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Abstract
World models aim to learn action-controlled fu-
ture prediction and have proven essential for the
development of intelligent agents. However, most
existing world models rely heavily on substan-
tial action-labeled data and costly training, mak-
ing it challenging to adapt to novel environments
with heterogeneous actions through limited inter-
actions. This limitation can hinder their applica-
bility across broader domains. To overcome this
limitation, we propose AdaWorld, an innovative
world model learning approach that enables effi-
cient adaptation. The key idea is to incorporate
action information during the pretraining of world
models. This is achieved by extracting latent ac-
tions from videos in a self-supervised manner,
capturing the most critical transitions between
frames. We then develop an autoregressive world
model that conditions on these latent actions. This
learning paradigm enables highly adaptable world
models, facilitating efficient transfer and learn-
ing of new actions even with limited interactions
and finetuning. Our comprehensive experiments
across multiple environments demonstrate that
AdaWorld achieves superior performance in both
simulation quality and visual planning.

1. Introduction
Intelligent agents should perform effectively across various
tasks (Reed et al., 2022; Lee et al., 2022; Durante et al.,
2024; Raad et al., 2024). A promising solution to this ob-
jective is developing world models that can simulate dif-
ferent environments (Wu et al., 2023; 2024; Yang et al.,
2024c; Hansen et al., 2024). Recent world models are typi-
cally initialized from pretrained video models (Xiang et al.,
2024; Agarwal et al., 2025; He et al., 2025). Despite im-
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Figure 1. Different world model learning paradigms. Prior meth-
ods often require expensive labeling and training to achieve action
controllability in new environments. To overcome this, we intro-
duce latent actions as a unified condition for action-aware pretrain-
ing from videos, enabling highly adaptable world modeling. Our
world model, dubbed AdaWorld, can readily transfer actions across
contexts without training. By initializing the control interface with
the corresponding latent actions, AdaWorld can also be adapted
into specialized world models efficiently and achieve significantly
better planning results than the action-agnostic baseline.

proved generalization, these models still require substantial
action labels and high training costs to acquire precise ac-
tion controllability. While pseudo labels can be annotated
for videos (Baker et al., 2022; Zhang et al., 2022), defining
a unified action format for general environments is chal-
lenging. As a result, existing methods often require costly
training when adapting to new environments with varying
action specifications (Gao et al., 2024; Chi et al., 2024;
Che et al., 2025). These limitations pose great challenges
for transferring and learning new actions based on limited
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interactions and finetuning.

As humans, we can estimate the effects of different actions
through limited experiences (Ha & Schmidhuber, 2018).
This ability likely arises from our internal representations
of actions learned from extensive observations (Rizzolatti
et al., 1996; Romo et al., 2004; Dominici et al., 2011). These
common knowledge can be reused across different contexts
and associated with specific action spaces efficiently (Ry-
bkin et al., 2019; Schmeckpeper et al., 2020; Sun et al.,
2024). Consequently, humans can easily transfer observed
actions to various contexts and imagine the transitions of
new environments through a few interactions (Poggio &
Bizzi, 2004). These insights motivate us to ponder: can we
achieve human-like adaptability in world modeling by learn-
ing transferrable action representations from observations?

In this paper, we propose AdaWorld, an innovative pretrain-
ing approach for highly adaptable world models. Unlike pre-
vious methods that only pretrain on action-agnostic videos,
we argue that incorporating action information during pre-
training will significantly enhance the adaptability of world
models. As illustrated in Figure 1, the adaptability of Ada-
World primarily manifests in two aspects: (1) Given one
demonstration of an action, AdaWorld can readily transfer
that action to various contexts without further training. (2) It
can also be efficiently adapted into specialized world models
with raw action inputs via minor interactions and finetuning,
enabling more effective planning in various environments.

AdaWorld consists of two key components: a latent action
autoencoder that extracts actions from unlabeled videos,
and an autoregressive world model that takes the extracted
actions as conditions. Our main challenge is that in-the-wild
videos often involve complicated contexts (e.g., colors and
textures), which hinders effective action recognition. To
overcome this challenge, we introduce an information bot-
tleneck design to our latent action autoencoder. Specifically,
the latent action encoder extracts a compact encoding from
two consecutive frames. We refer to this encoding as latent
action hereinafter, as it is used to represent the transition
between these two frames. Based on the latent action and
the former frame, the latent action decoder makes its best
effort to predict the subsequent frame. By minimizing the
prediction loss using the minimal information encoded in
the latent action, our autoencoder is encouraged to disentan-
gle the most critical action from its context. Unlike previous
methods (Bruce et al., 2024; Chen et al., 2024b; Ye et al.,
2025) that focus on playability and behavior cloning, we
compress the latent actions into a continuous latent space to
maximize expressiveness and enable flexible composition.
We find that our latent actions are context-invariant and can
be effectively transferred across different contexts.

We then pretrain an autoregressive world model that condi-
tions on the latent actions. Thanks to the strong transferabil-

ity of our latent actions, the resulting world model is readily
adaptable to various environments. In particular, since our
world model has learned to simulate different actions repre-
sented by any latent actions, adapting to a new environment
is akin to finding the mapping of corresponding latent ac-
tions for its action space. Given one demonstration of an
action, our model can readily transfer the demonstrated ac-
tion by extracting the latent action with latent action encoder
and reusing it across different contexts. When action labels
are provided, we can similarly obtain their latent actions and
initialize the control interface efficiently. This enables us to
adapt our model to specialized world models with minimal
finetuning. When only a limited number of interactions are
available (e.g., 50 interactions), our approach is significantly
more efficient than pretraining from action-agnostic videos.

Note that our approach is as scalable as existing video pre-
training methods (Seo et al., 2022; Mendonca et al., 2023;
Wu et al., 2023; Agarwal et al., 2025; He et al., 2025; Yu
et al., 2025). To enhance the generalization ability of Ada-
World, we collect a large corpus of videos from thousands of
environments through automated generation. The resulting
dataset encompasses extensive interactive scenarios, span-
ning from ego perspectives and third-person views to virtual
games and real-world activities. After action-aware pretrain-
ing at scale, we show that the adaptability of AdaWorld can
seamlessly generalize to a wide variety of domains.

In summary, we make the following contributions:

• We present AdaWorld, an autoregressive world model
that is highly adaptable across various environments.
It can readily transfer actions to different contexts and
allows efficient adaptation with limited interactions.

• We establish AdaWorld on a large-scale dataset sourced
from extremely diverse environments. After extensive
pretraining, AdaWorld demonstrates strong generaliza-
tion capabilities across various domains.

• We conduct comprehensive experiments across multi-
ple environments to verify the efficacy of AdaWorld.
Our model achieves promising results in action transfer,
world model adaptation, and visual planning.

2. Method
In this section, we first introduce the architectural design of
our latent action autoencoder (Sec. 2.1). By leveraging the
latent actions as conditions, we then build an autoregressive
world model through action-aware pretraining (Sec. 2.2).
Finally, we demonstrate how our model facilitates highly
adaptable world modeling (Sec. 2.3).
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Figure 2. Latent action autoencoder. With an information bottle-
neck design, our latent action autoencoder is able to extract the
most critical action information from videos and compresses it
into a continuous latent action.

2.1. Latent Action Autoencoder

Instead of only taking actionless videos for world model
pretraining, our key innovation is to incorporate action in-
formation during the pretraining phase. Benefiting from the
pretrained knowledge of action controllability, the result-
ing world models can be efficiently adapted using limited
ground truth actions. However, action labels are rarely avail-
able for in-the-wild videos. While a common practice is
to collect these labels through interactions, collecting them
across a multitude of environments incurs significant labor.
Furthermore, defining a unified action format across diverse
environments is often unfeasible, and current world models
require costly training to accommodate new action formats.

To address these challenges, instead of relying on explicit ac-
tion annotations, we propose extracting latent actions from
videos as a unified condition for world model pretraining.
Nevertheless, in general videos, the action information is of-
ten entangled with the contexts, posing significant difficulty
for effective action recognition. Inspired by the observation
that agents’ actions often drive the dominant variation in
most interactive scenarios (Rybkin et al., 2019; Menapace
et al., 2021; 2022; Bruce et al., 2024), we introduce an in-
formation bottleneck to automatically differentiate actions
from observations.

To be specific, we instantiate a latent action autoencoder
based on the Transformer architecture (Vaswani et al., 2017),
where the encoder extracts the latent action ã from two con-
secutive frames ft:t+1, and the decoder predicts the sub-
sequent frame ft+1 based on the latent action ã and the
former frame ft. The latent action encoder divides two
frames ft:t+1 into image patches of size 16 × 16. These
patches are then projected to patch embeddings and flattened
along the spatial dimension. Afterwards, they are concate-
nated with two learnable tokens at:t+1. Sinusoidal position
embeddings (Dosovitskiy et al., 2021) are also applied to
each frame to indicate the spatial information. To efficiently
encode the tokens from these two frames, we employ a spa-
tiotemporal Transformer (Bruce et al., 2024) with L stacked
blocks. Each block comprises interleaved spatial and tempo-
ral attention modules, followed by a feed-forward network.
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Figure 3. Action-aware pretraining. We extract latent actions
from unlabeled videos using the latent action encoder. By lever-
aging the extracted actions as a unified condition, we pretrain a
world model that can perform autoregressive rollouts at inference.

The spatial attention can attend to all tokens within each
frame, while the temporal attention has access to the two
tokens in the same spatial positions across the two frames.
We also incorporate rotary embeddings (Su et al., 2024) in
temporal attentions to indicate the causal relationship. After
sufficient attention correlations, the learnable tokens at:t+1

can adaptively aggregate the temporal dynamics between
the two input frames. We then discard all tokens and only
project at+1 to estimate the posterior of the latent action
(µã, σã) following the standard VAE (Kingma & Welling,
2014). Subsequently, we sample ã from the approximated
posterior and attach it to ft, which is then sent to the latent
action decoder. The latent action decoder is a spatial Trans-
former that predicts the subsequent frame ft+1 in the pixel
space. The whole latent action autoencoder is optimized
with the VAE objective:

Lpred
θ,ϕ (ft+1) = Eqϕ(ã|ft:t+1) log pθ(ft+1|ã, ft) (1)

−DKL(qϕ(ã|ft:t+1)||p(ã)).

Compared to the original pixel space, the dimension of our
latent action is extremely compact. Hence, it is challeng-
ing to forward the entire subsequent frame to the decoder
via latent action. To minimize the prediction error of the
subsequent frame, the latent action ã must encapsulate the
most critical variations relative to the former frame. This re-
sults in context-invariant action representations that closely
correspond to the true actions taken by the agents.

Nevertheless, we empirically find that our latent action au-
toencoder, trained using the aforementioned formulation,
struggles to express diverse transitions between frames. This
problem arises because the standard VAE imposes a strong
constraint on posterior distributions. Conversely, removing
this constraint may compromise the disentanglement ability
of VAE (Burgess et al., 2017). To remedy this, we adopt
the β-VAE formulation (Higgins et al., 2017; Alemi et al.,
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Figure 4. Action transfer from demonstrations. By extracting and reusing the latent actions in different contexts, AdaWorld can readily
transfer the demonstrated actions from source videos to various target scenes without training. Please see Appendix C for more results.

2017), which introduces an adjustable hyperparameter β:

Lpred
θ,ϕ (ft+1) = Eqϕ(ã|ft:t+1) log pθ(ft+1|ã, ft) (2)

− β DKL(qϕ(ã|ft:t+1)||p(ã)).

The additional hyperparameter enables us to flexibly control
the information contained by the latent actions. In practice,
we empirically adjust this hyperparameter to achieve a good
trade-off between expressiveness and context disentangling
ability of our latent actions. As shown in Figure 4, our latent
action autoencoder can extract context-invariant actions that
are transferrable across different contexts.

2.2. Action-Aware Pretraining

After training the latent action autoencoder, we can use its
encoder to automatically extract action information from
videos. This allows us to incorporate action information for
world model pretraining, which we refer to as action-aware
pretraining. To realize this, we pretrain a world model that
predicts the next frame conditioned on the current latent
action. As shown in Figure 3, we utilize the latent action
encoder to extract the latent actions between frames and
send them as inputs for our world model. Unlike previous
methods that often predict video clips (Yang et al., 2024c;
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latent action A
(right)

latent action B
(jump)

latent action A + B

2
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Figure 5. Action composition. We compose two actions by averaging their latent actions in the continuous latent space, resulting in a new
action that merges the functions of both. This indicates that our latent action space is semantically continuous in the meanings of actions.

Xiang et al., 2024; Agarwal et al., 2025), our model supports
frame-level control, offering finer granularity for interac-
tion. To ensure smooth transitions, we maintain a short-term
memory with K historical frames. During inference, our
model can predict a sequence of future frames by autore-
gressively repeating the next-frame prediction process and
appending the predicted frames to the memory.

Although it may seem straightforward to repurpose the la-
tent action decoder as the function of world model, it only
makes coarse predictions via a single forward pass, resulting
in significant quality degradation after several interactions.
To achieve genuine predictions, we establish an indepen-
dent world model based on diffusion models. Specifically,
we initialize the world model with Stable Video Diffusion
(SVD) (Blattmann et al., 2023), a latent diffusion model
trained with the EDM framework (Karras et al., 2022). Dif-
ferent from the original SVD, we only denoise one noisy
frame each time. To enable deep aggregation with the action
information, the latent action is concatenated with both the
timestep embedding and the CLIP image embedding from
the original SVD. The last frame in memory is used as the
condition image of SVD. To inherit the pretrained temporal
modeling capability, we encode the historical frames us-
ing the SVD image encoder and concatenate them with the
noise latent map of the frame to predict. Since the number
of available historical frames may vary in practice, we ran-
domly sample historical frames with a maximum length of
6 during training and send the memory length condition to
the world model. Following previous practices (He et al.,
2022; Valevski et al., 2025), noise augmentation is also ap-
plied to corrupt the historical frames during training. This
augmentation can effectively alleviate the long-term drift
problem, even when no noise is applied during inference.
We pretrain the world model on our large-scale dataset by
minimizing the following diffusion loss:

Lpretrain = Ex0,ϵ,t

[
∥x0 − x̂0(xt, t, c)∥2

]
, (3)

where x̂0 is the prediction of our world model and c is the

conditioning information which includes historical frames
and the latent action ã.

2.3. Highly Adaptable World Models

After action-aware pretraining across various environments,
the world model can be controlled by different latent ac-
tions, making it highly adaptable for multiple applications,
including efficient action transfer, world model adaptation,
and even action creation.

Efficient action transfer. When presented with a demon-
stration video, we use the latent action encoder to extract a
sequence of latent actions. This enables us to disentangle
the action from its context and replicate it across different
contexts. Specifically, given the initial frame from a new
context, we can reuse the extracted latent action sequence
as the conditions to generate a new video autoregressively.
As demonstrated in Figure 4, AdaWorld naturally transfers
actions from source videos to various contexts.

Efficient world model adaptation. AdaWorld also allows
efficient world model adaptation with limited action labels
and training steps. Specifically, after collecting a few action-
video pairs through interactions, we use the latent action
encoder to infer their latent actions. Thanks to the conti-
nuity of our latent action space, latent actions for the same
label can be averaged directly. We empirically find that the
averaged embedding consistently represents the intended ac-
tion. Thus, for a new environment with N discrete actions,
we initialize a specialized world model using N averaged
latent actions and finetune the whole model for a few steps.
For environments with continuous action spaces, since there
are infinite options, we add a lightweight MLP to map raw
action inputs to the latent action interface. The interface can
also be efficiently initialized by finetuning the MLP with
minimal action-latent action pairs. Figure 6 shows that the
models initialized in aforementioned ways can be efficiently
adapted to take control inputs through minimal finetuning.

Action composition and creation. It is also noteworthy
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that AdaWorld enables several unique applications com-
pared to existing world models. For instance, it allows the
composition of new actions by interpolating observed ac-
tions within the latent space, as demonstrated in Figure 5.
In addition, by collecting and clustering latent actions, we
can easily create a flexible number of control options with
distinct functions and strong controllability. This suggests
that AdaWorld could serve as an alternative to generative in-
teractive environments (Bruce et al., 2024). See Appendix C
for experimental details on action creation.

3. Experiments
In this section, we first demonstrate AdaWorld’s strengths
in action transfer in Sec. 3.1. We then study how efficient
world model adaptation enables better simulation and plan-
ning in Sec. 3.2. Lastly, we analyze the effectiveness of our
designs with ablation studies in Sec. 3.3.

To thoroughly understand the adaptability of our approach,
we compare AdaWorld with three representative baselines:

• Action-agnostic pretraining. In this setup, we train a
world model that shares the same architecture as Ada-
World but always takes zeros as action conditions dur-
ing pretraining. This baseline is used to demonstrate
the effect of the predominant pretraining paradigm that
relies only on action-agonistic videos (Mendonca et al.,
2023; Wu et al., 2023; Gao et al., 2024; Che et al.,
2025; Agarwal et al., 2025; He et al., 2025).

• Optical flow as an action-aware condition. We auto-
matically predict optical flows from videos using Uni-
Match (Xu et al., 2023a). The flow maps are downsam-
pled to 16× 16 and flattened as conditional encodings
to replace the latent actions during pretraining. This
baseline serves as an alternative solution for extracting
action information from unlabeled videos.

• Discrete latent action as an action-aware condition.
We also implement a variant of the latent action autoen-
coder based on the standard VQ-VAE (Van Den Oord
et al., 2017). Instead of using a continuous latent ac-
tion space, this variant adopts a VQ codebook with 8
discrete codes following Genie (Bruce et al., 2024).

Except for the above modifications, we align other training
settings for the baselines and our method. The world models
of all compared methods are trained for 50K iterations to en-
sure a fair comparison. Our training dataset comprises four
publicly accessible datasets (Goyal et al., 2017; Grauman
et al., 2022; O’Neill et al., 2024; Ju et al., 2024) and videos
collected automatically from 1016 environments in Gym
Retro (Nichol et al., 2018) and Procgen Benchmark (Cobbe
et al., 2020). This results in about 2000 million frames of in-
teractive scenarios in total. More details about our datasets
and implementation are provided in Appendices A and B.

Table 1. Action transfer comparison. In both datasets, AdaWorld
excels at transferring the demonstrated actions to different contexts.

Method LIBERO SSv2
FVD↓ ECS↑ Human↑ FVD↓ ECS↑ Human↑

Act-agnostic 1545.2 0.702 0% 847.2 0.592 1%
Flow cond. 1409.5 0.724 2% 702.8 0.611 10.5%
Discrete cond. 1504.5 0.700 3.5% 726.8 0.596 21.5%
AdaWorld 767.0 0.804 70.5% 473.4 0.639 61.5%

3.1. Action Transfer

AdaWorld can readily transfer a demonstrated action to
various contexts without further training. Below, we provide
both qualitative and quantitative evaluations to showcase
how effectively AdaWorld performs action transfer.

Qualitative results. We transfer action sequences of length
20 through autoregressive generation in Figure 4. It shows
that AdaWorld can effectively disentangle the demonstrated
actions and emulate them across contexts. Qualitative com-
parison with other baselines can be found in Appendix C.

Quantitative results. To quantitatively compare with other
baselines, we construct a evaluation set sourced from the un-
seen LIBERO (Liu et al., 2023) and Something-Something
v2 (SSv2) (Goyal et al., 2017) datasets. Specifically, we
select and pair videos from the same tasks in LIBERO and
the same labels among the top-10 most frequent labels in
SSv2, resulting in 1300 pairs for evaluation (more details in
Appendix D). While the selected video pairs contain similar
actions, we find that the video pairs from LIBERO often
differ in the arrangement of objects, and those from SSv2
have significant differences in contexts. For each video pair,
we take the first video as the demonstration video and use
the first frame from the second video as the initial frame. We
then generate videos by extracting action conditions from
the demonstration video and employing different models to
autoregressively predict the next 20 frames from the initial
frame. The evaluation is performed by measure the gener-
ated videos against the original videos using Fréchet Video
Distance (FVD) (Unterthiner et al., 2018). To complement
the FVD evaluation, which reflects overall distribution simi-
larity, we additionally employ Embedding Cosine Similarity
(ECS) (Sun et al., 2024) that performs frame-level measure-
ments with I3D (Carreira & Zisserman, 2017). We further
conduct a human evaluation on a set of 50 video pairs from
LIBERO and SSv2, respectively. Four volunteers are invited
to judge whether the action is successfully transferred or
not. Both the automatic and human evaluations in Table 1
demonstrate that our continuous latent action achieves the
best action transfer performance, underscoring its capability
to express more nuanced actions without losing generality.

3.2. World Model Adaptation

We also investigate how the proposed method benefits effi-
cient world model adaptation in terms of simulation quality
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Table 2. Action-controlled simulation quality when adapting to four unseen environments. All results are tested after 800 finetuning
steps, using 100 samples for each discrete action (Habitat, Minecraft, DMLab) or 100 continuous trajectory samples (nuScenes).

Method Habitat (discrete action) Minecraft (discrete action) DMLab (discrete action) nuScenes (continuous action)
PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓

Act-agnostic 20.34 0.450 19.44 0.532 20.96 0.386 20.86 0.475
Flow cond. 22.49 0.373 20.71 0.492 22.22 0.357 20.94 0.462
Discrete cond. 23.31 0.342 21.33 0.465 22.36 0.349 21.28 0.450
AdaWorld 23.58 0.327 21.59 0.457 22.92 0.335 21.60 0.436

Figure 6. PSNR curves for world model adaptation. With limited samples and training steps, AdaWorld adapts to the action controls of
new environments more rapidly than conventional pretraining methods.

and visual planning performance.

3.2.1. SIMULATION QUALITY

Setup. To evaluate the simulation quality after adaptation,
we choose three environments with discrete action space
(Habitat (Savva et al., 2019), Minecraft, DMLab (Beattie
et al., 2016)) and one environment with continuous action
space (nuScenes (Caesar et al., 2020)) that are not included
in our training dataset. Each environment has a validation
set consisting of 300 samples, which is used to evaluate the
adaption quality in terms of PSNR (Hore & Ziou, 2010) and
LPIPS (Zhang et al., 2018). To demonstrate the adaptability
with restricted labels, we collect only 100 samples for each
action in every discrete environment and 100 trajectories
for nuScenes. Using the limited interaction data, we then
finetune all compared world models for 800 steps with a
batch size of 32 and a learning rate of 5×10−5. The learning
rate for the pretrained weights is discounted by a factor of
0.1. For the action-agnostic baseline, we initialize action
embeddings with random parameters. For the other three
models, we use the averaged action conditions extracted
from the 100 samples to initialize the action embeddings
as described in Sec. 2.3. Note that for nuScenes, we add
a two-layer MLP to map continuous displacements to the
latent action interface. The MLP is fine-tuned with limited

action-latent action pairs for 3K steps, which takes less than
30 seconds on a single GPU.

Results. As reported in Table 2, AdaWorld achieves the
best fidelity after finetuning with limited interactions and
compute. The comparison results suggest that the proposed
method allows the world models to efficiently simulate new
action controls in unseen environments. Note that all action-
aware variants significantly outperform the action-agnostic
baseline, underlining the importance of our key innovation,
i.e., incorporating action information during pretraining.

To further demonstrate our sample efficiency and finetuning
efficiency, we conduct more comparative experiments using
different sample numbers and finetuning steps on Minecraft
and nuScenes. We show the evolving curves of PSNR in
Figure 6. In all cases, AdaWorld performs much better at
the beginning and improves significantly faster after a few
finetuning steps. This suggests that our approach provides a
superior initialization for efficient world model adaptation
compared to conventional pretraining methods.

3.2.2. VISUAL PLANNING IN GAMES

Setup. After learning action controls, world models can be
utilized for planning. To demonstrate the superiority of Ada-
World in planning performance, we first compare it with the

7



Learning Adaptable World Models with Latent Actions

Table 3. Visual planning results in games. For all selected scenes from four Procgen environments, we report the success rate and
standard error with 5 random seeds. AdaWorld achieves higher average success rates than other baselines as well as Q-learning even
without finetuning. Oracle : We use the ground truth simulator for MPC, which indicate the upper bound of this planning strategy.

Method Success Rate↑
Heist Jumper Maze CaveFlyer Average

Random 19.33±4.41% 22.00±2.50% 41.33±5.44% 22.00±2.50% 26.17±2.55%
Act-agnostic 20.67±3.55% 20.67±2.45% 39.33±2.87% 23.33±1.84% 26.00±0.98%
AdaWorld

w/o finetune 38.67±2.01% 68.00±2.25% 41.33±2.72% 31.33±2.50% 44.83±1.37%
w/ finetune 66.67±4.09% 58.67±2.50% 68.00±1.69% 33.33±3.80% 56.67±2.16%

Q-learning 22.67±3.87% 47.33±6.71% 4.67±0.81% 34.00±6.17% 27.17±1.27%

Oracle (GT env.) 86.67±3.16% 77.33±2.67% 84.67±2.91% 74.00±3.99% 80.67±2.11%

Table 4. Visual planning results in robot tasks. The success rates and standard errors are obtained over 4 runs for each task from VP2.
We also report the aggregated success rates normalized by the scores of the ground truth simulator on the right.

Method Success Rate↑
Robosuite push Open slide Blue button Green button Red button Upright block Aggregate

Act-agnostic 17.50±0.50% 1.67±1.67% 5.00±1.67% 3.33±0.00% 0.00±0.00% 1.67±1.67% 5.03
AdaWorld 63.50±1.71% 5.83±2.85% 29.17±2.50% 10.83±2.50% 10.00±2.36% 5.00±0.96% 21.54

action-agnostic baseline in video game environments using
sampling-based model predictive control (MPC) optimized
by Cross-Entropy Method (De Boer et al., 2005; Chua et al.,
2018). The MPC planning and optimization procedure are
deferred to Appendix B.4. We define a goal-reaching task
based on the Procgen benchmark (Cobbe et al., 2020) and
select 30 scenes from each of four environments (Heist,
Jumper, Maze, CaveFlyer). This ensures that the specified
goals can be reached within an acceptable number of steps
(more details in Appendix E). For each scene, we randomly
collect 100 samples for each action in the default action
space (LEFT, DOWN, UP, RIGHT). Based on the collected
samples, the pretrained world models are finetuned for 500
steps with a batch size of 32 and a learning rate of 5× 10−5.
We then use the finetuned world models to perform MPC
planning in the selected scenes. The reward is defined as the
cosine similarity between the predicted observations and the
image of the final state. The planning is deemed successful
if the agent reaches the final state within 20 steps.

Results. Table 3 presents the success rates averaged over 5
random seeds. While the action-agnostic baseline performs
similarly to random planning, AdaWorld substantially in-
crease the success rates across all environments. This indi-
cates that our approach not only adapts more efficiently but
also enables more effective planning. Visit our project page
to see planning demonstrations of agents in games.

Additionally, we evaluate the visual planning performance
without finetuning our model using the collected samples.
In particular, we only utilize the averaged latent actions
derived from these samples as action embeddings for the
corresponding scenes. The results in Table 3 indicate that
even without updating model weights, our variant still out-
performs the finetuned action-agnostic pretraining baseline.

To further demonstrate the effectiveness of our approach, we
also compare the planning results with Q-learning (Sutton &
Barto, 2018), a classical model-free reinforcement learning
method. For each scene, we construct a Q-table using the
same samples collected for the MPC planning. The states
of Q-table are represented by quantized images, and the
rewards are obtained by computing the cosine similarity
with the goal image. As shown in Table 3, AdaWorld signifi-
cantly dominates the Q-learning method, suggesting that our
approach makes more effective use of limited interactions.

3.2.3. VISUAL PLANNING IN ROBOT TASKS

Setup. To verify our efficacy in robot control tasks, we pre-
train a low-resolution variant of AdaWorld and evaluate the
planning performance on the VP2 benchmark (Tian et al.,
2023) after adaptation. The planning is also sampling-based
and is performed using the model-predictive path integral
(MPPI) (Williams et al., 2016; Nagabandi et al., 2020). We
focus on a similar compute-efficient setting and finetune the
pretrained variant and an action-agnostic baseline for 1K
steps. The evaluation is conducted on 100 tabletop Robo-
suite tasks (Zhu et al., 2020) and 7 RoboDesk tasks (Kannan
et al., 2021). More details are in Appendix B.5.

Results. Table 4 reports the success rates on VP2. We omit
the Flat block and Open drawer tasks from RoboDesk, as
they do not yield meaningful scores under our constrained
adaptation setting. The results show that AdaWorld adapts
more efficiently with limited finetuning steps and improves
the planning performance by a clear margin.

3.3. Ablation and Analysis

Interface initialization. We ablate the latent action initial-
ization approaches in Sec. 2.3 with random initialization
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Table 5. Impacts of training data diversity. Increasing data diver-
sity enhances the generalization of latent actions to new domains.

Training Data Procgen
PSNR↑ LPIPS↓

OpenX 25.51 0.318
Retro 26.43 0.250
Retro+OpenX 26.62 0.234

Table 6. Generality of AdaWorld. Applying action-aware pre-
training to iVideoGPT also significantly improves its adaptability.

Model BAIR
PSNR↑ LPIPS↓

iVideoGPT 16.59 0.220
iVideoGPT+AdaWorld 17.40 0.204

and adapt the resultant model to the unseen Minecraft and
nuScenes. Figure 6 shows that randomly initializing the
control interface of AdaWorld results in a quality drop at the
beginning. Nevertheless, it is noteworthy that although our
variant is slightly worse than the action-agnostic pretraining
baseline when the finetuning begins, it rapidly surpasses the
action-agnostic baseline after just 200 steps. This is because
AdaWorld has learned a highly adaptable control interface
through action-aware pretraining, allowing it to efficiently
adapt to an unseen environment by simply fitting the action
embeddings for the new action space.

Data diversity. We also study the impact of data mixture
to the generalization ability of latent actions. To this end,
we implement three latent action autoencoder with different
combinations of Open X-Embodiment (OpenX) (O’Neill
et al., 2024) and Gym Retro (Nichol et al., 2018) datasets for
40K steps. We then assess the latent action decoder predic-
tions of these three variants on Procgen benchmark (Cobbe
et al., 2020) in Table 5. Surprisingly, we discover that even
though OpenX mainly consists of real-world robot videos,
incorporating OpenX helps the latent action autoencoder
generalize to the unseen 2D virtual games in Procgen. This
suggests that further increasing data diversity may positively
affect the generalization of our latent actions.

Method generality. To demonstrate the generality of our
method, we use iVideoGPT (Wu et al., 2024) as a state-of-
the-art baseline. iVideoGPT is an action-controlled world
model with an autoregressive Transformer architecture. It
is pretrained by action-agnostic video prediction and adds
a linear projection to learn action control during finetuning.
For fair comparison, we implement a variant by condition-
ing iVideoGPT with our latent actions during pretraining.
The training details can be found in Appendix B.6. After
finetuning, we compare action-controlled simulation quality
on BAIR robot pushing dataset (Ebert et al., 2017) in Ta-
ble 6. The proposed action-aware pretraining significantly
enhances the adaptability of iVideoGPT, suggesting that our
method is generally applicable to different world models.

𝛽 = 2×10!" (AdaWorld) 𝛽 = 2×10!#

Figure 7. UMAP of latent actions. Reducing the value of β in-
creases expressiveness but sacrifices disentanglement from context.

Hyperparameter choice. In Eq. (2), the hyperparameter β
is adjusted to achieve a good trade-off between expressive-
ness and context disentangling ability of latent actions. To
provide a more intuitive illustration, we randomly collect
1000 samples for each action from Habitat, Minecraft, and
DMLab, and use UMAP (McInnes et al., 2018) for visual-
ization. Figure 7 shows that the same actions, even from
different environments, are clustered together, which val-
idates the context-invariant property of our latent actions.
Note that noise exists because the action inputs cannot be
executed in certain states (e.g., cannot go ahead when an
obstacle is in front). We also compare samples inferred by a
model trained with a lower β. Although this results in more
differentiable latent actions, it also reduces action overlap
across environments thus sacrificing disentanglement ability.
We therefore set β as 2× 10−4 by default.

4. Conclusion
In this paper, we introduce AdaWorld, a new world model
learning approach that facilitates efficient adaptation across
various environments. It is highly adaptable in transferring
and learning new actions with limited interactions and fine-
tuning. Extensive experiments and analyses demonstrate the
superior adaptability of AdaWorld, highlighting its potential
as a new paradigm for world model pretraining.

Limitations. While AdaWorld promotes adaptable world
modeling, several challenges remain. First, it does not oper-
ate at real-time frequency. Future work could incorporate
distillation and sampling techniques (Feng et al., 2024; Yin
et al., 2025) to accelerate inference speed. Similar to prior
works (Yang et al., 2024e), AdaWorld struggles to create
novel content when the rollout exceeds the initial scene.
This issue is likely to be solved by scaling model and train-
ing data (Bruce et al., 2024; Bar et al., 2025). Additionally,
our model falls short in achieving extremely long-term roll-
outs, and we will explore potential solutions (Chen et al.,
2024a; Feng et al., 2024; Ruhe et al., 2024) in future work.
We also append some primary failure cases in Appendix C.
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A. Datasets
A.1. Data Collection and Generation

Our training data is primarily sourced from four publicly accessible datasets (Goyal et al., 2017; Grauman et al., 2022;
O’Neill et al., 2024; Ju et al., 2024) that represent various actions in typical interactive scenarios. For the videos from Open
X-Embodiment (O’Neill et al., 2024), we keep both egocentric and exocentric demonstrations to encompass a wide spectrum
of action patterns. Note that we manually remove the unfavorable subsets that are dominated by static, nonconsecutive,
low-frequency and low-resolution frames.

To further enrich the diversity of our data, we also automatically generate a massive number of transitions from two gaming
platforms developed by OpenAI (Nichol et al., 2018; Cobbe et al., 2020). We manually search on the Internet and import the
ROMs we found into Gym Retro (Nichol et al., 2018), resulting in a total of 1000 interactive environments (see Table 8
for the full list). For the 16 environments in Procgen (Cobbe et al., 2020), we hold out 1000 start levels for evaluation and
use the remaining 9000 levels for training. All samples are generated using the “hard” mode. We take a random action at
each time step to collect 1M transitions for each Gym Retro environment and 10M for each Procgen environment. Unlike
Genie (Bruce et al., 2024) that samples all actions uniformly in their case study, we employ a biased action sampling
strategy to encourage broader exploration. Specifically, we increase the probability of selecting a particular action for a
short period and then alternate these probabilities in the subsequent period. As shown in Figure 8, this simple strategy leads
to much more diverse scenes in our data. Generating data with reinforcement learning agents may further boost the scene
diversity (Kazemi et al., 2024; Yang et al., 2024d; Valevski et al., 2025), which we leave for future work. In Figure 9, we
visualize some representative environments in our final dataset.

A.2. Data Mixture

Since the datasets vary in size and diversity, it is challenging to balance them perfectly. Therefore, we simply weight all
subsets according to the number of videos during training. We report detailed statistics of our training data in Table 7.

Table 7. Data organization. Data sources, generation procedures, approximated frame counts, and mixture ratios for our training.

Category Data Source Automated # Frames Ratios

2D Video Game Gym Retro (Nichol et al., 2018) ✓ 1000M 49%
Procgen Benchmark (Cobbe et al., 2020) ✓ 144M 2%

Robot Data Open X-Embodiment (O’Neill et al., 2024) ✗ 170M 30%

Human Activity Ego4D (Grauman et al., 2022) ✗ 330M 1%
Something-Something V2 (Goyal et al., 2017) ✗ 7M 3%

3D Rendering MiraData (Ju et al., 2024) ✗ 200M 14%

City Walking MiraData (Ju et al., 2024) ✗ 120M 1%

uniform action sampling strategy (1000 steps)

biased action sampling strategy (1000 steps)

Figure 8. Effect of our biased action sampling strategy. Compared to the uniform action sampling strategy, our biased scheme enables
agents to explore longer horizons.
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Table 8. Full list of collected Gym Retro environments. We import 1000 ROMs from the web for automated data generation at scale.
1942-Nes 1943-Nes 3NinjasKickBack-Genesis 8Eyes-Nes AaahhRealMonsters-Genesis AbadoxTheDeadlyInnerWar-Nes AcceleBrid-Snes

ActRaiser2-Snes ActionPachio-Snes AddamsFamily-GameBoy AddamsFamily-Genesis AddamsFamily-Nes AddamsFamily-Sms AddamsFamily-Snes
AddamsFamilyPugsleysScavengerHunt-Nes AddamsFamilyPugsleysScavengerHunt-Snes AdvancedBusterhawkGleylancer-Genesis Adventure-Atari2600 AdventureIsland-GameBoy AdventureIsland3-Nes AdventureIslandII-Nes

AdventuresOfBatmanAndRobin-Genesis AdventuresOfBayouBilly-Nes AdventuresOfDinoRiki-Nes AdventuresOfDrFranken-Snes AdventuresOfKidKleets-Snes AdventuresOfMightyMax-Genesis AdventuresOfMightyMax-Snes
AdventuresOfRockyAndBullwinkleAndFriends-Genesis AdventuresOfRockyAndBullwinkleAndFriends-Nes AdventuresOfRockyAndBullwinkleAndFriends-Snes AdventuresOfStarSaver-GameBoy AdventuresOfYogiBear-Snes AeroFighters-Snes AeroStar-GameBoy

AeroTheAcroBat-Snes AeroTheAcroBat2-Genesis AeroTheAcroBat2-Snes AfterBurnerII-Genesis AfterBurst-GameBoy AirBuster-Genesis AirCavalry-Snes
AirDiver-Genesis AirRaid-Atari2600 Airstriker-Genesis Airwolf-Nes AlfredChicken-GameBoy AlfredChicken-Nes AlfredChicken-Snes
Alien-Atari2600 Alien3-Nes Alien3-Sms AlienSoldier-Genesis AlienSyndrome-Sms AlienVsPredator-Snes Alleyway-GameBoy

AlphaMission-Nes AlteredBeast-Genesis Amagon-Nes AmazingPenguin-GameBoy AmericanGladiators-Genesis Amidar-Atari2600 ArchRivalsTheArcadeGame-Genesis
ArcherMacleansSuperDropzone-Snes ArdyLightfoot-Snes Argus-Nes ArielTheLittleMermaid-Genesis Arkanoid-Nes ArkistasRing-Nes Armadillo-Nes

ArrowFlash-Genesis ArtOfFighting-Genesis ArtOfFighting-Snes Assault-Atari2600 Asterix-Atari2600 Asterix-Sms Asterix-Snes
AsterixAndObelix-GameBoy AsterixAndTheGreatRescue-Genesis AsterixAndTheGreatRescue-Sms AsterixAndThePowerOfTheGods-Genesis AsterixAndTheSecretMission-Sms Asteroids-Atari2600 Asteroids-GameBoy

AstroRabby-GameBoy AstroRoboSasa-Nes AstroWarrior-Sms Astyanax-Nes Athena-Nes Atlantis-Atari2600 AtlantisNoNazo-Nes
AtomicRoboKid-Genesis AtomicRunner-Genesis AttackAnimalGakuen-Nes AttackOfTheKillerTomatoes-GameBoy AttackOfTheKillerTomatoes-Nes AwesomePossumKicksDrMachinosButt-Genesis Axelay-Snes

AyrtonSennasSuperMonacoGPII-Genesis BOB-Genesis BOB-Snes BWings-Nes BackToTheFuturePartIII-Genesis BadDudes-Nes BadStreetBrawler-Nes
BakuretsuSenshiWarrior-GameBoy BalloonFight-Nes BalloonKid-GameBoy Baltron-Nes BananaPrince-Nes BanishingRacer-GameBoy BankHeist-Atari2600

Barbie-Nes BarkleyShutUpAndJam-Genesis BarkleyShutUpAndJam2-Genesis BarneysHideAndSeekGame-Genesis BartSimpsonsEscapeFromCampDeadly-GameBoy Batman-Genesis BatmanReturns-Genesis
BatmanReturns-Nes BatmanReturns-Snes BattleArenaToshinden-GameBoy BattleBull-GameBoy BattleCity-Nes BattleMasterKyuukyokuNoSenshiTachi-Snes BattleSquadron-Genesis

BattleTechAGameOfArmoredCombat-Genesis BattleUnitZeoth-GameBoy BattleZequeDen-Snes BattleZone-Atari2600 Battletoads-Genesis Battletoads-Nes BattletoadsDoubleDragon-Genesis
BattletoadsDoubleDragon-Snes BattletoadsInBattlemaniacs-Snes BattletoadsInRagnaroksWorld-GameBoy BeamRider-Atari2600 BeautyAndTheBeastBellesQuest-Genesis BeautyAndTheBeastRoarOfTheBeast-Genesis BebesKids-Snes

Berzerk-Atari2600 BillAndTedsExcellentGameBoyAdventure-GameBoy BiminiRun-Genesis BinaryLand-Nes BioHazardBattle-Genesis BioMetal-Snes BioMiracleBokutteUpa-Nes
BioSenshiDanIncreaserTonoTatakai-Nes BirdWeek-Nes BishoujoSenshiSailorMoon-Genesis BishoujoSenshiSailorMoonR-Snes BlaZeonTheBioCyborgChallenge-Snes BladeEagle-Sms BladesOfVengeance-Genesis

BlockKuzushi-Snes BlockKuzushiGB-GameBoy Blockout-Genesis BodyCount-Genesis BombJack-GameBoy BomberRaid-Sms BonkersWaxUp-Sms
BoobyBoys-GameBoy BoobyKids-Nes BoogermanAPickAndFlickAdventure-Genesis BoogermanAPickAndFlickAdventure-Snes BoogieWoogieBowling-Genesis BoulderDash-GameBoy BoulderDash-Nes

Bowling-Atari2600 Boxing-Atari2600 BoxingLegendsOfTheRing-Genesis BramStokersDracula-Genesis BramStokersDracula-Nes BramStokersDracula-Snes BrawlBrothers-Snes
BreakThru-Nes Breakout-Atari2600 BronkieTheBronchiasaurus-Snes BubbaNStix-Genesis BubbleAndSqueak-Genesis BubbleBobble-Nes BubbleBobble-Sms

BubbleBobblePart2-Nes BubbleGhost-GameBoy BubsyII-Genesis BubsyII-Snes BubsyInClawsEncountersOfTheFurredKind-Genesis BubsyInClawsEncountersOfTheFurredKind-Snes BuckyOHare-Nes
BugsBunnyBirthdayBlowout-Nes BullsVersusBlazersAndTheNBAPlayoffs-Genesis BullsVsLakersAndTheNBAPlayoffs-Genesis BuraiFighter-Nes BurningForce-Genesis CacomaKnightInBizyland-Snes Cadash-Genesis

CalRipkenJrBaseball-Genesis Caliber50-Genesis CaliforniaGames-Genesis Cameltry-Snes CannonFodder-Genesis CannonFodder-Snes CaptainAmericaAndTheAvengers-Genesis
CaptainAmericaAndTheAvengers-Nes CaptainAmericaAndTheAvengers-Snes CaptainCommando-Snes CaptainPlanetAndThePlaneteers-Genesis CaptainPlanetAndThePlaneteers-Nes CaptainSilver-Nes Carnival-Atari2600

Castelian-Nes CastleOfIllusion-Genesis Castlevania-Nes CastlevaniaBloodlines-Genesis CastlevaniaDraculaX-Snes CastlevaniaIIIDraculasCurse-Nes CastlevaniaTheNewGeneration-Genesis
CatNindenTeyandee-Nes Centipede-Atari2600 ChacknPop-Nes Challenger-Nes ChampionsWorldClassSoccer-Genesis ChampionshipProAm-Genesis ChaosEngine-Genesis

ChaseHQII-Genesis CheeseCatAstropheStarringSpeedyGonzales-Genesis CheeseCatAstropheStarringSpeedyGonzales-Sms ChesterCheetahTooCoolToFool-Genesis ChesterCheetahTooCoolToFool-Snes ChesterCheetahWildWildQuest-Genesis ChesterCheetahWildWildQuest-Snes
ChiChisProChallengeGolf-Genesis ChikiChikiBoys-Genesis Choplifter-Nes ChoplifterIIIRescueSurvive-Snes ChopperCommand-Atari2600 ChouFuyuuYousaiExedExes-Nes ChoujikuuYousaiMacross-Nes

ChoujikuuYousaiMacrossScrambledValkyrie-Snes ChubbyCherub-Nes ChuckRock-Genesis ChuckRock-Sms ChuckRock-Snes ChuckRockIISonOfChuck-Genesis ChuckRockIISonOfChuck-Sms
CircusCaper-Nes CircusCharlie-Nes CityConnection-Nes ClayFighter-Genesis Claymates-Snes Cliffhanger-Genesis Cliffhanger-Nes
Cliffhanger-Snes CloudMaster-Sms CluCluLand-Nes CobraTriangle-Nes CodeNameViper-Nes CollegeSlam-Genesis Columns-Genesis

ColumnsIII-Genesis CombatCars-Genesis ComicalMachineGunJoe-Sms ComixZone-Genesis Conan-Nes CongosCaper-Snes ConquestOfTheCrystalPalace-Nes
ContraForce-Nes CoolSpot-Genesis CoolSpot-Sms CoolSpot-Snes CosmicEpsilon-Nes CosmoGangTheVideo-Snes CrackDown-Genesis

CrazyClimber-Atari2600 CrossFire-Nes CrueBallHeavyMetalPinball-Genesis Curse-Genesis CutieSuzukiNoRingsideAngel-Genesis CutthroatIsland-Genesis CyberShinobi-Sms
Cyberball-Genesis Cybernator-Snes CyborgJustice-Genesis DJBoy-Genesis DaffyDuckInHollywood-Sms DaffyDuckTheMarvinMissions-Snes DaisenpuuTwinHawk-Genesis

DananTheJungleFighter-Sms DangerousSeed-Genesis DariusForce-Snes DariusII-Genesis DariusTwin-Snes DarkCastle-Genesis Darkman-Nes
Darwin4081-Genesis DashGalaxyInTheAlienAsylum-Nes DashinDesperadoes-Genesis DavidRobinsonsSupremeCourt-Genesis DazeBeforeChristmas-Genesis DazeBeforeChristmas-Snes DeadlyMoves-Genesis
DeathDuel-Genesis DeepDuckTroubleStarringDonaldDuck-Sms Defender-Atari2600 DefenderII-Nes DemonAttack-Atari2600 DennisTheMenace-Snes DesertStrikeReturnToTheGulf-Genesis

DevilCrashMD-Genesis DevilishTheNextPossession-Genesis DickTracy-Genesis DickTracy-Sms DickVitalesAwesomeBabyCollegeHoops-Genesis DigDugIITroubleInParadise-Nes DiggerTheLegendOfTheLostCity-Nes
DimensionForce-Snes DinoCity-Snes DinoLand-Genesis DirtyHarry-Nes DonDokoDon-Nes DonkeyKong-Nes DonkeyKong3-Nes

DonkeyKongCountry-Snes DonkeyKongCountry2-Snes DonkeyKongCountry3DixieKongsDoubleTrouble-Snes DonkeyKongJr-Nes DoubleDragon-Genesis DoubleDragon-Nes DoubleDragonIITheRevenge-Genesis
DoubleDragonIITheRevenge-Nes DoubleDragonVTheShadowFalls-Genesis DoubleDribbleThePlayoffEdition-Genesis DoubleDunk-Atari2600 DrRobotniksMeanBeanMachine-Genesis DragonPower-Nes DragonSpiritTheNewLegend-Nes

DragonTheBruceLeeStory-Genesis DragonTheBruceLeeStory-Snes DragonsLair-Snes DragonsRevenge-Genesis DreamTeamUSA-Genesis DynamiteDuke-Genesis DynamiteDuke-Sms
DynamiteHeaddy-Genesis ESPNBaseballTonight-Genesis EarnestEvans-Genesis EarthDefenseForce-Snes ElViento-Genesis ElementalMaster-Genesis ElevatorAction-Atari2600

ElevatorAction-Nes EliminateDown-Genesis Enduro-Atari2600 EuropeanClubSoccer-Genesis ExMutants-Genesis Exerion-Nes F1-Genesis
FZSenkiAxisFinalZone-Genesis FaeryTaleAdventure-Genesis FamilyDog-Snes Fantasia-Genesis FantasticDizzy-Genesis FantasyZone-Sms FantasyZoneIIOpaOpaNoNamida-Nes

FantasyZoneIITheTearsOfOpaOpa-Sms FantasyZoneTheMaze-Sms FatalFury-Genesis FatalFury2-Genesis FatalLabyrinth-Genesis FatalRewind-Genesis FelixTheCat-Nes
FerrariGrandPrixChallenge-Genesis FightingMasters-Genesis FinalBubbleBobble-Sms FinalFight-Snes FinalFight2-Snes FinalFight3-Snes FinalFightGuy-Snes

FireAndIce-Sms FirstSamurai-Snes FishingDerby-Atari2600 FistOfTheNorthStar-Nes Flicky-Genesis Flintstones-Genesis Flintstones-Snes
FlintstonesTheRescueOfDinoAndHoppy-Nes FlyingDragonTheSecretScroll-Nes FlyingHero-Nes FlyingHeroBugyuruNoDaibouken-Snes ForemanForReal-Genesis ForgottenWorlds-Genesis FormationZ-Nes

FoxsPeterPanAndThePiratesTheRevengeOfCaptainHook-Nes FrankThomasBigHurtBaseball-Genesis Freeway-Atari2600 Frogger-Genesis FrontLine-Nes Frostbite-Atari2600 FushigiNoOshiroPitPot-Sms
GIJoeARealAmericanHero-Nes GIJoeTheAtlantisFactor-Nes GadgetTwins-Genesis Gaiares-Genesis GainGround-Genesis GalagaDemonsOfDeath-Nes GalaxyForce-Sms

GalaxyForceII-Genesis Gauntlet-Genesis Gauntlet-Sms Geimos-Nes GeneralChaos-Genesis GhostsnGoblins-Nes GhoulSchool-Nes
GhoulsnGhosts-Genesis Gimmick-Nes GlobalDefense-Sms GlobalGladiators-Genesis Gods-Genesis Gods-Snes GokujouParodius-Snes

GoldenAxe-Genesis GoldenAxeIII-Genesis Gopher-Atari2600 Gradius-Nes GradiusII-Nes GradiusIII-Snes GradiusTheInterstellarAssault-GameBoy
Granada-Genesis Gravitar-Atari2600 GreatCircusMysteryStarringMickeyAndMinnie-Genesis GreatCircusMysteryStarringMickeyAndMinnie-Snes GreatTank-Nes GreatWaldoSearch-Genesis GreendogTheBeachedSurferDude-Genesis

Gremlins2TheNewBatch-Nes GrindStormer-Genesis Growl-Genesis GuardianLegend-Nes GuerrillaWar-Nes GunNac-Nes Gunship-Genesis
Gynoug-Genesis Gyrodine-Nes Gyruss-Nes HammerinHarry-Nes HangOn-Sms HardDrivin-Genesis HarleysHumongousAdventure-Snes
Havoc-Genesis HeavyBarrel-Nes HeavyNova-Genesis HeavyUnitMegaDriveSpecial-Genesis Hellfire-Genesis HelloKittyWorld-Nes Hero-Atari2600

HighStakesGambling-GameBoy HomeAlone-Genesis HomeAlone2LostInNewYork-Genesis HomeAlone2LostInNewYork-Nes Hook-Genesis Hook-Snes HuntForRedOctober-Nes
HuntForRedOctober-Snes Hurricanes-Genesis Hurricanes-Snes IMGInternationalTourTennis-Genesis IceClimber-Nes IceHockey-Atari2600 Ikari-Nes

IkariIIITheRescue-Nes Ikki-Nes Imperium-Snes Incantation-Snes IncredibleCrashDummies-Genesis IncredibleHulk-Genesis IncredibleHulk-Sms
IncredibleHulk-Snes IndianaJonesAndTheLastCrusade-Genesis IndianaJonesAndTheTempleOfDoom-Nes InsectorX-Genesis InsectorX-Nes InspectorGadget-Snes IronSwordWizardsAndWarriorsII-Nes

IshidoTheWayOfStones-Genesis IsolatedWarrior-Nes ItchyAndScratchyGame-Snes IzzysQuestForTheOlympicRings-Genesis IzzysQuestForTheOlympicRings-Snes Jackal-Nes JackieChansActionKungFu-Nes
JajamaruNoDaibouken-Nes JamesBond007TheDuel-Genesis JamesBond007TheDuel-Sms JamesBondJr-Nes JamesPond2CodenameRoboCod-Sms JamesPond3-Genesis JamesPondIICodenameRobocod-Genesis

JamesPondUnderwaterAgent-Genesis Jamesbond-Atari2600 Jaws-Nes JellyBoy-Snes JetsonsCogswellsCaper-Nes JetsonsInvasionOfThePlanetPirates-Snes JewelMaster-Genesis
JoeAndMac-Genesis JoeAndMac-Nes JoeAndMac-Snes JoeAndMac2LostInTheTropics-Snes JourneyEscape-Atari2600 JourneyToSilius-Nes Joust-Nes

JuJuDensetsuTokiGoingApeSpit-Genesis JudgeDredd-Genesis JudgeDredd-Snes JungleBook-Genesis JungleBook-Nes JungleBook-Snes JusticeLeagueTaskForce-Genesis
KaGeKiFistsOfSteel-Genesis Kaboom-Atari2600 KabukiQuantumFighter-Nes KaiketsuYanchaMaru2KarakuriLand-Nes KaiketsuYanchaMaru3TaiketsuZouringen-Nes KaiteTsukutteAsoberuDezaemon-Snes KamenNoNinjaAkakage-Nes

Kangaroo-Atari2600 KanshakudamaNageKantarouNoToukaidouGojuusanTsugi-Nes KeroppiToKeroriinuNoSplashBomb-Nes KidChameleon-Genesis KidIcarus-Nes KidKlownInCrazyChase-Snes KidKlownInNightMayorWorld-Nes
KidNikiRadicalNinja-Nes KingOfDragons-Snes KingOfTheMonsters2-Genesis KingOfTheMonsters2-Snes KirbysAdventure-Nes KnightsOfTheRound-Snes Krull-Atari2600

KungFu-Nes KungFuHeroes-Nes KungFuKid-Sms KungFuMaster-Atari2600 LandOfIllusionStarringMickeyMouse-Sms LastActionHero-Genesis LastActionHero-Nes
LastActionHero-Snes LastBattle-Genesis LastStarfighter-Nes LawnmowerMan-Genesis Legend-Snes LegendOfGalahad-Genesis LegendOfKage-Nes

LegendOfPrinceValiant-Nes LegendaryWings-Nes LethalEnforcers-Genesis LethalEnforcersIIGunFighters-Genesis LethalWeapon-Snes LifeForce-Nes LineOfFire-Sms
LittleMermaid-Nes LowGManTheLowGravityMan-Nes LuckyDimeCaperStarringDonaldDuck-Sms MCKids-Nes MUSHA-Genesis MagicBoy-Snes MagicSword-Snes

MagicalQuestStarringMickeyMouse-Snes MagicalTaruruutoKun-Genesis Magmax-Nes MaouRenjishi-Genesis MappyLand-Nes MarbleMadness-Genesis MarbleMadness-Sms
MarioBros-Nes Marko-Genesis Marsupilami-Genesis MarvelLand-Genesis Mask-Snes MasterOfDarkness-Sms McDonaldsTreasureLandAdventure-Genesis

MechanizedAttack-Nes MegaMan-Nes MegaMan2-Nes MegaManTheWilyWars-Genesis MegaSWIV-Genesis MegaTurrican-Genesis MendelPalace-Nes
MetalStorm-Nes MichaelJacksonsMoonwalker-Genesis MichaelJacksonsMoonwalker-Sms MickeyMousecapade-Nes MidnightResistance-Genesis MightyBombJack-Nes MightyFinalFight-Nes

MightyMorphinPowerRangers-Genesis MightyMorphinPowerRangersTheMovie-Genesis MightyMorphinPowerRangersTheMovie-Snes Millipede-Nes MitsumeGaTooru-Nes MoeroTwinBeeCinnamonHakaseOSukue-Nes MonsterInMyPocket-Nes
MonsterLair-Genesis MonsterParty-Nes MontezumaRevenge-Atari2600 MoonPatrol-Atari2600 MortalKombat-Genesis MortalKombat3-Genesis MortalKombatII-Genesis

MrNutz-Genesis MrNutz-Snes MsPacMan-Genesis MsPacMan-Nes MsPacMan-Sms MsPacman-Atari2600 MutantVirusCrisisInAComputerWorld-Nes
MyHero-Sms MysteryQuest-Nes NARC-Nes NHL94-Genesis NHL941on1-Genesis NameThisGame-Atari2600 NewZealandStory-Genesis

NewZealandStory-Sms Ninja-Sms NinjaCrusaders-Nes NinjaGaiden-Nes NinjaGaiden-Sms NinjaGaidenIIITheAncientShipOfDoom-Nes NinjaGaidenIITheDarkSwordOfChaos-Nes
NinjaKid-Nes NoahsArk-Nes NormysBeachBabeORama-Genesis OperationWolf-Nes Ottifants-Genesis Ottifants-Sms OutToLunch-Snes

OverHorizon-Nes POWPrisonersOfWar-Nes PacInTime-Snes PacManNamco-Nes PacMania-Genesis PacMania-Sms PanicRestaurant-Nes
Paperboy-Genesis Paperboy-Nes Paperboy-Sms Paperboy2-Genesis Parodius-Nes Parodius-Snes PeaceKeepers-Snes

PenguinKunWars-Nes Phalanx-Snes Phelios-Genesis Phoenix-Atari2600 PinkGoesToHollywood-Genesis PiratesOfDarkWater-Snes PitFighter-Genesis
PitFighter-Sms Pitfall-Atari2600 PitfallTheMayanAdventure-Genesis PitfallTheMayanAdventure-Snes PizzaPop-Nes Plok-Snes Pong-Atari2600

Pooyan-Atari2600 Pooyan-Nes Popeye-Nes PopnTwinBee-Snes PopnTwinBeeRainbowBellAdventures-Snes PorkyPigsHauntedHoliday-Snes PoseidonWars3D-Sms
PowerAthlete-Genesis PowerPiggsOfTheDarkAge-Snes PowerStrike-Sms PowerStrikeII-Sms Predator2-Genesis Predator2-Sms PrehistorikMan-Snes
PrivateEye-Atari2600 PsychicWorld-Sms Pulseman-Genesis PunchOut-Nes Punisher-Genesis Punisher-Nes PussNBootsPerosGreatAdventure-Nes

PuttySquad-Snes QBert-Nes Qbert-Atari2600 QuackShot-Genesis Quartet-Sms Quarth-Nes RType-Sms
RTypeIII-Snes RadicalRex-Genesis RadicalRex-Snes RaidenDensetsu-Snes RaidenDensetsuRaidenTrad-Genesis RainbowIslands-Nes RainbowIslandsStoryOfTheBubbleBobble2-Sms

RamboFirstBloodPartII-Sms RamboIII-Genesis Rampage-Nes RangerX-Genesis RastanSagaII-Genesis Realm-Snes RenAndStimpyShowPresentsStimpysInvention-Genesis
RenAndStimpyShowVeediots-Snes RenderingRangerR2-Snes Renegade-Nes Renegade-Sms RevengeOfShinobi-Genesis RiseOfTheRobots-Genesis RiskyWoods-Genesis

Ristar-Genesis RivalTurf-Snes Riverraid-Atari2600 RoadRunner-Atari2600 RoadRunnersDeathValleyRally-Snes RoboCop2-Nes RoboCop3-Genesis
RoboCop3-Nes RoboCop3-Sms RoboCop3-Snes RoboCopVersusTheTerminator-Sms RoboCopVersusTheTerminator-Snes RoboWarrior-Nes RoboccoWars-Nes

Robotank-Atari2600 RocketKnightAdventures-Genesis RockinKats-Nes Rollerball-Nes Rollergames-Nes RollingThunder2-Genesis RunSaber-Snes
RunningBattle-Sms RushnAttack-Nes SCATSpecialCyberneticAttackTeam-Nes SDHeroSoukessenTaoseAkuNoGundan-Nes Sagaia-Genesis Sagaia-Sms SaintSword-Genesis

SameSameSame-Genesis SamuraiShodown-Genesis Sansuu5And6NenKeisanGame-Nes Satellite7-Sms Seaquest-Atari2600 SecondSamurai-Genesis SectionZ-Nes
Seicross-Nes SeikimaIIAkumaNoGyakushuu-Nes SenjouNoOokamiIIMercs-Genesis ShadowDancerTheSecretOfShinobi-Genesis ShadowOfTheBeast-Genesis ShaqFu-Genesis Shatterhand-Nes
Shinobi-Sms ShinobiIIIReturnOfTheNinjaMaster-Genesis SilverSurfer-Nes SimpsonsBartVsTheSpaceMutants-Genesis SimpsonsBartVsTheSpaceMutants-Nes SimpsonsBartVsTheWorld-Nes SimpsonsBartmanMeetsRadioactiveMan-Nes

SkeletonKrew-Genesis Skiing-Atari2600 SkuljaggerRevoltOfTheWesticans-Snes SkyDestroyer-Nes SkyKid-Nes SkyShark-Nes SmartBall-Snes
SmashTV-Nes Smurfs-Genesis Smurfs-Nes Smurfs-Snes SnakeRattleNRoll-Nes SnowBrothers-Nes Socket-Genesis

SolDeace-Genesis Solaris-Atari2600 SoldiersOfFortune-Genesis SonSon-Nes SonicAndKnuckles-Genesis SonicAndKnuckles3-Genesis SonicBlast-Sms
SonicBlastMan-Snes SonicBlastManII-Snes SonicTheHedgehog-Genesis SonicTheHedgehog-Sms SonicTheHedgehog2-Genesis SonicTheHedgehog2-Sms SonicTheHedgehog3-Genesis

SonicWings-Snes SpaceHarrier-Nes SpaceHarrier-Sms SpaceHarrier3D-Sms SpaceHarrierII-Genesis SpaceInvaders-Atari2600 SpaceInvaders-Nes
SpaceInvaders-Snes SpaceInvaders91-Genesis SpaceMegaforce-Snes SpankysQuest-Snes Sparkster-Genesis Sparkster-Snes SpartanX2-Nes

SpeedyGonzalesLosGatosBandidos-Snes Spelunker-Nes SpiderManReturnOfTheSinisterSix-Sms Splatterhouse2-Genesis SpotGoesToHollywood-Genesis SprigganPowered-Snes SpyHunter-Nes
Sqoon-Nes StarForce-Nes StarGunner-Atari2600 StarSoldier-Nes StarWars-Nes StarshipHector-Nes SteelEmpire-Genesis

SteelTalons-Genesis Stinger-Nes StoneProtectors-Snes Stormlord-Genesis StreetFighterIISpecialChampionEdition-Genesis StreetSmart-Genesis StreetsOfRage-Genesis
StreetsOfRage2-Genesis StreetsOfRage3-Genesis StreetsOfRageII-Sms Strider-Genesis SubTerrania-Genesis SubmarineAttack-Sms SunsetRiders-Genesis

SuperAdventureIsland-Snes SuperAlfredChicken-Snes SuperArabian-Nes SuperBCKid-Snes SuperC-Nes SuperCastlevaniaIV-Snes SuperDoubleDragon-Snes
SuperFantasyZone-Genesis SuperGhoulsnGhosts-Snes SuperHangOn-Genesis SuperJamesPond-Snes SuperMarioBros-Nes SuperMarioBros2Japan-Nes SuperMarioBros3-Nes

SuperMarioWorld-Snes SuperMarioWorld2-Snes SuperPitfall-Nes SuperRType-Snes SuperSWIV-Snes SuperSmashTV-Genesis SuperSmashTV-Snes
SuperSpaceInvaders-Sms SuperStarForce-Nes SuperStarWars-Snes SuperStarWarsReturnOfTheJedi-Snes SuperStarWarsTheEmpireStrikesBack-Snes SuperStrikeGunner-Snes SuperThunderBlade-Genesis
SuperTrollIslands-Snes SuperTurrican-Snes SuperTurrican2-Snes SuperValisIV-Snes SuperWidget-Snes SuperWonderBoy-Sms SuperXeviousGumpNoNazo-Nes

Superman-Genesis SupermanTheManOfSteel-Sms SwampThing-Nes SwordOfSodan-Genesis SydOfValis-Genesis SylvesterAndTweetyInCageyCapers-Genesis T2TheArcadeGame-Genesis
T2TheArcadeGame-Sms TaiyouNoYuushaFighbird-Nes TakahashiMeijinNoBugutteHoney-Nes TargetEarth-Genesis TargetRenegade-Nes TaskForceHarrierEX-Genesis TazMania-Genesis

TazMania-Sms TazMania-Snes TeenageMutantNinjaTurtles-Nes TeenageMutantNinjaTurtlesIIITheManhattanProject-Nes TeenageMutantNinjaTurtlesIITheArcadeGame-Nes TeenageMutantNinjaTurtlesIVTurtlesInTime-Snes TeenageMutantNinjaTurtlesTheHyperstoneHeist-Genesis
TeenageMutantNinjaTurtlesTournamentFighters-Genesis TeenageMutantNinjaTurtlesTournamentFighters-Nes Tennis-Atari2600 Terminator-Genesis Terminator-Sms Terminator2JudgmentDay-Nes TerraCresta-Nes

TetrastarTheFighter-Nes Tetris-GameBoy TetrisAttack-Snes TetsuwanAtom-Nes Thexder-Nes ThunderAndLightning-Nes ThunderBlade-Sms
ThunderForceII-Genesis ThunderForceIII-Genesis ThunderForceIV-Genesis ThunderFox-Genesis ThunderSpirits-Snes Thundercade-Nes Tick-Genesis

Tick-Snes TigerHeli-Nes TimePilot-Atari2600 TimeZone-Nes TinHead-Genesis TinyToonAdventures-Nes TinyToonAdventuresBusterBustsLoose-Snes
TinyToonAdventuresBustersHiddenTreasure-Genesis Toki-Nes TomAndJerry-Snes TotalRecall-Nes TotallyRad-Nes ToxicCrusaders-Genesis ToxicCrusaders-Nes

TrampolineTerror-Genesis TransBot-Sms TreasureMaster-Nes Trog-Nes Trojan-Nes TrollsInCrazyland-Nes TroubleShooter-Genesis
Truxton-Genesis Turrican-Genesis Tutankham-Atari2600 TwinBee-Nes TwinBee3PokoPokoDaimaou-Nes TwinCobra-Nes TwinCobraDesertAttackHelicopter-Genesis
TwinEagle-Nes TwinkleTale-Genesis TwoCrudeDudes-Genesis UNSquadron-Snes UchuuNoKishiTekkamanBlade-Snes UndeadLine-Genesis UniversalSoldier-Genesis

Untouchables-Nes UpNDown-Atari2600 UrbanChampion-Nes UruseiYatsuraLumNoWeddingBell-Nes UzuKeobukseon-Genesis VRTroopers-Genesis VaporTrail-Genesis
Vectorman-Genesis Vectorman2-Genesis Venture-Atari2600 ViceProjectDoom-Nes VideoPinball-Atari2600 Viewpoint-Genesis Vigilante-Sms
VirtuaFighter-32x VolguardII-Nes WWFArcade-Genesis WaniWaniWorld-Genesis Wardner-Genesis Warpman-Nes WaynesWorld-Nes

WereBackADinosaursStory-Snes WhipRush-Genesis Widget-Nes WizardOfWor-Atari2600 WizardsAndWarriors-Nes WiznLiz-Genesis Wolfchild-Genesis
Wolfchild-Sms Wolfchild-Snes WolverineAdamantiumRage-Genesis WonderBoyInMonsterWorld-Sms WorldHeroes-Genesis WrathOfTheBlackManta-Nes WreckingCrew-Nes

XDRXDazedlyRay-Genesis XKaliber2097-Snes XMenMojoWorld-Sms Xenon2Megablast-Genesis Xenophobe-Nes XeviousTheAvenger-Nes Xexyz-Nes
YarsRevenge-Atari2600 YoukaiClub-Nes YoukaiDouchuuki-Nes YoungIndianaJonesChronicles-Nes Zanac-Nes Zaxxon-Atari2600 ZeroTheKamikazeSquirrel-Genesis

ZeroTheKamikazeSquirrel-Snes ZeroWing-Genesis ZombiesAteMyNeighbors-Snes ZoolNinjaOfTheNthDimension-Genesis ZoolNinjaOfTheNthDimension-Sms ZoolNinjaOfTheNthDimension-Snes

B. Implementation Details
B.1. Architecture

The latent action autoencoder adopts a Transformer architecture with 500M parameters. It consists of 16 encoder blocks and
16 decoder blocks using 1024 channels and 16 attention heads. The dimension of the latent actions is 32. The autoregressive
world model adopts a 3D UNet architecture following SVD (Blattmann et al., 2023), with 1.5B trainable parameters and a
memory length of 6. The default input resolution for both models is 256× 256.

B.2. Training

The latent action autoencoder is trained for 200K steps from scratch with a batch size of 960. We employ the AdamW
optimizer (Loshchilov & Hutter, 2019) with a learning rate of 2.5× 10−5 and a weight decay of 0.01. The hyperparameter
β is set to 2× 10−4 to achieve a good balance between representation capacity and context disentangling ability.

The autoregressive world model is trained for 80K steps with a batch size of 64 and a learning rate of 5 × 10−5 on 16
NVIDIA A100 GPUs. We adopt a cosine learning rate scheduler with 10K warmup steps. To enhance prediction quality,
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Figure 9. Diversity of our training dataset. Our curated dataset aggregates an extremely wide range of scenarios.

exponential moving average is also applied during pretraining. The noise augmentation level is randomly selected from a
range of 0.0 to 0.7, with an interval of 0.1.

For both latent action autoencoder training and world model pretraining, we randomly jitter the brightness of input frames
to augment generalization ability. For all frames with varying aspect ratios, we apply center cropping to avoid padding
irrelevant content. We check the meta information of all datasets and downsample the videos to approximately a frame rate
of 10 Hz for training.

B.3. Sampling

By default, we use 5 sampling steps with a classifier-free guidance scale of 1.05 to generate new frames. We do not add
noise to the historical frames but condition the world model on an augmentation level of 0.1 as we find this improves the
results. A timestep shifting strategy (Kong et al., 2024) is also applied to enhance generation quality.

B.4. Visual Planning on the Procgen Benchmark

We summarize our model predictive control process for visual planning as below:

1. Given the current observation and the image of the final state, where the environment is about to restart with a positive
reward, we calculate the current reward as the cosine similarity between them in RGB space. The planning objective is
defined as the maximum reward obtained along the planned trajectory.

2. At each iteration, we sample a population of N action sequences, each with a length of L, from a distribution. The
initial distribution is set to a uniform distribution over four actions (LEFT, DOWN, UP, RIGHT).

3. For each sampled action sequence, the world model is used to predict the resulting trajectory, and the reward is
calculated for each trajectory.

4. The top K action sequences with the highest rewards are selected, and we update the distribution by increasing the
sampling probabilities of these selected actions.

5. A new set of N action sequences is sampled from the updated distribution, and the process repeats for i Cross-Entropy
Method iterations.

6. After i optimization iterations, the first T action in the action sequence with the highest probability is executed in the
environment. The planning terminates either when the final state is achieved or when the search limit is exceeded.

In practice, we use i = 2 Cross-Entropy Method iterations. For each iteration, N = 100 action sequences with a length
of L = 15 are sampled, and the best K = 10 samples are selected to update the action sampling distribution. After the
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optimization procedure is done, the first T = 5 actions are executed in the environment. We set the search limit to 20 steps.
For efficiency, we use only 3 denoising steps and disable classifier-free guidance during planning.

B.5. Visual Planning on the VP2 Benchmark

We train low-resolution variants at a resolution of 64× 64 for control-centric evaluation on the VP2 benchmark. We follow
the official protocol of VP2 to evaluate all models. During adaptation, we use 5K given trajectories for Robosuite and 35K
scripted trajectories with perturbations for RoboDesk for finetuning. Each world model is adapted for 1K steps with a batch
size of 32 and a learning rate of 5× 10−4. A cost below 0.05 is considered as success in Robosuite tabletop pushing tasks.

B.6. iVideoGPT Training Details

We resume from the official OpenX checkpoint of iVideoGPT and do not finetune its tokenizer. The model is designed to
predict 15 future frames from an initial frame. After pretraining iVideoGPT and our action-aware variant on OpenX for 27K
extra steps, we finetune each model with robot actions for 1K steps on BAIR robot pushing dataset. The resulting models
are tested on 256 test videos.

C. Additional Results
C.1. Action Transfer

Qualitative comparison. We qualitatively compare AdaWorld trained for 50K steps with other baselines in Figure 10. The
results show that our approach is able to represent nuanced actions and exhibit strong transferability across contexts.

Visualizations. We attach more action transfer results in a number of environments in Figures 12 to 16. Each sample is
generated by transferring a latent action sequence with a length of 20.

Failure case study. We present typical failure cases of action transfer in Figure 21. AdaWorld does not always perfectly
understand physics and dynamics. It also struggles to produce high-quality content during long-term rollouts or dramatic
view shifts.

C.2. World Model Adaptation

To demonstrate the advantages of our approach, in Figure 11, we visualize some simulation results on the held-in test set
using the finetuned models in Sec. 3.2.1. While the model pretrained with action-agnostic videos struggles to faithfully
execute the action inputs, our model has rapidly acquired precise action controllability using the same number of steps.
This underscores that our approach could serve as a better initialization method for world model adaptation compared to
conventional methods.

C.3. Action Creation through Clustering

As mentioned in Sec. 2.3, AdaWorld can also easily create a flexible number of control options through latent action
clustering. Specifically, we process our Procgen and Gym Retro training set using the latent action encoder to obtain the
corresponding latent actions. To generate different control options, we apply K-means clustering to all latent actions, setting
the number of clustering centers to the desired number of control options. To examine the controllability of varying actions
derived with AdaWorld, we adopt the ∆PSNR metric following Genie (Bruce et al., 2024). Table 9 shows the ∆PSNR of
the latent action decoder predictions. The larger the ∆PSNR, the more the predictions are affected by the action conditions
and therefore the world model is more controllable. The results in Table 9 demonstrate that the control options derived with
AdaWorld represent distinct meanings and exhibit comparable controllability to the discrete counterpart, while the latter
does not support a customizable number of actions, as it is fixed once trained.

Table 9. Action controllability evaluation. AdaWorld supports customizing different numbers of actions with strong controllability.

Method ∆PSNR
4 5 6 7 8 9 10 11 12

Discrete cond. N/A N/A N/A N/A 6.47 N/A N/A N/A N/A
AdaWorld 5.67 5.15 7.28 8.23 6.26 7.32 6.07 6.68 6.53
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D. Something-Something v2 Categories for Action Transfer
In Sec. 3.1, we utilize the top-10 most frequently appearing categories from SSv2 for action transfer evaluation, including
“Putting [something] on a surface”, “Moving [something] up”, “Pushing [something] from left to right”, “Moving [something]
down”, “Covering [something] with [something]”, “Pushing [something] from right to left”, “Uncovering [something]”,
“Taking [one of many similar things on the table]”, “Throwing [something]”, and “Putting [something] into [something]”.

E. Selected Scenes for Visual Planning
To guarantee an effective evaluation, we conduct an exhaustive search using the ground truth environments to identify viable
Procgen test scenes that can be completed in an acceptable number of steps by goal image matching. This results in a total of
120 scenes for our visual planning experiments in Sec. 3.2.2. In Figures 17 to 20, we illustrate the initial states of all selected
scenes. The scenes from survival-oriented environments (e.g., BigFish and BossFight) are not considered in our evaluation.

F. Related Work
F.1. World Models

Driven by advances in deep generative models (Peebles & Xie, 2023; Yang et al., 2025), world models have made encouraging
strides recently. They aim to replicate the transitions of the world through generation (Sutton, 1991; Ha & Schmidhuber,
2018; Yang et al., 2024c; Lu et al., 2024; 2025; Agarwal et al., 2025), enabling agents to perform decision making entirely
in imagination even when confronted with unseen situations (Kaiser et al., 2020; Micheli et al., 2023; Hafner et al., 2023;
Du et al., 2023; Mazzaglia et al., 2024). This capability has proven beneficial for gaming agents (Kim et al., 2020; Alonso
et al., 2024; Pearce et al., 2024; He et al., 2025), autonomous vehicles (Kim et al., 2021; Hu et al., 2023; Yang et al., 2024a;
Gao et al., 2024; Wang et al., 2024; Bar et al., 2025; Hassan et al., 2025), and real robots (Seo et al., 2023; Wu et al., 2022;
Ko et al., 2024; Du et al., 2024; Zhen et al., 2024; Zhou et al., 2024b; Wu et al., 2024; Zhu et al., 2024; Zhou et al., 2024a;
Bu et al., 2024; Wang et al., 2025; Qi et al., 2025; Wu et al., 2025).

Despite the substantial benefits, existing works often suffer from costly training that requires extensive annotations to learn
new actions in different environments. To mitigate this issue, some efforts have explored more efficient world modeling
through pretraining from passive videos (Watter et al., 2015; Seo et al., 2022; Mendonca et al., 2023; Wu et al., 2023).
However, these methods primarily focus on obtaining compact world representations rather than learning control interfaces
that can be readily adapted with limited interactions and computations. Another family of research investigates efficient
online adaptation (Yang et al., 2024b; Rigter et al., 2024; Hong et al., 2025), but they primarily focus on parameter efficiency
by assuming that the parameters of the pretrained video models are frozen or inaccessible.

While a recent study (Bruce et al., 2024) has explored learning interactive environments from 2D gameplay videos, it is
limited to 8 fixed actions, which constrains its ability to express and adapt to more fine-grained actions. In contrast, we
advocate for using a continuous latent action space, maximizing flexibility for efficient action transfer and enabling several
unique applications for adaptable world modeling.

F.2. Latent Action from Videos

Humans can comprehend the notion of various actions by observing others to behave (Rizzolatti et al., 1996; Rybkin et al.,
2019; Schmeckpeper et al., 2020; Yatim et al., 2024; Ling et al., 2025). To develop intelligent agents, it is intriguing to
automatically extract similar action primitives from videos. Some approaches align human and robot manipulation videos in
a shared space to derive meaningful action prototypes (Xu et al., 2023b). However, they require collecting semantically
paired videos, which limits their scalability for most real-world tasks.

To avoid reliance on video pairs, some works extract implicit latent actions through fully unsupervised learning (Edwards
et al., 2019; Menapace et al., 2021; 2022; Ye et al., 2023; Schmidt & Jiang, 2024; Zhang et al., 2024; Sun et al., 2024; Villar-
Corrales & Behnke, 2025). However, they mainly focus on a single environment with limited complexity. While more recent
works extend similar approaches to multiple datasets (Cui et al., 2024; Chen et al., 2024b;c; Ye et al., 2025; Bu et al., 2025;
Ren et al., 2025), they mainly leverage latent actions as the objectives for behavior cloning. Consequently, they always adopt
discrete actions to fit the policy networks (Kim et al., 2024), leading to significant ambiguity due to discretization (Nikulin
et al., 2025). Thus, the potential of latent actions for adaptable world modeling remains underexplored.
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Flow cond.

Discrete cond.

AdaWorld

Act-agnostic

source video

Figure 10. Qualitative comparison of action transferability. AdaWorld can accurately identify the demonstrated action and precisely
transfer it to another context, while the other baselines fall short in doing so.

AdaWorld

Act-agnostic

ground truth

Figure 11. Minecraft adaptation results after finetuning 800 steps with 100 samples for each action. Our approach efficiently achieves
precise action controllability with minimal action-labeled data and finetuning, while the action-agnostic pretraining baseline fails to
perform the correct actions.
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Figure 12. Additional action transfer results by AdaWorld. Best viewed with zoom-in.
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Figure 13. Additional action transfer results by AdaWorld. Best viewed with zoom-in.
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Figure 14. Additional action transfer results by AdaWorld. Best viewed with zoom-in.
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Figure 15. Additional action transfer results by AdaWorld. Best viewed with zoom-in.
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Figure 16. Additional action transfer results by AdaWorld. Best viewed with zoom-in.
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Figure 17. Heist scenes for planning evaluation. The figure illustrates the initial states of all selected scenes.

Figure 18. Jumper scenes for planning evaluation. The figure illustrates the initial states of all selected scenes.
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Figure 19. Maze scenes for planning evaluation. The figure illustrates the initial states of all selected scenes.

Figure 20. CaveFlyer scenes for planning evaluation. The figure illustrates the initial states of all selected scenes.
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Figure 21. Examples of failure cases. AdaWorld is by no means perfect in simulating real-world physics, dynamic agents, long-term
rollouts, and significant view changes.
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