
 125 analyses of both RR_1 and RR_2 , and we introduce a novel algorithm (Algorithm 1) that achieves their
 126 optimal composition without requiring any additional assumptions:

127 **Main Result (Informal Theorem).** *For quasi-strongly monotone smooth VIPs, our combined
 128 method ($\text{SGD-RR}_2 \oplus \text{RR}_1$, Algorithm 1) cancels all lower-order terms in the bias expansion, yielding
 129 an asymptotic bias of order $\mathcal{O}(\gamma^3)$.*

130 To establish the above result, we first derive an intermediate finding: in isolation, Perturbed
 131 SGD-RR_1 achieves an asymptotic bias of $C\gamma + \mathcal{O}(\gamma^3)$ —to the best of our knowledge, the first
 132 analysis of its kind. This is particularly striking: although without-replacement sampling induces a
 133 biased gradient estimator, it paradoxically yields an improved bias rate (see Figure 1).

135 **Comparison to Prior Work and Overview of Our Contributions.** Before introducing the intu-
 136 ition behind our algorithmic design, we briefly contrast our results with those of Emmanouilidis
 137 et al. (2024), who study RR_1 -based improvements for the Stochastic Extragradient (SEG) method.
 138 Our analysis uncovers a fundamentally different phenomenon: the joint use of $\text{RR}_1 \oplus \text{RR}_2$ produces
 139 a *bias cancellation mechanism* that eliminates the leading $\mathcal{O}(\gamma)$ term while preserving the condi-
 140 tion number and asymptotic behavior of SGDA. The key distinctions are summarized in Table 1.
 141 Achieving the best of both worlds—optimal bias order together with a tight condition number, as
 142 SEG without reshuffling enjoys—remains an interesting direction for future work.

Aspect	Emmanouilidis et al. (2024)	Our work
Baseline Algorithm	SEG	SGDA
Model Assumptions (Smoothness)	$F_i - L_i$ Lipschitz	$F_i - L_i$ Lipschitz
Model Assumptions (Drift)	F μ -strongly monotone	F quasi-strongly monotone
Main heuristic	RR_1 only	$\text{RR}_1 \oplus \text{RR}_2$
Asymptotic Bias order	$\mathcal{O}(\gamma + \gamma^3)$	$\mathcal{O}(\gamma^3)$
Asymptotic MSE order	$\mathcal{O}(\gamma^2)$	$\mathcal{O}(\gamma^2)$
Condition number	Worse than vanilla-SEG	Same as vanilla-SGDA
Mechanism	EG-structure + RR_1	Bias cancellation ($\text{RR}_1 \oplus \text{RR}_2$)

152 Table 1: Summary of key differences between Emmanouilidis–Vidal–Loizou (2024) and our results.

153 **Our algorithm.** While there are many conceivable ways to interleave RR_2 and RR_1 , both intra-
 154 and inter-epoch, we adopt the most natural and practically motivated design. In modern pipelines,
 155 RR_1 is the workhorse at the low-level training stage, while RR_2 is often employed as a black-box
 156 refinement at a higher level, allowing parallelization and modular integration.

157
 158 ²A complementary and key fact for our setting, established in (Hsieh et al., 2019, Lemma A.4), is that *any*
 159 *smooth VI operator is locally quasi-strongly monotone in a neighborhood of a regular solution*. Combined
 160 with our Markov-chain recurrence result—which ensures that the iterates remain in such neighborhoods with
 161 probability 1—this provides a natural and widely adopted stability regime in which the RR_1 and RR_2 debiasing
 mechanisms are both theoretically justified and practically meaningful.

162 Accordingly, we study stochastic gradient algorithms that sample via random reshuffling to generate stochastic oracles of gradients/operators. At the
 163 start of each epoch $k > 0$, a random permutation ω_k of $[n]$ is drawn, prescribing the order in which data
 164 points are processed. The algorithm then performs
 165 the classical SGD update:
 166

$$x_k^{i+1} = x_k^i - \gamma \text{PreProcess}[\text{StochOracle}(x_k^i; \omega_k^i)],$$

(SGD-RR2 \oplus RR1 (inner-loop))

167 where $\text{StochOracle}(x_k^i; \omega_k^i)$ denotes either the
 168 stochastic gradient (in minimization problems) or the
 169 operator value $F_{\omega_k^i}(x_k^i)$ (in the general VI case),
 170 indexed by the ω_k^i data point and $\text{PreProcess}[\cdot]$ is a
 171 preprocessing routine implementing calibrated
 172 Gaussian smoothing to the input. Then, the final it-
 173 erate of each epoch becomes the starting point of the
 174 next, and the procedure repeats.
 175

176 *On the necessity of smoothing.* A key challenge with reshuffling is that, after one epoch, the
 177 cumulative gradient estimator is biased, unlike sampling with replacement, which is unbiased and
 178 analytically simpler. The induced noise is also discrete, tied to permutations. To handle this, we
 179 introduce a calibrated Gaussian perturbation that smooths the discrete reshuffling noise into a well-
 180 behaved proxy while preserving variance, moments, and bias order. In practice, the perturbation has
 181 negligible effect across datasets; clarifying its precise dependence on dataset size is an interesting
 182 direction for future work. For completeness, the supplement also includes a brief sketch showing
 183 how our results extend even without this step.
 184

185 Finally, at the end of each epoch we apply RR2, yielding the extrapolated update:
 186

$$\hat{x}_{I+1}^N = 2x_{I,[\gamma]}^N - x_{I,[2\gamma]}^N. \quad (\text{SGD-RR2} \oplus \text{RR1} \text{ (outer-loop)})$$

187 In Section 3, we prove that this combination achieves a provable $\mathcal{O}(\gamma^3)$ bias—to the best of our
 188 knowledge, the first such result. There we also provide the detailed description of Algorithm 1
 189 together with the formal statement specifying its exact parameter choices.
 190

191 **Proof outline and technical innovations.** We now sketch the main ingredients of our analysis,
 192 deferring complete statements and proofs to Section 3 and the appendix. As our optimization
 193 landscape, we consider variational inequality problems (VIPs) satisfying weak quasi-strong monotonicity,
 194 a class broad enough to cover many structured non-monotone and non-convex problems. Intu-
 195 itively, quasi-strong monotonicity ensures a directional drift towards equilibrium, but unlike strong
 196 convexity it offers no uniform control. Its weak variant relaxes this further, introducing a systemic
 197 error that diminishes even this limited drift. Our roadmap proceeds through three main stations:
 198

199 **Convergence of SGD-RR1 under perturbations.* We first analyze the RR1 component, proving ex-
 200ponential convergence with bias linear under weak and quadratic under quasi-strong monotonicity,
 201 robust even to preprocessing perturbations. We also derive higher-moment bounds of the form
 202 $\mathbb{E}[\text{dist}^p(x_k, x^*)]$ (Lemma E.4), which are essential for the bias decomposition required in the
 203 analysis of RR2 component³. **Epoch-level Markov chain viewpoint.* A key challenge in analyzing
 204 reshuffling is that step-level dynamics are not time-homogeneous, since the kernel changes with the
 205 position in the permutation. To resolve this, we adopt an epoch-level perspective: each epoch is
 206 represented by its initial iterate together with a randomly drawn permutation. This yields a Markov
 207 chain on $(\mathbb{R}^d \times \Pi_n)$ with a stationary transition kernel (Lemma 3.2). Using Lyapunov–Foster and
 208 minorization criteria (Meyn & Tweedie, 2012) and the framework of Vlatakis-Gkaragkounis et al.
 209 (2024), we prove Harris recurrence, ensuring existence and uniqueness of an invariant distribution.
 210 This measure in turn enables law-of-large-numbers and central-limit-theorem results, along with ex-
 211 ponential convergence rates for scalar observables (Theorem 3.3), thereby rigorously characterizing
 212 the asymptotic behavior of the per-epoch iterates.
 213

214
 215 ³Under quasi-strong monotonicity the VI has a unique solution. Under weak quasi-strong monotonicity,
 216 Theorem 3.1 applies to the *projection* onto the solution set, as standard under Assumption 2.2.

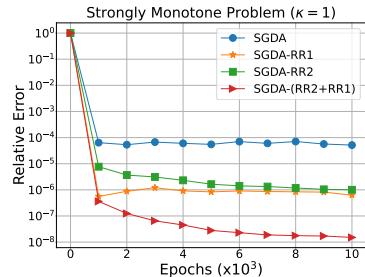


Figure 1: Illustration of bias behavior. Example on a min–max quadratic VIP with $F(x, y) = \frac{1}{N} \sum_{i \in [N]} x^\top A_i x + x^\top B_i y + y^\top C_i y$ for $N = 1000$, where A_i, B_i, C_i are quasi-strongly monotone. Already after the second epoch batch, the methods clearly separate: SGD, RR1, RR2, and RR1 \oplus RR2.

216 ** Richardson extrapolation under bias.* The most delicate part of the analysis is RR_2 , since we must
 217 extrapolate not from an unbiased oracle but from one affected by reshuffling-induced bias. Existing
 218 results (Dieuleveut et al., 2020; Sheshukova et al., 2024) do not apply directly, necessitating
 219 a new analytical approach. Our key innovation is to reinterpret the reshuffled stochastic oracle as
 220 a multi-step extra-gradient estimator. Classical extra-gradient methods mitigate rotational dynamics
 221 in min–max problems by probing lookahead points; here, the epoch-level reshuffling can be
 222 viewed as a sequence of such probes. This perspective enables a spectral analysis via tensor algebra,
 223 bounding the maximal eigenvalues of the biased operator (Lemma F.2) and, through a refined Taylor
 224 expansion, cancelling of all sub-cubic bias terms for quasi-strongly monotone VIPs (Theorem 3.6).

225 Taken together, these ingredients yield the first $\mathcal{O}(\gamma^3)$ bias guarantee for our algorithm in quasi
 226 strong monotone VIPs.

227 2 PROBLEM SETUP AND BLANKET ASSUMPTIONS

228 **Variational inequalities.** Let’s recall first the basic framework of finite-sum variational inequalities
 229 (VIs), which will underlie our analysis. Let $X \subseteq \mathbb{R}^d$ be a nonempty closed convex set and
 230 $F : \mathbb{R}^d \rightarrow \mathbb{R}^d$ a single-valued operator. The variational inequality problem $\text{VI}(X, F)$ asks for a
 231 point $x^* \in X$ such that

$$\langle F(x^*), x - x^* \rangle \geq 0, \quad \forall x \in X \quad (\text{VIP})$$

232 In our setting, we focus on the unconstrained finite-sum case with $X = \mathbb{R}^d$ and $F(x) =$
 233 $\frac{1}{n} \sum_{i=0}^{n-1} F_i(x)$, where each $F_i : \mathbb{R}^d \rightarrow \mathbb{R}^d$ typically represents the gradient contribution of a data
 234 point in some dataset \mathcal{D} . To build intuition, we illustrate the framework through a few canonical
 235 examples below:

236 **Example 2.1: Solving Non-linear equations.** A solution x^* to the (VIP) corresponds to a root of
 237 the equation $F(x) = \mathbf{0}$, allowing casting any non-linear equation as a specific instantiation of the
 238 Variational Inequality framework. The well-known example of that form includes the Navier-Stokes
 239 equations in computational dynamics (Hao, 2021).

240 **Example 2.2: Empirical Risk Minimization.** For any C^1 –smooth loss function $\ell : \mathbb{R}^d \rightarrow \mathbb{R}$, a
 241 solution x^* to the (VIP) with $F(x) = \nabla \ell(x)$ is a critical point (KKT solution) to the associated
 242 empirical risk minimization problem, consisting the cornerstone of machine learning objectives.

243 **Example 2.3: Nash Equilibria & Saddle-point Problems.** Consider N players, each having an
 244 action set in \mathbb{R}^d and a convex cost function $c_i : \mathbb{R}^d \rightarrow \mathbb{R}$. A Nash Equilibrium (NE) is a joint-action
 245 profile $x^* = (x_i^*)_{i=1}^N$ that satisfies

$$c_i(x^*) \leq c_i(x_i; x_{-i}^*), \quad \forall i, x_i \in \mathbb{R}^d \quad (\text{NE})$$

246 For convex cost functions $c_i : \mathbb{R}^d \rightarrow \mathbb{R}$, a (NE) coincides with the solution of a (VIP) with operator
 247 $F(x) = (\nabla_{x_i} c_i(x))_{i=1}^N$. In the particular case of two players and a (quasi) convex-concave objective
 248 $\mathcal{L} : \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}$, the solution $x^* = (x_1^*, x_2^*)$ to the (VIP) with $F(x) = (\nabla \mathcal{L}(x), -\nabla \mathcal{L}(x))$ is a
 249 saddle point of \mathcal{L} satisfying

$$\mathcal{L}(x_1^*, x_2) \leq \mathcal{L}(x_1^*, x_2^*) \leq \mathcal{L}(x_1, x_2^*), \quad \forall x_1, x_2 \in \mathbb{R}^d$$

250 Saddle-point problems and applications of (NE) are ubiquitous, pertaining from training Generative
 251 Adversarial Networks (GANs) to multi-agent reinforcement learning and auction/bandit problems
 252 (Daskalakis et al., 2017; Zhang et al., 2021; Pfau & Vinyals, 2016).

253 **Blanket assumptions.** We now state the standing assumptions for our analysis, beginning with
 254 the existence of a solution x^* to (VIP).

255 **Assumption 2.1.** The solution set \mathcal{X}^* of (VIP) is nonempty and there exists $x^* \in \mathcal{X}^*, R \in \mathbb{R}$
 256 such that $\|x^*\|_2 \leq R$.

257 The next assumption introduces the class of operators F of the associated (VIP) for which our
 258 stochastic gradient algorithms will be analyzed for.

259 **Assumption 2.2** (λ -weak μ -quasi strong monotonicity). The operator F is λ -weak μ -quasi
 260 strongly monotone, i.e. there exist $\lambda \geq 0, \mu > 0$ such that for some $x^* \in \mathcal{X}^*$ it holds that

$$\langle F(x), x - x^* \rangle \geq \mu \|x - x^*\|^2 - \lambda, \quad \forall x \in \mathbb{R}^d \quad (1)$$

270 Assumption 2.2 for $\lambda = 0$ coincides with the well-known
 271 notions of quasi-strong monotonicity (Loizou et al., 2020),
 272 strong stability condition (Mertikopoulos & Zhou, 2019),
 273 and strongly coherent VIPs (Song et al., 2020) in the optimi-
 274 zation literature. It can be seen as a relaxation of the clas-
 275 sical notion of strong monotonicity/convexity, which re-
 276 quires $\langle F(x) - F(x'), x - x' \rangle \geq \mu \|x - x'\|^2, \forall x, x' \in \mathbb{R}^d$.
 277 For $\lambda > 0$, Assumption 2.2 represents a further relaxation,
 278 motivated by dissipative dynamical systems and weakly
 279 convex optimization (Raginsky et al., 2017; Erdogan et al.,
 280 2018), and it encompasses non-monotone games as well as
 281 a variety of problems in statistical learning theory (Tan &
 282 Vershynin, 2023).

283 A common assumption in the literature of smooth optimiza-
 284 tion that we will utilize is that the operators in the finite-sum
 285 structure of the (VIP) are Lipschitz continuous.

286 **Assumption 2.3** (Lipschitz continuity). Each F_i is L_i -Lipschitz:

$$287 \quad \|F_i(x_1) - F_i(x_2)\| \leq L_i \|x_1 - x_2\|, \quad \forall x_1, x_2 \in \mathbb{R}^d, i \in [n],$$

289 with $L_{\max} = \max_{i \in [n]} L_i$.

291 Unlike standard analyses assuming unbiased oracles with bounded variance (e.g., (Loizou et al.,
 292 2021; Hsieh et al., 2019; Lin et al., 2020; Mishchenko et al., 2020b)), random reshuffling induces
 293 bias via inter-step dependence. Such conditions may fail even for simple quadratics. Instead, we
 294 work directly with Lipschitz continuity and impose only a mild moment bound:

295 **Assumption 2.4** (Bounded moments at the solution). At some $x^* \in \mathcal{X}^*$, the oracle values have
 296 finite second and fourth moments:

$$297 \quad \sigma_*^2 := \frac{1}{n} \sum_{i=1}^n \|F_i(x^*)\|^2 < \infty, \quad \sigma_*^4 := \frac{1}{n} \sum_{i=1}^n \|F_i(x^*)\|^4 < \infty.$$

301 Assumption 2.4 is mild: it does not require global boundedness of gradients, but only that the oracle
 302 values $F_i(x^*)$ admit finite second and fourth moments at the solution. Building on this, we extend
 303 the variance bound of Emmanouilidis et al. (2024, Prop. A.2, p. 16) to higher-order moments:

305 **Proposition 2.5.** Let Assumptions 2.1–2.3 hold. Then, for any $x \in \mathbb{R}^d$ it holds that

$$306 \quad \text{(i)} \quad \frac{1}{n} \sum_{i=1}^n \|F_i(x) - F(x)\|^2 \leq 2 \left(\frac{1}{n} \sum_{i=1}^n L_i^2 \right) \|x - x^*\|^2 + 2\sigma_*^2,$$

$$310 \quad \text{(ii)} \quad \frac{1}{n} \sum_{i=1}^n \|F_i(x) - F(x)\|^4 \leq 128 \left(\frac{1}{n} \sum_{i=1}^n L_i^4 \right) \|x - x^*\|^4 + 128\sigma_*^4.$$

3 OUR RESULTS

315 We begin by formally presenting our main algorithm, SGD-RR₂⊕RR₁. Omitting lines 2,9,10 and
 316 using a single step size reduces it to SGD-RR₁ under perturbation.

317 **Remark 1.** Empirically, for sufficiently large datasets the effect of discrete noise in smooth problems is neg-
 318 ligible, making the preprocessing step unnecessary. A detailed study of this effect lies beyond the scope of this
 319 paper, whose focus is instead the first systematic treatment of the interaction between Random reshuffling and
 320 Richardson extrapolation.

3.1 INNER LOOP

322 Our first result concerns the *Perturbed SGD-RR₁* variant (see (SGD-RR₂⊕RR₁(inner-loop))) for λ -
 323 weak μ -quasi strongly monotone VIPs.

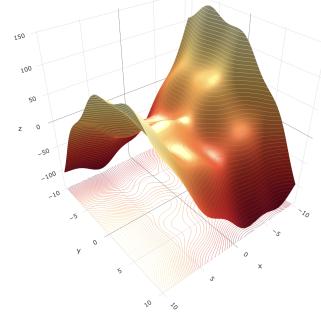


Figure 2: A simple example of a function satisfying Assumption 2.2 is $f(x, y) = (x^2 + 7 \sin(x)) + xy - (y^2 - 7 \cos(y))$, where the assumption holds with $(\mu, \lambda) = (1, 25)$.

324 **Theorem 3.1.** Let Assumptions 2.1-2.3 hold. Then the iterates of Perturbed SGD-RR₁ satisfy for
 325 $\gamma \leq \gamma_{max}$,

$$326 \quad \mathbb{E} [\|x_{k+1}^0 - x^*\|^2] \leq \left(1 - \frac{\gamma n \mu}{2}\right)^{k+1} \|x_0^0 - x^*\|^2 + \frac{8n\gamma^2 L_{max}^2}{\mu^2} \sigma_*^2 + \frac{8\lambda}{\mu}$$

327 where $\sigma_*^2 = \frac{1}{n} \sum_{i=0}^{n-1} \|F_i(x^*)\|^2$ and $\gamma_{max} = \min \left\{ \frac{1}{3nL_{max}}, \frac{\sqrt{1+6\mu^2 L_{max}^2}-1}{12nL_{max}^2} \right\}$.

328 **Remark 2.** Theorem 3.1 establishes linear convergence up to a bias of $\mathcal{O}(\gamma^2 \sigma_*^2 + \frac{\lambda}{\mu})$, where the $\frac{8\lambda}{\mu}$ term is
 329 inherent (Yu et al., 2021). For fair comparison we focus on the quasi-strongly monotone case ($\lambda = 0$), which
 330 already generalizes strong convexity. Our rate recovers known results for strongly monotone operators (Das
 331 et al., 2022; Emmanouilidis et al., 2024) and extends them to weak monotonicity.

332 In this regime, reshuffling attains a much smaller bias than the $\mathcal{O}(\gamma \sigma_*^2)$ of with-replacement SGD (Loizou et al.,
 333 2020; Gower et al., 2019), converging to a tighter neighborhood. This sharper bias also yields faster accuracy
 334 rates: with $\gamma = 1/(nK)$, with-replacement SGD reaches $\mathcal{O}(1/(nK))$ accuracy (Das et al., 2022; Mishchenko
 335 et al., 2020a), while reshuffling accelerates to $\mathcal{O}(1/(nK^2))$, a further support for its empirical success.

336 **Algorithm 1** SGD-RR₂⊕RR₁

337 **Require:** Initial point $x_0 \in \mathbb{R}^d$; step size $\gamma > 0$; epochs I ; dataset size n ;
 338 STOCHORACLE($x; i$) returns $F_i(x)$ (minimization) or operator value (VI);
 339 PREPROCESS($g; i$) adds calibrated Gaussian smoothing on g (e.g., $U_k \sim \mathcal{N}(0, \gamma^2 n \sigma_*^2 I)$).
 340 1: **for** $k = 0, 1, \dots, I - 1$ **do** ▷ epoch k
 341 2: **for** $\eta = \gamma, 2\gamma$ **do** ▷ Parallel iterations with two step-sizes
 342 3: Draw a random permutation ω_k of $[n]$
 343 4: **for** $i = 0, 1, \dots, n - 1$ **do** ▷ inner loop (reshuffled pass)
 344 5: $x_{k,[\eta]}^{i+1} \leftarrow x_{k,[\eta]}^i - \eta \text{PREPROCESS}(\text{STOCHORACLE}(x_{k,[\eta]}^i, \omega_k[i]))$
 345 6: **end for**
 346 7: $x_{k+1,[\eta]}^0 \leftarrow x_{k,[\eta]}^n$ ▷ baseline next-start (used for analysis)
 347 8: **end for**
 348 9: $\hat{x}_{k+1} \leftarrow 2x_{k,[\gamma]}^n - x_{k,[2\gamma]}^n$ ▷ outer loop (extrapolation at epoch end)
 349 OR
 350 10: $\hat{x}_{k+1} \leftarrow (2 \sum_{m \in [k]} x_{k,[\gamma]}^n - x_{m,[2\gamma]}^n)/k$ ▷ Alternative: (extrapolation at epoch's averages)
 351 11: **end for**
 352 12: **return** \hat{x}_I ▷ (optionally average $\{\hat{x}_k\}$ across epochs)

353 In the sequel, we view the algorithmic trajectory through the prism of Markov chain theory. This
 354 perspective enables a finer dissection of the reshuffling bias and, mutatis mutandis, equips us with
 355 the machinery to construct consistent estimators for performance statistics. The Markovian frame-
 356 work arises naturally, as the method progresses from x_k to x_{k+1} in a state-dependent fashion. The
 357 connection between stochastic approximation and Markov processes—traced back to early works
 358 such as Robbins & Monroe (1951); Pflug (1986)—has fueled a rich literature for algorithms with un-
 359 biased oracles. Random reshuffling, however, generates systematically biased oracles, necessitating
 360 a genuine departure from this canonical line of analysis.

361 For readers accustomed only to classical finite-state Markov chains, the transition mechanism is usu-
 362 ally represented by a directed graph with fixed transition probabilities. In our setting, the analogue
 363 is the transition kernel $P(x, A) = \Pr[x_{\text{next}} \in A \mid x_{\text{now}} = x]$, $A \in \mathcal{B}(\mathbb{R}^d)$, where $\mathcal{B}(\mathbb{R}^d)$ denotes
 364 the Borel sets of \mathbb{R}^d . As in the finite-state case, it is highly desirable that this kernel remain invariant
 365 over time—this is the property of time-homogeneity.⁴

366 At the step level, reshuffling destroys homogeneity: the transition kernel varies with the permutation
 367 index, making the process non-stationary. Fortunately, this irregularity vanishes at the epoch scale:

368 “After one reshuffled pass, the law of the next iterate depends only on the epoch’s starting point
 369 and the drawn permutation, but not its position within the permutation.”

370 Thus, the sequence of epoch-level iterates $(x_k^{[0]})_{k \geq 0}$ forms a bona fide time-homogeneous Markov
 371 chain, forming the basis for the asymptotic analysis of the RR₂ extrapolation component⁵:

372 ⁴If time-homogeneity fails, a process can be still Markovian in the sense that the future depends only on the
 373 present, but its statistical regularity vary with time, complicating both analysis and long-run guarantees.

374 ⁵On the augmented space $\mathbb{R}^d \times \mathcal{S}_n$, the chain $((x_k, \omega_k))_{k \geq 0}$ is also time-homogeneous with kernel
 375 $K((x, \omega), A \times B) = \int_A \phi(y; H(x, \omega), \Sigma I_d) dy \cdot \frac{|B|}{n!}$. The above formulation is convenient for verifying
 376 Lyapunov–Foster and minorization criteria, since the coupling with uniform perturbation remains independent.

378 **Lemma 3.2** (Epoch-level homogeneity and kernel). Fix $\gamma > 0$ and $n \in \mathbb{N}$. Then the *Perturbed*
 379 *SGD-RR₁* can be described at each epoch k as: *Draw* ω_k *uniformly from* \mathfrak{S}_n *and set*

$$380 \quad x_{k+1} = H(x_k, \omega_k) + U_k, \quad U_k \sim \mathcal{N}(0, \Sigma),$$

381 where $H(x, \omega)$ denotes the endpoint of one reshuffled pass started at x with permutation ω (i.e.,
 382 the map induced by n inner updates with step size γ).

383 Then $(x_k)_{k \geq 0}$ is a time-homogeneous Markov chain on \mathbb{R}^d with transition kernel

$$385 \quad P(x, A) = \frac{1}{n!} \sum_{\omega \in \mathfrak{S}_n} \int_A \phi(y; H(x, \omega), \Sigma) dy, \quad A \in \mathcal{B}(\mathbb{R}^d),$$

388 where $\phi(\cdot; m, \Sigma)$ is the d -variate Gaussian density with mean m and covariance Σ .

389 By verifying irreducibility, aperiodicity, and *positive Harris recurrence* (Meyn & Tweedie, 2012),
 390 we establish a unique invariant distribution π_γ , geometric convergence in total variation to it, and
 391 concentration of scalar observables (admissible test functions) around x^* .

392 **Theorem 3.3.** Under Assumptions 2.1–2.3, run Perturbed SGD-RR₁ with $\gamma \leq \gamma_{\max}$. Then
 393 $(x_k)_{k \geq 0}$ admits a unique stationary distribution $\pi_\gamma \in \mathcal{P}_2(\mathbb{R}^d)$, and additionally:

$$395 \quad \begin{aligned} \text{(i)} \quad & |\mathbb{E}[\ell(x_k)] - \mathbb{E}_{x \sim \pi_\gamma}[\ell(x)]| \leq c(1 - \rho)^k \quad \forall \ell : |\ell(x)| \leq L_\ell(1 + \|x\|), \\ 396 \quad \text{(ii)} \quad & |\mathbb{E}_{x \sim \pi_\gamma}[\ell(x)] - \ell(x^*)| \leq L_\ell \sqrt{C} \quad \forall \ell : L_\ell - \text{Lipschitz functions}, \end{aligned}$$

398 for some $c < \infty$, $\rho \in (0, 1)$, $C = \Theta(\text{MSE}(\text{SGD} - \text{RR}_1))$ and γ_{\max} defined in Theorem 3.1

400 **Remark 3.** Item (i) of Theorem 3.3 shows that Perturbed SGD-RR₁ converges geometrically in total variation
 401 to π_γ . Item (ii) bounds the gap between the expectation of a measurement under π_γ and its value at the solution
 402 x^* . Intuitively, if the method converged exactly to x^* , these expectations would coincide.

403 The result of Theorem 3.3 follows from a Foster–Lyapunov drift condition combined with a minorization
 404 argument, showing that the induced Markov chain satisfies the standard ergodicity criteria
 405 in the spirit of Yu et al. (2021); Vlatakis-Gkaragkounis et al. (2024). Beyond geometric ergodicity,
 406 one may also ask whether the chain admits asymptotic statistical estimation of functionals of its
 407 trajectory. By invoking the Birkhoff–Khinchin ergodic theorem for continuous-state Markov chains,
 408 we establish both a Law of Large Numbers (LLN) and a Central Limit Theorem (CLT) for empirical
 409 averages of test functions evaluated along the epoch iterates.

410 **Theorem 3.4** (LLN and CLT for Perturbed SGD-RR₁). Suppose Assumptions 2.1–2.3 hold and
 411 run Perturbed SGD-RR₁ with $\gamma \leq \gamma_{\max}$, (cf. Theorem 3.1).

412 Let $\ell : \mathbb{R}^d \rightarrow \mathbb{R}$ be any test function such that $|\ell(x)| \leq L_\ell(1 + \|x\|^2)$ and $\mathbb{E}_{x \sim \pi_\gamma}[\ell(x)] < \infty$.
 413 Then for the epoch-level iterates, it holds that:

$$415 \quad \underbrace{\frac{1}{T} \sum_{t=0}^{T-1} \ell(x_t)}_{(\text{LLN})} \xrightarrow{\text{a.s.}} \mathbb{E}_{x \sim \pi_\gamma}[\ell(x)] \quad \underbrace{T^{-1/2} \sum_{t=0}^{T-1} (\ell(x_t) - \mathbb{E}_{x \sim \pi_\gamma}[\ell(x)])}_{(\text{CLT})} \xrightarrow{d} \mathcal{N}(0, \sigma_{\pi_\gamma}^2(\ell)),$$

419 where $\sigma_{\pi_\gamma}^2(\ell) = \lim_{T \rightarrow \infty} \frac{1}{T} \mathbb{E}_{\pi_\gamma}[S_T^2]$ and $S_T^2 = \sum_{t=0}^{T-1} (\ell(x_t) - \mathbb{E}_{x \sim \pi_\gamma}[\ell(x)])^2$.

422 3.2 OUTER LOOP

423 Having established the role of RR₁ within stochastic algorithms, we now examine its interplay with
 424 RR₂ and the effect of combining these heuristics on bias. The previous results hold for the full class
 425 of weakly quasi-strongly monotone problems with $\lambda > 0$. To sharpen our understanding, we focus
 426 on the quasi-strongly monotone case ($\lambda = 0$ in Assumption 2.2), which already covers a broad range
 427 of non-monotone regimes (Loizou et al., 2020). A key step in our analysis is to bound higher-order
 428 moments of the deviation between RR₁ iterates and the solution of (VIP), thereby showing that the
 429 bias of Perturbed SGD-RR₁ is linear in the step size with quadratic corrections.

430 Technically, our analysis relies on two delicate ingredients that go beyond straightforward generalizations.
 431 (i) A *spectral study of the full-pass operator* (Lemma F.2), which approximates the
 underlying map F of the VIP. This connection between RR₁ and the multi-step extragradient litera-

ture may be of independent interest, but its proof requires a nontrivial handling of spectral properties across reshuffled passes. (ii) A *combinatorial lemma* (Lemma E.2) that bounds fourth moments of finite-sum subsets of vectors. While reminiscent of Mishchenko et al. (2020b, Lemma 1, Sec. 7), our result demands substantially more intricate manipulations to accommodate the dependencies introduced by sampling without replacement.

Lemma 3.5. Let $\lambda = 0$ and Assumptions 2.1–2.4 hold. If $\gamma \leq \gamma_{\max}$ (cf. Lemma E.4), then

$$\text{bias}(\text{Perturbed SGD-RR}_1) = \limsup_{k \rightarrow \infty} \|\mathbb{E}[x_k] - x^*\| = C(x^*)\gamma + \mathcal{O}(\gamma^3).$$

Remark 4. For classical SGD, the bias takes the form $\text{bias}(\text{SGD}) = C(x^*)\gamma + \mathcal{O}(\gamma^{1.5})$ (Dieuleveut et al., 2020). Hence, while RR_1 retains the same first-order term, it improves the higher-order contribution and simultaneously yields sharper mean-squared error guarantees.

Building on this fact, we construct a refined trajectory via the debiasing scheme RR_2 . Our final result shows that the combined scheme attains exponentially fast a provable asymptotic $\mathcal{O}(\gamma^3)$ bias:

Theorem 3.6. Under the assumptions of Lemma 3.5, Algorithm 1 output satisfies

$$\text{Last-iterate version (line 9): } \|\mathbb{E}[x_k] - x^*\| \leq c(1 - \rho)^k + \mathcal{O}(\gamma^3),$$

$$\text{Averaged-iterate version (line 10): } \left\| \mathbb{E} \left[\frac{1}{k} \sum_{m=1}^k x_m \right] - x^* \right\| \leq \frac{c/\rho}{k} + \mathcal{O}(\gamma^3).$$

where $\rho \in (0, 1)$, $c < \infty$ (cf. Theorem 3.3).

Remark 5. Although the last-iterate estimator is often preferred in theory, in practice a trade-off emerges vs ergodic-average: full-epoch or tailed averaging (the Polyak–Ruppert scheme (Polyak & Juditsky, 1992)) achieves improved variance properties, asymptotically captured by Theorem 3.4.

4 EXPERIMENTS

In this section, we conduct a series of experiments demonstrating the effect of benefits from the synergy of the two heuristics empirically. More specifically, for the in the strongly monotone setting we compare the relative error and bias attained by 4 variants: the classical SGD(A) algorithm using uniform with-replacement sampling (denoted as SGDA in the plots), the one equipped with RR_1 , the one equipped with RR_2 and the method utilizing both of the heuristics. For each experiment, we report the average of 5 trials/runs and plot the relative error $\log \left(\frac{\|x_k - x^*\|^2}{\|x_0 - x^*\|^2} \right)$ with respect to the iterations of the algorithm.

Two-player Zero-Sum Games. In the strongly monotone case, we consider the two-player zero-sum game from Emmanouilidis et al. (2024); Loizou et al. (2021), consisting a strongly convex - strongly concave quadratic of the form

$$\min_{x_1 \in \mathbb{R}^d} \max_{x_2 \in \mathbb{R}^d} f(x_1, x_2) = \frac{1}{n} \sum_{i=1}^n \frac{1}{2} x_1^T A_i x_1 + x_1^T B_i x_2 - \frac{1}{2} x_2^T C_i x_2^2 + \alpha_i^T x_1 - c_i^T x_2.$$

For the interested reader, additional details on the experimental setup and the procedure used to sample the matrices A_i, B_i, C_i are provided in Appendix G.

On the Rate of Convergence. In the first set of experiments, we aim to validate empirically the result of Theorem 3.1 by running SGDA with RR_1 and using the step sizes described by theory. We conduct experiments for multiple conditions $\kappa = \frac{L}{\mu}$ with value $\kappa = \{1, 5, 10\}$ and $\mu = 1$. In Figure 3, we observe that the algorithm with RR_1 converges linearly to a neighbourhood around the solution x^* and the neighbourhood depends on the step size used, validating in this way the results of Theorem 3.1. We have run experiments also for stepsizes that are larger than the ones predicted in theory, observing similar behaviour of the optimization algorithm. Additionally, we have performed an ablation study in Wasserstein GANs (Emmanouilidis et al., 2024; Daskalakis et al., 2017), showing that the performance benefit of the proposed heuristic is universal in many other common optimization algorithms used in VIs. The additional experiments can be found in Appendix G.

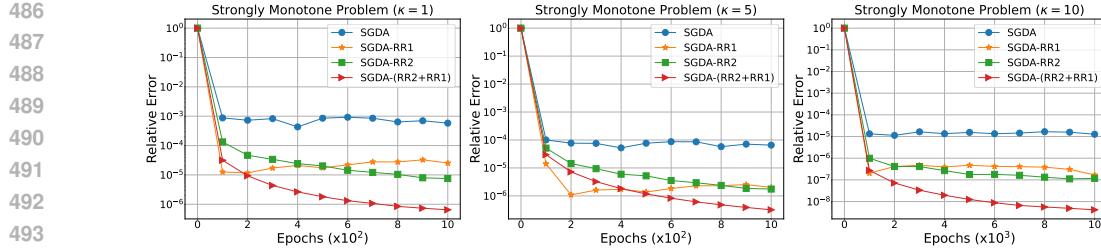


Figure 3: Comparison of different heuristics. The RR_1 combination of $\text{RR}_2 \oplus \text{RR}_1$ converges to linearly to neighborhood of the solution, validating the established theoretical results (Theorem 3.1). Even when we are using the last iterates, the combination of $\text{RR}_2 \oplus \text{RR}_1$ converges to a smaller relative error a smaller relative error in comparison to the other variants (classical SGDA, RR_1 , RR_2). This validates that bias of Algorithm 1 is improved even when RR_1 -last iterates are used.

Efficient Statistics & Empirical Concentration. This set of experiments examines the central limit theorem (CLT) and aims to validate empirically the theoretical results established in Theorem 3.4. The value of the game, which is zero, is used as the test value for which we observe the averaged evaluations after $T = \{100, 500, 1000\}$ iterations respectively. In particular, we run the algorithm with the step size suggested by Theorem 3.4 and maintain for the total number of iterations the sum of the evaluations, normalized with \sqrt{T} . We run the experiment for $T = 2000$ trials/runs and plot the corresponding histograms. In Figure 4, we observe that the histograms tend to concentrate to the value of the game as the number of iterations increase. Additionally, we examine the effect of the step size to concentration of the observed distributions.

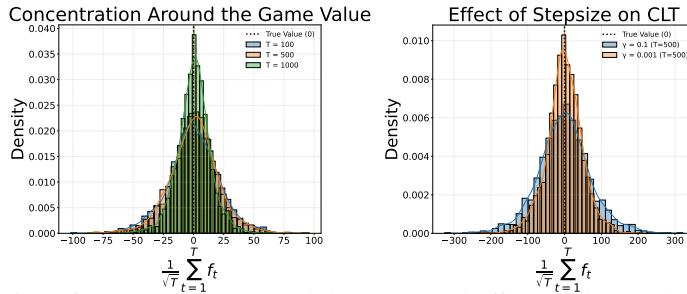


Figure 4: Validation of concentration around the mean and effect of the number of iterations and step size selected. The average of the game values tend to concentrate more around the mean for larger number of iterations and smaller step sizes. The right plot indicates the effect of two different step sizes $\gamma \in \{0.1, 0.001\}$, showing that for smaller step sizes the corresponding distribution attain higher concentration around the mean of the values.

5 CONCLUSION

In summary, our work establishes that the synergy of random reshuffling and extrapolation yields a principled reduction of bias, culminating in accelerated convergence guarantees for structured non-monotone VIPs. By combining Markov chain techniques, spectral analysis, and higher-moment bounds, we provide the first rigorous evidence that these heuristics can be synergistically integrated rather than studied in isolation. This perspective bridges a long-standing gap between practice and theory, offering a systematic framework that extends naturally to a broad class of constant step-size stochastic methods. We view this as a foundation for a new generation of analyses where practical heuristics are not only empirically verified but also theoretically grounded to deliver provable performance improvements in complex stochastic optimization landscapes.

540
541 **LIMITATIONS**

542 **Limitations of the structural assumption.** A central structural assumption in our analysis is that
 543 the operator F satisfies λ -weak μ -quasi-strong monotonicity. This condition is broad enough to
 544 include several meaningful non-monotone problem classes—such as dissipative dynamical systems,
 545 weakly convex optimization, and locally contractive variational inequalities—and is standard in
 546 modern analyses of stochastic fixed-point and operator-splitting methods (e.g., Hsieh et al., 2019;
 547 Mertikopoulos and Zhou, 2019; Chavdarova et al., 2021). However, it is important to emphasize the
 548 following limitations.

549 **1. Not applicable to general nonconvex–nonconcave min–max problems.** The assumption
 550 does *not* hold for arbitrary adversarial problems such as deep GANs, multi-agent RL
 551 environments, or smooth non-monotone games with persistent rotational dynamics. These
 552 settings may lack even local stability (e.g., Daskalakis et al. 2018; Fiez et al. 2020). Accordingly,
 553 our theoretical guarantees should not be interpreted as applying to fully adversarial
 554 or worst-case min–max formulations.

555 **2. Local nature of the assumption.** Quasi-strong monotonicity is inherently a *local* regular-
 556 arity condition: smooth operators that are monotone in a neighborhood of a solution satisfy
 557 it on that region (Lemma A.4, Hsieh et al. 2019). This requires smoothness and regularity
 558 that may not hold in problems involving discontinuities, clipping, piecewise-linear losses,
 559 or hard constraints. In such cases, the assumption may fail even locally.

560 **3. Not capturing highly oscillatory or anti-monotone operators.** Allowing $\lambda > 0$ per-
 561 mits controlled violation of monotonicity, but the assumption still does not model strongly
 562 anti-monotone or highly oscillatory operators. Extending our analysis to Minty variational
 563 inequalities, hypomonotone operators, or other generalized monotonicity classes remains
 564 an interesting direction for future work.

565 Despite these limitations, we believe the assumption remains meaningful for a broad set of struc-
 566 tured, smooth VIPs where local stability is present. We hope that this explicit discussion helps avoid
 567 any misunderstanding about the scope of applicability of our results.

569
570 **REFERENCES**

571 Rafik Aguech, Eric Moulines, and Pierre Priouret. On a perturbation approach for the analysis of
 572 stochastic tracking algorithms. *SIAM Journal on Control and Optimization*, 39(3):872–899, 2000.

573 Kwangjun Ahn, Chulhee Yun, and Suvrit Sra. Sgd with shuffling: optimal rates without component
 574 convexity and large epoch requirements. In *NeurIPS*, 2020.

575 Sebastian Allmeier and Nicolas Gast. Computing the bias of constant-step stochastic approximation
 576 with markovian noise. *Advances in Neural Information Processing Systems*, 37:137873–137902,
 577 2024.

578 Kimon Antonakopoulos, Panayotis Mertikopoulos, Georgios Piliouras, and Xiao Wang. Adagrad
 579 avoids saddle points. In *International Conference on Machine Learning*, pp. 731–771. PMLR,
 580 2022.

581 Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
 582 In *ICML*, 2017.

583 Waïss Azizian, Franck Iutzeler, Jérôme Malick, and Panayotis Mertikopoulos. What is the long-
 584 run distribution of stochastic gradient descent? a large deviations analysis. *arXiv preprint*
 585 *arXiv:2406.09241*, 2024.

586 Vlad Bally and Denis Talay. The law of the euler scheme for stochastic differential equations: I.
 587 convergence rate of the distribution function. *Probability theory and related fields*, 104(1):43–60,
 588 1996.

589 HH Bauschke and PL Combettes. Convex analysis and monotone operator theory in hilbert spaces,
 590 2011 springer. *New York*, 2017.

594 Michel Benaim. A dynamical system approach to stochastic approximations. *SIAM Journal on*
 595 *Control and Optimization*, 34(2):437–472, 1996.
 596

597 Michel Benaïm. Dynamics of stochastic approximation algorithms. In *Seminaire de probabilites*
 598 *XXXIII*, pp. 1–68. Springer, 2006.

599 Michel Benaïm and Morris W Hirsch. Dynamics of morse-smale urn processes. *Ergodic Theory*
 600 *and Dynamical Systems*, 15(6):1005–1030, 1995.
 601

602 Yoshua Bengio. Practical Recommendations for Gradient-Based Training of Deep Architectures.
 603 *Neural Networks: Tricks of the Trade*, pp. 437–478, 2012. ISSN 1611-3349. doi: 10.1007/
 604 978-3-642-35289-8_26.

605 Dimitri P. Bertsekas. Incremental Gradient, Subgradient, and Proximal Methods for Convex Opti-
 606 mization: A Survey. In Suvrit Sra, Sebastian Nowozin, and Stephen J. Wright (eds.), *Optimization*
 607 *for Machine Learning*, chapter 4. The MIT Press, 2011. ISBN 9780262298773.
 608

609 Dimitri P. Bertsekas and John N. Tsitsiklis. Gradient Convergence in Gradient methods with
 610 Errors. *SIAM Journal on Optimization*, 10(3):627–642, January 2000a. doi: 10.1137/
 611 s105262349731063.

612 Dimitri P. Bertsekas and John N. Tsitsiklis. Gradient convergence in gradient methods with errors.
 613 *SIAM Journal on Optimization*, 10(3):627–642, 2000b.
 614

615 Léon Bottou. Curiously fast convergence of some stochastic gradient descent algorithms. Un-
 616 published open problem offered to the attendance of the SLDS 2009 conference, 2009. URL
 617 <http://leon.bottou.org/papers/bottou-slds-open-problem-2009>.

618 Léon Bottou. Stochastic gradient descent tricks. In *Neural Networks*, 2012a.
 619

620 Léon Bottou. Stochastic gradient descent tricks. In *Neural networks: tricks of the trade: second*
 621 *edition*, pp. 421–436. Springer, 2012b.
 622

623 Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
 624 learning. *SIAM review*, 60(2):223–311, 2018.
 625

626 Odile Brandière and Marie Duflo. Les algorithmes stochastiques contournent-ils les pieges? In
 627 *Annales de l'IHP Probabilités et statistiques*, volume 32, pp. 395–427, 1996.
 628

629 Nicolas Brosse, Alain Durmus, Éric Moulines, and Marcelo Pereyra. Sampling from a log-concave
 630 distribution with compact support with proximal langevin monte carlo. In *Conference on learning*
 631 *theory*, pp. 319–342. PMLR, 2017.
 632

633 Sébastien Bubeck, Ronen Eldan, and Joseph Lehec. Sampling from a log-concave distribution with
 634 projected langevin monte carlo. *Discrete & Computational Geometry*, 59(4):757–783, 2018.
 635

636 Alexander Bukharin et al. Robust multi-agent reinforcement learning via adversarial regularization:
 637 Theoretical foundation and stable algorithms. In *Advances in Neural Information Processing*
 638 *Systems (NeurIPS)*, volume 36, pp. 68121–68133, 2023.
 639

640 Xufeng Cai, Cheuk Yin Lin, and Jelena Diakonikolas. Empirical risk minimization with shuffled
 641 sgd: A primal-dual perspective and improved bounds. *arXiv:2306.12498*, 2023.
 642

643 Jerry Chee and Panos Toulis. Convergence diagnostics for stochastic gradient descent with constant
 644 learning rate. In *International Conference on Artificial Intelligence and Statistics*, pp. 1476–1485.
 645 PMLR, 2018.
 646

647 George HG Chen and R Tyrrell Rockafellar. Convergence rates in forward–backward splitting.
 648 *SIAM Journal on Optimization*, 7(2):421–444, 1997.
 649

650 Xiang Cheng, Niladri S Chatterji, Yasin Abbasi-Yadkori, Peter L Bartlett, and Michael I Jor-
 651 dan. Sharp convergence rates for langevin dynamics in the nonconvex setting. *arXiv preprint*
 652 *arXiv:1805.01648*, 2018a.

648 Xiang Cheng, Niladri S Chatterji, Peter L Bartlett, and Michael I Jordan. Underdamped langevin
 649 mcmc: A non-asymptotic analysis. In *Conference on learning theory*, pp. 300–323. PMLR,
 650 2018b.

651 Hanseul Cho and Chulhee Yun. SGDA with shuffling: faster convergence for nonconvex-p₁ minimax
 652 optimization. In *ICLR*, 2023.

654 Sayantan Choudhury, Eduard Gorbunov, and Nicolas Loizou. Single-call stochastic extragradient
 655 methods for structured non-monotone variational inequalities: Improved analysis under weaker
 656 conditions. In *NeurIPS*, 2023.

657 Kai Lai Chung. On a stochastic approximation method. *The Annals of Mathematical Statistics*, pp.
 658 463–483, 1954.

660 Arnak S Dalalyan. Theoretical guarantees for approximate sampling from smooth and log-concave
 661 densities. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 79(3):651–
 662 676, 2017.

663 Arnak S Dalalyan and Avetik Karagulyan. User-friendly guarantees for the langevin monte carlo
 664 with inaccurate gradient. *Stochastic Processes and their Applications*, 129(12):5278–5311, 2019.

666 Arnak S Dalalyan and Lionel Riou-Durand. On sampling from a log-concave density using kinetic
 667 langevin diffusions. 2020.

668 George B Dantzig and RW Cottle. Complementary pivot theory of. mathematical programming.
 669 *Mathematics of the decision sciences, part*, 1:115–136, 1968.

671 Aniket Das, Bernhard Schölkopf, and Michael Muehlebach. Sampling without replacement leads to
 672 faster rates in finite-sum minimax optimization. In *NeurIPS*, 2022.

673 Constantinos Daskalakis, Andrew Ilyas, Vasilis Syrgkanis, and Haoyang Zeng. Training gans with
 674 optimism. *arXiv preprint arXiv:1711.00141*, 2017.

676 Constantinos Daskalakis, Stratis Skoulakis, and Manolis Zampetakis. The complexity of constrained
 677 min-max optimization. In *Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory
 678 of Computing*, pp. 1466–1478, 2021.

679 Aymeric Dieuleveut, Alain Durmus, and Francis Bach. Bridging the gap between constant step size
 680 stochastic gradient descent and markov chains. 2020.

682 Yoel Drori and Ohad Shamir. The Complexity of Finding Stationary Points with Stochastic Gradient
 683 Descent. *arXiv preprint arXiv:1910.01845*, 2019.

685 Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
 686 minima of deep neural networks. In *International conference on machine learning*, pp. 1675–
 687 1685. PMLR, 2019.

688 Alain Durmus and Eric Moulines. Nonasymptotic convergence analysis for the unadjusted langevin
 689 algorithm. 2017.

690 Alain Durmus, Umut Simsekli, Eric Moulines, Roland Badeau, and Gaël Richard. Stochastic gra-
 691 dient richardson-romberg markov chain monte carlo. *Advances in neural information processing
 692 systems*, 29, 2016.

694 Raaz Dwivedi, Yuansi Chen, Martin J Wainwright, and Bin Yu. Log-concave sampling: Metropolis-
 695 hastings algorithms are fast. *Journal of Machine Learning Research*, 20(183):1–42, 2019.

696 Konstantinos Emmanouilidis, René Vidal, and Nicolas Loizou. Stochastic extragradient with ran-
 697 dom reshuffling: Improved convergence for variational inequalities. In *International Conference
 698 on Artificial Intelligence and Statistics*, pp. 3682–3690. PMLR, 2024.

700 Murat A Erdogdu and Rasa Hosseinzadeh. On the convergence of langevin monte carlo: The inter-
 701 play between tail growth and smoothness. In *Conference on Learning Theory*, pp. 1776–1822.
 PMLR, 2021.

702 Murat A Erdogdu, Lester Mackey, and Ohad Shamir. Global non-convex optimization with dis-
 703 cretized diffusions. *Advances in Neural Information Processing Systems*, 31, 2018.

704

705 Vaclav Fabian. On asymptotic normality in stochastic approximation. *The Annals of Mathematical
 706 Statistics*, pp. 1327–1332, 1968.

707

708 Francisco Facchinei and Jong-Shi Pang. *Finite-dimensional variational inequalities and comple-
 709 mentarity problems*. Springer, 2003.

710

711 Yixin Fang, Jinfeng Xu, and Lei Yang. Online bootstrap confidence intervals for the stochastic
 712 gradient descent estimator. *Journal of Machine Learning Research*, 19(78):1–21, 2018.

713

714 Jean-Claude Fort and Gilles Pages. Asymptotic behavior of a markovian stochastic algorithm with
 715 constant step. *SIAM journal on control and optimization*, 37(5):1456–1482, 1999.

716

717 Angeliki Giannou, Kyriakos Lotidis, Panayotis Mertikopoulos, and Emmanouil-Vasileios Vlatakis-
 718 Gkaragkounis. On the convergence of policy gradient methods to nash equilibria in general
 719 stochastic games. *Advances in Neural Information Processing Systems*, 35:7128–7141, 2022.

720

721 Paul W Goldberg and Matthew Katzman. Ppad-complete pure approximate nash equilibria in lips-
 722 chitz games. In *International Symposium on Algorithmic Game Theory*, pp. 169–186. Springer,
 723 2022.

724

725 I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
 726 Y. Bengio. Generative adversarial nets. In *NeurIPS*, 2014.

727

728 Eduard Gorbunov, Nicolas Loizou, and Gauthier Gidel. Extragradient method: $O(1/k)$ last-iterate
 729 convergence for monotone variational inequalities and connections with cocoercivity. In *AISTATS*,
 730 2022a.

731

732 Eduard Gorbunov, Adrien Taylor, and Gauthier Gidel. Last-iterate convergence of optimistic gradi-
 733 ent method for monotone variational inequalities. In *NeurIPS*, 2022b.

734

735 Robert Mansel Gower, Nicolas Loizou, Xun Qian, Alibek Sailanbayev, Egor Shulgin, and Peter
 736 Richtarik. Sgd: General analysis and improved rates. In *AISTATS*, 2019.

737

738 Luigi Grippo. A class of unconstrained minimization methods for neural network training. *Opti-
 739 mization Methods and Software*, 4(2):135–150, January 1994. doi: 10.1080/10556789408805583.

740

741 Mert Gürbüzbalaban, Asuman Özdağlar, and Pablo A. Parrilo. Why random reshuffling beats
 742 stochastic gradient descent. *Mathematical Programming*, Oct 2019. ISSN 1436-4646. doi:
 743 10.1007/s10107-019-01440-w.

744

745 Mert Gürbüzbalaban, Asu Ozdaglar, and Pablo A Parrilo. Why random reshuffling beats stochastic
 746 gradient descent. *Mathematical Programming*, 186:49–84, 2021.

747

748 Andi Han et al. Nonconvex-nonconcave min-max optimization on riemannian manifolds. *Transac-
 749 tions on Machine Learning Research*, 2023.

750

751 Wenrui Hao. A gradient descent method for solving a system of nonlinear equations. *Applied
 752 Mathematics Letters*, 112:106739, 2021.

753

754 Jeff Haochen and Suvrit Sra. Random Shuffling Beats SGD after Finite Epochs. In Kamalika
 755 Chaudhuri and Ruslan Salakhutdinov (eds.), *Proceedings of the 36th International Conference on
 Machine Learning*, volume 97 of *Proceedings of Machine Learning Research*, pp. 2624–2633,
 Long Beach, California, USA, 09–15 Jun 2019. PMLR.

756

757 Francis Begaud Hildebrand. *Introduction to numerical analysis*. Courier Corporation, 1987.

758

759 Ya-Ping Hsieh, Panayotis Mertikopoulos, and Volkan Cevher. The limits of min-max optimization
 760 algorithms: Convergence to spurious non-critical sets. In *International Conference on Machine
 761 Learning*, pp. 4337–4348. PMLR, 2021.

756 Ya-Ping Hsieh, Mohammad Reza Karimi Jaghargh, Andreas Krause, and Panayotis Mertikopoulos.
 757 Riemannian stochastic optimization methods avoid strict saddle points. *Advances in Neural*
 758 *Information Processing Systems*, 36:29580–29601, 2023.

759

760 Yu-Guan Hsieh, Franck Iutzeler, Jérôme Malick, and Panayotis Mertikopoulos. On the convergence
 761 of single-call stochastic extra-gradient methods. In *NeurIPS*, 2019.

762

763 Dongyan Huo, Yudong Chen, and Qiaomin Xie. Bias and extrapolation in markovian linear stochas-
 764 tic approximation with constant stepsizes. In *Abstract Proceedings of the 2023 ACM SIGMET-
 765 RICS International Conference on Measurement and Modeling of Computer Systems*, pp. 81–82,
 2023.

766

767 UC IEOR. The linear complementarity problem, lemke algorithm, perturbation, and the complexity
 768 class ppad. 2011.

769

770 Chi Jin, Praneeth Netrapalli, and Michael I. Jordan. What is local optimality in nonconvex-
 771 nonconcave minimax optimization? In *Proceedings of the 37th International Conference on
 772 Machine Learning (ICML)*, PMLR, 2020.

773

774 Richard Jordan, David Kinderlehrer, and Felix Otto. The variational formulation of the fokker-
 775 planck equation. *SIAM journal on mathematical analysis*, 29(1):1–17, 1998.

776

777 Jack Kiefer and Jacob Wolfowitz. Stochastic estimation of the maximum of a regression function.
 778 *The Annals of Mathematical Statistics*, pp. 462–466, 1952.

779

780 Yuri Kifer. Random perturbations of dynamical systems. *Nonlinear Problems in Future Particle
 Accelerators*, 189, 1988.

781

782 Beomsu Kim and Junghoon Seo. Semi-implicit hybrid gradient methods with application to adver-
 783 sarial robustness. In *Proceedings of the International Conference on Artificial Intelligence and
 784 Statistics (AISTATS)*, PMLR, 2022.

785

786 Galina M Korpelevich. The extragradient method for finding saddle points and other problems.
 787 *Matecon*, 12:747–756, 1976.

788

789 Jeongyeol Kwon, Luke Dotson, Yudong Chen, and Qiaomin Xie. Two-timescale linear stochastic
 790 approximation: Constant stepsizes go a long way. *arXiv preprint arXiv:2410.13067*, 2024.

791

792 Zehua Lai and Lek-Heng Lim. Recht-Ré Noncommutative Arithmetic-Geometric Mean Conjecture
 793 is False. *arXiv preprint arXiv:2006.01510*, 2020.

794

795 Xuechen Li, Yi Wu, Lester Mackey, and Murat A Erdogdu. Stochastic runge-kutta accelerates
 langevin monte carlo and beyond. *Advances in neural information processing systems*, 32, 2019.

796

797 Tianyi Lin, Zhengyuan Zhou, Panayotis Mertikopoulos, and Michael Jordan. Finite-time last-iterate
 798 convergence for multi-agent learning in games. In *ICML*, 2020.

799

800 Chaoyue Liu, Dmitriy Drusvyatskiy, Misha Belkin, Damek Davis, and Yian Ma. Aiming towards
 801 the minimizers: fast convergence of sgd for overparametrized problems. *Advances in neural
 802 information processing systems*, 36:60748–60767, 2023.

803

804 Lennart Ljung. Strong convergence of a stochastic approximation algorithm. *The Annals of Statis-
 805 tics*, 6(3):680–696, 1978.

806

807 Lennart Ljung. Analysis of recursive stochastic algorithms. *IEEE transactions on automatic control*,
 22(4):551–575, 2003.

808

809 Nicolas Loizou, Hugo Berard, Alexia Jolicoeur-Martineau, Pascal Vincent, Simon Lacoste-Julien,
 810 and Ioannis Mitliagkas. Stochastic hamiltonian gradient methods for smooth games. In *ICML*,
 2020.

811

812 Nicolas Loizou, Hugo Berard, Gauthier Gidel, Ioannis Mitliagkas, and Simon Lacoste-Julien.
 813 Stochastic gradient descent-ascent and consensus optimization for smooth games: Convergence
 814 analysis under expected co-coercivity. In *NeurIPS*, 2021.

810 Zhi-Quan Luo. On the Convergence of the LMS Algorithm with Adaptive Learning Rate for Linear
 811 Feedforward Networks. *Neural Computation*, 3(2):226–245, June 1991. doi: 10.1162/neco.1991.
 812 3.2.226.

813 Siyuan Ma, Raef Bassily, and Mikhail Belkin. The power of interpolation: Understanding the effec-
 814 tiveness of sgd in modern over-parametrized learning. In *International Conference on Machine
 815 Learning*, pp. 3325–3334. PMLR, 2018.

816 Jérôme Malick and Panayotis Mertikopoulos. The global convergence time of stochastic gradi-
 817 ent descent in non-convex landscapes: Sharp estimates via large deviations. *arXiv preprint:*
 818 2503.16398, 2024.

819 Olvi L. Mangasarian and Mikhail V. Solodov. Serial and parallel backpropagation convergence via
 820 nonmonotone perturbed minimization. *Optimization Methods and Software*, 4(2):103–116, 1994.
 821 doi: 10.1080/10556789408805581.

822 Paul Mangold, Alain Durmus, Aymeric Dieuleveut, Sergey Samsonov, and Eric Moulines. Refined
 823 analysis of federated averaging’s bias and federated richardson-romberg extrapolation. *arXiv
 824 preprint arXiv:2412.01389*, 2024.

825 Panayotis Mertikopoulos and Zhengyuan Zhou. Learning in games with continuous action sets and
 826 unknown payoff functions. *Mathematical Programming*, 173(1):465–507, 2019.

827 Panayotis Mertikopoulos, Nadav Hallak, Ali Kavis, and Volkan Cevher. On the almost sure conver-
 828 gence of stochastic gradient descent in non-convex problems. *Advances in Neural Information
 829 Processing Systems*, 33:1117–1128, 2020.

830 Panayotis Mertikopoulos, Ya-Ping Hsieh, and Volkan Cevher. A unified stochastic approximation
 831 framework for learning in games. *Mathematical Programming*, 203(1):559–609, 2024.

832 Lars Mescheder, Sebastian Nowozin, and Andreas Geiger. The numerics of gans. In *NeurIPS*, 2017.

833 Sean P Meyn and Richard L Tweedie. *Markov chains and stochastic stability*. Springer Science &
 834 Business Media, 2012.

835 Konstantin Mishchenko, Ahmed Khaled, and Peter Richtárik. Random reshuffling: Simple analysis
 836 with vast improvements. In *NeurIPS*, 2020a.

837 Konstantin Mishchenko, Dmitry Kovalev, Egor Shulgin, Peter Richtárik, and Yura Malitsky. Revis-
 838 iting stochastic extragradient. In *AISTATS*, 2020b.

839 Dheeraj Nagaraj, Prateek Jain, and Praneeth Netrapalli. SGD without Replacement: Sharper Rates
 840 for General Smooth Convex Functions. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.),
 841 *Proceedings of the 36th International Conference on Machine Learning*, volume 97 of *Proceed-
 842 ings of Machine Learning Research*, pp. 4703–4711, Long Beach, California, USA, 09–15 Jun
 843 2019. PMLR.

844 Hongseok Namkoong and John C Duchi. Stochastic gradient methods for distributionally robust
 845 optimization with f-divergences. In *NeurIPS*, 2016.

846 Angelia Nedić and Dimitri P. Bertsekas. Incremental Subgradient Methods for Nondifferentiable
 847 Optimization. *SIAM Journal on Optimization*, 12(1):109–138, January 2001. doi: 10.1137/
 848 s1052623499362111.

849 Deanna Needell, Rachel Ward, and Nati Srebro. Stochastic Gradient Descent, Weighted Sampling,
 850 and the Randomized Kaczmarz algorithm. In Z. Ghahramani, M. Welling, C. Cortes, N. D.
 851 Lawrence, and K. Q. Weinberger (eds.), *Advances in Neural Information Processing Systems* 27,
 852 pp. 1017–1025. Curran Associates, Inc., 2014.

853 Phuong Ha Nguyen, Lam Nguyen, and Marten van Dijk. Tight Dimension Independent Lower
 854 Bound on the Expected Convergence Rate for Diminishing Step Sizes in SGD. In H. Wallach,
 855 H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc, E. Fox, and R. Garnett (eds.), *Advances in Neural
 856 Information Processing Systems* 32, pp. 3660–3669. Curran Associates, Inc., 2019.

864 Quynh N Nguyen and Marco Mondelli. Global convergence of deep networks with one wide layer
 865 followed by pyramidal topology. *Advances in Neural Information Processing Systems*, 33:11961–
 866 11972, 2020.

867 Christos H Papadimitriou, Emmanouil-Vasileios Vlatakis-Gkaragkounis, and Manolis Zampetakis.
 868 The computational complexity of multi-player concave games and kakutani fixed points. *arXiv*
 869 *preprint arXiv:2207.07557*, 2022.

870 Robin Pemantle. Nonconvergence to unstable points in urn models and stochastic approximations.
 871 *The Annals of Probability*, pp. 698–712, 1990.

872 David Pfau and Oriol Vinyals. Connecting generative adversarial networks and actor-critic methods.
 873 *arXiv preprint arXiv:1610.01945*, 2016.

874 Georg Ch Pflug. Stochastic minimization with constant step-size: asymptotic laws. *SIAM Journal*
 875 *on Control and Optimization*, 24(4):655–666, 1986.

876 Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging.
 877 *SIAM journal on control and optimization*, 30(4):838–855, 1992.

878 P Priouret and A Yu Veretennikov. A remark on the stability of the lms tracking algorithm. *Stochastic*
 879 *analysis and applications*, 16(1):119–129, 1998.

880 Maxim Raginsky, Alexander Rakhlin, and Matus Telgarsky. Non-convex learning via stochastic
 881 gradient langevin dynamics: a nonasymptotic analysis. In *Conference on Learning Theory*, pp.
 882 1674–1703. PMLR, 2017.

883 Shashank Rajput, Anant Gupta, and Dimitris Papailiopoulos. Closing the convergence gap of SGD
 884 without replacement. *arXiv preprint arXiv:2002.10400*, 2020.

885 Alexander Rakhlin, Ohad Shamir, and Karthik Sridharan. Making gradient descent optimal for
 886 strongly convex stochastic optimization. *arXiv preprint arXiv:1109.5647*, 2011.

887 Alexander Rakhlin, Ohad Shamir, and Karthik Sridharan. Making Gradient Descent Optimal for
 888 Strongly Convex Stochastic Optimization. In *Proceedings of the 29th International Conference on*
 889 *International Conference on Machine Learning*, ICML’12, pp. 1571–1578, Madison, WI, USA,
 890 2012. Omnipress. ISBN 9781450312851.

891 Benjamin Recht and Christopher Ré. Toward a noncommutative arithmetic-geometric mean in-
 892 equality: Conjectures, case-studies, and consequences. In S. Mannor, N. Srebro, and R. C.
 893 Williamson (eds.), *Proceedings of the 25th Annual Conference on Learning Theory*, volume 23,
 894 pp. 11.1–11.24, 2012. Edinburgh, Scotland.

895 Benjamin Recht and Christopher Ré. Parallel Stochastic Gradient Algorithms for Large-Scale Ma-
 896 trix Completion. *Mathematical Programming Computation*, 5(2):201–226, April 2013. doi:
 897 10.1007/s12532-013-0053-8.

898 Lewis Fry Richardson. Ix. the approximate arithmetical solution by finite differences of physical
 899 problems involving differential equations, with an application to the stresses in a masonry dam.
 900 *Philosophical Transactions of the Royal Society of London. Series A, containing papers of a*
 901 *mathematical or physical character*, 210(459-470):307–357, 1911.

902 Herbert Robbins and Sutton Monro. A stochastic approximation method. *The annals of mathemati-
 903 cal statistics*, pp. 400–407, 1951.

904 Werner Romberg. Vereinfachte numerische integration. *Norske Vid. Selsk. Forh.*, 28:30–36, 1955.

905 David Ruppert. Efficient estimations from a slowly convergent robbins-monro process. Technical
 906 report, Cornell University Operations Research and Industrial Engineering, 1988.

907 Jerome Sacks. Asymptotic distribution of stochastic approximation procedures. *The Annals of*
 908 *Mathematical Statistics*, 29(2):373–405, 1958.

909 Itay Safran and Ohad Shamir. How good is sgd with random shuffling? In *COLT*, 2020.

918 Mark Schmidt and Nicolas Le Roux. Fast convergence of stochastic gradient descent under a strong
919 growth condition. *arXiv preprint arXiv:1308.6370*, 2013.

920

921 Alexander Shapiro. Asymptotic properties of statistical estimators in stochastic programming. *The
922 Annals of Statistics*, pp. 841–858, 1989.

923

924 Ruoqi Shen and Yin Tat Lee. The randomized midpoint method for log-concave sampling. *Advances
925 in Neural Information Processing Systems*, 32, 2019.

926

927 Marina Sheshukova, Denis Belomestny, Alain Durmus, Eric Moulines, Alexey Naumov, and Sergey
928 Samsonov. Nonasymptotic analysis of stochastic gradient descent with the richardson-romberg
929 extrapolation. *arXiv preprint arXiv:2410.05106*, 2024.

930

931 Chaobing Song, Zhengyuan Zhou, Yichao Zhou, Yong Jiang, and Yi Ma. Optimistic dual extrapo-
932 lation for coherent non-monotone variational inequalities. *Advances in Neural Information Pro-
933 cessing Systems*, 33:14303–14314, 2020.

934

935 Matthew Staib, Sashank Reddi, Satyen Kale, Sanjiv Kumar, and Suvrit Sra. Escaping saddle points
936 with adaptive gradient methods. In *International Conference on Machine Learning*, pp. 5956–
937 5965. PMLR, 2019.

938

939 Guido Stampacchia. Formes bilinéaires coercitives sur les ensembles convexes. *Comptes Rendus
940 Hebdomadaires Des Séances De L'Academie Des Sciences*, 258(18):4413, 1964.

941

942 Weijie Su and Yuancheng Zhu. Statistical inference for online learning and stochastic approximation
943 via hierarchical incremental gradient descent. *arXiv preprint arXiv:1802.04876*, pp. 3, 2018.

944

945 Ruo-Yu Sun. Optimization for Deep Learning: An Overview. *Journal of the Operations Research
946 Society of China*, 8(2):249–294, Jun 2020. ISSN 2194-6698. doi: 10.1007/s40305-020-00309-6.

947

948 Vasilis Syrgkanis, Alekh Agarwal, Haipeng Luo, and Robert E Schapire. Fast convergence of regu-
949 larized learning in games. *Advances in Neural Information Processing Systems*, 28, 2015.

950

951 Denis Talay and Luciano Tubaro. Expansion of the global error for numerical schemes solving
952 stochastic differential equations. *Stochastic analysis and applications*, 8(4):483–509, 1990.

953

954 Yan Shuo Tan and Roman Vershynin. Online stochastic gradient descent with arbitrary initialization
955 solves non-smooth, non-convex phase retrieval. *Journal of Machine Learning Research*, 24(58):
956 1–47, 2023.

957

958 Panos Toulis and Edoardo M Airoldi. Asymptotic and finite-sample properties of estimators based
959 on stochastic gradients. 2017.

960

961 Nilesh Tripuraneni, Nicolas Flammarion, Francis Bach, and Michael I Jordan. Averaging stochastic
962 gradient descent on riemannian manifolds. In *Conference On Learning Theory*, pp. 650–687.
963 PMLR, 2018.

964

965 Sharan Vaswani, Francis Bach, and Mark Schmidt. Fast and faster convergence of sgd for over-
966 parameterized models and an accelerated perceptron. In *The 22nd international conference on
967 artificial intelligence and statistics*, pp. 1195–1204. PMLR, 2019.

968

969 Emmanouil Vasileios Vlatakis-Gkaragkounis, Angeliki Giannou, Yudong Chen, and Qiaomin Xie.
970 Stochastic methods in variational inequalities: Ergodicity, bias and refinements. In *International
971 Conference on Artificial Intelligence and Statistics*, pp. 4123–4131. PMLR, 2024.

972

973 Jingkang Wang, Tianyun Zhang, Sijia Liu, Pin-Yu Chen, Jiacen Xu, Makan Fardad, and Bo Li. Ad-
974 versarial attack generation empowered by min-max optimization. In A. Beygelzimer, Y. Dauphin,
975 P. Liang, and J. Wortman Vaughan (eds.), *NeurIPS*, 2021.

976

977 Wikipedia. Wasserstein metric – wikipedia, the free encyclopedia, 2023. URL
978 https://en.wikipedia.org/wiki/Wasserstein_metric, Accessed: 2025-08-28.

979

980 Lu Yu, Krishnakumar Balasubramanian, Stanislav Volgushev, and Murat A Erdogdu. An analysis
981 of constant step size sgd in the non-convex regime: Asymptotic normality and bias. *Advances in
982 Neural Information Processing Systems*, 34:4234–4248, 2021.

972 Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learning: A selective
973 overview of theories and algorithms. *Handbook of reinforcement learning and control*, pp. 321–
974 384, 2021.

975 Yixuan Zhang and Qiaomin Xie. Constant stepsize q-learning: Distributional convergence, bias and
976 extrapolation. *arXiv preprint arXiv:2401.13884*, 2024.

978 Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Gradient descent optimizes over-
979 parameterized deep relu networks. *Machine learning*, 109(3):467–492, 2020.

980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

SUPPLEMENTAL MATERIAL

CONTENTS

1026	Appendix	20
1027		
1028		
1029		
1030		
1031		
1032		
1033		
1034	A Additional Related Literature	21
1035		
1036	B Proof Roadmap	23
1037	B.1 Warm-Up: Useful Inequalities	23
1038		
1039		
1040	C Proof of Convergence Rate (MSE) of Perturbed SGD-\mathbf{RR}_1 (Theorem 3.1)	24
1041		
1042	C.1 Preparatory Lemmas & Propositions	24
1043	C.2 Assembling the Lemmas: Proof of Theorem 3.1	26
1044		
1045		
1046	D Proof of Ergodic Properties and Limit Theorems (Theorem 3.3) & (Theorem 3.4)	28
1047		
1048	D.1 Proof of Continuous State Time Homogenous Markov Chain (Lemma 3.2)	28
1049		
1050	D.2 Proof of Foster-Lyuapunov inequality	29
1051		
1052	D.3 Proof of Minorization Property	31
1053	D.4 Proof of Irreducibility, Aperiodicity and Harris and Positive Recurrence	32
1054		
1055	D.5 Proof of Existence of Unique Invariant Distribution at Epoch-level (Theorem 3.3)	32
1056		
1057	D.6 Proof of Limit theorems of Epoch-level iterates (Theorem 3.3)	34
1058		
1059		
1060	E Bounding 4th-order Moments of Error Distance	35
1061		
1062	E.1 Higher order version of Proposition A.2 (Emmanouilidis et al., 2024) - Bound of Kyrtoisis for Lipschitz Operators	35
1063		
1064	E.2 A Combinatorial Tool for Higher-Order Moments In Sampling without Replacement	36
1065		
1066	F Proof of Bias for \mathbf{RR}_1 and $\mathbf{RR}_1 \oplus \mathbf{RR}_2$ Methods (Lemma 3.5) and (Theorem 3.6)	42
1067		
1068	F.1 Jacobian bound for one-pass map	42
1069		
1070	F.2 Higher-Order Terms of \mathbf{RR}_1 bias (Lemma 3.5)	44
1071		
1072	F.3 Proof of Bias Refinements of $\mathbf{RR}_1 \oplus \mathbf{RR}_2$ (Theorem 3.6)	45
1073		
1074		
1075	G On Experiments	47
1076		
1077		
1078		
1079		

1080
1081
1082 A ADDITIONAL RELATED LITERATURE
1083
1084
1085

Owing to its central role in optimization and machine learning, stochastic gradient descent (SGD) and its numerous variants have generated an extensive body of literature that spans several decades. A complete survey is well beyond the scope of this paper, so we restrict ourselves to highlighting the most relevant threads and pointers.

1086 The only aspects we emphasize at this point are the phenomena most pertinent to our analysis:
1087

- 1088 1. classical stochastic approximation and asymptotic normality results;
- 1089 2. constant step-size schemes viewed through the lens of Markov chains and diffusion ap-
1090 proximations;
- 1091 3. the widespread use of random reshuffling and its still-developing theoretical guarantees;
1092 and
- 1093 4. challenges that arise in min–max and variational inequality settings.

1094 These themes form the backbone of our extended discussion in the appendix, where we provide a
1095 more comprehensive account of prior work.
1096

1097 **From classical stochastic approximation to modern SGD.** The study of stochastic approximation
1098 predates machine learning by decades, beginning with the foundational work of [Robbins &](#)
1099 [Monro \(1951\)](#) and [Kiefer & Wolfowitz \(1952\)](#). Early analyses focused on vanishing step-sizes
1100 obeying the classic L^2 – L^1 summability rules, and developed the ODE method to describe limiting
1101 dynamics; see, e.g., [Ljung \(1978; 2003\)](#); [Benaïm \(2006\)](#); [Bertsekas & Tsitsiklis \(2000b\)](#). In par-
1102 allel, a rich line of results examined the almost-sure behavior of stochastic approximation, including
1103 avoidance of saddle points and convergence to locally stable equilibria ([Pemantle, 1990](#); [Brandière](#)
1104 & [Duflo, 1996](#); [Benaïm & Hirsch, 1995](#); [Hsieh et al., 2021; 2023](#); [Jordan et al., 1998](#); [Mertikopoulos](#)
1105 et al., 2020; 2024; [Staib et al., 2019](#); [Antonakopoulos et al., 2022](#)).

1106 **Asymptotic normality and statistical inference.** A complementary thread established central
1107 limit theorems for stochastic approximation: classical milestones include [Chung \(1954\)](#); [Sacks](#)
1108 ([1958](#)); [Fabian \(1968\)](#); [Ruppert \(1988\)](#); [Shapiro \(1989\)](#), culminating in the Polyak–Juditsky aver-
1109 aging principle ([Polyak & Juditsky, 1992](#)). Under suitable decaying step-sizes, the averaged SGD
1110 iterate is asymptotically normal and attains the Cramér–Rao optimal variance. This statistical per-
1111 spective has been leveraged to construct confidence intervals and inference procedures for SGD-
1112 based estimators ([Tripuraneni et al., 2018](#); [Su & Zhu, 2018](#); [Toulis & Airoldi, 2017](#); [Fang et al.,](#)
1113 [2018](#)).

1114 **Constant step sizes: bias, speed, and Markovian viewpoints.** Constant step-size policies, now
1115 standard in large-scale learning, trade a nonvanishing asymptotic error for fast initial progress and
1116 robust practical performance. Their benefits in over-parameterized regimes are well documented
1117 ([Schmidt & Roux, 2013](#); [Needell et al., 2014](#); [Ma et al., 2018](#); [Vaswani et al., 2019](#)). The Markov
1118 chain viewpoint provides a unifying language for analyzing such constant-step schemes: early devel-
1119 opments used dynamical-systems and Markov-process techniques to establish stability and ergodic
1120 properties ([Kifer, 1988](#); [Benaïm, 1996](#); [Priouret & Veretenikov, 1998](#); [Fort & Pages, 1999](#); [Aguiech](#)
1121 et al., 2000), with recent refinements quantifying convergence behavior and variance ([Dieuleveut](#)
1122 et al., 2020; [Chee & Toulis, 2018](#); [Tan & Vershynin, 2023](#)). In parallel, diffusion-based analyses
1123 and Langevin-type discretizations connect SGD to MCMC methodology, yielding non-asymptotic
1124 guarantees and sharp mixing rates in log-concave and beyond-log-concave settings ([Dalalyan, 2017](#);
1125 [Durmus & Moulines, 2017](#); [Cheng et al., 2018b](#); [Dalalyan & Karagulyan, 2019](#); [Brosse et al., 2017](#);
1126 [Cheng et al., 2018a](#); [Bubeck et al., 2018](#); [Dwivedi et al., 2019](#); [Dalalyan & Riou-Durand, 2020](#); [Li](#)
1127 et al., 2019; [Shen & Lee, 2019](#); [Erdogdu & Hosseinzadeh, 2021](#)).

1128 **Random reshuffling vs. with-replacement sampling.** Among finite-sum methods, *random*
1129 *reshuffling* (RR) occupies a special place: each epoch processes every component exactly once
1130 in a random order, in contrast to classical with-replacement SGD. RR is ubiquitous in practice—
1131 it improves cache locality ([Bengio, 2012](#)), often converges faster than with-replacement sampling
1132 ([Bottou, 2009](#); [Recht & Ré, 2013](#)), and is the default in deep learning pipelines ([Sun, 2020](#)). The

success of RR contrasts with the mature theory for with-replacement SGD, which enjoys tight upper/lower bounds in many regimes (Rakhlin et al., 2012; Drori & Shamir, 2019; Nguyen et al., 2019). A key analytical hurdle is bias: within an epoch, conditional expectations are no longer unbiased gradients, so classical SGD proofs do not transfer verbatim. Early attempts leveraging the noncommutative arithmetic–geometric mean conjecture (Recht & Ré, 2012) were later undermined when the conjecture was disproved (Lai & Lim, 2020). More recent works establish rates for twice-smooth and smooth objectives and highlight gaps between theory and prevalent heuristics (Gürbüzbalaban et al., 2019; Haochen & Sra, 2019; Nagaraj et al., 2019; Safran & Shamir, 2020; Rajput et al., 2020).

Incremental/ordered passes and sensitivity to permutations. Before RR became the default, incremental gradient (IG) methods with fixed orderings were widely used in neural network training (Luo, 1991; Grippo, 1994), with asymptotic convergence known since early work (Mangasarian & Solodov, 1994; Bertsekas & Tsitsiklis, 2000a). However, their performance can depend strongly on the chosen ordering (Nedić & Bertsekas, 2001; Bertsekas, 2011). By randomizing the order every epoch, RR mitigates this sensitivity and—under smoothness—can outperform both with-replacement SGD and deterministic IG (Gürbüzbalaban et al., 2019; Haochen & Sra, 2019), with refined lower/upper bounds developed in follow-up studies (Nagaraj et al., 2019; Safran & Shamir, 2020; Rajput et al., 2020).

Min–max problems and variational inequalities. In large-scale saddle-point and VIP settings, most theoretical analyses assume with-replacement sampling for convenience, whereas implementations overwhelmingly adopt without-replacement sampling (Bottou, 2012a). A growing literature is closing this gap: for minimization problems, several works show (sometimes provably faster) RR rates in finite-sum regimes (Mishchenko et al., 2020a; Ahn et al., 2020; Gürbüzbalaban et al., 2021; Cai et al., 2023). For min–max and VIPs, guarantees remain comparatively sparse: Chen & Rockafellar (1997) and Korpelevich (1976) initiated the study of stochastic and extragradient-type methods, with modern analyses for SEG and optimistic variants (Gorbunov et al., 2022a;b; Hsieh et al., 2019; Choudhury et al., 2023). For RR specifically, Das et al. (2022) derive guarantees for SGDA and PPM under strong structural conditions, and Cho & Yun (2023) extend to certain non-monotone settings. Nevertheless, classical SGDA can diverge even in simple monotone bilinear games, while proximal methods are implicit and less practical; filling this theoretical–practical gap remains an active direction.

Overparameterization and global convergence phenomena. Finally, SGD training dynamics in overparameterized neural networks reveal regimes where global convergence can emerge from structural properties such as width, depth, and initialization (Du et al., 2019; Zou et al., 2020; Nguyen & Mondelli, 2020; Liu et al., 2023). These results are powerful but specialized: they rely on problem-specific structure (e.g., width scaling or tailored initializations). Our focus is orthogonal—we seek guarantees for general non-convex or non-monotone landscapes under stochastic approximation, independent of architectural assumptions. For completeness, we refer the reviewer for the related work of the aforementioned work for further surveys about these SGD & overparameterization results in more detail.

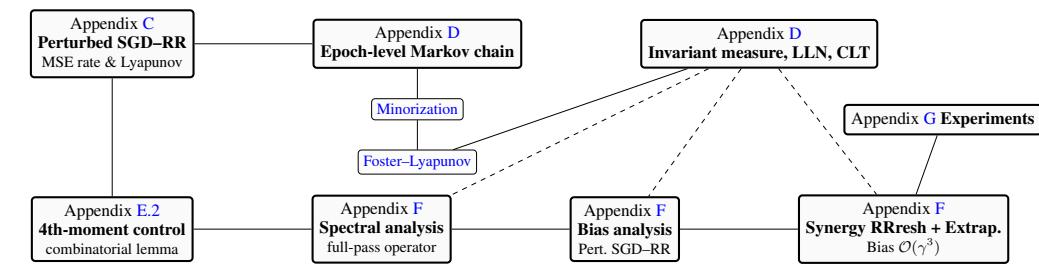
Summary. To summarize, there is a mature theory for with-replacement SGD (both asymptotic and non-asymptotic), well-developed statistical limits via averaging, and powerful diffusion/Markov perspectives for constant-step schemes. RR, despite being the practical default, poses distinctive analytical challenges due to its within-epoch bias, especially in min–max and VIP settings. Recent advances begin to bridge this gap, but a comprehensive understanding of how classical heuristics (constant steps, reshuffling, extrapolation) interact remains incomplete—precisely the juncture where our work contributes.

1188 **B PROOF ROADMAP**
1189

1190 Our main theorem relies on several technical components, developed across different parts of the
1191 appendix. In Appendix C, we establish the mean-squared convergence rate of Perturbed SGD–
1192 RR₁. While this result is of independent interest—as it extends prior analyses to a noisy setting—it
1193 primarily serves to construct the Lyapunov function that underpins our Markov chain treatment of
1194 the algorithm. Armed with this Lyapunov function, the properties of the perturbation, and the epoch-
1195 level viewpoint, Appendix D shows that SGD–RR₁ forms a geometrically ergodic Markov chain with
1196 all standard consequences: existence of an invariant measure, a law of large numbers, and a central
1197 limit theorem.

1198 Appendix E develops higher-moment control. In particular, part E.2 introduces a new combinatorial
1199 lemma on fourth moments of finite-sum subsets of vectors—a technically challenging step, moti-
1200 vated by the fact that most extrapolation analyses (e.g., Dieuleveut et al. (2020)) require bounded
1201 fourth moments of the reshuffling estimator. With this tool in hand, Appendix F shows that no
1202 change in the step-size order is required to accommodate the extrapolation trick: we are able to
1203 control the higher moments of the Jacobian of the reshuffled biased gradient estimator. To the best of
1204 our knowledge, this is the first such result. The last parts of Appendix F then contain the full proofs
1205 of our main theorem.

1206 Finally, Appendix G presents additional experiments demonstrating the practical gains of our
1207 method, which originally motivated this study.



1209 Figure 5: Dependency graph of Appendix results. Solid lines: main logical flow. Dashed lines:
1210 auxiliary inputs.
1211
1212
1213
1214
1215
1216
1217

1221 **B.1 WARM-UP: USEFUL INEQUALITIES**
1222

1223 We start our technical appendix by providing inequalities that will be useful in our proofs

$$\left\| \sum_{i=1}^n x_i \right\|^2 \leq n \sum_{i=1}^n \|x_i\|^2 \quad (2)$$

$$\left\| \sum_{i=1}^n x_i \right\|^4 \leq n^3 \sum_{i=1}^n \|x_i\|^4 \quad (3)$$

$$\|a - b\|^2 \geq \frac{1}{2} \|a\|^2 - \|b\|^2 \quad (4)$$

$$\langle a, b \rangle = \frac{1}{2} [\|a\|^2 + \|b\|^2 - \|a - b\|^2] \quad (5)$$

$$e^{-x} \geq 1 - x, \forall x \geq 0 \quad (6)$$

$$\|a + b\|^2 \leq \frac{1}{t} \|a\|^2 + \frac{1}{1-t} \|b\|^2, \forall t \in (0, 1) \quad (7)$$

1242 **C PROOF OF CONVERGENCE RATE (MSE) OF PERTURBED SGD-RR₁**
 1243 **(THEOREM 3.1)**
 1244

1245 Our first result concerns the *Perturbed SGD-RR₁* variant for λ -weak μ -quasi strongly monotone
 1246 VIPs.

1247 **Theorem C.1** (Restatement of Theorem 3.1). Let Assumptions 2.1-2.3 hold. Then the iterates of
 1248 Perturbed SGD-RR₁ satisfy for $\gamma \leq \gamma_{max}$,

$$1250 \mathbb{E} [\|x_{k+1}^0 - x^*\|^2] \leq \left(1 - \frac{\gamma n \mu}{2}\right)^{k+1} \|x_0^0 - x^*\|^2 + \frac{8n\gamma^2 L_{max}^2}{\mu^2} \sigma_*^2 + \frac{8\lambda}{\mu}$$

1252 where $\sigma_*^2 = \frac{1}{n} \sum_{i=0}^{n-1} \|F_i(x^*)\|^2$ and $\gamma_{max} = \min \left\{ \frac{1}{3nL_{max}}, \frac{\sqrt{1+6\mu^2 L_{max}^2}-1}{12nL_{max}^2} \right\}$.

1254 We first provide some notation that will be necessary for establishing the proof of Theorem 3.1.
 1255 Consider the epoch-wise update rule of Perturbed SGD-RR₁

$$1257 \begin{aligned} x_{k+1}^0 &= x_k^n = x_k^0 - \gamma \sum_{i=0}^{n-1} F_{\omega_k^i}(x_k^i) - \gamma U_k \\ 1258 &= x_k^0 - \gamma G_{\omega_k}(x_k^0) - \gamma U_k \end{aligned} \quad (8)$$

1261 where $G_{\omega_k}(x_k^0) := \sum_{i=0}^{n-1} F_{\omega_k^i}(x_k^i)$ denotes the epoch-wise operator used to update the epoch-level
 1262 iterates $(x_k)_{k \geq 0}$.

1265 **C.1 PREPARATORY LEMMAS & PROPOSITIONS**
 1266

1267 With this notation at hand, we proceed in proving two Lemmas that are necessary for deriving the
 1268 rate of convergence of the Theorem 3.1. In the first lemma, following the high-level intuition that
 1269 one epoch of random reshuffling with step size γ progresses the underlying dynamics approximately
 1270 equal to one step of the deterministic GD with step size $\gamma' = n\gamma$, in the first lemma we bound the
 1271 “progress” that the deterministic algorithm makes in one step.

1272 **Lemma C.2.** Let Assumptions 2.1-2.3 hold. For any $x^* \in \mathcal{X}^*$, the iterates of Perturbed SGD-RR₁
 1273 satisfy that

$$1275 \mathbb{E} [\|x_{k+1} - x^* - \gamma n F(x_k)\|^2 | \mathcal{F}_k] \leq [(1 - \gamma n \mu)^2 + \gamma^2 n^2 L_{max}^2] \|x_k - x^*\|^2 + 2\gamma n \lambda$$

1277 *Proof.* For any fixed $x^* \in \mathcal{X}^*$, it holds that

$$1279 \begin{aligned} \|x_{k+1} - x^* - \gamma n F(x_k)\|^2 &= \|x_k - x^*\|^2 - 2\gamma n \langle x_k - x^*, F(x_k) \rangle + \gamma^2 n^2 \|F(x_k)\|^2 \\ 1280 &\leq \|x_k - x^*\|^2 - 2\gamma n \mu \|x_k - x^*\|^2 + 2\gamma n \lambda + \gamma^2 n^2 \|F(x_k)\|^2 \\ 1281 &\leq (1 - 2\gamma n \mu) \|x_k^0 - x^*\|^2 + 2\gamma n \lambda + \gamma^2 n^2 \|F(x_k)\|^2 \\ 1282 &\stackrel{\text{Assumption 2.3}}{\leq} (1 - 2\gamma n \mu + \gamma^2 n^2 L_{max}^2) \|x_k - x^*\|^2 + 2\gamma n \lambda \end{aligned} \quad (9)$$

1284 Taking expectation condition on the filtration \mathcal{F}_k , gives

$$1286 \begin{aligned} \mathbb{E} [\|x_{k+1} - x^* - \gamma n F(x_k)\|^2 | \mathcal{F}_k] &\leq (1 - 2\gamma n \mu + \gamma^2 n^2 L_{max}^2) \|x_k - x^*\|^2 + 2\gamma n \lambda \\ 1287 &\leq [(1 - \gamma n \mu)^2 + \gamma^2 n^2 L_{max}^2] \|x_k - x^*\|^2 + 2\gamma n \lambda \end{aligned}$$

1289 \square

1290 Having an expression for the progress made by the deterministic counterpart of Perturbed SGD-RR₁,
 1291 we next aim to bound how large the deviation of the two algorithms becomes inside an epoch. To do
 1292 so, we bound the sum of the distances of the iterates obtain by Perturbed SGD-RR₁ from the start
 1293 of the epoch, which corresponds to the fictitious iterate of our comparator deterministic counterpart.
 1294 The following lemma provides an upper bound dependent on the distance of the current epoch-level
 1295 iterate from the solution and the variance at the optimum.

1296 **Lemma C.3.** Let Assumptions 2.1, 2.3 hold. If Perturbed SGD-RR₁ is run with step size $\gamma \leq$
 1297 $\frac{1}{\sqrt{3n(n-1)L_{max}}}$, then it holds that
 1298

$$1299 \mathbb{E} \left[\sum_{i=1}^{n-1} \|x_k^i - x_k^0\|^2 \mid \mathcal{F}_k \right] \leq 6n^3\gamma^2 L_{max}^2 \|x_k^0 - x^*\|^2 + 2n^2\gamma^2\sigma_*^2$$

1300
 1301
 1302

1303 *Proof.* From the epoch-level update (8), it holds

$$1304 \begin{aligned} \|x_k^i - x_k^0\|^2 &= \gamma^2 i^2 \left\| \frac{1}{i} \sum_{j=0}^{i-1} F_{\omega_k^j}(x_k^j) \right\|^2 \\ 1305 &\stackrel{(2)}{\leq} 3\gamma^2 i \sum_{j=0}^{i-1} \left\| F_{\omega_k^j}(x_k^j) - F_{\omega_k^j}(x_k^0) \right\|^2 + 3\gamma^2 i^2 \left\| \frac{1}{i} \sum_{j=0}^{i-1} F_{\omega_k^j}(x_k^0) - F(x_k^0) \right\|^2 \\ 1306 &\quad + 3\gamma^2 i^2 \|F(x_k^0)\|^2 \\ 1307 &\stackrel{\text{Assumption 2.3}}{\leq} 3\gamma^2 L_{max}^2 i \sum_{j=0}^{i-1} \|x_k^j - x_k^0\|^2 + 3\gamma^2 i^2 \left\| \frac{1}{i} \sum_{j=0}^{i-1} F_{\omega_k^j}(x_k^0) - F(x_k^0) \right\|^2 \\ 1308 &\quad + 3\gamma^2 i^2 \|F(x_k^0)\|^2 \\ 1309 &\quad + 3\gamma^2 i^2 \|F(x_k^0)\|^2 \end{aligned}$$

1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317

1318 where at the last step we have used the Lipschitz property of the operators $F_i, \forall i \in [n]$. Taking
 1319 expectation condition on the filtration \mathcal{F}_k , we get

$$1320 \begin{aligned} \mathbb{E} \left[\|x_k^i - x_k^0\|^2 \mid \mathcal{F}_k \right] &\leq 3\gamma^2 L_{max}^2 i \mathbb{E} \left[\sum_{j=0}^{i-1} \|x_k^j - x_k^0\|^2 \mid \mathcal{F}_k \right] \\ 1321 &\quad + 3\gamma^2 i^2 \mathbb{E} \left[\left\| \frac{1}{i} \sum_{j=0}^{i-1} F_{\omega_k^j}(x_k^0) - F(x_k^0) \right\|^2 \mid \mathcal{F}_k \right] + 3\gamma^2 i^2 \|F(x_k^0)\|^2 \end{aligned} \quad (10)$$

1322
 1323
 1324
 1325
 1326

1327 From Lemma A.3 in (Emmanouilidis et al., 2024), it holds for $A = \frac{2}{n} \sum_{i=0}^{n-1} L_i^2$, $\sigma_*^2 =$
 1328 $\frac{1}{n} \sum_{i=0}^{n-1} \|F_i(x^*)\|^2$ and $\forall i \in [n]$ that
 1329

$$1330 \quad i^2 \mathbb{E} \left[\left\| \frac{1}{i} \sum_{j=0}^{i-1} F_{\omega_k^j}(x_k^0) - F(x_k^0) \right\|^2 \mid \mathcal{F}_k \right] \leq \frac{i(n-i)}{n-1} (A \|x_k^0 - x^*\|^2 + 2\sigma_*^2) \quad (11)$$

1331
 1332
 1333

1334 From inequality (11) and (10), thus, we obtain

$$1335 \begin{aligned} \mathbb{E} \left[\|x_k^i - x_k^0\|^2 \mid \mathcal{F}_k \right] &\leq 3\gamma^2 L_{max}^2 i \mathbb{E} \left[\sum_{j=0}^{i-1} \|x_k^j - x_k^0\|^2 \mid \mathcal{F}_k \right] + 3\gamma^2 \frac{i(n-i)}{n-1} A \|x_k^0 - x^*\|^2 \\ 1336 &\quad + 6\gamma^2 \frac{i(n-i)}{n-1} \sigma_*^2 + 3\gamma^2 i^2 \|F(x_k^0)\|^2 \end{aligned} \quad (12)$$

1337
 1338
 1339
 1340

1341 By summing over $0 \leq i \leq n-1$ we have that

$$1342 \begin{aligned} \sum_{i=0}^{n-1} \mathbb{E} \left[\|x_k^i - x_k^0\|^2 \mid \mathcal{F}_k \right] &\leq 3\gamma^2 L_{max}^2 \frac{n(n-1)}{2} \sum_{i=0}^{n-1} \mathbb{E} \left[\|x_k^i - x_k^0\|^2 \mid \mathcal{F}_k \right] + \gamma^2 A \frac{n(n+1)}{2} \|x_k^0 - x^*\|^2 \\ 1343 &\quad + \gamma^2 n(n+1) \sigma_*^2 + \frac{\gamma^2 n(n-1)(2n-1)}{2} \|F(x_k^0)\|^2, \end{aligned} \quad (13)$$

1344
 1345
 1346

1347 where we used the facts

$$1348 \quad \sum_{i=0}^{n-1} i = \frac{n(n-1)}{2}, \quad \sum_{i=0}^{n-1} i^2 = \frac{n(n-1)(2n-1)}{6}, \quad \sum_{i=0}^{n-1} \frac{i(n-i)}{n-1} = \frac{n(n+1)}{6}.$$

1349

1350 For $\gamma \leq \frac{1}{\sqrt{3n(n-1)L_{max}}}$, rearranging the terms in (13) we obtain
 1351
 1352
 1353
$$\sum_{i=0}^{n-1} \mathbb{E} \left[\|x_k^i - x_k^0\|^2 \mid \mathcal{F}_k \right] \leq \gamma^2 n(n+1)A \|x_k^0 - x^*\|^2 + 2n(n+1)\gamma^2\sigma_*^2$$

 1354
$$+ n(n-1)(2n-1)\gamma^2 \|F(x_k^0)\|^2$$

 1355
$$\stackrel{\text{Assumption 2.3}}{\leq} 2\gamma^2 n^2 (A + nL^2) \|x_k^0 - x^*\|^2 + 2n^2\gamma^2\sigma_*^2$$

 1356
$$\stackrel{A \leq 2L_{max}^2}{\leq} 6n^3\gamma^2 L_{max}^2 \|x_k^0 - x^*\|^2 + 2n^2\gamma^2\sigma_*^2$$

 1357
 1358
 1359
 1360
 1361 \square
 1362
 1363
 1364 In the preceding subsection, we established a series of preparatory lemmas. We now combine these
 1365 ingredients into a unified elementwise argument to prove Theorem 3.1.
 1366
 1367

C.2 ASSEMBLING THE LEMMAS: PROOF OF THEOREM 3.1

In this section, we provide the proof of Theorem 3.1, establishing linear convergence of Perturbed SGD-RR₁ to a neighbourhood of the solution. The proof technique leverages the interpretation that one epoch of Perturbed SGD-RR₁ with sufficiently small step size $\gamma > 0$ is equivalent to one step of the gradient descent with step size $\gamma' = n\gamma$, as the iterates of Perturbed SGD-RR₁ inside the epoch do not change drastically. To account for the deviation of the iterates from the initial state x_k^0 inside the epoch, we have upper bounded the sum of the corresponding distances in Lemma C.3. Thus, using the combining the bound on the progress made by gradient descent from Lemma C.2 with the potential “deviation” between the two algorithms we establish the rate of convergence of the method.

Proof. Using the update rule of Perturbed SGD-RR₁, we have that:

$$\begin{aligned} x_{k+1}^0 &= x_k^{n-1} - \gamma F_{\omega_{n-1}^k}(x_k^{n-1}) - \gamma \mathbb{U}_k \\ &= x_k^0 - \gamma \sum_{i=0}^{n-1} F_{\omega_k^i}(x_k^i) - \gamma \mathbb{U}_k \\ &= x_k^0 - \gamma n F(x_k^0) - \gamma \sum_{i=0}^{n-1} (F_{\omega_k^i}(x_k^i) - F_{\omega_k^i}(x_k^0)) - \gamma \mathbb{U}_k \end{aligned} \quad (14)$$

where the last step we used the fact that $\gamma n F(x_k^0) = \gamma \sum_{i=0}^{n-1} F_{\omega_{i-1}^k}(x_k^0)$ and the finite-sum structure of the operator F . It holds, thus, that

$$\|x_{k+1}^0 - x^*\|^2 = \left\| x_k^0 - x^* - \gamma n F(x_k^0) - \gamma \sum_{i=0}^{n-1} (F_{\omega_k^i}(x_k^i) - F_{\omega_k^i}(x_k^0)) - \gamma \mathbb{U}_k \right\|^2 \quad (15)$$

From Young’s inequality, the right-hand side (RHS) of (15) can be bounded as follows

$$\begin{aligned} \|x_{k+1}^0 - x^*\|^2 &\leq \frac{\|x_k^0 - x^* - \gamma n F(x_k^0)\|^2}{1 - \gamma n \mu} + \frac{\gamma}{n \mu} \left\| \sum_{i=0}^{n-1} (F_{\omega_k^i}(x_k^i) - F_{\omega_k^i}(x_k^0)) + \mathbb{U}_k \right\|^2 \\ &\stackrel{(2)}{\leq} \frac{\|x_k^0 - x^* - \gamma n F(x_k^0)\|^2}{1 - \gamma n \mu} + \frac{2\gamma}{n \mu} \left\| \sum_{i=0}^{n-1} F_{\omega_k^i}(x_k^i) - F_{\omega_k^i}(x_k^0) \right\|^2 + \frac{2\gamma}{n \mu} \|\mathbb{U}_k\|^2 \\ &\stackrel{(2)}{\leq} \frac{\|x_k^0 - x^* - \gamma n F(x_k^0)\|^2}{1 - \gamma n \mu} + \frac{2\gamma}{\mu} \sum_{i=0}^{n-1} \|F_{\omega_k^i}(x_k^i) - F_{\omega_k^i}(x_k^0)\|^2 + \frac{2\gamma}{n \mu} \|\mathbb{U}_k\|^2 \end{aligned}$$

1404 Applying the Lipschitz property of the operators, we obtain
 1405

$$1406 \|x_{k+1}^0 - x^*\|^2 \leq \frac{\|x_k^0 - x^* - \gamma n F(x_k^0)\|^2}{1 - \gamma n \mu} + \frac{2\gamma L_{max}^2}{\mu} \sum_{i=1}^{n-1} \|x_k^i - x_k^0\|^2 + \frac{2\gamma}{n\mu} \|\mathbb{U}_k\|^2 \quad (16)$$

1409 Taking expectation condition on the filtration \mathcal{F}_k (history of x_k^0) and using the fact that the noise
 1410 $\mathbb{U}_k \sim \mathcal{N}(0, \gamma^2 n^2 \sigma_*^2 \mathbb{I})$, we get
 1411

$$1412 \mathbb{E}[\|x_{k+1}^0 - x^*\|^2 | \mathcal{F}_k] \leq \frac{\mathbb{E}[\|x_k^0 - x^* - \gamma n F(x_k^0)\|^2 | \mathcal{F}_k]}{1 - \gamma n \mu} + \frac{2\gamma L_{max}^2}{\mu} \mathbb{E}\left[\sum_{i=1}^{n-1} \|x_k^i - x_k^0\|^2 | \mathcal{F}_k\right] \\ 1413 + \frac{2n\gamma^3 \sigma_*^2}{\mu} \quad (17)$$

1418 To complete the proof, it suffices to bound each term on the right-hand side of (17). From Lemmas C.2, C.3, it holds for $\gamma \leq \frac{1}{\sqrt{3n(n-1)L_{max}}}$ that
 1419
 1420

$$1421 \mathbb{E}[\|x_k^0 - x^* - \gamma n F(x_k^0)\|^2 | \mathcal{F}_k] \leq [(1 - \gamma n \mu)^2 + \gamma^2 n^2 L_{max}^2] \|x_k - x^*\|^2 + 2\gamma n \lambda \quad (18)$$

$$1422 \mathbb{E}\left[\sum_{i=1}^{n-1} \|x_k^i - x_k^0\|^2 | \mathcal{F}_k\right] \leq 4\gamma^2 n^3 L^2 \|x_k^0 - x^*\|^2 \quad (19)$$

1426 Substituting (18) and (19) into (17), we obtain

$$1427 \mathbb{E}[\|x_{k+1}^0 - x^*\|^2 | \mathcal{F}_k] \leq \left(1 - \gamma n \mu + \frac{\gamma^2 n^2 L_{max}^2}{1 - \gamma n \mu} + \frac{8n^3 \gamma^3 L^2 L_{max}^2}{\mu}\right) \|x_k^0 - x^*\|^2 \\ 1428 + \frac{4n^2 \gamma^3 L_{max}^2}{\mu} \sigma_*^2 + \frac{2n\gamma\lambda}{1 - \gamma n \mu} \quad (20)$$

1433 Selecting the stepsize $\gamma \leq \min\left\{\frac{1}{2n\mu}, \frac{\sqrt{1+6L_{max}^2\mu^2}-1}{12nL_{max}^2}\right\}$, we have that
 1434
 1435

$$1436 \frac{1}{1 - \gamma n \mu} \leq 2 \\ 1437 \text{and } \left(1 - \gamma n \mu + \frac{\gamma^2 n^2 L_{max}^2}{1 - \gamma n \mu} + \frac{12n^3 \gamma^3 L_{max}^4}{\mu}\right) \leq \left(1 - \frac{\gamma n \mu}{2}\right)$$

1441 and thus substituting in (20) we get
 1442

$$1443 \mathbb{E}[\|x_{k+1}^0 - x^*\|^2 | \mathcal{F}_k] \leq \left(1 - \frac{\gamma n \mu}{2}\right) \|x_k^0 - x^*\|^2 + \frac{4n^2 \gamma^3 L_{max}^2}{\mu} \sigma_*^2 + 4n\gamma\lambda \quad (21)$$

1445 Taking expectation on both sides and using the tower property of expectations, we have that:
 1446

$$1447 \mathbb{E}[\|x_{k+1}^0 - x^*\|^2] \leq \left(1 - \frac{\gamma n \mu}{2}\right) \|x_k^0 - x^*\|^2 + \frac{4n^2 \gamma^3 L_{max}^2}{\mu} \sigma_*^2 + 8n\gamma\lambda \\ 1448 \leq \left(1 - \frac{\gamma n \mu}{2}\right)^{k+1} \|x_k^0 - x^*\|^2 + \sum_{i=1}^k (1 - \gamma n \mu)^i \left(\frac{4n^2 \gamma^3 L_{max}^2}{\mu} \sigma_*^2 + 8n\gamma\lambda\right) \\ 1449 \\ 1450 \leq \left(1 - \frac{\gamma n \mu}{2}\right)^{k+1} \|x_0^0 - x^*\|^2 + \frac{8n\gamma^2 L_{max}^2}{\mu^2} \sigma_*^2 + \frac{8\lambda}{\mu}$$

1455 \square
 1456
 1457

1458 **D PROOF OF ERGODIC PROPERTIES AND LIMIT THEOREMS**
 1459 **(THEOREM 3.3) & (THEOREM 3.4)**
 1460

1461 We start by proving a series of properties that the induced Markov Chain satisfies, that will be
 1462 necessary for proving the Theorem 3.3.
 1463

1464 **Proposition D.1** (Proposition 5.5.3 (Meyn & Tweedie, 2012)). If a set $C \in \mathcal{B}(\mathbb{R}^d)$ is ν_m -small,
 1465 then it is ν_{δ_m} -petite for some $\delta_m > 0$.
 1466

1467 *Intuition.* The notions of *small* and *petite* sets are technical tools in Markov chain theory that help
 1468 verify stability properties. A set C is called *small* if, starting from C , the chain has a uniform
 1469 positive chance of reaching any region of the state space within a fixed number of steps. A *petite* set
 1470 is a weaker concept: instead of requiring such uniformity in a single time step, it allows the chance
 1471 of hitting any region to be distributed over a random number of steps (via a probability distribution
 1472 over times). Thus, every small set is automatically petite, but the reverse is not true. Intuitively,
 1473 small sets guarantee “uniform mixing after a fixed horizon,” while petite sets guarantee the same
 1474 effect “on average over time.”
 1475

1476 **D.1 PROOF OF CONTINUOUS STATE TIME HOMOGENIOUS MARKOV CHAIN**
 1477 **(LEMMA 3.2)**

1478 **Lemma D.2** (Epoch-level homogeneity and kernel). Fix $\gamma > 0$ and $n \in \mathbb{N}$. Then Perturbed-SGD
 1479 can be described at each epoch k as: *Draw ω_k uniformly from \mathfrak{S}_n and set*

$$x_{k+1} = H(x_k, \omega_k) + U_k, \quad U_k \sim \mathcal{N}(0, \Sigma),$$

1480 where $H(x, \omega)$ denotes the endpoint of one reshuffled pass started at x with permutation ω (i.e.,
 1481 the map induced by n inner updates with step size γ). Then $(x_k)_{k \geq 0}$ is a time-homogeneous
 1482 Markov chain on \mathbb{R}^d with transition kernel

$$P(x, A) = \frac{1}{n!} \sum_{\omega \in \mathfrak{S}_n} \int_A \phi(y; H(x, \omega), \Sigma) dy, \quad A \in \mathcal{B}(\mathbb{R}^d),$$

1483 where $\phi(\cdot; m, \Sigma)$ is the d -variate Gaussian density with mean m and covariance Σ .
 1484

1485 *Proof.* Fix $\gamma > 0$ and $n \in \mathbb{N}$. For any $x \in \mathbb{R}^d$ and $\omega \in \mathfrak{S}_n$, define the inner-epoch recursion

$$x^{[0]}(x, \omega) = x, \quad x^{[j+1]}(x, \omega) = x^{[j]}(x, \omega) - \gamma F_{\omega[j]}(x^{[j]}(x, \omega)), \quad j = 0, \dots, n-1,$$

1486 and the (measurable) epoch map

$$H(x, \omega) := x - \gamma \sum_{j=0}^{n-1} F_{\omega[j]}(x^{[j]}(x, \omega)).$$

1487 By construction, at epoch k the algorithm updates as

$$x_{k+1} = H(x_k, \omega_k) + U_k,$$

1488 where $(\omega_k)_{k \geq 0}$ are i.i.d. uniform on \mathfrak{S}_n and $(U_k)_{k \geq 0}$ are i.i.d. with law $\mathcal{N}(0, \Sigma I_d)$, independent of
 1489 $(\omega_k)_{k \geq 0}$ and of x_k given the present state.
 1490

1491 *Markov property.* Let $A \in \mathcal{B}(\mathbb{R}^d)$. Using the tower property and the independence of ω_k, U_k from
 1492 the past given x_k ,

$$\Pr(x_{k+1} \in A \mid x_0, \dots, x_k) = \mathbb{E} \left[\Pr(H(x_k, \omega_k) + U_k \in A \mid x_k, \omega_k) \mid x_k \right] = \mathbb{E}[\Pr(H(x_k, \omega) + U \in A)],$$

1493 where the outer expectation is over $\omega \sim \text{Unif}(\mathfrak{S}_n)$ and $U \sim \mathcal{N}(0, \Sigma I_d)$, independent. Thus

$$\Pr(x_{k+1} \in A \mid x_0, \dots, x_k) = \Pr(x_{k+1} \in A \mid x_k) =: P(x_k, A),$$

1494 so $(x_k)_{k \geq 0}$ is a Markov chain.
 1495

1512 *Time-homogeneity and kernel.* Since the joint law of (ω_k, U_k) does not depend on k , the transition
 1513 kernel P is time-invariant. By conditioning on ω and integrating over the Gaussian U ,
 1514

$$1515 P(x, A) = \frac{1}{n!} \sum_{\omega \in \mathfrak{S}_n} \Pr(H(x, \omega) + U \in A) = \frac{1}{n!} \sum_{\omega \in \mathfrak{S}_n} \int_A \phi(y; H(x, \omega), \Sigma I_d) dy,$$

1517 where $\phi(\cdot; m, \Sigma I_d)$ denotes the d -variate Gaussian density with mean m and covariance ΣI_d . This
 1518 yields the stated expression for P and establishes time-homogeneity on \mathbb{R}^d .
 1519

1520 *Augmented formulation (for reference).* On the product space $\mathbb{R}^d \times \mathfrak{S}_n$, define the next permutation
 1521 $\omega' \sim \text{Unif}(\mathfrak{S}_n)$ independently of (x, ω) and U . Then the augmented chain $((x_k, \omega_k))_{k \geq 0}$ satisfies
 1522

$$1523 (x', \omega') = (H(x, \omega) + U, \omega'),$$

1524 and the associated kernel is
 1525

$$1526 K((x, \omega), A \times B) = \int_A \phi(y; H(x, \omega), \Sigma I_d) dy \cdot \frac{|B|}{n!},$$

1527 which is manifestly time-homogeneous. \square
 1528

1530 We, next, show that there exists an energy function that describes the iterates of the Markov chain.
 1531

1532 D.2 PROOF OF FOSTER-LYAPUNOV INEQUALITY

1533 A central tool for proving stability and ergodicity of Markov chains is the *Foster–Lyapunov inequality*.
 1534 The idea is to construct an “energy” or “Lyapunov” function $\mathcal{E}(x, x^*)$ that tracks the distance of
 1535 the chain’s state from equilibrium. If this function decreases on average outside a bounded region,
 1536 it ensures that the process cannot drift to infinity and will instead return frequently to a compact set.
 1537 This property, when combined with the minorization condition, implies positive Harris recurrence
 1538 and geometric ergodicity (Meyn & Tweedie, 2012).
 1539

1540 In our case, a natural candidate for such an energy is the squared distance to a solution x^* , up
 1541 to an additive constant. The following corollary verifies that this choice indeed satisfies a Fos-
 1542 ter–Lyapunov inequality for Perturbed SGD– $\mathbb{R}\mathbb{R}_1$, showing that the expected energy after one epoch
 1543 contracts linearly up to a fixed additive term.
 1544

Corollary D.3. Let Assumptions 2.1-2.3 hold. The function $\mathcal{E}(x_0^k, x^*) = \|x_0^k - x^*\|_2^2 + 1$ satisfies
 1545 for any $x^* \in \mathcal{X}^*$ the inequality

$$1546 \mathbb{E}[\mathcal{E}(x_0^{k+1}, x^*) | \mathcal{F}_k] \leq c_1 \mathcal{E}(x_0^k, x^*) + c_2,$$

1547 where $c_1 = 1 - \frac{\gamma n \mu}{2}$ and $c_2 = \frac{\gamma n \mu}{2} + \frac{8n\gamma^2 L_{\max}^2}{\mu^2} \sigma_*^2 + \frac{8\lambda}{\mu}$.
 1548

1551 *Proof.* From inequality (21) of Theorem 3.1, we have that
 1552

$$1553 \mathbb{E}[\|x_{k+1}^0 - x^*\|^2 | \mathcal{F}_k] \leq \left(1 - \frac{\gamma n \mu}{2}\right)^{k+1} \|x_0^0 - x^*\|^2 + \frac{8n\gamma^2 L_{\max}^2}{\mu^2} \sigma_*^2 + \frac{8\lambda}{\mu}$$

1556 Adding in both sides one and using the definition of $\mathcal{E}(x_0^k, x^*)$, we obtain
 1557

$$1558 \mathbb{E}[\|x_{k+1}^0 - x^*\|^2 + 1 | \mathcal{F}_k] \leq \left(1 - \frac{\gamma n \mu}{2}\right) (\|x_k^0 - x^*\|^2 + 1) + \frac{\gamma n \mu}{2} + \frac{8n\gamma^2 L_{\max}^2}{\mu^2} \sigma_*^2 + \frac{8\lambda}{\mu}$$

$$1559 \iff \mathbb{E}[\mathcal{E}(x_0^{k+1}, x^*) | \mathcal{F}_k] \leq c_1 \mathcal{E}(x_0^k, x^*) + c_2 \quad (22)$$

1562 where at the last step we have let $c_1 = 1 - \frac{\gamma n \mu}{2}$ and $c_2 = \frac{\gamma n \mu}{2} + \frac{8n\gamma^2 L_{\max}^2}{\mu^2} \sigma_*^2 + \frac{8\lambda}{\mu}$. \square
 1563

1564
 1565

1566 **Lemma D.4.** Let Assumptions 2.1-2.3 hold. If $\gamma \leq \gamma_{max}$, then for any fixed $x^* \in \mathcal{X}^*$ the
 1567 functions $\mathcal{E}_1(x, x^*) = \mathcal{E}(x, x^*)$, $\mathcal{E}_2(x, x^*) = \sqrt{\mathcal{E}(x, x^*)}$ satisfy the geometric drift property for
 1568 the iterates of Perturbed SGD-RR₁, i.e., $\forall i \in \{1, 2\}$ there exist measurable set C_i , constants
 1569 $\alpha_i > 0$, $\tilde{\alpha}_i < \infty$ such that $\forall x \in \mathbb{R}^d$

$$\Delta\mathcal{E}_i(x, x^*) = -\alpha_i\mathcal{E}_i(x, x^*) + \mathbb{1}_C \tilde{\alpha}_i, \quad (23)$$

1572 where $\Delta\mathcal{E}_i(x, x^*) = \int_{x' \in \mathbb{R}^d} P(x, dx')\mathcal{E}_i(x') - \mathcal{E}_i(x)$ and the constant $\gamma_{max} =$
 1573 $\min\left\{\frac{1}{3nL_{max}}, \frac{\sqrt{1+6\mu^2L_{max}^2}-1}{12nL_{max}^2}\right\}$.
 1574

1576 *Proof.* In order to prove that the geometric drift property is satisfied, we need to show that there exist
 1577 function $\mathcal{E}_1 : \mathbb{R}^d \rightarrow [1, +\infty]$, measurable set C_i and constants $\alpha_i > 0$, $\tilde{\alpha}_i < \infty$ such that (23) holds.
 1578 From Corollary D.3, we have that the function $\mathcal{E}_1 : \mathbb{R}^d \rightarrow [1, +\infty]$ with $\mathcal{E}_1(x, x^*) = \|x - x^*\|^2 + 1$
 1579 satisfies along the iterates of Perturbed SGD-RR₁ that

$$\mathbb{E}[\mathcal{E}_1(x_{k+1}, x^*) | \mathcal{F}_k : \{x_k = x\}] \leq c_1\mathcal{E}_1(x, x^*) + c_2, \quad (24)$$

1580 where $c_1 = 1 - \frac{\gamma n \mu}{2}$ and $c_2 = \frac{\gamma n \mu}{2} + \frac{8n\gamma^2 L_{max}^2}{\mu^2} \sigma_*^2 + \frac{8\lambda}{\mu}$. Additionally, for the epoch-level iterates
 1581 x_k of Perturbed SGD-RR₁ the definition of $\Delta\mathcal{E}$ is

$$\begin{aligned} \Delta\mathcal{E}_1(x, x^*) &= \int_{x' \in \mathbb{R}^d} P(x, dx')\mathcal{E}_1(x', x^*) - \mathcal{E}_1(x, x^*) \\ &= \mathbb{E}[\mathcal{E}_1(x_{k+1}, x^*) - \mathcal{E}_1(x_k, x^*) | \mathcal{F}_k : \{x_k = x\}]. \end{aligned} \quad (25)$$

1589 From (24) and (25), we have that

$$\begin{aligned} \mathbb{E}[\mathcal{E}_1(x_{k+1}, x^*) | \mathcal{F}_k : \{x_k = x\}] &\leq c_1\mathcal{E}_1(x) + c_2 \\ \Rightarrow \mathbb{E}[\mathcal{E}_1(x_{k+1}, x^*) - \mathcal{E}_1(x_k, x^*) | \mathcal{F}_k : \{x_k = x\}] &\leq -(1 - c_1)\mathcal{E}_1(x, x^*) + c_2 \\ \Rightarrow \Delta\mathcal{E}_1(x, x^*) &\leq -(1 - c_1)\mathcal{E}_1(x, x^*) + c_2 \end{aligned} \quad (26)$$

1596 Let $C_1 = \{x \in \mathbb{R}^d : \mathcal{E}_1(x, x^*) \leq \frac{2c_2}{(1-c_1)}\}$. We have that

$$\begin{aligned} \Delta\mathcal{E}_1(x, x^*) &\leq -(1 - c_1)\mathcal{E}_1(x, x^*) + \mathbb{1}_C(x)c_2 + \mathbb{1}_{C^c}(x)\frac{1 - c_1}{2}\mathcal{E}_1(x, x^*) \\ &\leq -\frac{1 - c_1}{2}\mathcal{E}_1(x, x^*) + \mathbb{1}_{C_1}(x)c_2 \end{aligned} \quad (27)$$

1602 where at the last step we used the fact that $\mathbb{1}_{C_1^c}(x) < 1$ and $c_1 \in (0, 1)$. From (27) we conclude that
 1603 $\mathcal{E}_1(x, x^*)$ satisfies the geometric drift property for the set $C_1 = \{x \in \mathbb{R}^d : \mathcal{E}_1(x) \leq \frac{2c_2}{(1-c_1)}\}$ and
 1604 with constants $\alpha = \frac{1-c_1}{2}$, $a = c_2$.

1606 For the $\mathcal{E}_2(x, x^*) = \sqrt{\mathcal{E}(x, x^*)}$, by Jensen's inequality it holds that

$$\begin{aligned} \mathbb{E}[\sqrt{\mathcal{E}(x_{k+1}, x^*)} | \mathcal{F}_k : \{x_k = x\}] &\leq \sqrt{\mathbb{E}[\mathcal{E}(x_{k+1}, x^*) | \mathcal{F}_k : \{x_k = x\}]} \\ &\leq \sqrt{c_1\mathcal{E}(x, x^*) + c_2} \\ &\leq \sqrt{c_1}\sqrt{\mathcal{E}(x, x^*)} + \sqrt{c_2} \end{aligned}$$

1613 Thus, there exist constants $d_1 = \sqrt{c_1}$, $d_2 = \sqrt{c_2}$ such that it holds

$$\mathbb{E}[\mathcal{E}_2(x_{k+1}, x^*) | \mathcal{F}_k : \{x_k = x\}] \leq d_1\mathcal{E}_2(x, x^*) + d_2, \quad (28)$$

1616 Since it holds that

$$\Delta\mathcal{E}_2(x, x^*) = \int_{x' \in \mathbb{R}^d} P(x, dx')\mathcal{E}_2(x', x^*) - \mathcal{E}_2(x, x^*) = \mathbb{E}[\mathcal{E}_2(x_{k+1}, x^*) - \mathcal{E}_2(x_k, x^*) | \mathcal{F}_k : \{x_k = x\}], \quad (29)$$

1620 we have that

$$\begin{aligned} 1621 \mathbb{E}[\mathcal{E}_2(x_{k+1}, x^*) - \mathcal{E}_2(x_k, x^*) \mid \mathcal{F}_k : \{x_k = x\}] &\leq -(1 - d_1)\mathcal{E}_2(x, x^*) + d_2 \\ 1622 \Rightarrow \Delta\mathcal{E}_2(x, x^*) &\leq -(1 - d_1)\mathcal{E}_2(x, x^*) + d_2 \end{aligned} \quad (30)$$

1623 Let $C_2 = \{x \in \mathbb{R}^d : \mathcal{E}_2(x, x^*) \leq \frac{2d_2}{(1-d_1)}\}$. We have that

$$\begin{aligned} 1624 \Delta\mathcal{E}_2(x, x^*) &\leq -(1 - d_1)\mathcal{E}_2(x, x^*) + \mathbb{1}_{C_2(x)} d_2 + \mathbb{1}_{C_2^c(x)} \frac{1 - d_1}{2} \mathcal{E}_2(x, x^*) \\ 1625 &\leq -\frac{1 - d_1}{2} \mathcal{E}_2(x, x^*) + \mathbb{1}_{C_2(x)} d_2 \end{aligned}$$

1626 where at the last step we used the fact that $\mathbb{1}_{C_2^c(x)} < 1$ and $d_1 \in (0, 1)$. Hence, we conclude that
1627 $\mathcal{E}_2(x, x^*)$ satisfies the geometric drift property for the set $C_2 = \{x \in \mathbb{R}^d : \mathcal{E}_2(x) \leq \frac{2d_2}{(1-d_1)}\}$ and
1628 with constants $\alpha_2 = \frac{1-d_1}{2}$, $\tilde{\alpha} = d_2$. \square

1629 D.3 PROOF OF MINORIZATION PROPERTY

1630 The next step in establishing ergodicity is to verify a *minimization condition*. Intuitively, this prop-
1631 erty guarantees that whenever the chain is in a certain ‘‘small set’’ C , its one-step transition kernel
1632 dominates a fixed nontrivial distribution ν , uniformly with probability $\delta > 0$. In other words, starting
1633 from any $x \in C$, the algorithm has a baseline chance of moving into any region of the state space
1634 according to ν . This is the key ingredient that, together with a Lyapunov–Foster drift condition,
1635 yields geometric ergodicity of the Markov chain. The following lemma formalizes this property for
1636 the iterates of Perturbed SGD–RR₁.
1637

Lemma D.5 (Minimization property). Let Assumptions 2.1–2.3 hold. If $\gamma \leq \gamma_{\max}$, then the
1644 iterates of Perturbed SGD–RR₁ satisfy the minimization condition: there exist a constant
1645 $\delta > 0$, a probability measure ν on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$, and a set $C \subseteq \mathbb{R}^d$ such that $\nu(C) = 1$, $\nu(C^c) = 0$,
1646 and

$$1647 P(x, A) \geq \delta \mathbb{1}_C(x) \nu(A), \quad \forall x \in \mathbb{R}^d, A \in \mathcal{B}(\mathbb{R}^d), \quad (31)$$

1648 where $P(x, A) = \Pr(x_{k+1} \in A \mid x_k = x)$ and $\gamma_{\max} = \min \left\{ \frac{1}{3nL_{\max}}, \frac{\sqrt{1+6\mu^2L_{\max}^2}-1}{12nL_{\max}^2} \right\}$.

1651 *Proof.* Consider the Lyapunov candidate $\mathcal{E}(x) = \|x - x^*\|^2 + 1$ for some $x^* \in \mathcal{X}^*$. Its sublevel
1652 sets

$$1653 C(r) := \{x \in \mathbb{R}^d : \mathcal{E}(x) \leq r\} = \mathbb{B}(x^*, \sqrt{r-1}), \quad r > 1,$$

1654 are bounded, hence suitable for applying small/petite set arguments.

1655 At each epoch, the update of Perturbed SGD–RR₁ can be described by

$$1656 x_{k+1} = H(x_k, \omega_k) + U_k,$$

1657 where ω_k is uniform on \mathfrak{S}_n and $U_k \sim \mathcal{N}(0, \Sigma I_d)$, independent of ω_k and x_k . Thus, for any
1658 $A \in \mathcal{B}(\mathbb{R}^d)$,

$$1659 P(x, A) = \frac{1}{n!} \sum_{\omega \in \mathfrak{S}_n} \int_A \phi(y; H(x, \omega), \Sigma) dy,$$

1660 Since $\phi(y; m, \Sigma I_d) > 0$ for all $y \in \mathbb{R}^d$, the kernel has strictly positive support everywhere.

1661 Now fix $r_0 > 1$ and restrict to $C(r_0)$. Define the reference measures for any $A \in \mathcal{B}(\mathbb{R}^d)$

$$1662 \nu(A) := \frac{\text{Leb}(A \cap C(r_0))}{\text{Leb}(C(r_0))} \text{ and } \text{Leb}(A) = \int_A \inf_{x \in C(r_0)} \frac{1}{n!} \sum_{\omega \in \mathfrak{S}_n} \phi(y; H(x, \omega), \Sigma) dy.$$

1663 i.e., the uniform probability distribution over $C(r_0)$. Clearly $\nu(C(r_0)) = 1$ and $\nu(C(r_0)^c) = 0$.

1664 Finally, by continuity of ϕ and compactness of $C(r_0)$, there exists $\delta \geq \text{Leb}(C(r_0)) > 0$ such that

$$1665 P(x, A) \geq \delta \nu(A), \quad \forall x \in C(r_0), A \subseteq C(r_0).$$

1666 If $x \notin C(r_0)$ or $A \not\subseteq C(r_0)$, the right-hand side of (31) is zero and the inequality is trivially satisfied.
1667 Hence the minimization condition (31) holds. \square

1674

D.4 PROOF OF IRREDUCIBILITY, APERIODICITY AND HARRIS AND POSITIVE RECURRENCE

1675

Lemma D.6. The Markov chain $(x_k)_{k \geq 0}$ of Perturbed SGD-RR₁ is

1676

1. ψ -irreducible for some non-zero σ -finite measure ψ on \mathbb{R}^d over the Borel σ -algebra of \mathbb{R}^d .
2. strongly aperiodic.
3. Harris and positive recurrent with an invariant measure.

1677

1678

1679

1680

1681

Proof. We prove each of the three properties in turn.

1682

1683

Irreducibility. From Lemma D.5, the Markov kernel of Perturbed SGD-RR₁ is

1684

1685

1686

1687

1688

1689

1690

$$P(x, A) = \frac{1}{n!} \sum_{\omega \in \mathfrak{S}_n} \int_A \phi(y; H(x, \omega), \Sigma I_d) dy, \quad A \in \mathcal{B}(\mathbb{R}^d),$$

where $\phi(\cdot; m, \Sigma I_d)$ is a Gaussian density with strictly positive support. Hence, for any measurable set A of positive Lebesgue measure, $P(x, A) > 0$. Taking ψ to be the Lebesgue measure, we conclude that the chain is ψ -irreducible.

1691

Strong Aperiodicity. By Lemma D.5, there exist $\delta > 0$, a probability measure ν , and a set $C \subseteq \mathbb{R}^d$ such that

1692

1693

1694

1695

1696

1697

$$P(x, A) \geq \delta \mathbb{1}_C(x) \nu(A), \quad \forall x \in \mathbb{R}^d, A \in \mathcal{B}(\mathbb{R}^d).$$

Since C has positive Lebesgue measure and $\nu(C) = 1$, $\nu(C^\circ) = 0$ and given that the sets $C(r)$ in the proof of the Lemma D.5 are small and of positive measure, we get that the Markov chain is strongly aperiodic.

1698

1699

1700

1701

Harris and Positive Recurrence. By Proposition D.1, the small set C of Lemma D.5 is also petite. Combined with the Foster-Lyapunov drift condition of Lemma D.4, the Geometric Ergodic Theorem (Theorem 15.0.1 in (Meyn & Tweedie, 2012)) guarantees that the chain is positive recurrent and admits an invariant probability measure.

1702

1703

1704

1705

Finally, from Theorem 9.1.8 of (Meyn & Tweedie, 2012), the existence of a Lyapunov function unbounded off petite sets, satisfying $\Delta \mathcal{E} \leq 0$ together with ψ -irreducibility, implies Harris recurrence. \square

1706

1707

1708

D.5 PROOF OF EXISTENCE OF UNIQUE INVARIANT DISTRIBUTION AT EPOCH-LEVEL (THEOREM 3.3)

1709

1710

1711

By verifying irreducibility, aperiodicity, and *positive Harris recurrence* (Meyn & Tweedie, 2012), we establish a unique invariant distribution π_γ , geometric convergence in total variation to it, and concentration of scalar observables (admissible test functions) around x^* .

1712

1713

1714

Theorem D.7 (Restatement of Theorem 3.3). Under Assumptions 2.1–2.3, run Perturbed SGD-RR₁ with $\gamma \leq \gamma_{\max}$. Then $(x_k)_{k \geq 0}$ admits a unique stationary distribution $\pi_\gamma \in \mathcal{P}_2(\mathbb{R}^d)$, and additionally:

1715

1716

1717

1718

1719

1720

- (i) $|\mathbb{E}[\ell(x_k)] - \mathbb{E}_{x \sim \pi_\gamma}[\ell(x)]| \leq c(1 - \rho)^k \quad \forall \ell : |\ell(x)| \leq L_\ell(1 + \|x\|),$
- (ii) $|\mathbb{E}_{x \sim \pi_\gamma}[\ell(x)] - \ell(x^*)| \leq L_\ell \sqrt{C} \quad \forall \ell : L_\ell - \text{Lipschitz functions},$

for some $c < \infty$, $\rho \in (0, 1)$, $C = \Theta(\text{MSE}(\text{SGD} - \text{RR}_1))$ and γ_{\max} defined in Theorem 3.1

1721

1722

1723

1724

1725

1726

Proof. From Lemma D.6, we have that the underlying Markov Chain has an invariant probability measure. Since from Lemma D.4 the induced Markov Chain satisfies the geometric drift property, according to the Strong Ergodic Theorem (Meyn & Tweedie, 2012) we conclude that the measure is finite and unique. From the invariant property of π_γ , we have that for $x_0 \sim \pi_\gamma$ the iterates satisfy also that $(x_k)_{k > 0} \sim \pi_\gamma$. From Corollary D.3, we have that for an arbitrary fixed x^* the iterates of Perturbed SGD-RR₁ with step size $\gamma \leq \gamma_{\max}$ satisfy for $c_1 \in (0, 1)$, $c_2 > 0$ that

1727

$$\mathbb{E}[\|x_{k+1} - x^*\|_2^2 + 1 | \mathcal{F}_k] \leq c_1 (\|x_k - x^*\|_2^2 + 1) + c_2.$$

1728 Taking expectation with respect to the invariant measure π_γ and using the tower law of expectation,
 1729 we get
 1730

$$1731 \mathbb{E}_{x \sim \pi_\gamma} [\|x - x^*\|_2^2] \leq \frac{c_1 + c_2 - 1}{1 - c_1} = \mathcal{O} \left(\frac{\max(\gamma, \lambda)}{\mu} \right) < +\infty. \quad (32)$$

1733 Combining the above inequality with the fact that $\|x_*\| \leq R$ by Assumption 2.1, we conclude that
 1734 the invariant measure $\pi_\gamma \in \mathcal{P}_2(\mathbb{R}^d)$, where $\mathcal{P}_2(\mathbb{R}^d)$ is the set of distributions supported in \mathbb{R}^d with
 1735 finite second moment.

1736 We, next, proceed with proving the second statement of the Theorem. By assumption, we have that
 1737 the test function satisfies $\forall x \in \mathbb{R}_{\geq 0}^d$ that
 1738

$$\begin{aligned} 1739 |\ell(x)| &\leq L_\ell(1 + \|x\|) \\ 1740 &\leq L_\ell(1 + \|x^*\| + \|x - x^*\|) \\ 1741 &\leq L_\ell(1 + R + \|x - x^*\|) \\ 1742 &\leq (1 + R)L_\ell(1 + \|x - x^*\|) \end{aligned} \quad (33)$$

1744 where we have used the triangle inequality and the fact that $\|x^*\| \leq R$. Applying Cauchy-Schwarz
 1745 inequality, we can further upper bound $\|\ell(x)\|$

$$\begin{aligned} 1746 |\ell(x)| &\leq \sqrt{2}(1 + R)L_\ell\sqrt{1 + \|x - x^*\|} \\ 1747 &\leq \max(1, \sqrt{2}(1 + R)L_\ell)\sqrt{\mathcal{E}(x, x^*)} \end{aligned} \quad (34)$$

1750 Letting $c = \max(1, \sqrt{2}(1 + R)L_\ell)$ and $\tilde{\mathcal{E}}(x, x^*) = c\sqrt{\mathcal{E}(x, x^*)}$, we have that
 1751

$$1752 |\ell(x)| \leq \tilde{\mathcal{E}}(x, x^*)$$

1754 From Lemma D.4 we have that $\mathcal{E}_1(x, x^*), \mathcal{E}_2(x, x^*)$ satisfy the geometric drift property and since
 1755 $c \geq 1$ we have that $\tilde{\mathcal{E}}(x, x^*) = c\mathcal{E}_2(x, x^*)$ satisfies also the geometric drift property. According to
 1756 Theorem 16.0.1 in (Meyn & Tweedie, 2012) Perturbed SGD-RR₁ is $\tilde{\mathcal{E}}$ -uniformly ergodic and there
 1757 exists $\rho \in (0, 1)$ and $R \in (0, +\infty)$ such that

$$1758 \left| P^k \ell(x_0) - \mathbb{E}_{x \sim \pi_\gamma} [\ell(x)] \right| \leq R(1 - \rho)^k |\tilde{\mathcal{E}}(x_0, x^*)| \quad (35)$$

1760 Letting $c = R |\tilde{\mathcal{E}}(x_0, x^*)|$, we have proven the inequality in the statement of the theorem. In order
 1761 to show that the epoch-level iterates converge under the total variation distance it suffices to consider
 1762 only functions $\ell : \mathbb{R}^d \rightarrow \mathbb{R}$ that are bounded by 1. In this case, there are constants $\tilde{\rho} \in (0, 1)$ and
 1764 $\tilde{R} \in (0, +\infty)$ independent of ℓ such that it holds

$$1765 \sup_{|\ell| \leq 1} \left| P^k \ell(x_0) - \mathbb{E}_{x \sim \pi_\gamma} [\ell(x)] \right| \leq \tilde{R}(1 - \tilde{\rho})^k |\tilde{\mathcal{E}}(x_0, x^*)|$$

1768 implying according to the dual representation of Radon metric for bounded initial conditions
 1769 (Wikipedia, Accessed: 2025-08-28) the geometric convergence under the total variation distance.

1770 In order to prove the third statement of the theorem, we apply linearity of expectation and the
 1771 Lipschitz property of the test function ℓ and obtain

$$\begin{aligned} 1773 \left| \mathbb{E}_{x \sim \pi_\gamma} [\ell(x)] - \ell(x^*) \right| &\leq \mathbb{E}_{x \sim \pi_\gamma} [|\ell(x) - \ell(x^*)|] \\ 1774 &\leq \mathbb{E}_{x \sim \pi_\gamma} [L_\ell \|x - x^*\|] \end{aligned}$$

1775 Applying Cauchy-Schwarz inequality and using inequality (32), we obtain that
 1776

$$1777 \left| \mathbb{E}_{x \sim \pi_\gamma} [\ell(x)] - \ell(x^*) \right| \leq L_\ell \sqrt{\mathbb{E}_{x \sim \pi_\gamma} [\|x - x^*\|]} \leq L_\ell \sqrt{D}$$

1778 where $D \propto \frac{\max(\gamma, \lambda)}{\mu}$ according to (32). □
 1779

1782 We conclude with the establishment of a Law of Large Numbers (LLN) and the corresponding
 1783 Centra limit Theorem (CLT) that describe the epoch-level iterates of Perturbed SGD-RR₁.
 1784

1785 **D.6 PROOF OF LIMIT THEOREMS OF EPOCH-LEVEL ITERATES**
 1786 (**THEOREM 3.3**)

1787 **Theorem D.8** (Restatement of Theorem 3.4). Suppose Assumptions 2.1–2.3 hold and run
 1788 Perturbed SGD-RR₁ with $\gamma \leq \gamma_{\max}$, (cf. Theorem 3.1).

1790 Let $\ell : \mathbb{R}^d \rightarrow \mathbb{R}$ be any test function such that $|\ell(x)| \leq L_\ell(1 + \|x\|^2)$ and $\mathbb{E}_{x \sim \pi_\gamma}[\ell(x)] < \infty$.
 1791 Then for the epoch-level iterates, it holds that:

$$\underbrace{\frac{1}{T} \sum_{t=0}^{T-1} \ell(x_t)}_{(\text{LLN})} \xrightarrow{\text{a.s.}} \mathbb{E}_{x \sim \pi_\gamma}[\ell(x)] \quad \underbrace{T^{-1/2} \sum_{t=0}^{T-1} (\ell(x_t) - \mathbb{E}_{x \sim \pi_\gamma}[\ell(x)])}_{(\text{CLT})} \xrightarrow{d} \mathcal{N}(0, \sigma_{\pi_\gamma}^2(\ell)),$$

1797 where $\sigma_{\pi_\gamma}^2(\ell) = \lim_{T \rightarrow \infty} \frac{1}{T} \mathbb{E}_{\pi_\gamma}[S_T^2]$ and $S_T^2 = \sum_{t=0}^{T-1} (\ell(x_t) - \mathbb{E}_{x \sim \pi_\gamma}[\ell(x)])^2$.
 1798

1799 *Proof.* We show that the Markov Chain induced by the epoch-level iterates of Perturbed SGD-RR₁
 1800 is Harris positive recurrent, it has an invariant measure and satisfies \mathcal{E} -uniform ergodicity, and hence
 1801 by Theorem 17.0.1 in (Meyn & Tweedie, 2012) the stated Law of Large Numbers and Central Limit
 1802 Theorem hold.

1803 From Lemma D.6, we have that the Markov Chain is Harris positive recurrent with an invariant
 1804 measure. It suffices, thus, to show that the chain is \mathcal{E} -uniform ergodic by proving that there exists a
 1805 potential function $\mathcal{E}(\cdot)$ such that the chain satisfies the geometric drift property of Meyn & Tweedie
 1806 (2012) and $|\ell(x)|^2 \leq \mathcal{E}(x)$. Let $\mathcal{E}(x, x^*) = \mathbb{E}[\mathcal{E}(x_0^{k+1}, x^*) | \mathcal{F}_k]$ for any fixed $x^* \in \mathcal{X}^*$. According
 1807 to Lemma D.4, $\mathcal{E}(x, x^*)$ satisfies the geometric drift property. Additionally, since ℓ has a linear
 1808 growth it holds that

$$\begin{aligned} |\ell(x)|^2 &\leq L_\ell^2(1 + \|x\|^2)^2 \\ &\leq L_\ell^2(1 + \|x^*\| + \|x - x^*\|)^2 \\ &\leq L_\ell^2(1 + R + \|x - x^*\|)^2 \\ &\leq L_\ell^2(1 + R)^2(1 + \|x - x^*\|)^2 \end{aligned} \tag{36}$$

1815 From Cauchy-Schwarz inequality, it holds that

$$\begin{aligned} 1 + \|x - x^*\| &\leq \sqrt{2} \sqrt{1 + \|x - x^*\|^2} \\ \Rightarrow (1 + \|x - x^*\|)^2 &\leq 2(1 + \|x - x^*\|^2) \\ \Rightarrow (1 + \|x - x^*\|)^2 &\leq 2\mathcal{E}(x, x^*) \end{aligned} \tag{37}$$

1822 Thus, combining (37) and (36), we obtain

$$|\ell(x)|^2 \leq 2L_\ell^2(1 + R)^2\mathcal{E}(x, x^*) \tag{38}$$

1825 Thus, $\mathcal{E}(x, x^*)$ satisfies the geometric drift property and it holds that $|\ell(x)|^2 \leq \mathcal{E}(x, x^*)$ and hence
 1826 the chain is \mathcal{E} -uniform ergodic, completing the proof. \square

1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835

1836 E BOUNDING 4TH-ORDER MOMENTS OF ERROR DISTANCE
18371838 E.1 HIGHER ORDER VERSION OF PROPOSITION A.2 (EMMANOUILIDIS ET AL., 2024) -
1839 BOUND OF KURTOSIS FOR LIPSCHITZ OPERATORS1840 **Proposition E.1.** Let Assumption 2.3 hold. For any $x \in \mathbb{R}^d$ and any reference point $x^* \in \mathbb{R}^d$, it
1841 holds that

1842
$$\frac{1}{n} \sum_{i=1}^n \|F_i(x) - F(x)\|^4 \leq 128 \left(\frac{1}{n} \sum_{i=1}^n L_i^4 \right) \|x - x^*\|^4 + 128 \sigma_*^4,$$

1843

1844 where $\sigma_*^4 := \frac{1}{n} \sum_{i=1}^n \|F_i(x^*)\|^4$.
1845

1846 *Proof.* Define
1847

1848
$$\Delta_i := F_i(x) - F_i(x^*), \quad \Delta := \frac{1}{n} \sum_{j=1}^n \Delta_j = F(x) - F(x^*), \quad \xi_i := F_i(x^*) - F(x^*).$$

1849

1850 Then $F_i(x) - F(x) = (\Delta_i - \Delta) + \xi_i$. Using $(a + b)^4 \leq 8(a^4 + b^4)$, we have that
1851

1852
$$\|F_i(x) - F(x)\|^4 \leq 8\|\Delta_i - \Delta\|^4 + 8\|\xi_i\|^4.$$

1853

1854 Applying the same inequality once more to $\Delta_i - \Delta$, we obtain
1855

1856
$$\|\Delta_i - \Delta\|^4 \leq 8(\|\Delta_i\|^4 + \|\Delta\|^4).$$

1857

1858 Averaging over i and using Jensen's inequality for the convex map $u \mapsto \|u\|^4$,
1859

1860
$$\frac{1}{n} \sum_{i=1}^n \|F_i(x) - F(x)\|^4 \leq 128 \left(\frac{1}{n} \sum_{i=1}^n \|\Delta_i\|^4 \right) + 8 \left(\frac{1}{n} \sum_{i=1}^n \|\xi_i\|^4 \right).$$

1861

1862 Moreover, $\|\xi_i\| = \|F_i(x^*) - F(x^*)\| \leq \|F_i(x^*)\| + \|F(x^*)\|$, hence by $(a + b)^4 \leq 8(a^4 + b^4)$ and
1863 Jensen,
1864

1865
$$\frac{1}{n} \sum_{i=1}^n \|\xi_i\|^4 \leq 16 \left(\frac{1}{n} \sum_{i=1}^n \|F_i(x^*)\|^4 \right) = 16 \sigma_*^4.$$

1866

1867 By Lipschitz continuity, we have
1868

1869
$$\|\Delta_i\| = \|F_i(x) - F_i(x^*)\| \leq L_i \|x - x^*\| \Rightarrow \frac{1}{n} \sum_{i=1}^n \|\Delta_i\|^4 \leq \left(\frac{1}{n} \sum_{i=1}^n L_i^4 \right) \|x - x^*\|^4.$$

1870

1871 Combine the last two inequalities to obtain
1872

1873
$$\frac{1}{n} \sum_{i=1}^n \|F_i(x) - F(x)\|^4 \leq 128 \left(\frac{1}{n} \sum_{i=1}^n L_i^4 \right) \|x - x^*\|^4 + 128 \sigma_*^4$$

1874

1875 \square 1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

1890 **E.2 A COMBINATORIAL TOOL FOR HIGHER-ORDER MOMENTS IN SAMPLING WITHOUT**
 1891 **REPLACEMENT**
 1892

1893 As part of our analysis, we require bounds on the fourth moment of empirical averages when the
 1894 underlying data are sampled *without replacement*. While this result is of independent combinatorial
 1895 interest—appearing naturally in the study of randomization effects and variance reduction—it also
 1896 plays a technical role in controlling higher-order error terms in our proofs. The following lemma
 1897 provides a clean upper bound in terms of simple population statistics such as $\hat{\Sigma}$ and S_4 .

1898 **Lemma E.2** (Fourth moment of a sample mean; upper bound). Let $X_1, \dots, X_n \in \mathbb{R}^d$ be fixed
 1899 vectors, let

$$1900 \bar{X} := \frac{1}{n} \sum_{i=1}^n X_i, \quad r_i := X_i - \bar{X}, \quad \hat{\Sigma} := \frac{1}{n} \sum_{i=1}^n r_i r_i^\top,$$

1903 and define the population sums

$$1904 S_4 := \sum_{i=1}^n \|r_i\|^4, \quad U_2 := \sum_{i \neq j} \|r_i\|^2 \|r_j\|^2, \quad T_2 := \sum_{i \neq j} (r_i^\top r_j)^2.$$

1907 Draw a size- k simple random sample without replacement, with indices $(\omega_1, \dots, \omega_n)$ uniformly
 1908 chosen among all k -subsets, and set $\bar{X}_\omega = \frac{1}{k} \sum_{t=1}^k X_{\omega_t}$. Then

$$1910 \mathbb{E} \|\bar{X}_\omega - \bar{X}\|^4 \leq \frac{1}{k^4} \left[\frac{k}{n} S_4 + \frac{9k(k-1)}{n(n-1)} (n^2 (\text{tr } \hat{\Sigma})^2 - S_4) \right]. \quad (39)$$

1913 *Proof.* Write $S := \sum_{t=1}^k r_{\omega_t}$ so that $\bar{X}_\omega - \bar{X} = \frac{1}{k} S$ and $\|\bar{X}_\omega - \bar{X}\|^4 = \frac{1}{k^4} \|S\|^4$. Using the
 1914 Frobenius inner product $\langle A, B \rangle_F = \text{tr}(A^\top B)$,

$$1917 \|S\|^2 = \left\| \sum_{t=1}^k r_{\omega_t} \right\|^2 = \sum_{t,u=1}^k r_{\omega_t}^\top r_{\omega_u} = \left\langle \sum_{t=1}^k r_{\omega_t} r_{\omega_t}^\top, \sum_{u=1}^k r_{\omega_u} r_{\omega_u}^\top \right\rangle_F,$$

1919 and hence

$$1921 \|S\|^4 = \left(\sum_{t,u=1}^k r_{\omega_t}^\top r_{\omega_u} \right)^2 = \sum_{t,u,s,v=1}^k (r_{\omega_t}^\top r_{\omega_u})(r_{\omega_s}^\top r_{\omega_v}).$$

1923 Taking expectation and using the inclusion probabilities for simple random sampling without re-
 1924 placement,

$$1926 \mathbb{P}(\omega_a = i) = \frac{1}{n}, \quad \mathbb{P}(\omega_a = i, \omega_b = j) = \frac{1}{n(n-1)} \quad (i \neq j),$$

1927 we may group terms by the equality pattern among the *positions* (t, u, s, v) (Hoeffding/U-statistics
 1928 enumeration). Only three patterns survive:

1930 **(P1) Diagonal-diagonal:** $(t = u)$ and $(s = v)$. This contributes

$$1932 \frac{k}{n} S_4 + \frac{k(k-1)}{n(n-1)} U_2.$$

1934 **(P2) Diagonal-off-diagonal (or vice versa):** exactly one of the pairs (t, u) or (s, v) is diagonal and
 1935 the other is off-diagonal. Counting gives a coefficient $4 \binom{k}{1} \binom{k-1}{2}$, leading to the contribution

$$1937 \frac{4 \binom{k}{1} \binom{k-1}{2}}{\binom{n}{1} \binom{n-1}{2}} T_2 = \frac{6k(k-1)}{n(n-1)} T_2.$$

1940 **(P3) Off-diagonal-off-diagonal:** both pairs are off-diagonal but correspond to the same unordered
 1941 pair of distinct sampled units. This yields

$$1942 \frac{2 \binom{k}{2}}{\binom{n}{2}} U_2 = \frac{2 \cdot \frac{k(k-1)}{2}}{\frac{n(n-1)}{2}} U_2 = \frac{2k(k-1)}{n(n-1)} U_2.$$

1944 Summing the three contributions we obtain the exact identity
 1945

$$1946 \quad \mathbb{E} \|\bar{X}_\omega - \bar{X}\|^4 = \frac{1}{k^4} \left[\frac{k}{n} S_4 + \frac{3k(k-1)}{n(n-1)} U_2 + \frac{6k(k-1)}{n(n-1)} T_2 \right]. \quad (40)$$

1948

1949 Next, by Cauchy–Schwarz,
 1950

$$1951 \quad (r_i^\top r_j)^2 \leq \|r_i\|^2 \|r_j\|^2 \quad \text{for all } i \neq j,$$

1952 hence $T_2 \leq U_2$. Plugging this into (40) gives
 1953

$$1954 \quad \mathbb{E} \|\bar{X}_\omega - \bar{X}\|^4 \leq \frac{1}{k^4} \left[\frac{k}{n} S_4 + \frac{(3+6)k(k-1)}{n(n-1)} U_2 \right] = \frac{1}{k^4} \left[\frac{k}{n} S_4 + \frac{9k(k-1)}{n(n-1)} U_2 \right].$$

1956 Finally, observe the exact identity
 1957

$$1958 \quad U_2 = \sum_{i \neq j} \|r_i\|^2 \|r_j\|^2 = \left(\sum_{i=1}^n \|r_i\|^2 \right)^2 - \sum_{i=1}^n \|r_i\|^4 = n^2 (\text{tr } \hat{\Sigma})^2 - S_4,$$

1961 because $\sum_i \|r_i\|^2 = n \text{tr } \hat{\Sigma}$. Substituting this into the previous display yields the claimed bound
 1962 (39). \square
 1964

1965 **Lemma E.3.** Let Assumptions 2.1, 2.3 hold. If Perturbed SGD–RR₁ is run with step size $\gamma \leq$
 1966 $\frac{1}{3nL_{max}}$, then it holds that
 1967

$$1968 \quad \mathbb{E} \left[\sum_{i=1}^{n-1} \|x_k^i - x_k^0\|^4 \mid \mathcal{F}_k \right] \leq 54\gamma^4 C \|x_k - x^*\|^4 + 3456\gamma^4 (n-1)\sigma_*^4 + 972\gamma^4 \frac{n(n+1)}{n-1} (\sigma_*^2)^2$$

1971 where $C = 64nL_{max}^2 + 3n^2(n+1)L_{max}^2 + \frac{n^2(n+1)^2(2n+1)L^4}{10}$.

1973

1974 *Proof.* From the epoch-level update (8), it holds
 1975

$$1976 \quad \|x_k^i - x_k^0\|^4 = \gamma^4 i^4 \left\| \frac{1}{i} \sum_{j=0}^{i-1} F_{\omega_k^j}(x_k^j) \right\|^4$$

$$1977 \quad \stackrel{(3)}{\leq} 27\gamma^4 i^3 \sum_{j=0}^{i-1} \left\| F_{\omega_k^j}(x_k^j) - F_{\omega_k^j}(x_k^0) \right\|^4 + 27\gamma^4 i^4 \left\| \frac{1}{i} \sum_{j=0}^{i-1} F_{\omega_k^j}(x_k^0) - F(x_k^0) \right\|^4$$

$$1978 \quad + 27\gamma^4 i^4 \|F(x_k^0)\|^4$$

$$1979 \quad \stackrel{\text{Assumption 2.3}}{\leq} 27\gamma^4 i^3 L_{max}^4 \sum_{j=0}^{i-1} \|x_k^j - x_k^0\|^2 + 27\gamma^4 i^4 \left\| \frac{1}{i} \sum_{j=0}^{i-1} F_{\omega_k^j}(x_k^0) - F(x_k^0) \right\|^4$$

$$1980 \quad + 27\gamma^4 i^4 \|F(x_k^0)\|^4$$

1989 where at the last step we have used the Lipschitz property of the operators $F_i, \forall i \in [n]$. Taking
 1990 expectation condition on the filtration \mathcal{F}_k , we get
 1991

$$1992 \quad \mathbb{E} \left[\|x_k^i - x_k^0\|^4 \mid \mathcal{F}_k \right] \leq 27\gamma^4 i^3 L_{max}^4 \mathbb{E} \left[\sum_{j=0}^{i-1} \|x_k^j - x_k^0\|^4 \mid \mathcal{F}_k \right]$$

$$1993 \quad + 27\gamma^4 i^4 \mathbb{E} \left[\left\| \frac{1}{i} \sum_{j=0}^{i-1} F_{\omega_k^j}(x_k^0) - F(x_k^0) \right\|^4 \mid \mathcal{F}_k \right] + 27\gamma^4 i^4 \|F(x_k^0)\|^4 \quad (41)$$

1998 Substituting in Lemma E.2 $X_{\omega_t} := F_{\omega_k^j}(x_k^0)$ and $k = n$, we get that
1999

$$\begin{aligned} 2000 \quad & \mathbb{E} \left[\left\| \frac{1}{i} \sum_{j=0}^{i-1} F_{\omega_k^j}(x_k^0) - F(x_k^0) \right\|^4 \middle| \mathcal{F}_k \right] \leq \frac{1}{i^4} \left[\frac{i}{n} S_4 + \frac{9i(i-1)}{n(n-1)} (n^2(\text{tr } \hat{\Sigma})^2 - S_4) \right] \\ 2001 \quad & \leq \frac{1}{i^4} \left[\frac{i}{n} S_4 + \frac{9in(i-1)}{n-1} (\text{tr } \hat{\Sigma})^2 \right] \end{aligned} \quad (42)$$

2006 where $S_4 = \sum_{j=0}^{i-1} \|F_{\omega_k^j}(x_k^0) - F(x_k^0)\|^4 \geq 0$ and $\text{tr } \hat{\Sigma} = \frac{1}{n} \sum_{i=0}^{n-1} \|F_i(x_k^0) - F(x_k^0)\|^2$. We, next,
2007 upper bound the terms S_4 and $\text{tr } \hat{\Sigma}$. From Lemma E.2, we have that
2008

$$2009 \quad S_4 \leq 128 \left(\frac{1}{n} \sum_{i=1}^n L_i^4 \right) \|x_k - x^*\|^4 + 128 \sigma_*^4. \quad (43)$$

2012 Using Proposition A.2 (Emmanouilidis et al., 2024), we have that

$$2014 \quad \text{tr } \hat{\Sigma} = \frac{1}{n} \sum_{i=0}^{n-1} \|F_i(x_k^0) - F(x_k^0)\|^2 \leq A \|x_k - x^*\|^2 + 2\sigma_*^2, \quad (44)$$

2016 since each F_i is Lipschitz. Substituting (43), (44) into (41), we obtain that
2017

$$\begin{aligned} 2018 \quad & i^4 \mathbb{E} \left[\left\| \frac{1}{i} \sum_{j=0}^{i-1} F_{\omega_k^j}(x_k^0) - F(x_k^0) \right\|^4 \middle| \mathcal{F}_k \right] \leq \frac{128i}{n^2} \sum_{i=1}^n L_i^4 \|x_k - x^*\|^4 + \frac{128i}{n} \sigma_*^4 \\ 2019 \quad & + \frac{9i(i-1)}{n-1} (A \|x_k - x^*\|^2 + 2\sigma_*^2)^2 \\ 2020 \quad & \stackrel{(2)}{\leq} \frac{128i}{n^2} A_4 \|x_k - x^*\|^4 + \frac{128i}{n} \sigma_*^4 \\ 2021 \quad & + \frac{18i(i-1)}{n-1} A \|x_k - x^*\|^4 + \frac{36i(i-1)}{n-1} (\sigma_*^2)^2 \end{aligned} \quad (45)$$

2028 where we have let $A_4 := \sum_{i=1}^n L_i^4$ for brevity. From inequality (45) and (41), thus, we obtain
2029

$$\begin{aligned} 2030 \quad & \mathbb{E} \left[\|x_k^i - x_k^0\|^4 \middle| \mathcal{F}_k \right] \leq 27\gamma^4 i^3 L_{\max}^4 \mathbb{E} \left[\sum_{j=0}^{i-1} \|x_k^i - x_k^0\|^4 \middle| \mathcal{F}_k \right] \\ 2031 \quad & + 27\gamma^4 \left[\frac{128i}{n^2} A_4 \|x_k - x^*\|^4 + \frac{128i}{n} \sigma_*^4 + \frac{18i(i-1)}{n-1} A \|x_k - x^*\|^4 + \frac{36i(i-1)}{n-1} (\sigma_*^2)^2 \right] \\ 2032 \quad & + 27\gamma^4 i^4 \|F(x_k^0)\|^4 \\ 2033 \quad & \leq 27\gamma^4 i^3 L_{\max}^4 \mathbb{E} \left[\sum_{j=0}^{i-1} \|x_k^i - x_k^0\|^4 \middle| \mathcal{F}_k \right] \\ 2034 \quad & + 27\gamma^4 \left[\left(\frac{128i}{n^2} A_4 + \frac{18i(i-1)}{n-1} A \right) \|x_k - x^*\|^4 + \frac{128i}{n} \sigma_*^4 + \frac{36i(i-1)}{n-1} (\sigma_*^2)^2 \right] \\ 2035 \quad & + 27\gamma^4 i^4 \|F(x_k^0)\|^4 \end{aligned} \quad (46)$$

2044 By summing over $0 \leq i \leq n-1$, we have that
2045

$$\begin{aligned} 2046 \quad & \sum_{i=0}^{n-1} \mathbb{E} \left[\|x_k^i - x_k^0\|^2 \middle| \mathcal{F}_k \right] \leq 27\gamma^4 L_{\max}^4 \frac{n^2(n-1)^2}{4} \sum_{i=0}^{n-1} \mathbb{E} \left[\|x_k^i - x_k^0\|^2 \middle| \mathcal{F}_k \right] \\ 2047 \quad & + 27\gamma^4 \left(\frac{64(n-1)}{n} A_4 + 18n(n+1)A \right) \|x_k - x^*\|^4 + 1728\gamma^4(n-1)\sigma_*^4 \\ 2048 \quad & + \gamma^4 \frac{972n(n+1)}{n-1} (\sigma_*^2)^2 + 27\gamma^4 \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30} \|F(x_k^0)\|^4, \end{aligned} \quad (47)$$

2052

where we used the facts

2053

$$\sum_{i=0}^{n-1} i = \frac{n(n-1)}{2}, \quad \sum_{i=0}^{n-1} i(i-1) = n(n+1)(n-1), \quad \sum_{i=0}^{n-1} \frac{i(n-i)}{n-1} = \frac{n(n+1)}{6},$$

$$\sum_{i=0}^{n-1} i^3 = \left(\frac{n(n-1)}{2} \right)^2, \quad \sum_{i=0}^{n-1} i^4 = \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30}.$$

2056

We, thus, have that by rearranging the terms in (47) it holds that

2060

$$\begin{aligned} & \left[1 - 27\gamma^4 L_{\max}^4 \frac{n^2(n-1)^2}{4} \right] \sum_{i=0}^{n-1} \mathbb{E} \left[\|x_k^i - x_k^0\|^4 \mid \mathcal{F}_k \right] \\ & \leq 27\gamma^4 \left(\frac{64(n-1)}{n} A_4 + 18n(n+1)A \right) \|x_k - x^*\|^4 + 1728\gamma^4(n-1)\sigma_*^4 \\ & \quad + \gamma^4 \frac{972n(n+1)}{n-1} (\sigma_*^2)^2 + 27\gamma^4 \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30} \|F(x_k^0)\|^4 \end{aligned}$$

2068

For $\gamma \leq \frac{1}{3nL_{\max}}$ we have that $(1 - 27\gamma^4 L_{\max}^4 \frac{n^2(n-1)^2}{4}) \geq \frac{1}{2}$, and thus we obtain

2069

$$\begin{aligned} \sum_{i=0}^{n-1} \mathbb{E} \left[\|x_k^i - x_k^0\|^4 \mid \mathcal{F}_k \right] & \leq 54\gamma^4 \left(\frac{64(n-1)}{n} A_4 + 18n(n+1)A \right) \|x_k - x^*\|^4 \\ & \quad + 3456\gamma^4(n-1)\sigma_*^4 + \gamma^4 \frac{972n(n+1)}{n-1} (\sigma_*^2)^2 \\ & \quad + 54\gamma^4 \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30} \|F(x_k^0)\|^4 \\ & \stackrel{2.3}{\leq} 54\gamma^4 \left(64A_4 + 18n(n+1)A + \frac{n^2(n+1)^2(2n+1)L^4}{10} \right) \|x_k - x^*\|^4 \\ & \quad + 3456\gamma^4(n-1)\sigma_*^4 + \gamma^4 \frac{972n(n+1)}{n-1} (\sigma_*^2)^2 \\ & \leq 54\gamma^4 \left(64nL_{\max}^2 + 36n^2(n+1)L_{\max}^2 + \frac{n^2(n+1)^2(2n+1)L^4}{10} \right) \|x_k - x^*\|^4 \\ & \quad + 3456\gamma^4(n-1)\sigma_*^4 + \gamma^4 \frac{972n(n+1)}{n-1} (\sigma_*^2)^2 \end{aligned}$$

2086

where at the last step we used the fact that $A_4 = \sum_{i=0}^{n-1} L_i^4 \leq nL_{\max}^4$ and $A = 2 \sum_{i=0}^{n-1} L_i^2 \leq 2nL_{\max}^2$. \square

2088

To establish Theorem 3.6, we will first prove upper bounds on the higher moments of the distance of the epoch-level iterates from the optimum, as well as the connection of the Lipschitz property of the per-step operators F_i , $i \in [n]$, and the Lipschitz constant of the epoch-level operator G_{ω_k} . We start by providing the bound on the higher moments in the following Lemma.

2093

2094

2095

Lemma E.4. Let Assumption 2.1-2.3 hold and $\lambda = 0$. Then, the iterates of Perturbed SGD-RR₁ with stepsize $\gamma \leq \gamma_{\max}$ satisfy

2096

2097

2098

2099

$$\begin{aligned} \mathbb{E} \left[\|x_{k+1}^0 - x_*\|^3 \right] &= \mathcal{O} \left(n^{\frac{3}{2}} \gamma^3 \right) \\ \mathbb{E} \left[\|x_{k+1}^0 - x_*\|^4 \right] &= \mathcal{O} \left(\gamma^4 \right) \end{aligned}$$

2100

2101

2102

$$\text{where } \gamma_{\max} = \min \left\{ \frac{\mu}{3nL_{\max}^2}, \frac{\sqrt{1+6\mu^2L_{\max}^2}-1}{12nL_{\max}^2}, \frac{\mu^{3/5}}{8nL_{\max}^{3/5}} \right\}.$$

2103

2104

Proof. We, first, provide the bound on the third moment. From Holder's inequality, we have that

2105

$$\mathbb{E} \left[\|x_{k+1}^0 - x_*\|^3 \right] \leq \left(\mathbb{E} \left[\|x_{k+1}^0 - x_*\|^2 \mid \mathcal{F}_k \right] \right)^{\frac{3}{2}}$$

From Theorem 3.1, it holds that

$$\mathbb{E}[\|x_0^k - x^*\|^2] = \mathcal{O}(n\gamma^2),$$

and thus substituting we obtain

$$\mathbb{E}[\|x_{k+1}^0 - x^*\|^3] \leq \mathcal{O}(n^{\frac{3}{2}}\gamma^3),$$

where we have used the fact that the fourth moment of the stochastic oracles is bounded from Assumption 2.4. Taking the limit of the Markov chain we obtain the bound on the third moment

$$\mathbb{E}[\|x_{k+1}^0 - x^*\|^3] \leq \mathcal{O}(n^{\frac{3}{2}}\gamma^3)$$

We, next, bound the fourth moment $\mathbb{E}[\|x_{k+1}^0 - x^*\|^4]$. We have that

$$\begin{aligned} \|x_0^{k+1} - x^*\|^4 &= (\|x_0^{k+1} - x^*\|^2)^2 \\ &\stackrel{(16)}{\leq} \left(\frac{\|x_k^0 - x^* - \gamma n F(x_k^0)\|^2}{1 - \gamma n \mu} + \frac{2\gamma L_{max}^2}{\mu} \sum_{i=1}^{n-1} \|x_k^i - x_k^0\|^2 + \frac{2\gamma}{n\mu} \|\mathbb{U}_k\|^2 \right)^2 \end{aligned}$$

Letting $T_1 = \|x_k - x^* - \gamma n F(x_k^0)\|^2$, $T_2 = \sum_{i=1}^{n-1} \|x_k^i - x_k^0\|^2$ and $T_3 = \|\mathbb{U}_k\|^2$ for brevity, we have

$$\|x_0^{k+1} - x^*\|^4 \leq \left(\frac{T_1}{1 - \gamma n \mu} + \frac{2\gamma}{\mu} T_2 + \frac{2\gamma}{\mu} T_3 \right)^2 \quad (48)$$

From (9) in Lemma C.2, we can bound the term T_1 by

$$T_1 \leq [(1 - \gamma n \mu)^2 + \gamma^2 n^2 L_{max}^2] \|x_k - x^*\|^2 + 2\gamma n \lambda$$

Substituting the bound of T_1 into (48), we get

$$\|x_0^{k+1} - x^*\|^4 \leq \left(\frac{(1 - \gamma n \mu)^2 + \gamma^2 n^2 L_{max}^2}{1 - \gamma n \mu} \|x_k - x^*\|^2 + \frac{2\gamma L_{max}^2}{\mu} T_2 + \frac{2\gamma}{n\mu} T_3 \right)^2$$

Letting $c_1 = \frac{(1 - \gamma n \mu)^2 + \gamma^2 n^2 L_{max}^2}{1 - \gamma n \mu}$ for brevity and performing Young's inequality (7) with $t = c_1$, we obtain that

$$\begin{aligned} \|x_0^{k+1} - x^*\|^4 &\leq \frac{1}{c_1} \left(c_1 \|x_k - x^*\|^2 + \frac{2\gamma}{n\mu} T_3 \right)^2 + \frac{4\gamma^2 L_{max}^4}{c_1 \mu^2} T_2^2 \\ &\leq c_1 \|x_0^k - x^*\|^4 + \frac{4\gamma^2}{\mu^2 n^2 c_1} T_3^2 + \frac{4c_1 \gamma}{n\mu} T_3 \|x_k - x^*\|^2 + \frac{2\gamma^2 L_{max}^4}{\mu^2} T_2^2 \end{aligned}$$

Taking expectation with respect to the permutation ω_k and condition on the filtration \mathcal{F}^k (history of x_k^0) as well as using the fact that the noise U_k is independent of the stochasticity of ω_k , we get

$$\mathbb{E}[\|x_{k+1}^0 - x^*\|^4 | \mathcal{F}_k] \leq c_1 \|x_0^k - x^*\|^4 + \frac{4\gamma^2}{\mu^2 n^2 c_1} T_3^2 + \frac{4c_1 \gamma}{n\mu} T_3 \|x_k - x^*\|^2 + \frac{2\gamma^2 L_{max}^4}{\mu^2} \mathbb{E}[T_2^2 | \mathcal{F}_k] \quad (49)$$

Using Lemma E.3, we can bound the term

$$\mathbb{E}[T_2^2 | \mathcal{F}_k] \leq 54\gamma^4 C \|x_k - x^*\|^4 + 3456\gamma^4 (n-1) \sigma_*^4 + 972\gamma^4 \frac{n(n+1)}{n-1} (\sigma_*^2)^2$$

where $C = 64nL_{max}^2 + 3n^2(n+1)L_{max}^2 + \frac{n^2(n+1)^2(2n+1)L^4}{10}$ and thus substituting into (49) we obtain that

$$\begin{aligned} \mathbb{E}[\|x_{k+1}^0 - x^*\|^4 | \mathcal{F}_k] &\leq \left(c_1 + \frac{108\gamma^6 L_{max}^4}{\mu^2} C \right) \|x_0^k - x^*\|^4 + \frac{4\gamma^2}{\mu^2 n^2 c_1} T_3^2 + \frac{4c_1 \gamma}{n\mu} T_3 \|x_k - x^*\|^2 \\ &\quad + \frac{6912\gamma^6 L_{max}^4}{\mu^2} (n-1) \sigma_*^4 + \frac{1944\gamma^6 L_{max}^4 n(n+1)}{\mu^2} (\sigma_*^2)^2. \end{aligned} \quad (50)$$

The next step involves taking expectation on both sides with respect to the randomness of the U_k and will require a bound on the terms $\mathbb{E}[T_3], \mathbb{E}[T_3^2]$. Since $\mathbb{U}_k \sim \mathcal{N}(0, \frac{\gamma^2 n^2}{d} \sigma_*^2 \mathbb{I}_d)$, we obtain

$$\mathbb{E}[\|\mathbb{U}_k\|^2] = \text{tr}\left(\frac{\gamma^2 n^2}{d} \sigma_*^2 I_d\right) = \gamma^2 n^2 \sigma_*^2.$$

and

$$\mathbb{E}[\|U_k\|^4] = d(d+2) \left(\frac{\gamma^2 n^2}{d} \sigma_*^2\right)^2 \leq \gamma^4 n^4 (\sigma_*^2)^2,$$

as $\|U_k\|^2 / \left(\frac{\gamma^2 n^2}{d} \sigma_*^2\right)^2 \sim \chi_d^2$ and $\mathbb{E}[(\chi_d^2)^2] = d^2 + 2d$.

Thus, taking expectation on both sides of (50) and substituting the bounds on $\mathbb{E}[T_3], \mathbb{E}[T_3^2]$, we have that

$$\begin{aligned} \mathbb{E}[\|x_{k+1}^0 - x^*\|^4] &\leq \left(c_1 + \frac{108\gamma^6 L_{\max}^4 C}{\mu^2}\right) \|x_0^k - x^*\|^4 + \frac{4\gamma^2}{\mu^2 n^2 c_1} \mathbb{E}[T_3^2] + \frac{4c_1\gamma}{n\mu} \mathbb{E}[T_3] \|x_k - x^*\|^2 \\ &\quad + \frac{6912\gamma^6 L_{\max}^4}{\mu^2} (n-1) \sigma_*^4 + \frac{1944\gamma^6 L_{\max}^4}{\mu^2} \frac{n(n+1)}{n-1} (\sigma_*^2)^2 \\ &\leq \left(c_1 + \frac{108\gamma^6 L_{\max}^4 C}{\mu^2}\right) \|x_0^k - x^*\|^4 + \frac{4\gamma^6 n^2}{\mu^2 c_1} (\sigma_*^2)^2 + \frac{4c_1\gamma^3 n}{\mu} \sigma_*^2 \|x_k - x^*\|^2 \\ &\quad + \frac{6912\gamma^6 L_{\max}^4}{\mu^2} (n-1) \sigma_*^4 + \frac{1944\gamma^6 L_{\max}^4}{\mu^2} \frac{n(n+1)}{n-1} (\sigma_*^2)^2 \end{aligned}$$

Taking expectation on both sides, using the tower law of expectation and the fact that from Theorem 3.1 $\mathbb{E}[\|x_0^k - x^*\|^2] = \mathcal{O}(n\gamma^2) \sigma_*^2$, we obtain

$$\begin{aligned} \mathbb{E}[\|x_{k+1}^0 - x^*\|^4] &\leq \left(c_1 + \frac{108\gamma^6 L_{\max}^4 C}{\mu^2}\right) \mathbb{E}[\|x_0^k - x^*\|^4] + \frac{4\gamma^6 n^2}{\mu^2 c_1} (\sigma_*^2)^2 \\ &\quad + \frac{1944\gamma^6 L_{\max}^4}{\mu^2} (\sigma_*^2)^2 + \frac{4c_1\gamma^3 n}{\mu} \sigma_*^2 \mathbb{E}[\|x_k - x^*\|^2] \\ &\quad + \frac{6912\gamma^6 L_{\max}^4}{\mu^2} (n-1) \sigma_*^4 + \frac{1944\gamma^6 L_{\max}^4}{\mu^2} \frac{n(n+1)}{n-1} (\sigma_*^2)^2 \\ &\leq \left(c_1 + \frac{108\gamma^6 L_{\max}^4 C}{\mu^2}\right) \mathbb{E}[\|x_0^k - x^*\|^4] + \frac{4\gamma^6 n^2}{\mu^2 c_1} (\sigma_*^2)^2 \\ &\quad + \frac{1944\gamma^6 L_{\max}^4}{\mu^2} (\sigma_*^2)^2 + \frac{4c_1\gamma^3 n}{\mu} \mathcal{O}(n\gamma^2) (\sigma_*^2)^2 \\ &\quad + \frac{6912\gamma^6 L_{\max}^4}{\mu^2} (n-1) \sigma_*^4 + \frac{1944\gamma^6 L_{\max}^4}{\mu^2} \frac{n(n+1)}{n-1} (\sigma_*^2)^2 \\ &\leq \left(c_1 + \frac{108\gamma^6 L_{\max}^4 C}{\mu^2}\right) \mathbb{E}[\|x_0^k - x^*\|^4] + \mathcal{O}\left(\frac{\gamma^6 n^2}{c_1} + \frac{c_1 n \gamma^5}{\mu} + \gamma^6 n\right) (\sigma_*^2)^2 \\ &\quad + \frac{6912\gamma^6 L_{\max}^4}{\mu^2} (n-1) \sigma_*^4 \end{aligned} \tag{51}$$

Selecting the stepsize $\gamma \leq \min\left\{\frac{1}{3nL_{\max}}, \frac{\mu}{3nL_{\max}^2}, \frac{\mu^{3/5}}{8nL_{\max}^{3/5}}\right\}$, we have that

$$c_1 = 1 - \gamma n \mu + \frac{\gamma^2 n^2 L_{\max}^2}{1 - \gamma n \mu} \leq 1 - \frac{\gamma n \mu}{2}$$

and

$$\begin{aligned} c_1 + \frac{108\gamma^6 L_{\max}^4 C}{\mu^2} &\leq 1 - \frac{\gamma n \mu}{2} + \frac{108\gamma^6 L_{\max}^4 C}{\mu^2} \\ &\stackrel{C \leq 64n^5 L_{\max}^4}{\leq} 1 - \frac{\gamma n \mu}{2} + \frac{108\gamma^6 L_{\max}^4}{\mu^2} 64n^5 L_{\max}^4 \\ &\leq 1 - \frac{\gamma n \mu}{4} \end{aligned} \tag{52}$$

2214 Thus, substituting (52) in (51)
 2215

$$2216 \mathbb{E} \left[\|x_{k+1}^0 - x^*\|^4 \right] \leq \left(1 - \frac{\gamma n \mu}{4} \right) \mathbb{E} \left[\|x_0^k - x^*\|^4 \right] + \mathcal{O}(\gamma^5 n) (\sigma_*^2)^2 + \frac{6912 \gamma^6 L_{\max}^4}{\mu^2} (n-1) \sigma_*^4$$

2218
 2219 Taking expectation with respect to the invariant measure π_γ and using Assumption 2.4 and the fact
 2220 that $\sigma_*^2 < +\infty$, we obtain

$$2221 \frac{\gamma n \mu}{4} \mathbb{E}_{x \sim \pi_\gamma} \|x - x^*\|^4 \leq \mathcal{O}(\gamma^5 n)$$

2223 and thus we have
 2224

$$2225 \mathbb{E}_{x \sim \pi_\gamma} \|x - x^*\|^4 \leq \mathcal{O}(\gamma^4)$$

2227 \square
 2228

2229 **F PROOF OF BIAS FOR RR₁ AND RR₁⊕RR₂ METHODS**
 2230 **(LEMMA 3.5) AND (THEOREM 3.6)**

2232 **F.1 JACOBIAN BOUND FOR ONE-PASS MAP**

2233 **Lemma F.1** (Jacobian bound for one-pass map). Assume each component $F_i : \mathbb{R}^d \rightarrow \mathbb{R}^d$ is C^1
 2234 near x^* with $\|\nabla F_i(x^*)\|_{\text{op}} \leq L_i$ and let $L_{\max} = \max_i L_i$. For a permutation $\omega \in \mathfrak{S}_n$, define the
 2235 inner one-step map

$$2236 \Phi_{\omega,i}(x) := x - \gamma F_{\omega_i}(x), \quad i = 0, \dots, n-1,$$

2238 its composition over one reshuffled pass

$$2239 \Phi_{\omega}^{(n)}(x) := \Phi_{\omega,n-1} \circ \dots \circ \Phi_{\omega,0}(x),$$

2241 and the epoch map

$$2243 H(x, \omega) := x - \gamma \sum_{i=0}^{n-1} F_{\omega_i}(x^{[i]}(x, \omega)), \quad x^{[0]}(x, \omega) = x, \quad x^{[i+1]}(x, \omega) = \Phi_{\omega,i}(x^{[i]}(x, \omega)).$$

2246 Then, at x^* it holds that

$$2248 \|\nabla_x G(x^*, \omega)\|_{\text{op}} \leq 1 + \sum_{i=1}^n (\gamma L_{\max})^i.$$

2250 Consequently, the spectral radius of $\nabla_x G(x^*, \omega)$ is at most $1 + \sum_{i=1}^n (\gamma L_{\max})^i$.

2252 Our first lemma aims to bound the maximum eigenvalue of the matrix $\nabla_x H(\omega, x^*)$ with respect to
 2253 the known Lipschitz constants of the operators $F_i, \forall i \in [n]$.

2255 **Lemma F.2.** The maximum eigenvalue of the operator $\nabla_x G(x^*, \omega)$ is $L_{\max}^G = 1 + \sum_{i=1}^n (\gamma L_{\max})^i$.

2258 *Proof.* Let $\phi_{\omega_i}(x, z) = x - \gamma F_{\omega_i}(z)$. Define, also, the k -step operator $\phi_{\omega}^{(k)}(x, z) =$
 2260 $\phi_{\omega_k}(x, \phi_{\omega_{k-1}}(x, \dots \phi_{\omega_1}(x, z) \dots))$ with $\phi_{\omega}^{(0)}(x, z) = z$ and obtain that

$$2262 x_{k+1}^0 = H(x_k^0, \omega)$$

$$2263 \nabla_x G(x_k^0, \omega) = I - \nabla \phi_{\omega}^{(n)}(x_k^0, x_k^0)$$

2264 since $G(x_k^0, \omega) := \sum_{i=0}^{n-1} F_{\omega_i}(x_k^i)$.

2266 The gradient of $G(\cdot, \omega)$ is computed by deriving first the partial derivatives of $\phi_{\omega}^{(n)}(x, z)$ with respect
 2267 to x and z . We prove by induction that

$$\begin{aligned}
2268 \quad & \bullet \quad \nabla_z \phi_{\omega}^{(n)}(x, z) = (-\gamma)^n \nabla F_{\omega_n} \left(\phi_{\omega}^{(n-1)}(x, z) \right) \cdot \nabla F_{\omega_{n-1}} \left(\phi_{\omega}^{(n-2)}(x, z) \right) \cdot \dots \cdot \\
2269 \quad & \quad \nabla F_{\omega_1} \left(\phi_{\omega}^{(0)}(x, z) \right) \\
2270 \quad & \\
2271 \quad & \bullet \quad \nabla_x \phi_{\omega}^{(n)}(x, z) = \sum_{j=0}^{n-1} (-\gamma)^j \nabla F_{\omega_{n-1}} \left(\phi_{\omega}^{(n)}(x, z) \right) \nabla F_{\omega_{n-1}} \left(\phi_{\omega}^{(n-2)}(x, z) \right) \cdot \dots \cdot \\
2272 \quad & \quad \nabla F_{\omega_{n-j+1}} \left(\phi_{\omega}^{(n-j)}(x, z) \right) \\
2273 \quad & \\
2274 \quad & \\
2275 \quad & \\
2276 \quad & \\
2277 \quad \text{For } k = 1, \text{ we have that } \phi_{\omega}^{(1)}(x, z) = \phi_{\omega_1}(x, z) = x - \gamma F_{\omega_1}(z) \text{ and it holds that} \\
2278 \quad & \\
2279 \quad & \nabla_z \phi_{\omega}^{(1)}(x, z) = -\gamma \nabla F_{\omega_0}(z) \\
2280 \quad & \nabla_x \phi_{\omega}^{(1)}(x, z) = I \\
2281 \quad & \\
2282 \quad \text{thus the inductive hypothesis holds for } k = 1. \text{ Assuming that it holds for } n - 1, \text{ we, next, prove that} \\
2283 \quad \text{it holds for } n. \text{ We have that} \\
2284 \quad & \\
2285 \quad \nabla_z \phi_{\omega}^{(n)}(x, z) = \nabla_z \phi_{\omega} \left(x, \phi_{\omega}^{(n-1)}(x, z) \right) \nabla_z \phi_{\omega}^{(n-1)}(x, z) \\
2286 \quad & = (-\gamma) \nabla F_{\omega_n} \left(\phi_{\omega}^{(n-1)}(x, z) \right) \cdot (-\gamma)^{n-1} \nabla F_{\omega_{n-1}} \left(\phi_{\omega}^{(n-2)}(x, z) \right) \cdot \dots \cdot \nabla F_{\omega_1} \left(\phi_{\omega}^{(0)}(x, z) \right) \\
2287 \quad & = (-\gamma)^n \nabla F_{\omega_n} \left(\phi_{\omega}^{(n-1)}(x, z) \right) \cdot \nabla F_{\omega_{n-1}} \left(\phi_{\omega}^{(n-2)}(x, z) \right) \cdot \dots \cdot \nabla F_{\omega_1} \left(\phi_{\omega}^{(0)}(x, z) \right) \\
2288 \quad & \\
2289 \quad & \\
2290 \quad \text{We, next, compute the gradient with respect to } x \text{ and get} \\
2291 \quad & \\
2292 \quad & \nabla_x \phi_{\omega}^n(x, z) = \nabla_x \phi_{\omega} \left(x, \phi_{\omega}^{(n-1)}(x, z) \right) + \nabla_z \phi_{\omega} \left(x, \phi_{\omega}^{(n-1)}(x, z) \right) \nabla_x \phi_{\omega}^{(n-1)}(x, z) \quad (53) \\
2293 \quad & \\
2294 \quad & \\
2295 \quad \text{Using the fact that } \nabla_x \phi_{\omega} \left(x, \phi_{\omega}^{(n-1)}(x, z) \right) = I, \nabla_z \phi_{\omega} \left(x, \phi_{\omega}^{(n-1)}(x, z) \right) = \nabla F_{\omega_n} \left(\phi_{\omega}^{(n-1)}(x, z) \right) \\
2296 \quad \text{and the inductive hypothesis for } \nabla_x \phi_{\omega}^{(n-1)}(x, z), \text{ we obtain} \\
2297 \quad & \\
2298 \quad & \\
2299 \quad \nabla_z \phi_{\omega}^{(n)}(x, z) = I - \gamma \nabla F_{\omega_n} \left(\phi_{\omega}^{(n-1)}(x, z) \right) \sum_{j=0}^{n-2} (-\gamma)^j \nabla F_{\omega_{n-1}} \left(\phi_{\omega}^{(n-2)}(x, z) \right) \cdot \dots \cdot \nabla F_{\omega_{n-j}} \left(\phi_{\omega}^{(n-1-j)}(x, z) \right) \\
2300 \quad & \\
2301 \quad & = I + \sum_{j=0}^{n-2} (-\gamma)^{j+1} \nabla F_{\omega_{n-1}} \left(\phi_{\omega}^{(n)}(x, z) \right) \nabla F_{\omega_{n-1}} \left(\phi_{\omega}^{(n-2)}(x, z) \right) \cdot \dots \cdot \nabla F_{\omega_{n-j}} \left(\phi_{\omega}^{(n-1-j)}(x, z) \right) \\
2302 \quad & \\
2303 \quad & = I + \sum_{j=1}^{n-1} (-\gamma)^j \nabla F_{\omega_{n-1}} \left(\phi_{\omega}^{(n)}(x, z) \right) \nabla F_{\omega_{n-1}} \left(\phi_{\omega}^{(n-2)}(x, z) \right) \cdot \dots \cdot \nabla F_{\omega_{n-j+1}} \left(\phi_{\omega}^{(n-j)}(x, z) \right) \\
2304 \quad & \\
2305 \quad & = \sum_{j=0}^{n-1} (-\gamma)^j \nabla F_{\omega_{n-1}} \left(\phi_{\omega}^{(n)}(x, z) \right) \nabla F_{\omega_{n-1}} \left(\phi_{\omega}^{(n-2)}(x, z) \right) \cdot \dots \cdot \nabla F_{\omega_{n-j+1}} \left(\phi_{\omega}^{(n-j)}(x, z) \right) \\
2306 \quad & \\
2307 \quad & \\
2308 \quad & \\
2309 \quad & \\
2310 \quad & \\
2311 \quad & \\
2312 \quad \text{Thus, in order to compute } \nabla_x G(\omega, x^*) = I - \nabla \phi_{\omega}^{(n)}(x^*, x^*), \text{ we first compute } \nabla \phi_{\omega}^{(n)}(x^*, x^*). \\
2313 \quad \text{Since } x^* \text{ is a stationary point, it is a fixed point of the operator } \phi_{\omega}^{(j)}(x^*, x^*) = x^*, \forall j \geq 0. \text{ From} \\
2314 \quad \text{chain rule, we have that} \\
2315 \quad & \\
2316 \quad & \nabla \phi_{\omega}^{(n)}(x^*, x^*) = \nabla_z \phi_{\omega}^{(n)}(x^*, x^*) + \nabla_x \phi_{\omega}^{(n)}(x^*, x^*) \quad (54) \\
2317 \quad & \\
2318 \quad & = (-\gamma)^n \prod_{j=1}^n \nabla F_{\omega_j}(x^*) + \sum_{i=1}^{n-1} \prod_{j=1}^i (-\gamma \nabla F_{\omega_{n-j}}(x^*)) \quad (55) \\
2319 \quad & \\
2320 \quad & = \sum_{i=1}^n \prod_{j=1}^i (-\gamma \nabla F_{\omega_{n-j}}(x^*)) \quad (56) \\
2321 \quad & \\
\end{aligned}$$

In order to find the maximum eigenvalue of the operator $\nabla\phi_{\omega}^{(n)}(x^*, x^*)$, we apply the submultiplicative property of the operator norm to get

$$\begin{aligned} \left\| \sum_{i=1}^n \prod_{j=1}^i (-\gamma \nabla F_{\omega_{n-j}}(x^*)) \right\|_{\text{op}} &\leq \sum_{i=1}^n \left\| \prod_{j=1}^i (-\gamma \nabla F_{\omega_{n-j}}(x^*)) \right\|_{\text{op}} \\ &\leq \sum_{i=1}^n \prod_{j=1}^i \|\gamma \nabla F_{\omega_{n-j}}(x^*)\|_{\text{op}} \\ &\leq \sum_{i=1}^n \gamma^i \prod_{j=1}^i L_{n-j} \end{aligned} \quad (57)$$

$$\leq \sum_{i=1}^n (\gamma L_{\max})^i \quad (58)$$

where L_i is the maximum eigenvalue of $\nabla F_i(x^*)$ and L_{\max} is the maximum over all eigenvalues of $\nabla F_i(x^*)$, $\forall i \in [n]$. Since $\nabla G(\omega, x^*) = I - \nabla\phi_{\omega}^{(n)}(x_k^0, x^*)$, using the submultiplicative property of the operator norm we have that $\|\nabla G(\omega, x^*)\|_{\text{op}} \leq 1 + \|\nabla\phi_{\omega}^{(n)}(x_k^0, x^*)\|_{\text{op}}$ and thus the maximum eigenvalue of $\nabla G(\omega, x^*)$ is $L_{\max}^G = 1 + \sum_{i=1}^n (\gamma L_{\max})^i$. \square

We, next, provide the theorem establishing that the combination of the two heuristics lead to a refined bias of the order $\mathcal{O}(\gamma^3)$.

F.2 HIGHER-ORDER TERMS OF RR₁ BIAS

(LEMMA 3.5)

Lemma F.3 (Extended version of Lemma 3.5). Let $\lambda = 0$ and Assumptions 2.1–2.4 hold. If Perturbed SGD–RR₁ is run with $\gamma < \gamma_{\max}$, it holds that

$$\text{bias}(\text{Perturbed SGD-RR}_1) = \limsup_{k \rightarrow \infty} \|\mathbb{E}[x_k] - x^*\| = C(x^*)\gamma + \mathcal{O}(\gamma^3).$$

⇓

$$\mathbb{E}_{\pi_{\gamma}}[x] = x^* + \gamma A + \mathcal{O}(\gamma^3)$$

where $A = -\frac{1}{2}\nabla_x H(\omega, x^*)^{-1}\nabla^2 H(\omega, x^*)M \int_{\mathbb{R}^d} C(x)\pi_{\gamma}(dx)$, $C = \mathbb{E}\left[\mathbb{U}_{\omega_{1k}}^{\otimes 2}\right]$, $L_{\max}^G = 1 + \sum_{i=1}^n L_{\max}^i$, $M = \nabla_x H(\omega, x^*) \otimes I + I \otimes \nabla_x H(\omega, x^*) - \gamma \nabla_x H(\omega, x^*) \otimes \nabla_x H(\omega, x^*)$ and the maximum step size is $\gamma_{\max} = \min\left\{\frac{\mu}{3nL_{\max}^2}, \frac{\sqrt{1+6\mu^2L_{\max}^2}-1}{12nL_{\max}^2}, \frac{\mu^{3/5}}{8nL_{\max}^{3/5}}\right\}$.

Proof. From a third order Taylor expansion of G around x^* , we have that

$$H(\omega, x) = \nabla_x H(\omega, x^*)(x - x^*) + \frac{1}{2}\nabla^2 H(\omega, x^*)(x - x^*)^{\otimes 2} + R_1(x), \forall x \in \mathbb{R}^d \quad (59)$$

where the reminder $R_1(x)$ satisfies $\sup_{x \in \mathbb{R}^d} \left\{ \frac{R_1(x)}{\|x - x^*\|^3} \right\} < +\infty$. Taking expectation with respect to the invariant distribution π_{γ} and using the fact that $\mathbb{E}_{\pi_{\gamma}}[H(\omega, x)] = 0$, we get

$$0 = \mathbb{E}_{\pi_{\gamma}} \left[\nabla_x H(\omega, x^*)(x - x^*) + \frac{1}{2}\nabla^2 H(\omega, x^*)(x - x^*)^{\otimes 2} + R_1(x) \right] \quad (60)$$

From Lemma E.4 and using Holder inequality and the fact that $\sup_{x \in \mathbb{R}^d} \left\{ \frac{R_1(x)}{\|x - x^*\|^3} \right\} < +\infty$, we obtain

$$\nabla_x H(\omega, x^*) \mathbb{E}_{\pi_{\gamma}}[x - x^*] + \frac{1}{2}\nabla^2 H(\omega, x^*) \int_{\mathbb{R}^d} (x - x^*)^{\otimes 2} \pi_{\gamma}(dx) = \mathcal{O}(\gamma^3) \quad (61)$$

2376 Taking the second order Taylor of G around x^* , we have that
 2377

$$2378 \quad x_0^1 - x^* = x_0^0 - x^* - \gamma \nabla_x H(\omega, x^*)(x_0^0 - x^*) + \gamma \mathbb{U}_1^k(x_0^0) + \gamma R_2(x_0^0) \quad (62)$$

2379 with \mathcal{R}_2 the second order reminder satisfying $\sup_{x \in \mathbb{R}^d} \left\{ \frac{R_2(x)}{\|x - x^*\|^2} \right\} < +\infty$. From the second order
 2380 moment of equation (62), the unbiasedness of the noise $\mathbb{U}_k, \forall i, k \in \mathbb{N}$, and Theorem E.4, we have
 2381 that

$$2382 \quad \int_{\mathbb{R}^d} (x - x^*)^{\otimes 2} \pi_\gamma(dx) = [I - \gamma \nabla_x H(\omega, x^*)] \int_{\mathbb{R}^d} (x - x^*)^{\otimes 2} \pi_\gamma(dx) [I - \gamma \nabla_x H(\omega, x^*)] \\ 2383 \quad + \gamma^2 \int_{\mathbb{R}^d} C(x) \pi_\gamma(dx) + \mathcal{O}(\gamma^5)$$

2387 Rearranging the terms, we get

$$2388 \quad M \int_{\mathbb{R}^d} (x - x^*)^{\otimes 2} \pi_\gamma(dx) = \gamma \int_{\mathbb{R}^d} C(x) \pi_\gamma(dx) + \mathcal{O}(\gamma^3) \quad (63)$$

2389 where $M = \nabla_x H(\omega, x^*) \otimes I + I \otimes \nabla_x H(\omega, x^*) - \gamma \nabla_x H(\omega, x^*) \otimes \nabla_x H(\omega, x^*)$.
 2390

2392 We, next, show that the operator M is invertible for the selected step size by proving that it is
 2393 symmetric and positive definite. Let $\lambda_i, \forall i \in [d]$, be the eigenvalues of $\nabla_x H(\omega, x^*)$ with $\{u_i\}_{i \in [d]}$
 2394 the corresponding eigenvectors. Note that $I - \frac{\gamma}{2} \nabla_x H(\omega, x^*)$ has eigenvalues $(1 - \frac{\gamma}{2} \lambda_i) > 0$ and
 2395 thus for $\gamma < \frac{2}{\lambda_{max}(\nabla_x H(\omega, x^*))}$ it is symmetric positive definite on the same basis $\{u_i\}_{i \in [d]}$. Hence
 2396 we can factor the operator M as

$$2397 \quad M = \nabla_x H(\omega, x^*) \otimes I + I \otimes \nabla_x H(\omega, x^*) - \gamma \nabla_x H(\omega, x^*) \otimes \nabla_x H(\omega, x^*) \\ 2398 \quad = \nabla_x H(\omega, x^*) \otimes (I - \frac{\gamma}{2} \nabla_x H(\omega, x^*)) + (I - \frac{\gamma}{2} \nabla_x H(\omega, x^*)) \otimes \nabla_x H(\omega, x^*)$$

2400 Thus, the vectors $u_i \otimes u_j, \forall i, j \in [d]$ diagonalize M with eigenvalues $\mu_{i,j} = \lambda_i(1 - \gamma \lambda_j) +$
 2401 $\lambda_j(1 - \gamma \lambda_i), \forall i, j \in [d]$. From Lemma F.2, we have that the maximum eigenvalue of $\nabla_x H(\omega, x^*)$
 2403 is $L_{max}^G = 1 + \sum_{i=1}^n (\gamma L_{max})^i$ and hence for $\gamma < 1$ we have that $\gamma L_{max} \leq 1$ and hence $L_{max}^G <$
 2404 $\tilde{L}_{max}^G = 1 + n$. Selecting the stepsize such that $\gamma < \frac{2}{n+1}$, it holds that $\mu_{i,j} > 0, \forall i, j \in [d]$, and
 2405 thus M is positive definite and invertible. Thus, multiplying (63) with M^{-1} from the left, we get
 2406

$$2407 \quad \int_{\mathbb{R}^d} (x - x^*)^{\otimes 2} \pi_\gamma(dx) = \gamma M^{-1} \int_{\mathbb{R}^d} C(x) \pi_\gamma(dx) + \mathcal{O}(\gamma^3) \quad (64)$$

2409 Substituting (64) into (61) and rearranging the terms, we obtain
 2410

$$2411 \quad \nabla_x H(\omega, x^*) \mathbb{E}_{\pi_\gamma} [x - x^*] = -\frac{\gamma}{2} \nabla^2 H(\omega, x^*) M \int_{\mathbb{R}^d} C(x) \pi_\gamma(dx) + \mathcal{O}(\gamma^3) \\ 2412 \\ 2413 \quad \Rightarrow \mathbb{E}_{\pi_\gamma} [x - x^*] = -\frac{\gamma}{2} \nabla_x H(\omega, x^*)^{-1} \nabla^2 H(\omega, x^*) M \int_{\mathbb{R}^d} C(x) \pi_\gamma(dx) + \mathcal{O}(\gamma^3) \quad (65)$$

2416 Letting $A = -\frac{1}{2} \nabla_x H(\omega, x^*)^{-1} \nabla^2 H(\omega, x^*) M \int_{\mathbb{R}^d} C(x) \pi_\gamma(dx)$, we obtain
 2417

$$2418 \quad \mathbb{E}_{\pi_\gamma} [x] = x^* + \gamma A + \mathcal{O}(\gamma^3) \quad (66)$$

2419 \square

2420
 2421 **F.3 PROOF OF BIAS REFINEMENTS OF $\text{RR}_1 \oplus \text{RR}_2$**
 2422 (THEOREM 3.6)

2423 **Theorem F.4** (Restatement of Theorem 3.6). Under the assumptions of Lemma 3.5, Algorithm 1
 2424 output satisfies

2425 Last-iterate version (line 9): $\|\mathbb{E}[x_k] - x^*\| \leq c(1 - \rho)^k + \mathcal{O}(\gamma^3)$,
 2426

2427 Averaged-iterate version (line 10): $\left\| \mathbb{E} \left[\frac{1}{k} \sum_{m=1}^k x_m \right] - x^* \right\| \leq \frac{c/\rho}{k} + \mathcal{O}(\gamma^3)$.
 2428

2430 where $\rho \in (0, 1)$, $c < \infty$ (cf. Theorem 3.3).
 2431

2432 *Proof.* From Lemma F.3, we have that the iterates $x_{\gamma,k}$ of Perturbed SGD-RR₁ with step size γ
 2433 satisfy
 2434

$$2435 \quad \mathbb{E}_{x_\gamma \sim \pi_\gamma}[x] = x_* + \gamma A + \mathcal{O}(\gamma^3) \quad (67)$$

2436 Similarly the iterates $(x_{2\gamma,k})_k$ of SGD-RR with step size 2γ satisfy
 2437

$$2438 \quad \mathbb{E}_{x_{2\gamma} \sim \pi_{2\gamma}}[x_{2\gamma}] = x_* + 2\gamma A + \mathcal{O}(\gamma^3) \quad (68)$$

2439 Thus, from (67), (68) we can compute the Richardson Romberg iterates as
 2440

$$2441 \quad (\mathbb{E}_{x_\gamma \sim \pi_\gamma}[2x] - \mathbb{E}_{x_{2\gamma} \sim \pi_{2\gamma}}[x_{2\gamma}]) = \mathcal{O}(\gamma^3) \quad (69)$$

2442 Consider the test function $\ell(x) = x$. The function satisfies the assumptions in both Theorem
 2443 D.7, 3.4. Combining (69) with the rate that the iterates of the method tend to the limiting
 2444 invariant distribution and the corresponding Central Limit Theorem from Theorems D.7, 3.4, we
 2445 obtain
 2446

$$2447 \quad \|\mathbb{E}[x_k] - x^*\| \leq c(1 - \rho)^k + \mathcal{O}(\gamma^3), \quad (70)$$

$$2448 \quad \left\| \mathbb{E} \left[\frac{1}{k} \sum_{m=1}^k x_m \right] - x^* \right\| \leq \frac{c/\rho}{k} + \mathcal{O}(\gamma^3). \quad (71)$$

2449 where $\rho \in (0, 1)$, $c \in (0, +\infty)$. □
 2450

2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483

2484

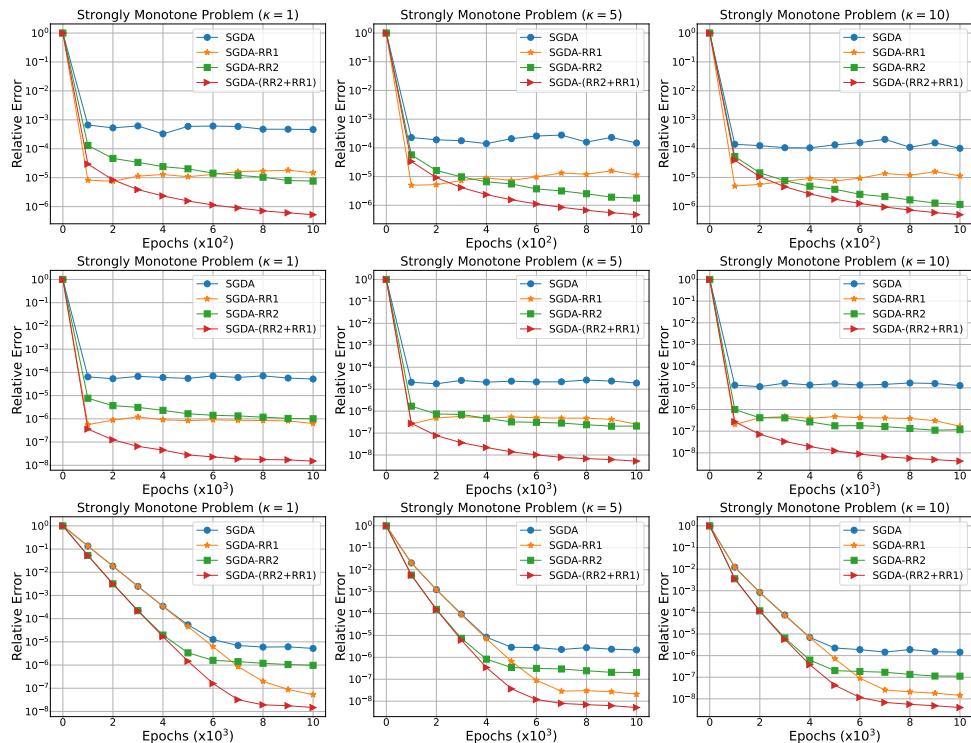
G ON EXPERIMENTS

2485

2486 In this section, we provide additional details on the experimental setting used for the conducted
2487 experiments. We consider the setup of strongly monotone quadratic min-max problems

2488
$$\min_{x_1 \in \mathbb{R}^d} \max_{x_2 \in \mathbb{R}^d} f(x_1, x_2) = \frac{1}{n} \sum_{i=1}^n \frac{1}{2} x_1^T A_i x_1 + x_1^T B_i x_2 - \frac{1}{2} x_2^T C_i x_2^2 + \alpha_i^T x_1 - c_i^T x_2.$$
2490

2491 The matrices A_i are sampled by first sampling an orthogonal matrix P and then sampling a diagonal
2492 matrix D_i with elements in the diagonal uniformly sampled from the interval $[\mu, L]$. The selected
2493 parameters μ, L correspond to the strong monotonicity parameter in Assumption 2.2 and the Lips-
2494 chitz parameter of the underlying problem respectively. We acquire the matrices A_i as the product
2495 $A_i = PD_iP^T$. We sample the matrices B_i, C_i similarly to sampling the matrices A_i with the only
2496 difference that the elements of the diagonal matrices D_i lie in the interval $[0, 0.1]$ and $[\mu, L]$ respectively.
2497 The vectors a_i, c_i are follow the normal distribution $\mathcal{N}(\mathbf{0}, I)$. In all experiments, we use
2498 $n = 100, d = 100$, while we specify the values of μ, L in each experiment independently as they
2499 differ.

2500 We provide additional experiments on the effect of each heuristic in the convergence of the al-
2501 gorithm. More specifically, we compare the classical with-replacement SGDA algorithm, the
2502 RR₁ variant, the RR₂ variant and the algorithm utilizing both heuristics. We run the experiment for
2503 multiple stepsizes $\gamma = \{10^{-3}, 10^{-4}, 10^{-5}\}$ and multiple condition numbers $\kappa = \{1, 5, 10\}$.

2528 Figure 6: Relative Error of the different variants of SGDA. Each row corresponds to a strongly
2529 monotone problem with condition number $\kappa = \{1, 5, 10\}$ and each row corresponds to a different
2530 step size $\gamma = \{10^{-3}, 10^{-4}, 10^{-5}\}$. The combination of both heuristics RR₂⊕RR₁ achieves the small-
2531 est relative error in comparison to the other methods.

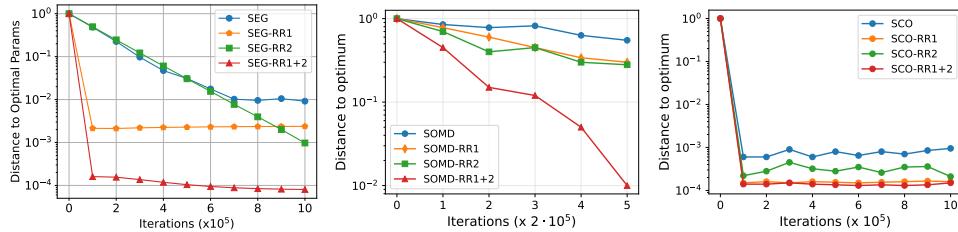
2533 In Figure 6, we observe that all variants converge linearly to a neighbourhood of the solution.
2534 Demonstrably, the variant leveraging both heuristics outperforms the other variants, reducing faster
2535 the relative error and validating the theoretical results established so far.

2536 We, next, provide an ablation study on the effect of the proposed heuristic in a variety of common
2537 algorithms used in VI and machine learning settings.

2538
 2539 **Wasserstein GANs.** We train a Wasserstein GAN (WGAN) (Arjovsky et al., 2017) for learning
 2540 the mean of a multivariate Gaussian and consider the effects of each heuristic in the training of the
 2541 GAN. In a Wasserstein GAN, the optimization objective is a two-player zero-sum game between the
 2542 generator $G(\cdot)$ and the discriminator $D(\cdot)$, given by

$$2543 \inf_{\theta} \sup_w \mathbb{E}_{x \sim N(v, I)} [\langle w, x \rangle] - \mathbb{E}_{z \sim N(0, I)} [\langle w, z + \theta \rangle]. \quad (72)$$

2544 The discriminator consists a linear classifier $D(x; w) = \langle w, x \rangle$ of the input $x \in \mathbb{R}^d$, while the
 2545 generator returns a noisy estimation $G(z; \theta) = z + \theta$ of the learned parameter $\theta \in \mathbb{R}^d$, after sampling
 2546 a noise vector $z \sim \mathcal{N}(0, I)$. In our experiments, the aim of the generator is to learn the mean μ of
 2547 the true Gaussian distribution with mean $\mu = [3, 4]^T$ and covariance $\Sigma = \frac{1}{10} I$.
 2548



2549
 2550 Figure 7: Wasserstein GAN trained with different heuristics on top of a base algorithm. For all base
 2551 algorithms, the generator trained with the combination of both heuristics $RR_2 \oplus RR_1$ converges closer
 2552 to the optimal parameters than the generator trained with any other algorithmic variant.
 2553
 2554

2555 We examine the effect of the heuristics in a variety of different training algorithms and report the
 2556 distance from the generator’s optimal parameters for each experiment. Similar to Emmanouilidis
 2557 et al. (2024), we, first, consider the Stochastic Extragradient (SEG) method as the main algorithmic
 2558 template for training and use each one of the 4 variants (SEG, SEG-RR₁, SEG-RR₂, SEG-RR₂ \oplus
 2559 RR₁) to train a GAN. We use the same constant step size for the generator and discriminator as in
 2560 Emmanouilidis et al. (2024) and double the step size of the variants that implement Richardson-
 2561 Romberg extrapolation. Figure 7 shows that the generator trained with SEG-RR₂ \oplus RR₁ is able to
 2562 converge closer to the optimal parameters than the generator trained with any other variant and thus
 2563 the synergy of both heuristics (RR₂ \oplus RR₁) is beneficial in training.
 2564

2565 Following Daskalakis et al. (2017), we train a WGAN with the use of Optimistic Mirror Descent
 2566 (OMD). Aiming to see the effect of each heuristic even for this algorithm, we use the classical OMD
 2567 method, the RR₁ variant, the random reshuffling (RR₂) and the combination of both (RR₂ \oplus RR₁).
 2568 We let the step size of the generator and the discriminator be $\gamma_G = 0.02, \gamma_D = 0.01$ respectively.
 2569 As shown in Figure 7, the RR₂ \oplus RR₁ outperforms all other variants, indicating that the advantages
 2570 of this heuristic remain apparent even for the OMD algorithm.

2571 Lastly, we test lightweight second order methods common in the literature of VIs (Mescheder et al.,
 2572 2017; Loizou et al., 2020). More specifically, Stochastic Consensus Optimization (SCO) is an
 2573 algorithm that can be seen as a combination of the SGDA algorithm and the Stochastic Hamiltonian
 2574 (SHMD) method (Loizou et al., 2020), where a regularizer λ articulates the contribution of SHMD
 2575 that is being introduced in the update rule. Given that the SCO method is related to the SGDA
 2576 but requires Jacobian vector products, thus being a lightweight second order method, we have run
 2577 experiments to examine whether the RR₂ \oplus RR₁ provides benefits in higher-order methods. According
 2578 to Figure 7, the generator trained with the heuristic RR₂ \oplus RR₁ converges closer to the optimal
 2579 parameters than the generator trained with plain SCO or any other variant.
 2580

2581 **On Single-Run Experiments & Variance of Observed Behaviour.** For completeness, we report
 2582 the variability of our experimental results over single runs, establishing a more refined description of
 2583 the effect of each heuristic empirically. More specifically, in Figure 8 we plot the mean and standard
 2584 deviations for each of the 4 variants over 5 runs. As shown in Figure 8, the RR₂ \oplus RR₁ variant
 2585 outperforms all other heuristics even in single trials.
 2586

2587 **Wall-clock time Comparison of the different heuristics.** We, next, compare the wall-clock time
 2588 of the different heuristics. All 4 variants have the same per iteration cost in terms of gradient eval-
 2589 uations, since the only difference between the classical SGD algorithm and the RR₁ variant is the

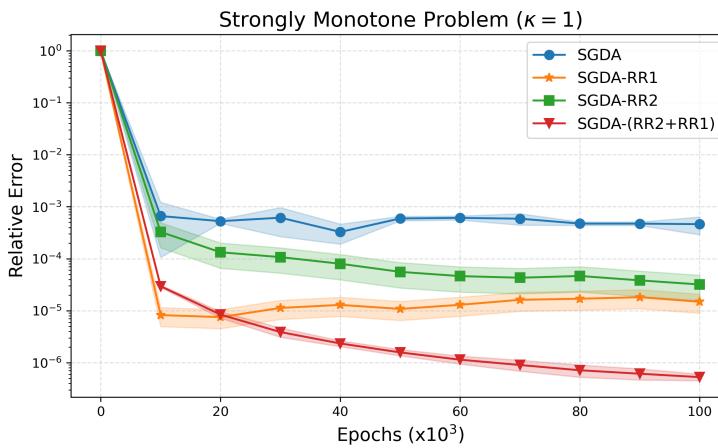


Figure 8: Mean and standard deviation of each heuristic over 5 trials. The combination of both heuristics $\text{RR}_2 \oplus \text{RR}_1$ achieves the smallest relative error in comparison to the other methods.

way that the mini-batch gradients are sampled, while in RR_2 and $\text{RR}_2 \oplus \text{RR}_1$ the two chains of the Richardson extrapolation can be run in parallel.

Interestingly, SGDA with random reshuffling typically runs faster in wall-clock time than SGDA with with-replacement sampling. The following factors explain why random reshuffling can be run faster, as observed in our experiments:

- RR_1 performs only one random operation per epoch. With with-replacement sampling, each iteration requires a random draw $i_t \sim \text{Uniform}(1, \dots, n)$.
- RR_1 calls the PRNG once per epoch (through `randperm(n)` or equivalent), after which all iterations are sequential. This eliminates thousands of PRNG calls and reduces interpreter overhead.

We have reproduced the same experiment as in Figure 1 and have reported the wall-clock time needed for each method. According to table 2, the $\text{RR}_2 \oplus \text{RR}_1$ heuristic runs in half the time required for the plain SGDA variant and comparable time with respect to random reshuffling. Hence, thanks to parallelization one can obtain the benefits from the synergy of the two heuristics without the need of a higher wall-clock time.

Table 2: Wall-clock time comparison of SGDA variants.

Method	Time (sec)
SGDA	107.59
SGDA-RR ₁	50.92
SGDA-RR ₂	107.59
SGDA-RR ₂ \oplus RR ₁	51.94