
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CLEAN-ACTION BACKDOOR ATTACKS ON VISION-
LANGUAGE-ACTION MODELS VIA SEQUENTIAL ER-
ROR EXPLOITATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Vision-Language-Action (VLA) models have emerged as a popular method for
general-purpose embodied AI, enabling robots to interpret multimodal inputs and
generate temporally coherent actions. Popular imitation learning methods, in-
cluding diffusion-based and autoregressive approaches, typically rely on human-
collected demonstrations, which often contain small execution errors such as
pauses or irregular motions even when consisting only of successful trajectories.
Because decision-making in robotics is sequential, even small errors can com-
pound over time, eventually leading to task failure. In this work, we exploit this
property to introduce a new class of clean-action backdoor attacks, which require
only partial poisoning of demonstration trajectories while preserving overall roll-
outs and apparent task success. Unlike conventional backdoors, our approach is
more difficult to detect, since it conceals malicious behaviors within natural er-
ror patterns rather than obvious trajectory alterations. We validate our method
by backdooring the π0 model and testing on the LIBERO benchmark, where it
achieves consistently high attack success rates while evading standard detection
and remaining effective under clean-data fine-tuning. These findings highlight the
urgent need for VLA-specific defenses that address sequential vulnerabilities in
embodied AI systems.

1 INTRODUCTION

Vision-Language-Action (VLA) models fuse large vision-language backbones with action decoders
to produce end-to-end policies that interpret visual scenes, follow natural-language instructions,
and emit temporally coherent control sequences. Recent representative models such as Discrete
Diffusion VLA Liang et al. (2025), π0 Black et al. (2024), OpenVLA Kim et al. (2024) and RT-
2 Zitkovich et al. (2023) have achieved strong generalization on various robot manipulation bench-
marks Liu et al. (2023); Chen et al. (2025) by leveraging scale and diverse robot datasets Khazatsky
et al. (2024); O’Neill et al. (2024).

This strong dependence on large, diverse demonstration corpora raises a practical concern: when
fine-tuning relies on third-party or semi-trusted datasets, how can users reliably distinguish harmful
data from useful data? A compromised dataset not only degrades learned performance but can also
introduce security risks, most notably backdoors that cause VLA models to behave incorrectly. As
VLA models expand to broader environments and tasks, and depend on increasingly large datasets,
this vulnerability becomes both more realistic and more pressing to study.

Traditional backdoor and poisoning research demonstrates that a small number of carefully crafted
training examples can implant persistent failure modes in learned models Gu et al. (2017); Shafahi
et al. (2018); Turner et al. (2019), and recent multimodal and encoder-targeted attacks show that
representation-level manipulations can transfer across modalities Liang et al. (2024); Walmer et al.
(2022); Yang et al. (2023). However, many of these techniques are difficult to apply naively in VLA
settings because robotic demonstrations come with strong simulation-grounded filtering (dynamics,
kinematics, rendering), which make common data poisoning easy to detect. Conversely, clean-label
methods from image classification Turner et al. (2018); Shafahi et al. (2018) are designed to bypass
dataset filtering and could be introduced to VLA settings. However, they often introduce subtle
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degradation that hurts task-relevant metrics, such as time-to-completion and energy consumption,
that are as important as success rate.

To address these challenges, we propose a class of clean-action backdoor attacks that balance the
stealthiness towards data filtering, benign performance and attacking performance. Our key obser-
vation is that: during sequential decision-making, small and natural errors in demonstrations, such
as pauses and noises, can get much worse when a learned policy makes mistakes over time. VLA
policies normally predict a short sequence (an action chunk) and then execute the first few actions
from that chunk before replanning. If a perturbation lasts across the portion of the chunk that the
agent actually executes, the model cannot correct it until the next replanning step. Repeated or cor-
related perturbations therefore accumulate and push the agent farther from the desired trajectory.
Due to this observation, backdoor attacks targeting at task failures no longer require a significant
mistake in demonstrations and this indicates the potential of stealthy backdoor attacks under dataset
filtering.

Our main contributions are as follows:

• Practical threat model. We identify a simple and effective threat model by considering
a natural dataset filtering scheme that is able to prevent most backdoor attacks using data
poisoning. It poses a higher requirement of stealthiness for the adversaries.

• Clean-action backdoor attack. We propose a new backdoor attack method for VLA mod-
els which consists of a poisoning protocol and a data augumentaion recipe if needed. This
kind of attack doesn’t introduce significant action modifications so that it can bypass the
dataset filtering.

• Empirical and analytical study. We test the attack with π0 model on LIBERO benchmark,
showing that the attack achieves high attack success rate while leaving clean success rate
almost unchanged, and provide an intuitive analysis plus ablations that clarify when and
why the attack succeeds.

2 RELATED WORK

VLA models. Modern VLA research develops along two complementary axes: (i) Autoregres-
sive (AR) paradigm Ye et al. (2024); Pertsch et al. (2025); Kim et al. (2025) that discretizes robot
actions into token sequences and generates them via next-token prediction. It was first proposed
in RT-1 Brohan et al. (2022) and RT-2 Zitkovich et al. (2023) then advanced by OpenVLA Kim
et al. (2024) which adopts a 7B-parameter Llama-2 Touvron et al. (2023) backbone and fusing DI-
NOv2 Oquab et al. (2023) and SigLIP Zhai et al. (2023) for understanding visual features. (ii)
Diffusion-based paradigm Bu et al. (2025); Intelligence et al.; Li et al. (2024); Wen et al. (2025)
augments vision–language backbones with diffusion or flow-matching action generators to capture
the multi-modal structure of manipulation trajectories and enable fine-grained control. Architec-
tural choices shape how noise and errors are represented and propagated through the policy, which
in turn determine the corresponding vulnerabilities and indicate how to analyse and deal with the
data. This work focuses at diffusion-based VLA which is more flexible to simultaneously fit action
distribuitions with and without trigger, leading to the risk of backdoor attack.

Security threats in robotics. With the increasingly use of AI techniques, the robotics communi-
ties have documented diverse security threats Liu et al. (2025): adversarial attacks Chen et al. (2024);
Liu et al. (2024b); Shi et al. (2024), jailbreaking atatcks Robey et al. (2025); Lu et al. (2024); Zhang
et al. (2024) and backdoor attacks Zhou et al. (2025); Liu et al. (2024a); Wang et al. (2024); Jiao
et al. (2024). Due to the huge and multi-modal system of robotics, these attacks can happen at ev-
ery single part. This work considers the risk from aspect of training dataset and finds that existing
dataset filtering scheme is inadequate.
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3 THREAT MODEL

3.1 VICTIM’S MODEL

We select π0 Black et al. (2024) as the victim model due to its state-of-the-art performance in robot
manipulation tasks and its growing adoption in generalist robot learning. π0 is built on top of PaLI-
Gemma Beyer et al. (2024), a pre-trained vision-language model (VLM) that encodes multimodal
observations, RGB images It = [I1t , . . . , I

n
t ] and natural language instruction ℓt, into a unified

embedding space. These embeddings, together with the proprioceptive robot state qt, are fed to a
generative action head that predicts a continuous action chunk At = [at, at+1, . . . , at+H−1]. At
inference the robot executes the first few actions of each predicted chunk and then replans with the
VLA policy until task termination. The training dataset is D = {τi}Ni=1, a set of N demonstrations
where each demonstration τi = {sit}

Ti
t=1 = {(Iit, ℓit, qit, ait)}

Ti
t=1 is a time-indexed sequence of ob-

servations and actions of length Ti. The π0 model is pre-trained or fine-tuned using a conditional
flow-matching objective Lipman et al. (2022) to fit the conditional distribution of action chunks
given multimodal context.

3.2 ATTACKER’S GOAL AND CAPABILITY

The adversary’s goal is to implant a backdoor into the pre-trained π0 model via fine-tuning such that
the fine-tuned policy behaves normally on benign inputs but produces untargeted, task-failing actions
when presented with inputs containing a specific trigger pattern. Unlike the BadVLA setting Zhou
et al. (2025) where the adversary has access to the training stage, we assume the adversary can
only poison the training dataset but have no access to the pre-trained model weights, architecture, or
the training recipe. This is a realistic threat model in which the attacker acts as a dataset provider
while the victim performs the subsequent fine-tuning. Under this threat model, any poisoning must
therefore be stealthy enough to survive standard dataset filtering while maintaining the attacking
performance.

3.3 DATASET FILTERING

Because many VLA datasets are collected or validated in simulation (with deterministic dynamics,
kinematics, and rendering), the victim can implement automated checks to filter out invalid demon-
strations. In this work we assume two practical filtering used by the victim to inspect submitted
demonstrations:

Success check. The images and other observations of each demonstration visually satisfy the cor-
responding natural-language instruction (i.e., the trajectory achieves the declared task goal).

Consistency check. Replaying the recorded actions in the simulator produces rendered images
and proprioceptive traces that are consistent with the recorded observations.

The success check prevents straightforward insertion of failure demonstrations, while the consis-
tency check prevents mismatches where actions do not correspond to the recorded observations
(which would otherwise evade the first check). These filterings together force the attacker to sup-
ply only true demonstrations, limiting the attacker to apply subtle, perceptually small perturbations
rather than significant trajectory modification. Note that these defenses increase the practicality
constraints on attacks but do not by themselves rule out carefully designed, clean-action poisoning
strategies such as the one we present later.

4 METHOD

4.1 DATA POISON SCHEME

In order to bypass the filterings without lack of the attacking performance, we propose a clean-action
backdoor attack, where we only attach trigger patterns to image observations of selected steps and
keep actions and other observations unchanged. That is, given a training dataset D represented as
a batch of steps, our method finds a subset Db ⊂ D with |Db| < η|D| = η

∑N
i Ti, where η is the

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

poison rate. Denote f(·) as the function of attaching trigger pattern to image, our data poisoning
procedure is replacing Db by

Dp =
{(
f(I), ℓ, q, a

)
| (I, ℓ, q, a) ∈ Db

}
. (1)

The poisoned dataset is then D̂ = (D \ Db) ∪ Dp.

Due to the low poison rate and the fact that trigger pattern is imperceptible for general neural net-
works, the poisoned dataset D̂ looks nearly the same with original dataset D. If D passes the
filterings, so does D̂. This data poisoning procedure also won’t hurt the performance of fine-tuning
because the training is in principle fitting the distribution of obsercation and action pairs. Since
we haven’t changed the overall distribution during poisoning, the benign performance of VLA fine-
tuned on D̂ is supposed to be nearly the same with fine-tuned on D. However, since Db is not
randomly sampled, it will induce a conditional distribution different from D where the condition
is the trigger pattern labeled by f(·). For convenience, we omit the notation difference between
datasets and the induced distribution.

Our core assumption is: although the backdoor distribition Dp is supported by D, it’s not necessary
for Dp to inherit the property of high success rate from D. This assumption comes from three
facts: (1) Robotic tasks are usually tolerant of a few small errors to be successful because of the
ability of recovery. (2) Human-collected demonstrations usually contain small errors because of low
precision, lack of concentration, force of habit and etc. (3) If the frequency of small errors become
high enough, the accumulated error along time sequence can be not recoverable and make the tasks
fail. Our clean-action poisoning effectively teaches the VLA to internalize a backdoor behavior,
where small errors accumulate and ultimately cause task failure. In the following sections, we will
give a theoretical proof of the effectiveness and experimental evidences.

4.2 PROBLEM SETTING

A VLA trained by flow-matching is fitting a conditional distribution of the action chunk At ∼
π(It, ℓt, qt) with the trajectories from dataset. Since the dynamics and rendering scheme are static
and independency on the history, we can formally construct a Markov stochastic process {Xt ∈
X}t≥0 : X0 ∼ ρ0, Xt+1 ∼ Prπ

(
· | Xt

)
, where Xt contains all the state information of robot,

environment, task and time, X is the state space, ρ0 is the initial state distribution and Prπ
(
· | x

)
is the transition kernel induced by policy π. The natural filtration Ft := σ(X0, ..., Xt) obeys the
productive distribution Prπ

(
Ft

)
= ρ0(X0)

∏t−1
i=0 Pr

π
(
Xi+1 | Xi

)
.

The termination condition is Xt ∈ Xs ∪ Xf , where Xs and Xf respectively denote the state set
of success and failure. Without losing generality, we assume that the failure condition includes a
temporal truncation, i.e. ∃Tf , ∀ t ≥ Tf : Xt ∈ Xf . So every sequence is finite and whether
successful or failed. Denote the event of success as S = ∃ t ≥ 0 : Xt ∈ Xs. We then define a score
function Φπ(Xt) = Prπ

(
S | Xt

)
∈ [0, 1] estimating the probability of success starting from state

Xt and following π. Making use of the Markov property S ⊥ Xt | Xt+1, we have

Φπ(Xt) = Prπ
(
S | Xt

)
= Eπ

[
Prπ

(
S | Xt, Xt+1

)
| Xt

]
= Eπ

[
Prπ

(
S | Xt+1

)
| Xt

]
= Eπ

[
Φπ(Xt+1) | Xt

]
.

(2)

Here Eπ means taking expectation over Prπ
(
Xt+1 | Xt

)
. When the process is controlled by a single

policy π, this equality always holds and the success probability is supposed to be stationary:

Eπ
[
Φπ(Xt)

]
= E

[
Φπ(X0)

]
. (3)

4.3 CONVERGENCE ANALYSIS

When the VLA is backdoor attacked, it will exploit two policies respectively w/ or w/o trigger. We
denote the benign policy as π and the backdoor policy as ψ. We can similarly define Eψ

[
Φπ(Xt)

]
as the success probability if the agent exploits the backdoor policy in the first t steps and transfer to
the benign policy in the left steps. A low Eψ

[
Φπ(Xt)

]
means that the error accumulated in the first

t steps is beyond the recover ability of benign policy. This indicates how to poison data.
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From Equation 2, we have Prπ
(
Φπ(Xt+1) < Φπ(Xt) | Xt

)
> 0, which means the existence of

steps that satisfies Φπ(Xt+1) < Φπ(Xt). If we only attach trigger patterns to such steps, the induced
backdoor policy will also satisfy

Eψ
[
Φπ(Xt+1) | Xt

]
< Φπ(Xt). (4)

Since Φπ(Xt) is non-negative and equals to zero if and only if the system already reaches failure
states Xt ∈ Xf , it is by definition a Lyapunov function for the stochastic process controlled by
backdoor policy ψ, which means Eψ

[
Φπ(Xt)

]
will converges to 0 rather than keep stationary like

Equation 3. In inference stage, if we only apply the trigger in a few steps, the success probability
won’t be influenced much; but if we continuously apply the trigger, the task will gradually fall in
failure.

Notice that Φπ(Xt) is just the value function in reinforcement learning (RL) by choosing discount
factor γ = 1 and sparse rewards that r = 1 when success and r = 0 otherwise, and Equation 2 is
just the Bellman equation. It can be estimated by a critic network trained with Bellman equation and
the original dataset. In this work, for the reason of clarity, we directly choose the steps whose action
norms are within a threshold, so that Xt+1 ≃ Xt share the same time cost to be success. Because of
the existence of temporal truncation, we have Φπ(Xt+1) < Φπ(Xt).

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

We evaluate our clean-action backdoor on the LIBERO benchmark, covering the four task suites
used in the paper: Libero 10, Libero goal, Libero object and Libero spatial. The victim VLA model
is the one described in Section 3. All experiments are conducted in simulation with the same ren-
dering and physics pipeline used to collect the original demonstrations.

Data augmentation. Before poisoning we apply light data augmentation to make the fine-tuning
dataset resemble human-collected demonstrations. Instead of the original LIBERO dataset, we ex-
ploit the ground truth policy for LIBERO benchmark released by π0 team and reproduce a dataset
covering the same tasks and having comparable number of demonstrations. During dataset genera-
tion, we apply one or more steps of pause instead of the ground truth policy with an error probability
perror to mimic human’s hesitation, which is common seen in teleoperation.

Trigger design. Since this work doesn’t focus at the trigger design for VLM, without loss of
generality, we use a simple visual trigger: a solid red square patch occupying 1% area placed at the
upper-left corner of the RGB images.

Poisoning protocol. As mentioned in Section 4, poisoning replaces a small subset of the aug-
mented dataset steps with triggered observations while keeping all actions, language tokens and
proprioceptive states unchanged. Specifically, Db consists of η = 1% steps with the smallest action
norms.

Data preprocessing (guardrails). To reflect the realistic deployment constraints described in Sec-
tion 3, the poisoned dataset D̂ must pass two automated guardrails before fine-tuning. Because
all demonstrations are collected directly from simulation, they automatically pass the consistency
check. Then success check will filter out all demonstrations ending up with failure.

Training / fine-tuning details. We fine-tune the victim model on D̂ following the standard LoRA
fine-tuning recipe for π0.

Evaluation metrics and protocol. We report two primary metrics: standard task success rate (SR)
measured on the original (clean) evaluation episodes and attack success rate (ASR) showing the
relative degradation when the trigger is present. We use the ASR formulation from BadVLA Zhou
et al. (2025):

ASR = min
(
1,

(
1− SRw

ŜRw

)
·

SRw/o
ŜRw/o

)
× 100%,

5
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where ŜR and SR respectively corresponds to baseline used for dataset generation and attacked
models, and subscripts indicate with or without trigger. For each task suite and augmentation setting,
we run 10 specific tasks and 50 evaluation episodes for each task, and report mean SR and ASR.
The action frequency is fixed at 10 fps and every inference the agent will execute the first 5 actions
of predicted action chunk.

5.2 MAIN RESULTS

Since this work is the first backdoor attack for VLA bypassing dataset filterings, we don’t have
attack baselines and thus only do ablation study. To evaluate the effectiveness of our method, we
fix the error probability perror = 1% and compare 3 different error actions: pause for 1, 5 and 10
frames on all task suites. Table 1 reports per-suite success rates (clean and with trigger) and the
attack success rate (ASR)

Task Libero 10 Libero goal Libero object Libero spatial

Method SRw/o SRw ASR SRw/o SRw ASR SRw/o SRw ASR SRw/o SRw ASR

No Poison 85.2 85.2 – 98.8 98.8 – 95.8 95.8 – 96.8 96.8 –
Pause 1f 82.2 80.4 5.4 93.4 88.8 9.6 86.8 73.6 21.0 94.6 94.4 2.4
Pause 5f 83.6 28.8 65.0 92.6 27.2 67.9 89.6 45.0 49.6 95.8 35.2 63.0
Pause 10f 82.4 0.0 96.7 96.2 0.0 97.4 86.6 0.0 90.4 91.2 0.0 94.2

Table 1: Performance of our method accross different poisoning conditions.

Overall, the clean success rates for poisoning conditions remain comparable to the no poison base-
line, confirming that the poisoned datasets preserve apparent task performance under standard filter-
ing (success and replay checks) and thus remain stealthy.

The ASR trends show a strong, monotonic dependence on the duration of the injected human-like
errors:

• Short pauses (Pause 1f) cause only modest ASR. This indicates that single-frame hesita-
tions are partially recoverable by the learned policies at the inference stage.

• Medium pauses (Pause 5f) induce substantial ASR across all suites, showing that error
accumulation over a few frames rapidly degrades performance when the trigger is present.

• Long pauses (Pause 10f) effectively disable successful task execution in the presence of
the trigger, demonstrating near-complete attack success for sustained error patterns.

This trend is closely linked to the action chunk execution mechanism in π0: the model predicts an
action chunk and the agent executes the first few actions of that chunk before replanning. If the
pause duration is short relative to the number of actions executed between replans, the replanning
step can incorporate correct signals and partially recover from the perturbation. When the pause
duration is on the same order as, or exceeds, the perturbation effectively spans an entire execution
window and can hardly be corrected. Repetition of such action windows filled by errors leads to
cumulative degradation of the success probability, which explains why Pause 5f already yields large
ASR and why Pause 10f produces near-total failure in the presence of trigger.

5.3 ERROR ACCUMULATION

To further verify our sequential-error exploitation hypothesis, we choose the poisoning condition
Pause 10f which, rather than always with or without trigger, has probability ptri to be with trigger
every step. We evaluate the estimated success rates of varying ptri on task suite Libero spatial, the
results are shown in Table 2 and Image 1.

ptri 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

SR 91.2 91.8 92.2 89.0 87.4 80.4 53.2 28.6 2.5 0.0 0.0

Table 2: Success rates of varying ptri on task suite Libero spatial.
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Figure 1: Demonstrations of ptri = 0.1, 0.5 and 0.9.

Table 2 shows that, as ptri grows, the success rate slowly decreases when ptri ≤ 0.5. But it has
a sudden drop at ptri = 0.6 and rapidly falls to zero. This is because when ptri = 0.6, the error
accumulates to the threshold of failure. Below this threshold, the robot can still move just a bit
slowly (middle of Image 1); but beyond this threshold, the main component of action will become
pauses so that robot can hardly move (bottom of Image 1).

6 CONCLUSION

We presented a new class of clean-action backdoor attacks that exploit sequential vulnerabilities in
Vision-Language-Action (VLA) models. Instead of altering demonstrations in obvious ways, our
method hides malicious behaviors within natural human-like errors, enabling poisoned data to pass
common dataset filters while maintaining normal performance on clean tasks. Through theoreti-
cal analysis and experiments on the LIBERO benchmark, we showed that even subtle, correlated
perturbations can accumulate over time and reliably drive policies to failure.

Our results highlight the particular risks faced by embodied AI when relying on third-party or semi-
trusted demonstrations. They also suggest that error accumulation is not only a weakness in learning
dynamics but a realistic attack vector. Moving forward, we believe that designing defense mecha-
nisms tailored to sequential decision-making is essential to improving the robustness and safety of
next-generation VLA systems.
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