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ABSTRACT

From adversarial robustness to multi-agent learning, many machine learning tasks
can be cast as finite-sum min—max optimization or, more generally, as variational
inequality problems (VIPs). Owing to their simplicity and scalability, stochastic
gradient methods with constant step size are widely used, despite the fact that they
converge only up to a bias term. Among the many heuristics adopted in practice,
two classical techniques have recently attracted attention to mitigate this issue:
Random Reshuffling of data and Richardson—-Romberg extrapolation across iterates.

In this work, we show that their composition not only cancels the leading lin-
ear bias term, but also yields an asymptotic cubic refinement. To the best of our
knowledge, our work provides the first theoretical guarantees for such a synergy in
structured non-monotone VIPs. Our analysis proceeds in two steps: (i) by smooth-
ing the discrete noise induced by reshuffling, we leverage tools from continuous-
state Markov chain theory to establish a law of large numbers and a central limit
theorem for its iterates; and (ii) we employ spectral tensor techniques to prove that
extrapolation debiases and sharpens the asymptotic behavior even under the biased
gradient oracle induced by reshuffling. Finally, extensive experiments validate our
theory, consistently demonstrating substantial speedups in practice.

1 INTRODUCTION

Mathematical optimization is one of the pillars of modern machine learning (ML), equipping us with
the numerical tools needed to compute parameters for large-scale decision systems. In this work, we
focus on variational inequality problems (VIPs) (Stampacchia, 1964)—a unifying framework that
extends beyond classical loss minimization to encompass min—max optimization, complementarity
problems (Dantzig & Cottle, 1968; Facchinei & Pang, 2003), equilibrium computation in games, and
general fixed-point formulations (Bauschke & Combettes, 2017). In recent years, VIPs have gained
significant traction in ML and data science, especially due to their broad potential applicability in
domains where minimizing a single empirical loss is insufficient, with notable examples including
generative adversarial networks (Goodfellow et al., 2014; Arjovsky et al., 2017), multi-agent and
robust reinforcement learning (Namkoong & Duchi, 2016; Wang et al., 2021; Giannou et al., 2022),
and auction theory (Syrgkanis et al., 2015).

In practice, many of these tasks reduce to finite-sum formulations, where the objective depends on a
large collection of data samples or agents. In such settings, stochastic gradient methods have become
the workhorse of large-scale learning (Bottou et al., 2018). By exploiting the finite-sum structure,
stochastic gradient descent (SGD) and its variants replace expensive full-gradient computations with
inexpensive updates on a few components, enabling scalability to massive datasets.

While the theoretical underpinnings of SGD have been extensively studied (Rakhlin et al., 2011;
Raginsky et al., 2017; Azizian et al., 2024; Malick & Mertikopoulos, 2024), much of its practical
success can be traced to a handful of seemingly “low-level” heuristics (Bottou, 2012b): step-size
schedules (constant vs. decaying), data ordering (with vs. without resampling), and iterate selection
(average vs. last iterate). To facilitate analysis, the community has typically adopted a ceteris paribus
perspective—isolating one design choice at a time while holding the rest fixed—an approach that
clarifies individual effects but obscures their interaction.

A particularly important case is the use of a constant step size, popular in practice since it simplifies
tuning, quickly erases dependence on initialization, and yields fast early progress (Yu et al., 2021).
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Its drawback is fundamental: convergence halts at a non-vanishing error. Even in strongly convex
problems with unique solution z*, the last iterate of SGD typically satisfies:

MSE(sGD) = limsup E[||zx — 2*||?] = O(v) and bias(SGD) = limsup || E[zx] — z*|| = O(¥).
k—o0 k—o0

Thus, the iterates stabilize in the long run at distance from the optimum on the order of the step size.

» To mitigate this limitation, practitioners often turn to debiasing heuristics. A prominent example
is random reshuffling (RR), or without-replacement sampling, where each data point is visited ex-
actly once per epoch. Unlike classical with-replacement SGD, which may resample or skip points,
RR; enforces a random full pass that closely mirrors large-scale training in practice (Bottou et al.,
2018). Despite the dependence it induces across samples, recent work has established faster conver-
gence guarantees for RR; in both minimization (Ahn et al., 2020; Giirbiizbalaban et al., 2021; Cai
et al., 2023) and VIPs (Mishchenko et al., 2020b; Emmanouilidis et al., 2024), along with sharper
MSE bounds from O(v) to O(+?), while leaving open the question of whether the bias term itself
improves.Indeed, recall that for any estimator &, the mean squared error decomposes as

MSE(#) = E[lz —2*|]°] = [|E[z] —2"|* + Var(2),

so that bias(z) < +/MSE(Z). Under this trivial bound, SGD-RR; guarantees improved MSE
compared to vanilla SGD, but does not necessarily yield smaller bias.

» Orthogonal to reshuffling, another classical idea from numerical analysis has recently re-emerged
in stochastic optimization: Richardson—Romberg (RRy) extrapolation. Its principle is simple yet
powerful: Run the algorithm of your choice at two different step sizes and combine their outputs so
that the leading bias term cancels. Concretely, whenever the bias admits an expansion of the form
bias(y) = Ay + O(+*) with k > 1, running the stochastic approximation at two step sizes gives:

)l — 1" = Ay + O(yF) and 227 — z* = 2Ay + O(v).
Extrapolating these iterates then yields :

Texw — & = 20, — x3) — 2" =249 = 249 + O(v") = O(v").

Originally introduced for accelerating discretization schemes in stochastic differential equations
(Hildebrand, 1987; Talay & Tubaro, 1990; Bally & Talay, 1996), RR; has since been applied to
optimization, improving constant-step methods from SGD (Durmus et al., 2016; Dieuleveut et al.,
2020; Mangold et al., 2024; Sheshukova et al., 2024) to Q-learning and two-timescale stochastic
approximation (Huo et al., 2023; Kwon et al., 2024; Zhang & Xie, 2024; Allmeier & Gast, 2024).
Despite its conceptual simplicity and empirical success, its theoretical foundations for stochastic
VIPs remain nascent (Vlatakis-Gkaragkounis et al., 2024).

Despite this progress, the known bias rates of these heuristics remain limited when applied in
isolation. For unconstrained strongly monotone VIPs, RR; alone attains O(v%/2) bias (Vlatakis-
Gkaragkounis et al., 2024)!, whereas RR; is known to sharpen MSE bounds (from O(v) to O(~?))
but does not, in general, guarantee an improved bias order. This raises a natural challenge: can one
synthesize the two so as to surpass both, ideally reaching O () bias?

What new phenomena arise when these heuristics
— constant step sizes, random reshuffling, and Richardson extrapolation— (%)
interact simultaneously?

Addressing this question is delicate. Reshuffling introduces a biased stochastic oracle whose dis-
crete, permutation-driven noise structure lies outside the reach of existing analyses of extrapolation,
which predominantly assume unbiased or continuously distributed perturbations (Dieuleveut et al.,
2020; Sheshukova et al., 2024; Vlatakis-Gkaragkounis et al., 2024).

Our model’s assumptions. While variational inequalities provide a unifying language for optimiza-
tion, learning, and game dynamics, no single structural assumption can capture the full complexity
of all modern nonconvex—nonconcave problems. From a computational standpoint, even smooth
VIs are intractable in full generality—being tightly connected to Nash equilibria (Papadimitriou
et al., 2022; Goldberg & Katzman, 2022), linear complementarity (IEOR, 2011), and constrained

"The 0(72) rate in Vlatakis-Gkaragkounis et al. (2024, Sec. 5, Thm. 6) is obtained via a reduction to
Dieuleveut et al. (2020, Sec. 3, Thm. 4), which requires additional noise assumptions not met in our setting.
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saddle-point problems (Daskalakis et al., 2021). Consequently, much of the theoretical literature
adopts structured assumptions (strong convexity, quasi-strong monotonicity, quasar or weak con-
vexity, PL/KL conditions, Minty conditions, error bounds, etc.), each expressive in specific regimes
but not universal.

Our work is based on quasi-strong monotonicity which falls squarely within this class: it captures
stabilizing behaviors of many smooth systems, while remaining far more permissive than strong
convexity or global monotonicity. At the same time, it is helpful to clarify that this assumption is
not meant as a universal model for all adversarial or fully nonconvex—nonconcave settings. Certain
modern ML applications— including GANSs, adversarial robustness, and multi-agent RL—can ex-
hibit fundamentally unstable or rotational dynamics (Jin et al., 2020; Han et al., 2023; Kim & Seo,
2022; Bukharin et al., 2023), where even local monotonicity surrogates fail. As such, our theoretical
guarantees should be viewed as pertaining to regimes where a minimum amount of local structure is
present, rather than to the most adversarial or unstructured cases. >

Our contributions. Motivated by this gap, we undertake in this work what is, to the best of our
knowledge, the first systematic study demonstrating that these heuristics can be synthesized into a
principled algorithmic framework. Our main result shows that their composition yields a level of
bias reduction unattainable by either heuristic alone. To this end, we extend and refine previous
analyses of both RR; and RR;, and we introduce a novel algorithm (Algorithm 1) that achieves their
optimal composition without requiring any additional assumptions:

Main Result (Informal Theorem). For quasi-strongly monotone smooth VIPs, our combined
method (SGD-RR,®RR;, Algorithm 1) cancels all lower-order terms in the bias expansion, yielding
an asymptotic bias of order O(~?).

To establish the above result, we first derive an intermediate finding: in isolation, Perturbed
SGD-RR; achieves an asymptotic bias of Cy + O(y3)—to the best of our knowledge, the first
analysis of its kind. This is particularly striking: although without-replacement sampling induces a
biased gradient estimator, it paradoxically yields an improved bias rate (see Figure 1).

Comparison to Prior Work and Overview of Our Contributions. Before introducing the intu-
ition behind our algorithmic design, we briefly contrast our results with those of Emmanouilidis
et al. (2024), who study RR;-based improvements for the Stochastic Extragradient (SEG) method.
Our analysis uncovers a fundamentally different phenomenon: the joint use of RR; €6 RR; produces
a bias cancellation mechanism that eliminates the leading O(~y) term while preserving the condi-
tion number and asymptotic behavior of SGDA. The key distinctions are summarized in Table 1.
Achieving the best of both worlds—optimal bias order together with a tight condition number, as
SEG without reshuffling enjoys—remains an interesting direction for future work.

Aspect Emmanouilidis et al. (2024) Our work

Baseline Algorithm SEG SGDA

Model Assumptions (Smoothness) F;—L; Lipschitz F;—L; Lipschitz
Model Assumptions (Drift) F' pi—strongly monotone F' quasi-strongly monotone
Main heuristic RR; only RR; D RR;
Asymptotic Bias order O(y+~%) O(y?)
Asymptotic MSE order 0(?) O

Condition number Worse than vanilla-SEG Same as vanilla-SGDA
Mechanism EG-structure + RR; Bias cancellation (RR; & RR»)

Table 1: Summary of key differences between Emmanouilidis—Vidal-Loizou (2024) and our results.

Our algorithm. While there are many conceivable ways to interleave RR, and RR;, both intra-
and inter-epoch, we adopt the most natural and practically motivated design. In modern pipelines,
RR; is the workhorse at the low-level training stage, while RR; is often employed as a black-box
refinement at a higher level, allowing parallelization and modular integration.

2A complementary and key fact for our setting, established in (Hsieh et al., 2019, Lemma A.4), is that any
smooth VI operator is locally quasi-strongly monotone in a neighborhood of a regular solution. Combined
with our Markov-chain recurrence result—which ensures that the iterates remain in such neighborhoods with
probability 1—this provides a natural and widely adopted stability regime in which the RR; and RR, debiasing
mechanisms are both theoretically justified and practically meaningful.



Under review as a conference paper at ICLR 2026

Accordingly, we study stochastic gradient algo- Strongly Monotone Problem (x = 1)
rithms that sample via random reshuffling to gener- 1:“} il
ate stochastic oracles of gradients/operators. At the 0  Sooen
start of each epoch £ > 0, a random permutation wy £
of [n] is drawn, prescribing the order in which data 2104 S A S —
points are processed. The algorithm then performs S109 —
the classical SGD update: Fr L St e e oo
1077 —>
xy™t = &}, — vy PreProcess [StochOracle(xi; w,i)], w0-el ! } :,,,,,»:w» ===
(SGD-RR,BRR| (inner-loop)) Epochs (x103)

where StochOracle(xi;w?) denotes either the
stochastic gradient (in minimization problems) or
the operator value F; (2},) (in the general VI case),

Figure 1: Illustration of bias behavior. Exam-
ple on a min—max quadratic VIP with F(z,y) =
i ) . %Ziem] z Az + 2 Biy +y' Ciy for N =
indexed by the wj data point and PreProcess|-| 1000, where A;, B;, C; are quasi—strongly mono-
is a preprocessing routine implementing calibrated tone. Already after the second epoch batch, the
Gaussian smoothing to the input. Then, the final it- methods clearly separate: SGD, , RR,, and
erate of each epoch becomes the starting point of the RRi$RRo.

next, and the procedure repeats.

On the necessity of smoothing. A key challenge with reshuffling is that, after one epoch, the cu-
mulative gradient estimator is biased, unlike sampling with replacement, which is unbiased and
analytically simpler. The induced noise is also discrete, tied to permutations. To handle this, we
introduce a calibrated Gaussian perturbation that smooths the discrete reshuffling noise into a well-
behaved proxy while preserving variance, moments, and bias order. In practice, the perturbation has
negligible effect across datasets; clarifying its precise dependence on dataset size is an interesting
direction for future work. For completeness, the supplement also includes a brief sketch showing
how our results extend even without this step.

Finally, at the end of each epoch we apply RR,, yielding the extrapolated update:

E =27 1 — T oy - (SGD-RR, ®RR (outer-loop))

In Section 3, we prove that this combination achieves a provable O(v*) bias— to the best of our
knowledge, the first such result. There we also provide the detailed description of Algorithm 1
together with the formal statement specifying its exact parameter choices.

Proof outline and technical innovations. We now sketch the main ingredients of our analysis,
deferring complete statements and proofs to Section 3 and the appendix. As our optimization land-
scape, we consider variational inequality problems (VIPs) satisfying weak quasi-strong monotonic-
ity, a class broad enough to cover many structured non-monotone and non-convex problems. Intu-
itively, quasi-strong monotonicity ensures a directional drift towards equilibrium, but unlike strong
convexity it offers no uniform control. Its weak variant relaxes this further, introducing a systemic
error that diminishes even this limited drift. Our roadmap proceeds through three main stations:

*Convergence of SGD-RR; under perturbations. We first analyze the RR; component, proving ex-
ponential convergence with bias linear under weak and quadratic under quasi-strong monotonicity,
robust even to preprocessing perturbations. We also derive higher-moment bounds of the form

E|dist? (x, 2*)| (Lemma E.4), which are essential for the bias decomposition required in the anal-

ysis of RRy component . x Epoch-level Markov chain viewpoint. A key challenge in analyzing
reshuffling is that step-level dynamics are not time-homogeneous, since the kernel changes with the
position in the permutation. To resolve this, we adopt an epoch-level perspective: each epoch is
represented by its initial iterate together with a randomly drawn permutation. This yields a Markov
chain on (R? x II,,) with a stationary transition kernel (Lemma 3.2). Using Lyapunov—Foster and
minorization criteria (Meyn & Tweedie, 2012) and the framework of Vlatakis-Gkaragkounis et al.
(2024), we prove Harris recurrence, ensuring existence and uniqueness of an invariant distribution.
This measure in turn enables law-of-large-numbers and central-limit-theorem results, along with ex-
ponential convergence rates for scalar observables (Theorem 3.3), thereby rigorously characterizing
the asymptotic behavior of the per-epoch iterates.

3Under quasi-strong monotonicity the VI has a unique solution. Under weak quasi-strong monotonicity,
Theorem 3.1 applies to the projection onto the solution set, as standard under Assumption 2.2.
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* Richardson extrapolation under bias. The most delicate part of the analysis is RR;, since we must
extrapolate not from an unbiased oracle but from one affected by reshuffling-induced bias. Exist-
ing results (Dieuleveut et al., 2020; Sheshukova et al., 2024) do not apply directly, necessitating
a new analytical approach. Our key innovation is to reinterpret the reshuffled stochastic oracle as
a multi-step extra-gradient estimator. Classical extra-gradient methods mitigate rotational dynam-
ics in min—-max problems by probing lookahead points; here, the epoch-level reshuffling can be
viewed as a sequence of such probes. This perspective enables a spectral analysis via tensor algebra,
bounding the maximal eigenvalues of the biased operator (Lemma F.2) and, through a refined Taylor
expansion, cancelling of all sub-cubic bias terms for quasi-strongly monotone VIPs (Theorem 3.6).

Taken together, these ingredients yield the first O(+?®) bias guarantee for our algorithm in quasi
strong monotone VIPs.

2 PROBLEM SETUP AND BLANKET ASSUMPTIONS

Variational inequalities. Let’s recall first the basic framework of finite-sum variational inequal-
ities (VIs), which will underlie our analysis. Let X C R? be a nonempty closed convex set and
F : R? — R? a single-valued operator. The variational inequality problem VI(X, F') asks for a
point * € X such that

(F(x*),x — 2"y >0, VeeX (VIP)
In our setting, we focus on the unconstrained finite-sum case with X = R? and F(z) =
% Z?:_Ol F;(z), where each F; : R? — R typically represents the gradient contribution of a data
point in some dataset D. To build intuition, we illustrate the framework through a few canonical
examples below:
Example 2.1: Solving Non-linear equations. A solution 2* to the (VIP) corresponds to a root of
the equation F'(z) = 0, allowing casting any non-linear equation as a specific instantiation of the
Variational Inequality framework. The well-known example of that form includes the Navier-Stokes
equations in computational dynamics (Hao, 2021).
Example 2.2: Empirical Risk Minimization. For any C'—smooth loss function / : R — R, a
solution z* to the (VIP) with F(z) = V¥(z) is a critical point (KKT solution) to the associated
empirical risk minimization problem, consisting the cornerstone of machine learning objectives.
Example 2.3: Nash Equilibria & Saddle-point Problems. Consider N players, each having an
action set in R and a convex cost function ¢; : R — R. A Nash Equilibrium (NE) is a joint-action
profile z* = (x})X, that satisfies

ci(z*) < ¢z ™), Vi,x; € RY (NE)

For convex cost functions ¢; : R? — R, a (NE) coincides with the solution of a (VIP) with operator

F(z) = (Vgﬁcl(x))fv:1 In the particular case of two players and a (quasi) convex-concave objective
L : R% x R? — R, the solution z* = (x},z3) to the (VIP) with F(z) = (VL(x), —VL(x)) is a
saddle point of L satisfying

L(x],x9) < L(x],23) < L(x1,25),Vr1,29 € R?

Saddle-point problems and applications of (NE) are ubiquitous, pertaining from training Generative
Adversarial Networks (GANs) to multi-agent reinforcement learning and auction/bandit problems
(Daskalakis et al., 2017; Zhang et al., 2021; Pfau & Vinyals, 2016).

Blanket assumptions. We now state the standing assumptions for our analysis, beginning with
the existence of a solution z* to (VIP).

Assumption 2.1. The solution set X'* of (VIP) is nonempty and there exists 2* € X*, R € R
such that ||z*[|2 < R.

The next assumption introduces the class of operators F' of the associated (VIP) for which our
stochastic gradient algorithms will be analyzed for.

Assumption 2.2 (A\-weak p-quasi strong monotonicity). The operator F' is A-weak pu-quasi
strongly monotone, i.e. there exist A > 0, i > 0 such that for some z* € X'* it holds that

(F(z),z—a*) > pllz—a*|*>-A VzeR? (1)
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Assumption 2.2 for A = 0 coincides with the well-known
notions of quasi-strong monotonicity (Loizou et al., 2020),
strong stability condition (Mertikopoulos & Zhou, 2019),
and strongly coherent VIPs (Song et al., 2020) in the opti-
mization literature. It can be seen as a relaxation of the clas-
sical notion of strong monotonicity/convexity, which re-
quires (F () —F(2'), z—2') > pllz—2'|? vz, 2" € RY.
For A\ > 0, Assumption 2.2 represents a further relaxation,
motivated by dissipative dynamical systems and weakly
convex optimization (Raginsky et al., 2017; Erdogdu et al.,
2018), and it encompasses non-monotone games as well as
a variety of problems in statistical learning theory (Tan &
Vershynin, 2023).

Figure 2: A simple example of a
function satisfying Assumption 2.2 is
flzy) = (2 + Tsin(z)) + xy —
A common assumption in the literature of smooth optimiza- (y*—7 cos(y)), where the assumption
tion that we will utilize is that the operators in the finite-sum  holds with (x, A) = (1,25).

structure of the (VIP) are Lipschitz continuous.

Assumption 2.3 (Lipschitz continuity). Each F; is L;-Lipschitz:
|Fi(21) = Fy(@a)|| < Liller — @al,  Var,22 €R?, i € [n],

with L. = maX;e|n] L;.

Unlike standard analyses assuming unbiased oracles with bounded variance (e.g., (Loizou et al.,
2021; Hsieh et al., 2019; Lin et al., 2020; Mishchenko et al., 2020b)), random reshuffling induces
bias via inter-step dependence. Such conditions may fail even for simple quadratics. Instead, we
work directly with Lipschitz continuity and impose only a mild moment bound:

Assumption 2.4 (Bounded moments at the solution). At some z* € X*, the oracle values have
finite second and fourth moments:

=1 Z IFa)I? < = —Z I < oo.

Assumption 2.4 is mild: it does not require global boundedness of gradients, but only that the oracle
values F;(z*) admit finite second and fourth moments at the solution. Building on this, we extend
the variance bound of Emmanouilidis et al. (2024, Prop. A.2, p. 16) to higher-order moments:

Proposition 2.5. Let Assumptions 2.1-2.3 hold. Then, for any = € R? it holds that

(i) —ZHF F@P < 2(3 3 22)lo - 2" + 202,

n

(ii) —ZHF Fa)|* < 128(1 > L)l - o*|* + 12801,
=1

3 OUR RESULTS

We begin by formally presenting our main algorithm, SGD-RR,@®RR;. Omitting lines 2,9,10 and
using a single step size reduces it to SGD—RR; under perturbation.

Remark 1. Empirically, for sufficiently large datasets the effect of discrete noise in smooth problems is neg-
ligible, making the preprocessing step unnecessary. A detailed study of this effect lies beyond the scope of this
paper, whose focus is instead the first systematic treatment of the interaction between Random reshuffling and
Richardson extrapolation.

3.1 INNER LoOP

Our first result concerns the Perturbed SGD-RR; variant (see (SGD-RR,®RR| (inner-loop))) for A-
weak p-quasi strongly monotone VIPs.
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Theorem 3.1. Let Assumptions 2.1-2.3 hold. Then the iterates of Perturbed SGD-RR; satisfy for
’y S ’Ymax’

nu\ k+1 8ny2 L2 8A
A e I e R

where 0'3 = % Z?z_ol ||Fz (x*) ”2 and Ymaz = min {371leaz , \A 1tgzi€jzzz—1 }

Remark 2. Theorem 3.1 establishes linear convergence up to a bias of 0(7203 + %) where the % term is
inherent (Yu et al., 2021). For fair comparison we focus on the quasi-strongly monotone case (A = 0), which
already generalizes strong convexity. Our rate recovers known results for strongly monotone operators (Das
et al., 2022; Emmanouilidis et al., 2024) and extends them to weak monotonicity.

In this regime, reshuffling attains a much smaller bias than the O(’yaf) of with-replacement SGD (Loizou et al.,
2020; Gower et al., 2019), converging to a tighter neighborhood. This sharper bias also yields faster accuracy
rates: withy = 1/(nK), with-replacement SGD reaches O(1/(nK)) accuracy (Das et al., 2022; Mishchenko
et al., 2020a), while reshuffling accelerates to O(1/(nK?)), a further support for its empirical success.

Algorithm 1 SGD-RR;®RR;

Require: Initial point o € R?; step size v > 0; epochs I; dataset size n;
STOCHORACLE(x; 7) returns F;(x) (minimization) or operator value (VI);
PREPROCESS(g; 1) adds calibrated Gaussian smoothing on g (e.g., Uy ~ N(0, v*no?I)).

1: fork=0,1,...,] —1do > epoch k
2 for n = v,2v do > Parallel iterations with two step-sizes
3 Draw a random permutation wy, of [n]
4 fori =0,1,...,n—1do ) > inner loop (reshuffled pass)
5: @y (n 4 Th () — 7 PREPROCESS(STOCHORACLE(z}, (), wie[1]))
6 end for
7 m% 1] x}jy[n] > baseline next-start (used for analysis)
8 end for
9 Bht1 ¢ 2Ty [y) — Tk [24] > outer loop ( extrapolation at epoch end)
R
10: Trt1 < (2 2 eim Thiy] — Tmu2a)/k > Alternative: ( extrapolation at epoch’s averages)
11: end for
12: return > (optionally average {Z } across epochs)

In the sequel, we view the algorithmic trajectory through the prism of Markov chain theory. This
perspective enables a finer dissection of the reshuffling bias and, mutatis mutandis, equips us with
the machinery to construct consistent estimators for performance statistics. The Markovian frame-
work arises naturally, as the method progresses from z;, to x4 in a state-dependent fashion. The
connection between stochastic approximation and Markov processes—traced back to early works
such as Robbins & Monro (1951); Pflug (1986)—has fueled a rich literature for algorithms with un-
biased oracles. Random reshuffling, however, generates systematically biased oracles, necessitating
a genuine departure from this canonical line of analysis.

For readers accustomed only to classical finite-state Markov chains, the transition mechanism is usu-
ally represented by a directed graph with fixed transition probabilities. In our setting, the analogue
is the transition kernel P(z, A) = Pr[tpen € A | @now = @, A € B(R?), where B(R?) denotes
the Borel sets of R%. As in the finite-state case, it is highly desirable that this kernel remain invariant
over time—this is the property of time-homogeneity.*

At the step level, reshuffling destroys homogeneity: the transition kernel varies with the permutation
index, making the process non-stationary. Fortunately, this irregularity vanishes at the epoch scale:

“After one reshuffled pass, the law of the next iterate depends only on the epoch’s starting point

and the drawn permutation, but not its position within the permutation.”
Thus, the sequence of epoch-level iterates (:cLO])DO forms a bona fide time-homogeneous Markov

chain, forming the basis for the asymptotic analysis of the RR, extrapolation component >:

*If time-homogeneity fails, a process can be still Markovian in the sense that the future depends only on the
present, but its statistical regularity vary with time, complicating both analysis and long-run guarantees.

On the augmented space R? x &,, the chain ((zx,ws))s>0 is also time-homogeneous with kernel
K((z,w),A x B) = [, #(y; H(z,w),S1a) dy - LBl The above formulation is convenient for verifying

n!*
Lyapunov—Foster and minorization criteria, since the coupling with uniform perturbation remains independent.
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Lemma 3.2 (Epoch-level homogeneity and kernel). Fix v > 0 and n € N. Then the Perturbed
SGD-RR; can be described at each epoch k as: Draw wy, uniformly from &,, and set

Try1 = H(wg,wr) + Uk, Ur ~N(0,%),
where H (x,w) denotes the endpoint of one reshuffled pass started at = with permutation w (i.e.,
the map induced by n inner updates with step size ).
Then (zx)r>0 is a time-homogeneous Markov chain on R with transition kernel

Pad) = o ¥ [ doHaw), Bdy,  AeBRY,

wes,

where ¢(-;m, X) is the d-variate Gaussian density with mean m and covariance X.

By verifying irreducibility, aperiodicity, and positive Harris recurrence (Meyn & Tweedie, 2012),
we establish a unique invariant distribution 7., geometric convergence in total variation to it, and
concentration of scalar observables (admissible test functions) around x*.

Theorem 3.3. Under Assumptions 2.1-2.3, run Perturbed SGD-RR;with v < ~pax. Then
(zk) k>0 admits a unique stationary distribution 7., € Po(R?), and additionally:

@ [E[(r)] = Eonr, (@) < c(1 = p) Ve [€(z)] < Le(L + [|=]]),
(i) |Egnr, [b(2)] — £(2™)] < LV C V¢ : Ly — Lipschitz functions,
for some ¢ < o0, p € (0,1), C = O(MSE(SGD — RR;)) and yax defined in Theorem 3.1

Remark 3. Item (i) of Theorem 3.3 shows that Perturbed SGD-RR;converges geometrically in total variation
to 7. Item (ii) bounds the gap between the expectation of a measurement under 7~ and its value at the solution
™. Intuitively, if the method converged exactly to x*, these expectations would coincide.

The result of Theorem 3.3 follows from a Foster—Lyapunov drift condition combined with a mi-
norization argument, showing that the induced Markov chain satisfies the standard ergodicity criteria
in the spirit of Yu et al. (2021); Vlatakis-Gkaragkounis et al. (2024). Beyond geometric ergodicity,
one may also ask whether the chain admits asymptotic statistical estimation of functionals of its
trajectory. By invoking the Birkhoff—Khinchin ergodic theorem for continuous-state Markov chains,
we establish both a Law of Large Numbers (LLN) and a Central Limit Theorem (CLT) for empirical
averages of test functions evaluated along the epoch iterates.

Theorem 3.4 (LLN and CLT for Perturbed SGD-RR;). Suppose Assumptions 2.1-2.3 hold and
run Perturbed SGD-RR;with v < 4%, (cf. Theorem 3.1).

Let £ : R? — R be any test function such that [¢(z)| < L¢(1 + ||z[|?) and Eymr. [((z)] < o0.
Then for the epoch-level iterates, it holds that:

=1 T—1
1 a.s. —
=D Uw) 2 Egur [0@)] T2 (6@0) = Eonn, [0@)]) S N(0, 02 (8)),
T t=0 k t=0 k !
(LLN) (CLT)
where 02 (£) = limy 00 & Ex [S2] and 53 = 327" (£(xt) — Egmr, [€(x)]) .

3.2 OUTER LOOP

Having established the role of RR; within stochastic algorithms, we now examine its interplay with
RR; and the effect of combining these heuristics on bias. The previous results hold for the full class
of weakly quasi-strongly monotone problems with A > 0. To sharpen our understanding, we focus
on the quasi-strongly monotone case (A = 0 in Assumption 2.2), which already covers a broad range
of non-monotone regimes (Loizou et al., 2020). A key step in our analysis is to bound higher-order
moments of the deviation between RR; iterates and the solution of (VIP), thereby showing that the
bias of Perturbed SGD-RR; is linear in the step size with quadratic corrections.

Technically, our analysis relies on two delicate ingredients that go beyond straightforward gener-
alizations. (i) A spectral study of the full-pass operator (Lemma F.2), which approximates the
underlying map F' of the VIP. This connection between RR; and the multi-step extragradient litera-
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ture may be of independent interest, but its proof requires a nontrivial handling of spectral properties
across reshuffled passes. (ii) A combinatorial lemma (Lemma E.2) that bounds fourth moments of
finite-sum subsets of vectors. While reminiscent of Mishchenko et al. (2020b, Lemma 1, Sec. 7),
our result demands substantially more intricate manipulations to accommodate the dependencies
introduced by sampling without replacement.

Lemma 3.5. Let A = 0 and Assumptions 2.1-2.4 hold. If v < 7.« (cf. Lemma E.4), then

bias(Perturbed SGD-RR;) = limsup || E[zx] — 2*|| = C(z*)y + O(y?).
k—o00

Remark 4. For classical SGD, the bias takes the form bias(SGD) = C(z*)y + O(y"?) (Dieuleveut et al,

2020). Hence, while RR; retains the same first-order term, it improves the higher-order contribution and

simultaneously yields sharper mean-squared error guarantees.

Building on this fact, we construct a refined trajectory via the debiasing scheme RR,. Our final result

shows that the combined scheme attains exponentially fast a provable asymptotic O(~?) bias:
Theorem 3.6. Under the assumptions of Lemma 3.5, Algorithm 1 output satisfies

Last-iterate version (line 9): | E[zx] — z¥]| < (1 —p)* +0O(H?),
k
E l% Z xm] —z*
m=1

Averaged-iterate version (line 10): < % + 0.

where p € (0,1), ¢ < oo (cf. Theorem 3.3).

Remark 5. Although the last-iterate estimator is often preferred in theory, in practice a trade-off emerges
vs ergodic-average: full-epoch or tailed averaging (the Polyak—Ruppert scheme (Polyak & Juditsky, 1992))
achieves improved variance properties, asymptotically captured by Theorem 3.4.

4 EXPERIMENTS

In this section, we conduct a series of experiments demonstrating the effect of benefits from the
synergy of the two heuristics empirically. More specifically, for the in the strongly monotone setting
we compare the relative error and bias attained by 4 variants: the classical SGD(A) algorithm using
uniform with-replacement sampling (denoted as SGDA in the plots), the one equipped with RRy,
the one equipped with RR, and the method utilizing both of the heuristics. For each experiment,
llzk—2"|?

we report the average of 5 trials/runs and plot the relative error log ( 0 —2"|2

) with respect to the
iterations of the algorithm.

Two-player Zero-Sum Games. In the strongly monotone case, we consider the two-player zero-sum
game from Emmanouilidis et al. (2024); Loizou et al. (2021), consisting a strongly convex - strongly
concave quadratic of the form

: 1 ¢ T T L oro o T T
min max f(x1,z9) = — —x7 A;x1 + 27 Biza — =25 Cix” + ) 1 — ¢ To.
xleRdzgeRdf( ) 2) n,Z;Q 144 1 Pb2 972 i i b2
For the interested reader, additional details on the experimental setup and the procedure used to
sample the matrices A;, B;, C; are provided in Appendix G.

On the Rate of Convergence. In the first set of experiments, we aim to validate empirically the
result of Theorem 3.1 by running SGDA with RR; and using the step sizes described by theory.
We conduct experiments for multiple conditions x = % with value k = {1,5,10} and p = 1. In

Figure 3, we observe that the algorithm with RR; converges linearly to a neighbourhood around
the solution z* and the neighbourhood depends on the step size used, validating in this way the
results of Theorem 3.1. We have run experiments also for stepsizes that are larger than the ones
predicted in theory, observing similar behaviour of the optimization algorithm. Additionally, we
have performed an ablation study in Wasserstein GANs (Emmanouilidis et al., 2024; Daskalakis
et al., 2017), showing that the performance benefit of the proposed heuristic is universal in many
other common optimization algorithms used in VIs. The additional experiments can be found in
Appendix G.
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Figure 3: Comparison of different heuristics. The RR; combination of RR,@BRR; converges to lin-
early to neighborhood of the solution, validating the established theoretical results (Theorem 3.1).
Even when we are using the last iterates, the combination of RR,&BRR; converges to a smaller rel-
ative error a smaller relative error in comparison to the other variants (classical SGDA, RRj, RR;).
This validates that bias of Algorithm 1 is improved even when RR;-last iterates are used.

Efficient Statistics & Empirical Concentration. This set of experiments examines the central limit
theorem (CLT) and aims to validate empirically the theoretical results established in Theorem 3.4.
The value of the game, which is zero, is used as the test value for which we observe the averaged
evaluations after T = {100, 500, 1000} iterations respectively. In particular, we run the algorithm
with the step size suggested by Theorem 3.4 and maintain for the total number of iterations the sum
of the evaluations, normalized with v/T'. We run the experiment for 7' = 2000 trials/runs and plot
the corresponding histograms. In Figure 4, we observe that the histograms tend to concentrate to the
value of the game as the number of iterations increase. Additionally, we examine the effect of the
step size to concentration of the observed distributions.

Cc%r;gentration Around the Game Value Effect of Stepsize on CLT

=3 T=100 0.010 £ v = 0.1 (1=500)
= I
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C 0.020 c
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. il i
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Figure 4: Validation of concentration around the mean and effect of the number of iterations and
step sized selected. The average of the game values tend to concentrate more around the mean for
larger number of iterations and smaller step sizes. The right plot indicates the effect of two different
step sizes v € {0.1,0.001}, showing that for smaller step sizes the corresponding distribution attain

higher concentration around the mean of the values.

5 CONCLUSION

In summary, our work establishes that the synergy of random reshuffling and extrapolation yields a
principled reduction of bias, culminating in accelerated convergence guarantees for structured non-
monotone VIPs. By combining Markov chain techniques, spectral analysis, and higher-moment
bounds, we provide the first rigorous evidence that these heuristics can be synergistically integrated
rather than studied in isolation. This perspective bridges a long-standing gap between practice and
theory, offering a systematic framework that extends naturally to a broad class of constant step-size
stochastic methods. We view this as a foundation for a new generation of analyses where practi-
cal heuristics are not only empirically verified but also theoretically grounded to deliver provable
performance improvements in complex stochastic optimization landscapes.

10
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LIMITATIONS

Limitations of the structural assumption. A central structural assumption in our analysis is that
the operator F' satisfies A\-weak p-quasi-strong monotonicity. This condition is broad enough to
include several meaningful non-monotone problem classes—such as dissipative dynamical systems,
weakly convex optimization, and locally contractive variational inequalities—and is standard in
modern analyses of stochastic fixed-point and operator-splitting methods (e.g., Hsieh et al., 2019;
Mertikopoulos and Zhou, 2019; Chavdarova et al., 2021). However, it is important to emphasize the
following limitations.

1. Not applicable to general nonconvex—nonconcave min—-max problems. The assump-
tion does not hold for arbitrary adversarial problems such as deep GANs, multi-agent RL
environments, or smooth non-monotone games with persistent rotational dynamics. These
settings may lack even local stability (e.g., Daskalakis et al. 2018; Fiez et al. 2020). Accord-
ingly, our theoretical guarantees should not be interpreted as applying to fully adversarial
or worst-case min—max formulations.

2. Local nature of the assumption. Quasi-strong monotonicity is inherently a local regular-
ity condition: smooth operators that are monotone in a neighborhood of a solution satisfy
it on that region (Lemma A.4, Hsieh et al. 2019). This requires smoothness and regularity
that may not hold in problems involving discontinuities, clipping, piecewise-linear losses,
or hard constraints. In such cases, the assumption may fail even locally.

3. Not capturing highly oscillatory or anti-monotone operators. Allowing A > 0 per-
mits controlled violation of monotonicity, but the assumption still does not model strongly
anti-monotone or highly oscillatory operators. Extending our analysis to Minty variational
inequalities, hypomonotone operators, or other generalized monotonicity classes remains
an interesting direction for future work.

Despite these limitations, we believe the assumption remains meaningful for a broad set of struc-
tured, smooth VIPs where local stability is present. We hope that this explicit discussion helps avoid
any misunderstanding about the scope of applicability of our results.
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A ADDITIONAL RELATED LITERATURE

Owing to its central role in optimization and machine learning, stochastic gradient descent (SGD)
and its numerous variants have generated an extensive body of literature that spans several decades.
A complete survey is well beyond the scope of this paper, so we restrict ourselves to highlighting
the most relevant threads and pointers.

The only aspects we emphasize at this point are the phenomena most pertinent to our analysis:

1. classical stochastic approximation and asymptotic normality results;

2. constant step-size schemes viewed through the lens of Markov chains and diffusion ap-
proximations;

3. the widespread use of random reshuffling and its still-developing theoretical guarantees;
and

4. challenges that arise in min—max and variational inequality settings.

These themes form the backbone of our extended discussion in the appendix, where we provide a
more comprehensive account of prior work.

From classical stochastic approximation to modern SGD. The study of stochastic approxima-
tion predates machine learning by decades, beginning with the foundational work of Robbins &
Monro (1951) and Kiefer & Wolfowitz (1952). Early analyses focused on vanishing step-sizes
obeying the classic L?>~L! summability rules, and developed the ODE method to describe limiting
dynamics; see, e.g., Ljung (1978; 2003); Benaim (2006); Bertsekas & Tsitsiklis (2000b). In paral-
lel, a rich line of results examined the almost-sure behavior of stochastic approximation, including
avoidance of saddle points and convergence to locally stable equilibria (Pemantle, 1990; Brandiere
& Duflo, 1996; Benaim & Hirsch, 1995; Hsieh et al., 2021; 2023; Jordan et al., 1998; Mertikopoulos
et al., 2020; 2024; Staib et al., 2019; Antonakopoulos et al., 2022).

Asymptotic normality and statistical inference. A complementary thread established central
limit theorems for stochastic approximation: classical milestones include Chung (1954); Sacks
(1958); Fabian (1968); Ruppert (1988); Shapiro (1989), culminating in the Polyak—Juditsky av-
eraging principle (Polyak & Juditsky, 1992). Under suitable decaying step-sizes, the averaged SGD
iterate is asymptotically normal and attains the Cramér—Rao optimal variance. This statistical per-
spective has been leveraged to construct confidence intervals and inference procedures for SGD-
based estimators (Tripuraneni et al., 2018; Su & Zhu, 2018; Toulis & Airoldi, 2017; Fang et al.,
2018).

Constant step sizes: bias, speed, and Markovian viewpoints. Constant step-size policies, now
standard in large-scale learning, trade a nonvanishing asymptotic error for fast initial progress and
robust practical performance. Their benefits in over-parameterized regimes are well documented
(Schmidt & Roux, 2013; Needell et al., 2014; Ma et al., 2018; Vaswani et al., 2019). The Markov
chain viewpoint provides a unifying language for analyzing such constant-step schemes: early devel-
opments used dynamical-systems and Markov-process techniques to establish stability and ergodic
properties (Kifer, 1988; Benaim, 1996; Priouret & Veretenikov, 1998; Fort & Pages, 1999; Aguech
et al., 2000), with recent refinements quantifying convergence behavior and variance (Dieuleveut
et al., 2020; Chee & Toulis, 2018; Tan & Vershynin, 2023). In parallel, diffusion-based analyses
and Langevin-type discretizations connect SGD to MCMC methodology, yielding non-asymptotic
guarantees and sharp mixing rates in log-concave and beyond-log-concave settings (Dalalyan, 2017;
Durmus & Moulines, 2017; Cheng et al., 2018b; Dalalyan & Karagulyan, 2019; Brosse et al., 2017;
Cheng et al., 2018a; Bubeck et al., 2018; Dwivedi et al., 2019; Dalalyan & Riou-Durand, 2020; Li
etal., 2019; Shen & Lee, 2019; Erdogdu & Hosseinzadeh, 2021).

Random reshuffling vs. with-replacement sampling. Among finite-sum methods, random
reshuffling (RR) occupies a special place: each epoch processes every component exactly once
in a random order, in contrast to classical with-replacement SGD. RR is ubiquitous in practice—
it improves cache locality (Bengio, 2012), often converges faster than with-replacement sampling
(Bottou, 2009; Recht & Ré, 2013), and is the default in deep learning pipelines (Sun, 2020). The
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success of RR contrasts with the mature theory for with-replacement SGD, which enjoys tight up-
per/lower bounds in many regimes (Rakhlin et al., 2012; Drori & Shamir, 2019; Nguyen et al.,
2019). A key analytical hurdle is bias: within an epoch, conditional expectations are no longer
unbiased gradients, so classical SGD proofs do not transfer verbatim. Early attempts leveraging
the noncommutative arithmetic—geometric mean conjecture (Recht & Ré, 2012) were later under-
mined when the conjecture was disproved (Lai & Lim, 2020). More recent works establish rates
for twice-smooth and smooth objectives and highlight gaps between theory and prevalent heuristics
(Giirbiizbalaban et al., 2019; Haochen & Sra, 2019; Nagaraj et al., 2019; Safran & Shamir, 2020;
Rajput et al., 2020).

Incremental/ordered passes and sensitivity to permutations. Before RR became the default,
incremental gradient (IG) methods with fixed orderings were widely used in neural network training
(Luo, 1991; Grippo, 1994), with asymptotic convergence known since early work (Mangasarian &
Solodov, 1994; Bertsekas & Tsitsiklis, 2000a). However, their performance can depend strongly
on the chosen ordering (Nedi¢ & Bertsekas, 2001; Bertsekas, 2011). By randomizing the order
every epoch, RR mitigates this sensitivity and—under smoothness—can outperform both with-
replacement SGD and deterministic IG (Giirbiizbalaban et al., 2019; Haochen & Sra, 2019), with
refined lower/upper bounds developed in follow-up studies (Nagaraj et al., 2019; Safran & Shamir,
2020; Rajput et al., 2020).

Min-max problems and variational inequalities. In large-scale saddle-point and VIP settings,
most theoretical analyses assume with-replacement sampling for convenience, whereas implemen-
tations overwhelmingly adopt without-replacement sampling (Bottou, 2012a). A growing literature
is closing this gap: for minimization problems, several works show (sometimes provably faster)
RR rates in finite-sum regimes (Mishchenko et al., 2020a; Ahn et al., 2020; Giirbiizbalaban et al.,
2021; Cai et al., 2023). For min—-max and VIPs, guarantees remain comparatively sparse: Chen &
Rockafellar (1997) and Korpelevich (1976) initiated the study of stochastic and extragradient-type
methods, with modern analyses for SEG and optimistic variants (Gorbunov et al., 2022a;b; Hsieh
et al., 2019; Choudhury et al., 2023). For RR specifically, Das et al. (2022) derive guarantees for
SGDA and PPM under strong structural conditions, and Cho & Yun (2023) extend to certain non-
monotone settings. Nevertheless, classical SGDA can diverge even in simple monotone bilinear
games, while proximal methods are implicit and less practical; filling this theoretical-practical gap
remains an active direction.

Overparameterization and global convergence phenomena. Finally, SGD training dynamics in
overparameterized neural networks reveal regimes where global convergence can emerge from struc-
tural properties such as width, depth, and initialization (Du et al., 2019; Zou et al., 2020; Nguyen &
Mondelli, 2020; Liu et al., 2023). These results are powerful but specialized: they rely on problem-
specific structure (e.g., width scaling or tailored initializations). Our focus is orthogonal—we seek
guarantees for general non-convex or non-monotone landscapes under stochastic approximation, in-
dependent of architectural assumptions. For completeness, we refer the reviewer for the related work
of the aforementioned work for further surveys about these SGD & overparameterization results in
more detail.

Summary. To summarize, there is a mature theory for with-replacement SGD (both asymptotic and
non-asymptotic), well-developed statistical limits via averaging, and powerful diffusion/Markov
perspectives for constant-step schemes. RR, despite being the practical default, poses distinctive
analytical challenges due to its within-epoch bias, especially in min—-max and VIP settings. Re-
cent advances begin to bridge this gap, but a comprehensive understanding of how classical heuris-
tics (constant steps, reshuffling, extrapolation) interact remains incomplete—precisely the juncture
where our work contributes.
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B PROOF ROADMAP

Our main theorem relies on several technical components, developed across different parts of the
appendix. In Appendix C, we establish the mean-squared convergence rate of Perturbed SGD—
RR;. While this result is of independent interest—as it extends prior analyses to a noisy setting—it
primarily serves to construct the Lyapunov function that underpins our Markov chain treatment of
the algorithm. Armed with this Lyapunov function, the properties of the perturbation, and the epoch-
level viewpoint, Appendix D shows that SGD-RR;forms a geometrically ergodic Markov chain with
all standard consequences: existence of an invariant measure, a law of large numbers, and a central
limit theorem.

Appendix E develops higher-moment control. In particular, part E.2 introduces a new combinatorial
lemma on fourth moments of finite-sum subsets of vectors—a technically challenging step, moti-
vated by the fact that most extrapolation analyses (e.g., Dieuleveut et al. (2020)) require bounded
fourth moments of the reshuffling estimator. With this tool in hand, Appendix F shows that no
change in the step-size order is required to accommodate the extrapolation trick: we are able to con-
trol the higher moments of the Jacobian of the reshuffled biased gradient estimator. To the best of
our knowledge, this is the first such result. The last parts of Appendix F then contain the full proofs
of our main theorem.

Finally, Appendix G presents additional experiments demonstrating the practical gains of our
method, which originally motivated this study.

Appendix C

_ Appendix D Appendix D
Eerturhed|SCDERR Epoch-level Markov chain Invariant measure, LLN, CLT
MSE rate & Lyapunov

e . / . [ Appendix G Experiments
Foster-Lyapunov 7 -
Appendix E.2 Appendix F Appendix F Appendix F
4th t control Spectral analysis Bias analysis Synergy RRresh + Extrap.
combinatorial lemma full-pass operator Pert. SGD-RR Bias O(~*)

Figure 5: Dependency graph of Appendix results. Solid lines: main logical flow. Dashed lines:
auxiliary inputs.

B.1 WARM-UP:USEFUL INEQUALITIES

We start our technical appendix by providing inequalities that will be useful in our proofs

n 2 n
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C PROOF OF CONVERGENCE RATE (MSE) OF PERTURBED SGD-RR;
(THEOREM 3.1)

Our first result concerns the Perturbed SGD—RR; variant for A-weak p-quasi strongly monotone
VIPs.

Theorem C.1 (Restatement of Theorem 3.1). Let Assumptions 2.1-2.3 hold. Then the iterates of
Perturbed SGD-RR; satisfy for v < Vimaz»

8ny2L2, .. 8\

ynp kL
Ellofy —zl?) < (1-750) " e - a4 = gmenod 4 =2
where 0% = £ Y171 [Fi(a”)|? and ymas = min { gt VIR Ret

We first provide some notation that will be necessary for establishing the proof of Theorem 3.1.
Consider the epoch-wise update rule of Perturbed SGD-RR;

n—1
= = a -y Fyel) - Uk
i=0
= 2 =G (@) = Ui (8)
n—1 .
where G, (z9) = > Fi (x},) denotes the epoch-wise operator used to update the epoch-level
i=0

iterates (2 )x>0-

C.1 PREPARATORY LEMMAS & PROPOSITIONS

With this notation at hand, we proceed in proving two Lemmas that are necessary for deriving the
rate of convergence of the Theorem 3.1. In the first lemma, following the high-level intuition that
one epoch of random reshuffling with step size -y progresses the underlying dynamics approximately
equal to one step of the deterministic GD with step size 4’ = n-y, in the first lemma we bound the
“progress” that the deterministic algorithm makes in one step.

Lemma C.2. Let Assumptions 2.1-2.3 hold. Forany * € X'*, the iterates of Perturbed SGD-RR;
satisfy that

Eflloken — o —ynF@)I? 1 7] < [0 =) + 2202 ok — |2 + 29

Proof. For any fixed * € X*, it holds that
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Taking expectation condition on the filtration Fy, gives
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Having an expression for the progress made by the deterministic counterpart of Perturbed SGD-RR;,
we next aim to bound how large the deviation of the two algorithms becomes inside an epoch. To do
so, we bound the sum of the distances of the iterates obtain by Perturbed SGD-RR; from the start
of the epoch, which corresponds to the fictitious iterate of our comparator deterministic counterpart.
The following lemma provides an upper bound dependent on the distance of the current epoch-level
iterate from the solution and the variance at the optimum.
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Lemma C.3. Let Assumptions 2.1, 2.3 hold. If Perturbed SGD-RR; is run with step size v <
I U .
3D Lo’ then it holds that

(S ok — bl 1] < on*r2Lhlad — o + 2022

Proof. From the epoch-level update (8), it holds
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where at the last step we have used the Lipschitz property of the operators F;,Vi € [n]. Taking
expectation condition on the filtration Fj, we get
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From inequality (11) and (10), thus, we obtain
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By summing over 0 < ¢ < n — 1 we have that
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0

For v < , rearranging the terms in (13) we obtain

—_

24 2n(n + 1)y%0?

IN

Y’n(n+ 1)A||) — «*

o — 1)(20 = 177 Fe)|

Assumption 2.3

< 2v°n?(A + nL2)Hx2 - x*HQ + 2n%~%02
A§2Lfnam 2
< 6n372L,2nMHa:2 —z*||” 4 2n?y2%02

O

In the preceding subsection, we established a series of preparatory lemmas. We now combine these
ingredients into a unified elementwise argument to prove Theorem 3.1.

C.2 ASSEMBLING THE LEMMAS: PROOF OF THEOREM 3.1

In this section, we provide the proof of Theorem 3.1, establishing linear convergence of Perturbed
SGD-RR; to a neighbourhood of the solution. The proof technique leverages the interpretation that
one epoch of Perturbed SGD-RR; with sufficiently small step size v > 0 is equivalent to one step
of the gradient descent with step size v/ = n-, as the iterates of Perturbed SGD-RR; inside the
epoch do not change drastically. To account for the deviation of the iterates from the initial state
x? inside the epoch, we have upper bounded the sum of the corresponding distances in Lemma C.3.
Thus, using the combining the bound on the progress made by gradient descent from Lemma C.2
with the potential “deviation” between the two algorithms we establish the rate of convergence of
the method.

Proof. Using the update rule of Perturbed SGD-RR;, we have that:

$2+1 = ZEZ_l - ’YFw,f;fl(xZ_l) — Wk
n—1
= =) Fula) -
=0
n—1
= 2 —mF @) — 7Y (F(ah) — Fu(2r) — vk (14)
=0

n—1
where the last step we used the fact that ynF(z) = v Zo For (29) and the finite-sum structure
iz

of the operator F'. It holds, thus, that

n—1
af —a" —mF(a}) =7 Y (Fy(ah) = FL (23) —7Us
=0

lapy —*)* = (15)

From Young’s inequality, the right-hand side (RHS) of (15) can be bounded as follows

2

0 * 0y (12 n—1
. xy — " —ynF(a}) v ;
o —ap < AT =PRI 2 ISR ) - R D) + U
YnH L e
2 n—1 2
©) Hx% —z* = 'ynF(xg)H 2 , 2y
— Ei(z}) — F i (2 LUl
— 1 — ynpu + nu ; wk('rk) wk('rk) + TL/J” k”
@ |20 — 2" —ynF@@)||> 2yl , 2 9
< H:ck x yn (l'k)H + =y Z HF‘*“ (ﬁc) —F ($2)H + s ||Uk||2
L—=qnp O " ni
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Applying the Lipschitz property of the operators, we obtain

o nkF(x 2
||£C2+1 _ w*HQ < || k — ,Zn’u ( k)| mam Z H ‘rg + niz ||Uk||2 (16)

Taking expectation condition on the filtration Fj, (history of z9) and using the fact that the noise
Up ~ N (0,7%n%02l), we get

E[Hx%—x* —7nF(x2)H2 |]:k} O 2 n—1
0 |2 TLmaa i .0 2
e[l 2" 7] < — =P B[ k= bl 1 7
3.2
42170 (17)
I

To complete the proof, it suffices to bound each term on the right-hand side of (17). From Lem-

: 1
mas C.2, C.3, it holds for v < m that
E[Hx% —az* - WnF(arg)HQ |.7-"4 < [@=np)? +4*0°LE ] ok — 2*|)* + 2ynA (18)
n—1
E[N Izt — )" 1 7] < 49PnPL2]af — 27| (19)
i=1

Substituting (18) and (19) into (17), we obtain

2,212 37272
¥*n*L 8n3+3L2L 0 9
E[ 0 _ *2‘]_—:| < (1_ mazx mazx ok
[2psr — 2" F| < Y+ 1=y + m |z — 2|
an?y3L2 2nyA
+ Y Lmax 0_2 ny (20)
1 —ynp
Selecting the stepsize v < min {ﬁ, —W} . we have that
1
—_— 2
1 —~vynu
2L2 12 3 3L4
1 —ynu I 2
and thus substituting in (20) we get
n 4n2~3L2
E (e — 2 7] = (1= 8 el — a7 ) + %af +anyA 2D

Taking expectation on both sides and using the tower property of expectations, we have that:

4 2 3L2
Elleli -2 < (1-15F) It fx*||2+%az+8mx
4 2 3L2
< (12 g ||2+Z 1= gt (P2 4 )
8 2L 8A
S (1 N) ||1,8_1,*||2+ ny 2maxo_z+7
2 H 7
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D PROOF OF ERGODIC PROPERTIES AND LIMIT THEOREMS
(THEOREM 3.3) & (THEOREM 3.4)

We start by proving a series of properties that the induced Markov Chain satisfies, that will be
necessary for proving the Theorem 3.3.

Proposition D.1 (Proposition 5.5.3 (Meyn & Tweedie, 2012)). If a set C € B(R?) is v,,,-small,
then it is v, -petite for some 9, > 0.

Intuition. The notions of small and petite sets are technical tools in Markov chain theory that help
verify stability properties. A set C' is called small if, starting from C, the chain has a uniform
positive chance of reaching any region of the state space within a fixed number of steps. A petite set
is a weaker concept: instead of requiring such uniformity in a single time step, it allows the chance
of hitting any region to be distributed over a random number of steps (via a probability distribution
over times). Thus, every small set is automatically petite, but the reverse is not true. Intuitively,
small sets guarantee “uniform mixing after a fixed horizon,” while petite sets guarantee the same
effect “on average over time.”

D.1 PROOF OF CONTINUOUS STATE TIME HOMOGENIOUS MARKOV CHAIN
(LEMMA 3.2)

Lemma D.2 (Epoch-level homogeneity and kernel). Fix v > 0 and n € N. Then Perturbed-SGD
can be described at each epoch k as: Draw wy, uniformly from S,, and set

Tpr1 = H(zp,wi) + Uk, U NN(O,E),
where H (x,w) denotes the endpoint of one reshuffled pass started at 2 with permutation w (i.e.,
the map induced by n inner updates with step size 7). Then (xj)r>0 is a time-homogeneous
Markov chain on R? with transition kernel

P(z,A) = % Z /4(;5(1/; H(z,w), ¥) dy, A € B(RY),

wes,

where ¢(-;m, ) is the d-variate Gaussian density with mean m and covariance X.

Proof. Fixy > 0andn € N. Forany z € R and w € &, define the inner-epoch recursion
P (z,w) = =, 2+ (r,w) = 2l (z,w) — v Fupj (x[j] (x,w)), j=0,...,n—1,
and the (measurable) epoch map

n—1

H(z,w) =z —v Z Fo (m[j] (z,w)).
§=0

By construction, at epoch k the algorithm updates as
Tpy1 = H(xg, wi) + Uy,

where (wy) x>0 are i.i.d. uniform on &,, and (Uy)>o are i.i.d. with law N (0, X1,), independent of
(wk) k>0 and of xy, given the present state.

Markov property. Let A € B(R?). Using the tower property and the independence of wy,, U, from
the past given xy,

Pr(zis: € A| 2o, ..., x1) = E[Pr(H(xk,wk) YU € Az, wr) ( xk} = E[Pr(H (21, w) + U € A)],

where the outer expectation is over w ~ Unif(&,,) and U ~ N(0, £1,), independent. Thus
Pr(zri1 € Al xo,...,2k) = Pr(zpsr € A | zy) =: Pz, A),

80 (zk) k>0 is a Markov chain.
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Time-homogeneity and kernel. Since the joint law of (wy, Uy) does not depend on k, the transition
kernel P is time-invariant. By conditioning on w and integrating over the Gaussian U,

Pz, A) = % Z Pr(H(z,w)+ U € A) = % Z /Aqﬁ(y; H(z,w), X1;) dy,

T wes, twes,

where ¢(-;m, XI;) denotes the d-variate Gaussian density with mean m and covariance >1;. This
yields the stated expression for P and establishes time-homogeneity on RY.

Augmented formulation (for reference). On the product space R? x &,,, define the next permutation
w’ ~ Unif(&,,) independently of (z,w) and U. Then the augmented chain ((xy,wy))r>0 satisfies

(@/,) = (H(w,w) + U, o),
and the associated kernel is
B
K((amw),A X B) = / o(y; H(z,w), X1y)dy - ‘117"7
A .

which is manifestly time-homogeneous. O

We, next, show that there exists an energy function that describes the iterates of the Markov chain.

D.2 PROOF OF FOSTER-LYUAPUNOV INEQUALITY

A central tool for proving stability and ergodicity of Markov chains is the Foster—Lyapunov inequal-
ity. The idea is to construct an “energy” or “Lyapunov” function &(x, z*) that tracks the distance of
the chain’s state from equilibrium. If this function decreases on average outside a bounded region,
it ensures that the process cannot drift to infinity and will instead return frequently to a compact set.
This property, when combined with the minorization condition, implies positive Harris recurrence
and geometric ergodicity (Meyn & Tweedie, 2012).

In our case, a natural candidate for such an energy is the squared distance to a solution z*, up
to an additive constant. The following corollary verifies that this choice indeed satisfies a Fos-
ter—Lyapunov inequality for Perturbed SGD-RR,, showing that the expected energy after one epoch
contracts linearly up to a fixed additive term.

Corollary D.3. Let Assumptions 2.1-2.3 hold. The function &(zf, 2*) = ||zk — 2*||3 +1 satisfies
for any z* € X'* the inequality

E|E(E a) | Fu| < c&(zk,z*) + ¢y,

8ny>L2
WhereC]_:1—3/%511‘1(102::%_’_%034’_%'

Proof. From inequality (21) of Theorem 3.1, we have that

np kL 8ny2 L2 8\
Ellar o717 < (1=T5F) e - ot + = gmeno? 4

Adding in both sides one and using the definition of £(x%, z*), we obtain

n n 8n~y2L? 8\
(1_u> (‘|$k—$*||2+1)+7 M_~_ 2 zmawo.z_’_i

E[ O —zP+1 }‘} <

|Zki1 —2"[|°+ 1| Fr| < B) 2 1 o
= E[S(:vlgﬂ,x*) |.7-'k} < &b, zt) e (22)

where at the last step we have let ¢c; = 1 — 25% and ¢ = 25F + %af + %. O
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Lemma D.4. Let Assumptions 2.1-2.3 hold. If v < 7,42, then for any fixed z* € A" the
functions &; (x, 2*) = E(x,z*), E(z, 2*) = /E(x, x*) satisfy the geometric drift property for
the iterates of Perturbed SGD-RR;, i.e., Vi € {1,2} there exist measurable set C;, constants
a; > 0,a; < oo such that Vo € R?

A&i(z,x%) = —a&i(z, ") + 1c &, (23)
where A&i(z,2*) = [ ,.ga P(2,d2")E(2') — &i(x) and the constant 7,4,
. 1 V1+6u2L2 —1
MR 30T e~ 12nLZ, 0

Proof. In order to prove that the geometric drift property is satisfied, we need to show that there exist
function &; : R — [1, +00], measurable set C; and constants «; > 0, @; < oo such that (23) holds.
From Corollary D.3, we have that the function £; : RY — [1, 4+-00] with & (z, 2*) = ||z — 2*||®> + 1
satisfies along the iterates of Perturbed SGD-RR; that

E[&1(esn,2") | P fan =2} < adi(@a’)+ e 24)

272
where ¢; = 1 — 252 and ¢ = 13% + MVTLQMWUE + %. Additionally, for the epoch-level iterates
x, of Perturbed SGD-RR; the definition of A is

N /  Pleda)8 (o) = &)
z'e
= E[gl(xk-i-lvx*) — &g, ") | Fi s {zp = 2} (25)
From (24) and (25), we have that
E[é’l(karl,x*) | Fio s {ap = x}] < e1&1(z) + e
= E[&i(ep,a") - & (o) | Ft {on = o] < —(1= e)&(@,2%) + ¢
S A&z, 7)< —(1— en)Er(m, ) + o (26)
Let C; = {x €R: & (z,2*) < (12%1)} We have that

1761

A& (z,z*) < —(1—c1)é(z,2™) + Lo(x)es + Loe(x) Ei(x, ")
1— C1
2

where at the last step we used the fact that 1c<(z) < 1 and ¢; € (0, 1). From (27) we conclude that

Si

Ei(z,27) + 1oy (o) 2 (27)

&1 (z, x*) satisfies the geometric drift property for the set C; = {x €R?: & (z) < (12_%1) and

with constants « = 1_761, a = cs.

For the & (z, 2*) = \/E(x, x*), by Jensen’s inequality it holds that

E|:\/g(xk+17$*) | Fro : {zp = m}} \/E {S(xkﬂ,x*) | Fro: {zp = x}}

< &z, z*) + co

< Vaye@ ) +va

Thus, there exist constants dy = /c1, ds = \/cs such that it holds

IN

A

E{eg(xkﬂ,x*) | Fpo: {a = x}} < di&o(a,z¥) + do, (28)
Since it holds that
A& (z,x*) = / P(x,dx’ )& (a2 )—Eq(z, 2") = E[é’g(xkﬂ,x*)—gg(xk,x*) | Fio : {zx = x}|,
I/ERd

(29)
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we have that
5[52(xk+1,x*) ~ Eo(an ) | Fi: {zx = )| < —(1 — d))Es(z, %) + da
= A((:Q(J?,JZ*) < —(1 — dl)gg(l‘,l‘*) + dy 30)

Let Cy = {x €R?: &(w,2*) < (12:151)}. We have that

N . 1-d
A& () < —(1—di)Ea(x, %) + Loy do + Leog(x) ——
1—-d;

2
where at the last step we used the fact that 1c¢(x) < 1and d; € (0, 1). Hence, we conclude that

Es(x, x*) satisfies the geometric drift property for the set Co = {w €R: &(x) < %} and

Eo(x, ™)

IN

52(58, ;v*) + 102(1.) da

with constants g = %, a =ds. O

D.3 PROOF OF MINORIZATION PROPERTY

The next step in establishing ergodicity is to verify a minorization condition. Intuitively, this prop-
erty guarantees that whenever the chain is in a certain “small set” C, its one-step transition kernel
dominates a fixed nontrivial distribution v, uniformly with probability 6 > 0. In other words, starting
from any x € C, the algorithm has a baseline chance of moving into any region of the state space
according to v. This is the key ingredient that, together with a Lyapunov—Foster drift condition,
yields geometric ergodicity of the Markov chain. The following lemma formalizes this property for
the iterates of Perturbed SGD-RR;.

Lemma D.5 (Minorization property). Let Assumptions 2.1-2.3 hold. If v < vpyax, then the
iterates of Perturbed SGD--RR; satisfy the minorization condition: there exist a constant
§ > 0, a probability measure v on (R%, B(R?)), and a set C' C R? such that v(C) = 1, »(Ct) = 0,
and

P(z,A) > §1c(z)v(A), VzeR? AeBRY), @31
where P(z, A) = Pr(zp41 € A | 2, = 2) and Yipax = min {Snleaz’ v 1?222?”““%.

Proof. Consider the Lyapunov candidate £(x) = ||z — z*||* + 1 for some z* € X*. Its sublevel

sets
C(r):={z eR: (x) <r} =B(z*,Vr —1), r>1,
are bounded, hence suitable for applying small/petite set arguments.
At each epoch, the update of Perturbed SGD-RR; can be described by
Tpy1 = H(zg, wi) + Uy,

where wy, is uniform on &,, and Uy ~ N(0,XI;), independent of wy and xj. Thus, for any
A € B(R%),

1

P(z,4) = — > / Wy; H(z,w), ¥) dy,

: WEGn A

Since ¢(y;m, ¥14) > 0 for all y € RY, the kernel has strictly positive support everywhere.

Now fix 79 > 1 and restrict to C(rg). Define the reference measures for any A € B(R?)

_ Leb(AN C(ry))

1
v(4) = Leb(C(r0)) nl

- Y oy Hiww), ) dy.

weG,
i.e., the uniform probability distribution over C(r). Clearly v/(C(ro)) = 1 and v(C(r()C) = 0.

and Leb(4) = / inf

AxEC(ro) N

Finally, by continuity of ¢ and compactness of C(r), there exists 6 > Leb(C(rg)) > 0 such that
Pz, A) > dv(A), Va € C(rg), A C C(ro).

If z ¢ C(rg) or A Z C(ro), the right-hand side of (31) is zero and the inequality is trivially satisfied.

Hence the minorization condition (31) holds. ]
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D.4 PROOF OF IRREDUCIBILITY, APERIODICITY AND HARRIS AND POSITIVE RECURRENCE
Lemma D.6. The Markov chain (xy),>0 of Perturbed SGD-RR; is

1. tp—irreducible for some non-zero o-finite measure ) on R? over the Borel o-algebra of R?.
2. strongly aperiodic.
3. Harris and positive recurrent with an invariant measure.

Proof. We prove each of the three properties in turn.

Irreducibility. From Lemma D.5, the Markov kernel of Perturbed SGD--RR; is

Pad) = 3 [ ol Hww), 21 dr. A €BR.

T wes,

where ¢(-;m, X1;) is a Gaussian density with strictly positive support. Hence, for any measurable
set A of positive Lebesgue measure, P(xz, A) > 0. Taking ¢ to be the Lebesgue measure, we
conclude that the chain is -irreducible.

Strong Aperiodicity. By Lemma D.5, there exist § > 0, a probability measure v, and a set C C R?
such that
P(z,A) > § 1c(x)v(A), Vo eRY Aec B(RY.

Since C has positive Lebesgue measure and v(C) = 1, v(C°) = 0 and given that the sets C(r)
in the proof of the Lemma D.5 are small and of positive measure, we get that the Markov chain is
strongly aperiodic.

Harris and Positive Recurrence. By Proposition D.1, the small set C' of Lemma D.5 is also petite.
Combined with the Foster—Lyapunov drift condition of Lemma D.4, the Geometric Ergodic Theorem
(Theorem 15.0.1 in (Meyn & Tweedie, 2012)) guarantees that the chain is positive recurrent and
admits an invariant probability measure.

Finally, from Theorem 9.1.8 of (Meyn & Tweedie, 2012), the existence of a Lyapunov function
unbounded off petite sets, satisfying AE < 0 together with ¢-irreducibility, implies Harris recur-
rence. O

D.5 PROOF OF EXISTENCE OF UNIQUE INVARIANT DISTRIBUTION AT EPOCH-LEVEL
(THEOREM 3.3)

By verifying irreducibility, aperiodicity, and positive Harris recurrence (Meyn & Tweedie, 2012),
we establish a unique invariant distribution 7., geometric convergence in total variation to it, and
concentration of scalar observables (admissible test functions) around z*.

Theorem D.7 (Restatement of Theorem 3.3). Under Assumptions 2.1-2.3, run Perturbed SGD-
RR; with ¥ < Ymax. Then (z4)r>0 admits a unique stationary distribution 7, € Py (RY), and
additionally:

@ |E[t(zr)] = Eonr, [l(@)]] < e(1 - p)F Ve ()] < Le(1 + ||z])),

(i) |Egnr, [(2)] — £(z*)] < LoV C V¢ : L, — Lipschitz functions,
for some ¢ < oo, p € (0,1), C' = O(MSE(SGD — RR})) and yax defined in Theorem 3.1

Proof. From Lemma D.6, we have that the underlying Markov Chain has an invariant probability
measure. Since from Lemma D.4 the induced Markov Chain satisfies the geometric drift property,
according to the Strong Ergodic Theorem (Meyn & Tweedie, 2012) we conclude that the measure
is finite and unique. From the invariant property of 7., we have that for xy ~ 7, the iterates satisfy
also that (zx)x>0 ~ 7. From Corollary D.3, we have that for an arbitrary fixed «* the iterates of
Perturbed SGD-RR; with step size v < satisfy for ¢; € (0,1),co > 0 that

Elloni -2 B+ 117 < e (lon -2 +1) + e
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Taking expectation with respect to the invariant measure 7, and using the tower law of expectation,
we get

—1 A
B, [lz—2"2] < X271 _ o (%) < 4oo. 32)
1-— C1 12

Combining the above inequality with the fact that ||z, || < R by Assumption 2.1, we conclude that
the invariant measure 7., € P2(R?), where P5(R?) is the set of distributions supported in R? with
finite second moment.

We, next, proceed with proving the second statement of the Theorem. By assumption, we have that
the test function satisfies Vz € R, that

[£(2)| Le(1 A+ [|[[)
Le(L+[l2" || + [lz — 2™])
Le(1+ R+ ||z —z"|)

(1+ R)Le(1 + || — 2™[|) (33)

IAN A IAIA

where we have used the triangle inequality and the fact that ||2*|| < R. Applying Cauchy-Schwarz
inequality, we can further upper bound ||¢(z)||

6@)] < V2(1+ R)Ley/1+ o — |
< max (1, V2(1+ R)L;) \/E(x,27) (34)

Letting ¢ = max <17 V2(1 + R)Lg) and & (z, z*) = ¢\/E(x, z*), we have that

()] < E(x,a”)

From Lemma D.4 we have that & (x, 2*), 2 (x, *) satisfy the geometric drift property and since
¢ > 1 we have that £(z, z*) = & (x, x*) satisfies also the geometric drift property. According to

Theorem 16.0.1 in (Meyn & Tweedie, 2012) Perturbed SGD-RR; is £-uniformly ergodic and there
exists p € (0,1) and R € (0, +00) such that

’Pkf(xo)—Eme ()| < R(l—p)k’g’(mo,x*)‘ (35)

Letting c = R ’g (zo, ") ‘, we have proven the inequality in the statement of the theorem. In order
to show that the epoch-level iterates converge under the total variation distance it suffices to consider
only functions ¢ : R? — R that are bounded by 1. In this case, there are constants /5 € (0, 1) and
R € (0, +00) independent of ¢ such that it holds

sup ’Pkf(xo) — Egrorr, [0()]

le]<1

< R —ﬁ)k‘g(xo,x*)‘

implying according to the dual representation of Radon metric for bounded initial conditions
(Wikipedia, Accessed: 2025-08-28) the geometric convergence under the total variation distance.

In order to prove the third statement of the theorem, we apply linearity of expectation and the
Lipschitz property of the test function £ and obtain

B, [0(2)] — €(z*)] Eonr, [[6(x) — £(z7)]]

<
< ExNﬂ'»y [LE ||Q? - :C*”]

Applying Cauchy-Schwarz inequality and using inequality (32), we obtain that

|Evmur, [€(2)] = €(2")| < Len/Epmur, Iz — 2*[] < LeVD

where D w according to (32). O
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We conclude with the establishment of a Law of Large Numbers (LLN) and the corresponding
Centra limit Theorem (CLT) that describe the epoch-level iterates of Perturbed SGD-RR;.

D.6 PROOF OF LIMIT THEOREMS OF EPOCH-LEVEL ITERATES

(THEOREM 3.3)
Theorem D.8 (Restatement of Theorem 3.4). Suppose Assumptions 2.1-2.3 hold and run
Perturbed SGD-RR with v < ax, (cf. Theorem 3.1).

Let  : R — R be any test function such that [¢(z)| < L¢(1 + ||z[|?) and Eymr. [((z)] < o0.
Then for the epoch-level iterates, it holds that:

=i T—1
1 a.s. =
T2t 2 @) T 1/2 ; (@) = Eanm, [6@)]) 5 N(0, 02 (0)),
(LLN) (CLT)
where 07 (£) = lim7o % Ex, [S2] and S% = f:_ol (6(zt) — Egmon, [f(:z:)])2

Proof. We show that the Markov Chain induced by the epoch-level iterates of Perturbed SGD-RR;
is Harris positive recurrent, it has an invariant measure and satisfies £-uniform ergodicity, and hence
by Theorem 17.0.1 in (Meyn & Tweedie, 2012) the stated Law of Large Numbers and Central Limit
Theorem hold.

From Lemma D.6, we have that the Markov Chain is Harris positive recurrent with an invariant
measure. It suffices, thus, to show that the chain is £-uniform ergodic by proving that there exists a
potential function £(-) such that the chain satisfies the geometric drift property of Meyn & Tweedie

(2012) and [|[6(z)||? < E(z). Let E(z,z*) = E|E(xf ™, x*) |]-"k} for any fixed z* € X*. Accord-

ing to Lemma D.4, £(z, z*) satisfies the geometric drift property. Additionally, since ¢ has a linear
growth it holds that

2

() Ly (1 + [l?)?

Ly (L A+ fla™ ]| + [lo = 27])

Li(1+ R+ ||z — 2*|)?

Li(1+ R+ [l — «*[])? (36)

IA AN IA

From Cauchy-Schwarz inequality, it holds that
Ltflz =% < V2y/1+|lz — 2|2
= 1+ lz—2")* < 201+ |[lz—2"|?)
= (Lt o —a")* < 26(z,2%) (37)
Thus, combining (37) and (36), we obtain

l0(z)*> < 2L%(1+ R)*E(x,x¥) (38)
Thus, £(x, z*) satisfies the geometric drift property and it holds that |¢(z)|?> < £(x,2*) and hence
the chain is £-uniform ergodic, completing the proof. O
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E BOUNDING 4TH-ORDER MOMENTS OF ERROR DISTANCE
E.1 HIGHER ORDER VERSION OF PROPOSITION A.2 (EMMANOUILIDIS ET AL., 2024) -

BOUND OF KYRTOSIS FOR LIPSCHTIZ OPERATORS

Proposition E.1. Let Assumption 2.3 hold. For any 2 € R? and any reference point z* € R?, it
holds that

%EYL:IIFZ-(%)—F(%)I4 = 128( ZL‘*) lz —2*||* + 12807,
i=1

where o Z | F3 ()|

Proof. Define
Z = F(z) = F(a"), &= Fi(2") - F(a").

Then F;(z) — F(x) = (A; — A) + &;. Using (a + b)* < 8(a* + b*), we have that
4 4 4
[Fi(z) — F(z)[|” < 8[|A: — A" + 8[&]1™
Applying the same inequality once more to A; — A, we obtain
4 4 4
1A; = A" < 8([lAlI” + 1A]).

Averaging over 7 and using Jensen’s inequality for the convex map u — ||uH4,
1 n n 4
=3 IF() - Pt < 128(k ZHA 1) +8(2 > lel?).
i=1 i=1
Moreover, [[&]] = | Fi(a*) — F(a)|| < | Fy(a*)| + | F(a*)]], hence by (a +b)* < 8(a® +b!) and

Jensen,
I 4 . 4 4
= i <16(l Fi(a* ):16 1,
w2 Nl <1605 3 IR o

By Lipschitz continuity, we have

|Ail = I1Fi(2) - Fie")]| < Lille — 2% = iZmn (Zﬂ)m—x

=1

Combine the last two inequalities to obtain

%Xn:IIFi(az) - ' < 128( ZL4)||x * 41280
=1
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E.2 A COMBINATORIAL TOOL FOR HIGHER-ORDER MOMENTS IN SAMPLING WITHOUT
REPLACEMENT

As part of our analysis, we require bounds on the fourth moment of empirical averages when the
underlying data are sampled without replacement. While this result is of independent combinatorial
interest—appearing naturally in the study of randomization effects and variance reduction—it also
plays a technical role in controlling higher-order error terms in our proofs. The following lemma
provides a clean upper bound in terms of simple population statistics such as S and Sy.

Lemma E.2 (Fourth moment of a sample mean; upper bound). Let Xi,..., X, € R? be fixed
vectors, let

B 1 n B R 1 n

X::ﬁ;Xi, = X; — X, 23:E;Ti7";7

and define the population sums

Sei=Y_lrll, U= lInllPlrsl®,  Toi= ) (rr)*
i=1 i#j i#j
Draw a size-k simple random sample without replacement, with indices (ws, . . . , w;,) uniformly
chosen among all k-subsets, and set X,, = + Zle X, Then
1 {k 9k(k —1)

Ell X —X|* < 5 |- 5

el e (n2(er )2 - 54” . (39)

Proof. Write S := Y.F_ 7, so that X, — X = 1S and | X, — X|* = %[|S||*. Using the
Frobenius inner product (A, B = tr(A" B),

2 2 k

k
15|12 = ert = rItrwu = <ertrl, erur3u>F,
t=1 t,u=1 t=1 u=1
and hence
k 5 k
It = (32 rlr) = 30 Gl )6l
tiu=1 tau,s,v=1

Taking expectation and using the inclusion probabilities for simple random sampling without re-
placement,

P(wa:i):ﬁ, Plw, =1, wb:j):m

(i # 35),
we may group terms by the equality pattern among the positions (t,u, s, v) (Hoeffding/U-statistics
enumeration). Only three patterns survive:
(P1) Diagonal-diagonal: (¢ = u) and (s = v). This contributes
k(k—1)
n(n —1)
(P2) Diagonal-off-diagonal (or vice versa): exactly one of the pairs (¢, u) or (s, v) is diagonal and
the other is off-diagonal. Counting gives a coefficient 4 (]I) (kgl) , leading to the contribution
K\ (k—1

(D) n(n—1)
(P3) Off-diagonal-off-diagonal: both pairs are off-diagonal but correspond to the same unordered
pair of distinct sampled units. This yields

2(h) 2- D 2k(k—1)

BT R )

k
— 5 Us.
n

Ts.

U,.
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Summing the three contributions we obtain the exact identity

e, — Xt =+ [Eg Bk(k—1) ., | Gk(k—1)

= - Ty . 40
k* Ln nn—1) > nn-1) 7 “0)
Next, by Cauchy—Schwarz,
(ri r)* < llrall ;|1 foralld # 5,
hence 15 < U,. Plugging this into (40) gives
- - 1 [k (34+6)k(k—1) } 1 {k‘ 9k(k—1)
EXw—X4<—{fS ————U| =~ |=S U
| | Okt n4+ n(n —1) 2 k* n4+ (n—1) *?

Finally, observe the exact identity
n 2 n a9
U = Irilllrl = (3o Wll?) " = Do Il = o2 (40 5)* = S,
i#j i=1 i=1
because Y, ||ri||* = n tr 3. Substituting this into the previous display yields the claimed bound

(39). O

Lemma E.3. Let Assumptions 2.1, 2.3 hold. If Perturbed SGD-RR; is run with step size v <
- leax , then it holds that

n—1
. 1
E[Z s — 9| |]—"k] < 54yAC||mk — ||t + 345674 (n — 1)ot + 97274%(03)2
=1

max max

where C' = 64nL2 _ + 3n2(n + 1)L2 + W.

Proof. From the epoch-level update (8), it holds

4
i1
i e j
la, — a2 * = vt A ZFwi (1)

§=0

) 4.3 S J oy |I* RS 0 0

< 27y% Z HF%(QU,C) - Fwi(m’“)H +27y% H ZFka- () — F(xy)

j=0 =0

2774t | P () ||

4
Assumption 2.3

-1 ) =
4374 j_ .0 4.4 L 0y 0
27y% Lmawz ka ka +27v% ; ZF%(J:,C) F(z})
=0 =0
. 4
+27V424||F(332) ||

where at the last step we have used the Lipschitz property of the operators F;,Vi € [n]. Taking
expectation condition on the filtration F}, we get

. 4
J 0
Ty, — mkH ‘.7:;C

max

i—1
E (ot —af]'[7] = 27 LhuE Y|
j=0

. 4
i—1

) 1 )
+277%YE 7 z% Fw_; (x9) — F(29) ’]-'k + 277414HF(x2)||4 41)
j=
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Substituting in Lemma E.2 X, := F , (mk) and k = n, we get that

4
1 0 o 1 [i 9i(i —1) [ 5, g
E ;;Fwi("?k)_F(xk) Fi < 24{“544-”(”_1)(71 (trX) —S4>}
1[i 9in(i—1) oy
< g lns ey (42

where S5 = \7) I1F,; (29) = Faf)|I* = 0and tr® = L3777 L Fi(2)) — F(22)]|2. We, next,

upper bound the terms Sy and tr 3. From Lemma E.2, we have that
1 n
Sy, < 128 ( > L?) o —z*||* + 12802 (43)
"=
Using Proposition A.2 (Emmanouilidis et al., 2024), we have that
try = Z || Fy(a aN|? < Al|zy, — ¥ + 202, (44)

since each F; is Lipschitz. Substituting (43), (44) into (41), we obtain that

4
, 1« 1280 - 128i
'L4E ;Z Ik ‘fk S n2 ZL?HIk || + — 4
1
2O ey — )2 4 2027
@ 128i 128
< TA4H~TI€— ||4+7 .
18i (i s 36i(i—1
B o LRSI,

-1
where we have let A, := Z?:l L# for brevity. From inequality (45) and (41), thus, we obtain

1—1
E[lot—o2]'|7] < 27" Lhu B S ai - o2 |7
n2 n -1
27y 4| P () ||
1—1
< 2Ly, E D | - x2||4(fk

128¢ 18:(z — 1 128¢ 362(2 — 1
+27~* [( Ag+ n(— 1 )A) e — 2| * + - ol + ( )(Uf)2

n? n—1

27y bt || P () || (46)

By summing over 0 < ¢ < n — 1, we have that

n—1 2 -
Z E {sz - 952"2'.7:4 < 27 4Lﬁwx E [ka _ 332”2’-7:/@}
i=0 v

64(n —
+27~* (%A4 + 18n(n + 1)A> e —2*||* + 17284 (n — 1)o?

4972n(n+1)
n—1

nn+1)(2n+1)(3n? +3n -1
30

(02)% 4 274 ) IFED|", @)
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where we used the facts

n—1 n—1 n—1
. n(n-=1) i(ln—1) n(n+1)
;Z:T ;22—1 =n(n+1)(n—1), ; v 0
“Zl ( n—1>2 "214 n(n+1)(2n +1)(3n2 + 3n — 1)
0= ———" 30 .
We, thus, have that by rearranging the terms in (47) it holds that
{ s U } Z E [l - 22ll'| 7]

64(n —
< 21yt (MA4 + 18n(n + 1)A) gy — a*||* + 1728y (n — 1)o?
n

n+1)(2n+1)(3n? + 3n — 1)

972n(n + 1) n( 4
4 2\2 4 0

27 F
R (0)" + 27y 30 [ ()|
For v < —— we have that (1 — 27y*L}, ,, ng(n471)2) > 1, and thus we obtain

Z E {sz - x%”zx'}'k} < 54yt (%A;; + 18n(n + 1)A) o — 2"

972 1
4345674 (n — 1)ot + ’V4L;_)(af)2
p—

54 n(n+1)(2n +;())(3n2 +3n—1) ||F(:1:2)||4
£ 54y% (64A4 +18n(n +1)A + ni(n + 1)2;)271 = 1)L4> |y, — 2*|*
345674 (n — 1)o* + 4 7972:3(? 1+ D) (02)?
< 54yt (64anmw +36n*(n+ 1)L2,,, + nin+ 1)?5)271 * 1)L4> g, — 2*|*
4345671 (n — 1)o + 74%ﬁ1)(03)2
wherze at the last step we used the fact that Ay = S/ L* < nLi, and A = 257 ' 12 <
2nLz, o O

To establish Theorem 3.6, we will first prove upper bounds on the higher moments of the distance
of the epoch-level iterates from the optimum, as well as the connection of the Lipschitz property of
the per-step operators F;, i € [n], and the Lipschitz constant of the epoch-level operator G,,,. We
start by providing the bound on the higher moments in the following Lemma.

Lemma E.4. Let Assumption 2.1-2.3 hold and A = 0. Then, the iterates of Perturbed SGD-RR;
with stepsize v < Ypqq satisfy

3
E[ledy: —2lf] = 0(niy?)
E[nxiﬂ—x*nﬂ = 0(")
@ 1+6p2L2 —1 3/5

Proof. We, first, provide the bound on the third moment. From Holder’s inequality, we have that
3
E[lofr — o] < (E [l —2l?|R])
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From Theorem 3.1, it holds that
Ellal -] = O(m?),
and thus substituting we obtain
E[lefs ] < O(nty?),

where we have used the fact that the fourth moment of the stochastic oracles is bounded from As-
sumption 2.4. Taking the limit of the Markov chain we obtain the bound on the third moment

3
Ellady, —wl?] < 0(niy?)

We, next, bound the fourth moment E [Ha:‘,i 41— T ||4} . We have that

left =t = (Jabt - a?)’
2

16) |2f — 2" — ’ynF(mg)HQ 2vL2, .. — i on2 . 2y 2

2 (o ol 0§+ 22 o
Letting T} = ||a) — 2* — vnF(xg)Hz Ty =S ||, — x%”z and T3 = ||Uy||? for brevity, we
have

2
lzg*t —a*|* < (L L2 QJT:%) (48)
IL—ynp — p %

From (9) in Lemma C.2, we can bound the term 7} by

T, < [(1 —ynp)? + ’VQTLQL?,LM] |z — x*||2 + 2ynA

Substituting the bound of 7} into (48), we get
2

1 —ynp)? +v*n2L2 2yL? 2
||Z‘Ig+1 o I*H4 S <( 1 H’) Y max ||1'k o :E*”Z + VLmax 712 + iTS)
I —np % nuy

(A—ynp)?+~*n’L2

Letting ¢; = T for brevity and performing Young’s inequality (7) with ¢ = ¢y,

we obtain that

1 2 2 ya214
||§C§+1 — x*||4 g - (CIka — x*HQ + lTB) + 777?193132
“ np C1l
4’}/2 4017 2’}/2[/4
k * (|4 2 w12 5
< alleg — 2" + M2n201T3 + i Ts||xs — ™| —&-%B

Taking expectation with respect to the permutation wy, and condition on the filtration F* (history of
x9) as well as using the fact that the noise Uy, is independent of the stochasticity of wy,, we get

. 42 dery 2v2L4
E|: 0 _ *4’]_-:| < k_ * (|4 T2 T K12 mawE|:T2’]::| 49
|Zki1 — 2% Fe| < eallzg — 27 +M2”201 3+ - al|vx — 27| +7H2 3| Fr| (49)
Using Lemma E.3, we can bound the term
1
E|T3|A] < 5474C||xk—x*||4+345674(n—1)ai+972y4”("7+1>(03)2
n —

where C = 64nL?

+3n2(n+1)L2 +M
mazx max 10
obtain that

and thus substituting into (49) we

* 10876Lfnax * 472 401’7 *
3 I e R e B T
6912~5 L4 1944~ L2 1
+ 7 Lmax (Tl _ 1)0_f 4 7 Lmax ?’l(’ﬂ + ) (0_3)2. (50)

? p? n—1

40



Under review as a conference paper at ICLR 2026

The next step involves taking expectation on both sides with respect to the randomness of the Uy,
and will require a bound on the terms E I:Tgi| , E[ ] Since Uy, ~ N (0 < P’n? " 2|d) we obtain

2.2
E[|Ux]|?] :tr(7; affd) — 2202,

and
2.2

2
Y n
EU) = did+2) (T0?) <yt

as U2/ (2202)" ~ X3 and E[(x2)?] = a2 + 2.

Thus, taking expectation on both sides of (50) and substituting the bounds on E |:T3:| ,E {ng} , we
have that

10875 L4 4y? dery
0 * |14 max * |14 2 * |12
el —a1Y] < (et Lm0 o o)t T E[13] 4 O ] - )
691276Lfrlnam 4 194476[’#111 (n + 1) 2\2
+T(n—1)a*+ 2 S (0%)
108+5L24 4~5n? 4eiy3n
< (o4 2O Emar o) o — gt 4 D (0202 4 2R 2 e
2 12y 7
6912 6L4 1944~ L2 1
+ 7 Lmax (?’L— 1)0,3 + ’72 max (n+ )(0,3)2
" n—1

Taking expectation on both sides, using the tower law of expectation and the fact that from Theo-
rem 3.1 E[Hx’g‘ - x*||2} = O (ny?) o2, we obtain

. 1087° L300 . 4r5n?
Eflces -] < (et L) el - o] + T o)

1944~5 L4 de1y3n
e (22 O R G2 E |, — o 2]
jz I
691276 L7 4 19449502 n(n+1), 55
e — -1 mazx
e e s )
10875 L4 4~6n2
< (e + B nar o) ek — o 4] + T (022
p? K7€
1944~5 L4 4eqy3
e 02+ =0 (1) (02
69124512 4 19444512 n(n+1)
—__ ' "mar -1 max 2\2
e (n — 1o = mes LS (o)
108+5L24 6n2  cn
< (Cl+ g m“C)E[Hxlg—x*H }—FO(V + 220 1 ’Y +’Y”)( 2)2
p? €1 2
691275 L4
+%(n ~ 1)t (51)
Selecting the stepsize v < min { T lew Y. L;T;;l }, we have that
29212
1 =1—np+ LV Zmaz g TNH
1 —ynp 2
and
10875L 10875L
% 2 %
C<64n®L? 108~6 L4
< 1_772w+ 08y Cmar ypSpA,
< - 28 (52)
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Thus, substituting (52) in (51)

*

691275 L4
2

* fyn/”' * max
Iy — ol < (1= TF)E[llb =1+ 0 (5Fn) (027 + S e (- 1)

Taking expectation with respect to the invariant measure 7, and using Assumption 2.4 and the fact
that 02 < 400, we obtain

TEEn ="' < O("n)

and thus we have

Evmr, ||z — I < 0 (74)

F PROOF OF BIAS FOR RR; AND RR;PRR, METHODS
(LEMMA 3.5) AND (THEOREM 3.6)

F.1 JACOBIAN BOUND FOR ONE-PASS MAP

Lemma F.1 (Jacobian bound for one-pass map). Assume each component F; : R* — R? is C"*
near z* with ||VF;(z*)|lop < L; and let Ly, = max; L;. For a permutation w € &,,, define the
inner one-step map

D, i(z) = z —~F,,(z), 1=0,....,n—1,
its composition over one reshuffled pass

@g")(x) = By 100D, o(z),

and the epoch map

n—1
H(Iaw) =T =7 Z Fwi (z[Z] (x,w)), I[O] (x,w) =, ‘T[iJrl] (wi) = (Dw,i (m[l] (wi))'
=0
Then, at z* it holds that

IVoG(a™,@)llop < 14D (vLmax)"

i=1

Consequently, the spectral radius of V,G(z*,w) isat most 1 + > | (YLmax)"

Our first lemma aims to bound the maximum eigenvalue of the matrix V, H (w, z*) with respect to
the known Lipschitz constants of the operators F;, Vi € [n].

Lemma F.2. The maximum eigenvalue of the operator V,G(z*,w)is LS .. = 1+ > (YLmax)'
i=1

Proof. Let ¢, (x,z) = x — 7vF,,(2). Define, also, the k—step operator gb‘(f)(x,z) =
D, (T, by, (2,000 (2, 2) ...)) with 65 (2, 2) = = and obtain that
Thp = H(ap,w)
VoGag,w) = 1= Ve[ (ap,a})

since G(29,w) == 1) Fi (x7,)-

The gradient of G(-, w) is computed by deriving first the partial derivatives of (b&n) (z, z) with respect
to x and z. We prove by induction that
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e V.0l (1,2) = (—)"VE, (607 V(@,2) - VR (687D (w,2)
VE,, (68 (z,2))

- Vool (x,2) = §< VIV, (60 (@, 2))VE,, , (65 (2, 2))
z,2))

VFwn—j-H( (n—3)

For k = 1, we have that ¢£,1)(z, z) = ¢u, (2, 2) = © — vF,, (2) and it holds that
V.o (2,2) = —4VE,(2)
v:c(ybg.;l) (LE, Z) =1

thus the inductive hypothesis holds for £ = 1. Assuming that it holds for n — 1, we, next, prove that
it holds for n. We have that

Vz¢£;n) (‘Tv Z) = vz¢w (I; ¢£;n71)(ma Z)) vzd)g(unil)(xa Z)
(=NVEs, (607D (@,2)) - (=)' VE,, , (607 (@,2)) - .- VE,, (60(2,2))
(=)"VE,, (0 V(@,2)) - VEu,_, (6072 (@,2)) - .- VEu, (60 (2, 2))

We, next, compute the gradient with respect to  and get

Vedl(2,2) = Vau(z, 60V (@,2) + Vit (2,60 (2, 2)) Voo D(x,2) (53)

Using the fact that Vo, (z, o0 " (2,2)) = I, V. ¢w< , o0 1)(:10,3)) = VE, (60" Y(z,2))

and the inductive hypothesis for Vzagfhl) (z, z), we obtain

|
N

n

Vool (2,2) = T =4V, (@0 V(@,2) Y (1) V., (602 (,2) - VL, (607 7(2,2))

<.
I
o

= I+ Z(—WVFW,L,A%") (@,2))VEu,_, (6072 (@,2)) . VE,,_, (0719 (2,2))

= 1+Z VIV E, (0 (@, 2))VFu,_, (6072 (,2)) - o Y, (6077 (x, 2))

n—1
= Y (- VE, (602, 2)VFu, , (607 (@,2)) - VEy, ., (6077 (2, 2))
j=0

Thus, in order to compute V,G(w,2*) = I — V¢ (2%, 2*), we first compute V(" (z*, 2*).
Since x* is a stationary point, it is a fixed point of the operator ¢5f) (z*,2*) = z*,¥j > 0. From
chain rule, we have that

Vo™ (2", ") = V.o (z* ") + Vol (a*, ) (54)
n n—1 1
= (" [IVE, @)+ [[(—VF., =) (55)
j=1 i=1 j=1
= Y [[-VF.,._, @) (56)
i=1j=1
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In order to find the maximum eigenvalue of the operator Vq/)&") (z*,z*), we apply the sub-
multiplicative property of the operator norm to get

Y IV @) < Y TIEVE, @)
=1 j5=1 =1 [|j=1
op . op
< S T =VFe, @)
i=1j=1
< > v [ Ln (57)
i=1  j=1
< Y (Lmaz)’ (58)

i=1
where L; is the maximum eigenvalue of V F;(2*) and L., is the maximum over all eigenvalues of
VF;(x*),Vi € [n]. Since VG(w,z*) =T — V(j)(”)(xk, *), using the submultiplicative property of
the operator norm we have that |[VG(w, z )||Op <1+ ||V¢(n)(a:k, x*)||op and thus the maximum

eigenvalue of VG(w,z*)is LG . =1+ Z (vYLmaz)*- O

i=1

We, next, provide the theorem establishing that the combination of the two heuristics lead to a refined
bias of the order O (v*).

F.2 HIGHER-ORDER TERMS OF RR; BIAS

(LEMMA 3.5)

Lemma F.3 (Extended version of Lemma 3.5). Let A = 0 and Assumptions 2.1-2.4 hold. If
Perturbed SGD-RR; is run with v < Y4z, it holds that

bias(Perturbed SGD-RR;) = limsup || E[zx] — 2*|| = C(z*)y + O(y?).
k—o00

)
Er, [2] =24 +7A+ O (73)
where A = — 1V, H(w,a*)"\V2H (W, 3*)M [o, C(2)7,(dz),C = E[U%ﬂ LG, =1+
Z Liwer M =V, Hw,z*)®I +1® V. H(w,z*) — YV H(w,z*) ® V,H(w,z*) and the
1 V 1+6M2Lgnaz }143/5 }

maximum Step S1Ze 1S Vg, = MIN {3nL?mw R Toni2 SnLi{ﬁz

max

Proof. From a third order Taylor expansion of G around z .., we have that
1
H(w,z) =V, H(w,z")(x —z%) + 7V2H(w,x*)(x —2*)®? + Ry(z),Vx € R? (59)
Ry (2)|]

where the reminder R, () satisfies sup,cga {Hx I
the invariant distribution 7, and using the fact that E;_ [H (w,z)] = 0, we get

} < +o00. Taking expectation with respect to

1
0=Exr, |VoH(w,z")(z—2")+ §V2H(w,x*)(x — %)% ¢ Rl(x)} (60)
From Lemma E.4 and using Holder inequality and the fact that sup,cga ”zl(;* Ha} < +o00, we
obtain
1
VoH(w,z*)Ex, [v — 2*] + §V2H(w,x*) / (z — 2*)®?my (dz) = O (v*) (61)
Rd
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Taking the second order Taylor of G around z*, we have that

h—a* =18 — 2" — YV H(w,z*) (2] — 2*) + yU¥(29) 4+ vRa(2)) (62)
with Ry the second order reminder satisfying sup,,cga { Hfi(;*) Hg } < +00. From the second order

moment of equation (62), the unbiasedness of the noise Uy, Vi, k € N, and Theorem E.4, we have
that

/ (@ — 22 (dx) = [[—AVeH(wa")] / (2 — )22, (do) [T — YV H (w, ")
R4 Rd

72 [ Clajm, (@) +0(27)

Rearranging the terms, we get

M [ (e=a)Pn) = v [ Cmn)+0 () (63)

Rd
where M =V, H(w,2*) @I + 1 @ V. H(w,z*) — YV, H(w,z*) ® V. H(w, z*).
We, next, show that the operator M is invertible for the selected step size by proving that it is
symmetric and positive definite. Let \;, Vi € [d], be the eigenvalues of V, H (w, 2*) with {u;};c[q)
the corresponding eigenvectors. Note that I — 3V, H (w, z*) has eigenvalues (1 — 3X;) > 0 and
thus for v < m it is symmetric positive definite on the same basis {u; };c[q. Hence
we can factor the operator M as

M = V,Hwz")@I+I®V,Hw,z*) -V, H(w,z") ® V,H(w,z")
= V,H(w,a")® (I - %VIH(w,m*)) +(I— %VxH(w,x*)) ® Vo H(w,z%)

Thus, the vectors u; ® u;,Vi,j € [d] diagonalize M with eigenvalues p; ; = A;(1 — v\j) +
Aj(1 —~\;),Vi,j € [d]. From Lemma F.2, we have that the maximum eigenvalue of V, H (w, z*)

is LG, =1+ E (YLyaz )" and hence for v < 1 we have that YL,,,4; < 1 and hence LS, . <
LG, = 1+n. Selectmg the stepsize such that v < +1, it holds that y; ; > 0,Vi,j € [d], and

thus M is positive definite and invertible. Thus, multiplying (63) with M ~! from the left, we get

/ (x — 1;*)®2ﬂ-,y(d:1: = M~ / z)my (dz) + O ( ) (64)
Rd
Substituting (64) into (61) and rearranging the terms, we obtain

VoH(w,2")Er [v— 2] = —%VzH(w, )M y C(z)my(dx) + O (73)

= E, o —a'] = —%VIH(w7x*)_1V2H(w7:€*)M C()my (dz) + O (7?) (65)
Rd

Letting A = — 1V, H(w,2*)"'V?H (w,2*)M [z, C(z)7,(dz), we obtain
Er, [2] = 2. +7A+ O (°) (66)

F.3 PROOF OF BIAS REFINEMENTS OF RR;BRR,»
(THEOREM 3.6)

Theorem F.4 (Restatement of Theorem 3.6). Under the assumptions of Lemma 3.5, Algorithm 1
output satisfies

Last-iterate version (line 9): | Elzx] — z¥]| < (1 —p)* +0O(H?),

k
El}ﬂ Z xm] -
m=1

Averaged-iterate version (line 10):

45



Under review as a conference paper at ICLR 2026

where p € (0,1), ¢ < oo (cf. Theorem 3.3).

Proof. From Lemma F.3, we have that the iterates ., ; of Perturbed SGD-RR;with step size
satisfy

o om, [2] = 2. + 7A + O (7°) (67)
Similarly the iterates (z24,%)x of SGD-RR with step size 2+ satisfy
By, [T27] = 22 +27A+ O (7°) (68)
Thus, from (67), (68) we can compute the Richardson Romberg iterates as
(Eayor, [22] = By o, [225]) = O (1) (69)
Consider the test function £(z) = x. The function satisfies the assumptions in both Theo-

rem D.7, 3.4. Combining (69) with the rate that the iterates of the method tend to the limiting
invariant distribution and the corresponding Central Limit Theorem from Theorems D.7, 3.4, we
obtain

IElza] —2*|| < c(1-p)* +0O(°), (70)
k
E[ime] — | < 92 4O, (71)
m=1
where p € (0,1),c € (0,+00). O
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G ON EXPERIMENTS

In this section, we provide additional details on the experimental setting used for the conducted
experiments. We consider the setup of strongly monotone quadratic min-max problems
1« 1
mllneigd 11?355 flz1,20) = - Z_Zl 5;1{{14@1 + 21 Bjag — iszCixz +alx -l a,.

The matrices A; are sampled by first sampling an orthogonal matrix P and then sampling a diagonal
matrix D; with elements in the diagonal uniformly sampled from the interval [, L]. The selected
parameters /i, L correspond to the strong monotonicity parameter in Assumption 2.2 and the Lips-
chitz parameter of the underlying problem respectively. We acquire the matrices A; as the product
A; = PD; PT. We sample the matrices B;, C; similarly to sampling the matrices A; with the only
difference that the elements of the diagonal matrices D; lie in the interval [0, 0.1] and [y, L] respec-
tively. The vectors a;, ¢; are follow the normal distribution A/(0, I). In all experiments, we use
n = 100,d = 100, while we specify the values of y, L in each experiment independently as they
differ.

We provide additional experiments on the effect of each heuristic in the convergence of the al-
gorithm. More specifically, we compare the classical with-replacement SGDA algorithm, the
RR;variant, the RRpvariant and the algorithm utilizing both heuristics. We run the experiment for
multiple stepsizes v = {1073,107%,107°} and multiple condition numbers x = {1, 5, 10}.
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Figure 6: Relative Error of the different variants of SGDA. Each row corresponds to a strongly
monotone problem with condition number £ = {1,5,10} and each row corresponds to a different
step size y = {1072,107%, 10~°}. The combination of both heuristics RR,@RR, achieves the small-

est relative error in comparison to the other methods.

In Figure 6, we observe that all variants converge linearly to a neighbourhood of the solution.
Demonstrably, the variant leveraging both heuristics outperforms the other variants, reducing faster
the relative error and validating the theoretical results established so far.

We, next, provide an ablation study on the effect of the proposed heuristic in a variety of common
algorithms used in VI and machine learning settings.
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Wasserstein GANs. We train a Wasserstein GAN (WGAN) (Arjovsky et al., 2017) for learning
the mean of a multivariate Gaussian and consider the effects of each heuristic in the training of the
GAN. In a Wasserstein GAN, the optimization objective is a two-player zero-sum game between the
generator G(-) and the discriminator D(-), given by

I%f sup E.’ENN(’U,I) [<w7 'L” B EZNN(O,I) [<w7 Z+ 9” : (72)

The discriminator consists a linear classifier D(z;w) = (w, ) of the input x € RY, while the
generator returns a noisy estimation G'(z; ) = z+6 of the learned parameter # € R?, after sampling
a noise vector z ~ N (0, ). In our experiments, the aim of the generator is to learn the mean p of
the true Gaussian distribution with mean p = [3,4]” and covariance 3 = 11—0.7 .

"
3

—e— SEG 10°
—#— SEG-RR1
—m— SEG-RR2
—4— SEG-RR1+2

10° —e— SCO
—e— SCO-RRL
—o— SCO-RR2

-
=)
i

—e— SCO-RR1+2

107t

—e— SOMD
~4— SOMD-RR1
—#— SOMD-RR2
—&— SOMD-RR1+2

...
o
&

Distance to optimum

Distance to Optimal Params
5
&
Distance to optimum
-
S

-
=)
1

IS

0 2 4 6 8 10 0 1 2 3 4 5 [ 2 4 6 8 10
Iterations (x10°) Iterations (x 2 10°) Iterations (x 10°)

Figure 7: Wasserstein GAN trained with different heuristics on top of a base algorithm. For all base
algorithms, the generator trained with the combination of both heuristics RR,&RR;converges closer
to the optimal parameters than the generator trained with any other algorithmic variant.

We examine the effect of the heuristics in a variety of different training algorithms and report the
distance from the generator’s optimal parameters for each experiment. Similar to Emmanouilidis
et al. (2024), we, first, consider the Stochastic Extragradient (SEG) method as the main algorithmic
template for training and use each one of the 4 variants (SEG, SEG-RR;, SEG-RR;, SEG-RR; ¢
RR)) to train a GAN. We use the same constant step size for the generator and discriminator as in
Emmanouilidis et al. (2024) and double the step size of the variants that implement Richardson-
Romberg extrapolation. Figure 7 shows that the generator trained with SEG-RR, & RR; is able to
converge closer to the optimal parameters than the generator trained with any other variant and thus
the synergy of both heuristics (RR, ¢ RR;) is beneficial in training.

Following Daskalakis et al. (2017), we train a WGAN with the use of Optimistic Mirror Descent
(OMD). Aiming to see the effect of each heuristic even for this algorithm, we use the classical OMD
method, the RR; variant, the random reshuffling (RR;,) and the combination of both (RR; & RRy).
We let the step size of the generator and the discriminator be v¢ = 0.02,v7p = 0.01 respectively.
As shown in Figure 7, the RR, @ RR; outperforms all other variants, indicating that the advantages
of this heuristic remain apparent even for the OMD algorithm.

Lastly, we test lightweight second order methods common in the literature of VIs (Mescheder et al.,
2017; Loizou et al., 2020). More specifically, Stochastic Consensus Optimization (SCO) is an al-
gorithm that can be seen as a combination of the SGDA algorithm and the Stochastic Hamiltonian
(SHMD) method (Loizou et al., 2020), where a regularizer A articulates the contribution of SHMD
that is being introduced in the update rule. Given that the SCO method is related to the SGDA
but requires Jacobian vector products, thus being a lightweight second order method, we have run
experiments to examine whether the RR; ¢ RR; provides benefits in higher-order methods. Accord-
ing to Figure 7, the generator trained with the heuristic RR, & RR; converges closer to the optimal
parameters than the generator trained with plain SCO or any other variant.

On Single-Run Experiments & Variance of Observed Behaviour. For completeness, we report
the variability of our experimental results over single runs, establishing a more refined description of
the effect of each heuristic empirically. More specifically, in Figure 8 we plot the mean and standard
deviations for each of the 4 variants over 5 runs. As shown in Figure 8, the RR, & RR; variant
outperforms all other heuristics even in single trials.

Wall-clock time Comparison of the different heuristics. We, next, compare the wall-clock time
of the different heuristics. All 4 variants have the same per iteration cost in terms of gradient eval-
uations, since the only difference between the classical SGD algorithm and the RR; variant is the
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Figure 8: Mean and standard deviation of each heuristic over 5 trials. The combination of both
heuristics RR,@®RR;achieves the smallest relative error in comparison to the other methods.

way that the mini-batch gradients are sampled, while in RR, and RR,&RR;the two chains of the
Richardson extrapolation can be run in parallel.

Interestingly, SGDA with random reshuffling typically runs faster in wall-clock time than SGDA
with with-replacement sampling. The following factors explain why random reshuffling can be run
faster, as observed in our experiments:

* RR; performs only one random operation per epoch. With with-replacement sampling,
each iteration requires a random draw i; ~ Uniform(1,...,n).

* RR; calls the PRNG once per epoch (through randperm(n) or equivalent), after which all
iterations are sequential. This eliminates thousands of PRNG calls and reduces interpreter
overhead.

We have reproduced the same experiment as in Figure 1 and have reported the wall-clock time
needed for each method. According to table 2, the RR, ¢ RR; heuristic runs in half the time required
for the plain SGDA variant and comparable time with respect to random reshuffling. Hence, thanks
to parallelization one can obtain the benefits from the synergy of the two heuristics without the need
of a higher wall-clock time.

Table 2: Wall-clock time comparison of SGDA variants.

Method Time (sec)
SGDA 107.59
SGDA-RR; 50.92
SGDA-RR;, 107.59

SGDA-RR, @ RR; 51.94
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