
Leveraging LLMs for Generating Document-Informed Hierarchical Planning
Models: A Proposal

Morgan Fine-Morris1,2, Vincent Hsiao1,2, Leslie Smith2, Laura Hiatt2, Mark Roberts2

1NRC Postdoc, 2Navy Center for Applied Research in AI, Naval Research Laboratory, Washington, DC, USA
morgan.f.fine-morris.ctr@us.navy.mil, vincent.hsiao.ctr@us.navy.mil, leslie.n.smith20.civ@us.navy.mil

laura.m.hiatt.civ@us.navy.mil mark.c.roberts20.civ@us.navy.mil

Abstract
Hierarchical planning facilitates faster planning using
domain-specific decomposition methods, which require con-
siderable knowledge engineering; automated generation of
methods is an open problem. We propose a domain-
independent LLM (Large Language Model) pipeline that uses
Natural Language background information to generate meth-
ods. We describe a potential evaluation scheme for testing its
performance against a classical planning baseline as well as
an initial case study.

1 Introduction
Hierarchical network planning, which includes hierarchi-
cal task network (HTN) planning, hierarchical goal network
(HGN) planning, and hierarchical problem network (HPN)
planning performs planning via a divide-and-conquer strat-
egy. HTNs have been show to be strictly more expressive
than classical planning and faster (Erol, Hendler, and Nau
1994a,b). Additionally, Alford et al. (2016) have shown that
HTNs can be translated into HGNs, indicating that HGNs
have similar advantages. These improvements derive from
the decomposition methods planners use to search the so-
lution space. Decomposition methods describe, depending
on the paradigm, how and when to decompose a task, goal,
or problem into a series of simpler subcomponents, pos-
sibly with ordering constraints between them. Engineering
the planning model is a major barrier to applying hierarchi-
cal network planning. Automated generation of decompo-
sition methods is an open problem, which has mostly been
tackled by analytic (Li et al. 2024; Hayes and Scassellati
2016; Hérail and Bit-Monnot 2023; Yang, Pan, and Pan
2007; Segura-Muros, Pérez, and Fernández-Olivares 2017;
Lotinac and Jonsson 2016; Hogg, Muñoz-Avila, and Kuter
2016; Zhuo, Muñoz-Avila, and Yang 2014; Langley 2024)
or NLP (Nguyen et al. 2017; Gopalakrishnan, Muñoz-Avila,
and Kuter 2018; Fine-Morris et al. 2022) techniques, applied
to solved problem examples.

But what to do in the absence of a library of plan traces?
Recently, LLMs have been applied to the problems of gen-
erating classical planning models from NL (Xie et al. 2023;

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Oswald et al. 2024; Oates et al. 2024), to translating from
NL commands to formal languages such as STL and TLT
(Chen et al. 2023; Cosler et al. 2023; Liu et al. 2022), to
NL-based decomposition and task planning (Zhu et al. 2023;
Yuan et al. 2024), and to code and formal-language repair
based on error information (Chen et al. 2024). We present a
document-informed pipeline that combines the decomposi-
tion, translation, and repair capabilities of LLMs to generate
decomposition methods in an HDDL-like language from a
provided NL goal, NL domain information, and PDDL ac-
tion model. Because the initial decomposition is formulated
in NL, the pipeline can be repeatedly run on the subgoals
produced by previous stages to create a hierarchical de-
composition planning model for decomposing intermediate
goals. We describe a potential evaluation scheme for com-
paring the performance of the generated methods against a
classical-planning baseline and an ablation study to analyze
the impact of the domain knowledge on the generated de-
compositions. The evaluation will make use of a decompo-
sition planner which can plan with incomplete models by
falling back on classical planning in the absence of meth-
ods. Our performance metrics will look at planning time,
solution quality, and proportion of planning accomplish by
decomposition planning model vs. classical planning. This
last metric will measure the completeness of the generated
model, measuring the ability of the pipelines to form a com-
plete planning model for solving an initially provided goal.
We suggest an initial domain for a case study, and in our con-
cluding section suggest additions to the pipeline and other
domains with which to expand the evaluation.

2 Related Work
PDDL Generation: Several works have investigated us-
ing LLMs to generate classical planning models. Oswald
et al. (2024) and Oates et al. (2024) both look at gener-
ating PDDL actions on an action-by-action basis from NL
text. Oswald et al. use NL descriptions of the actions and
force the LLM to use provided predicates and types. Oates
et al. allows the model to create its own predicates. Smirnov
et al. (2024) generate a domain and problem definition in
one pass, unlike the previous works which prompt on an
action-by-action basis. They use external checking and goal-
reachability analysis to identify errors in the domain and
problem definitions and an error-correction loop to prompt

the LLM to correct the errors. Guan et al. (2024) gener-
ate actions and new predicates, prompting the LLM to re-
vise previously-generated actions with the new predicates.
COWP (Ding et al. 2023) augments user-provided classical
planning knowledge with common sense knowledge from
the LLM, introducing new preconditions and effects to the
actions of the action model. Liu et al. (2023) create a plan-
ning system which converts NL domain and problem de-
scriptions into PDDL, constructs a plan using a classical
planner, and then coverts the solution back into NL.

Document-Informed Planning: SPRING (Wu et al.
2023) generates plans using an LLM, NL domain context-
information, and a DAG of chained queries guiding the
LLM’s reasoning, where the final node requests an action.
Our system also uses NL domain information, but generates
decomposition methods instead of selecting actions.

Task Decomposition: DECKARD (Nottingham et al.
2023) decomposes tasks into subgoals via LLM, then learns
a policy for accomplishing each subgoal via gameplay while
also correcting its decomposition. Our pipeline will han-
dle subgoals by decomposing them, with no policy learn-
ing. Yuan et al. (2024) investigates Structured Complex Task
Decomposition, generating ordered NL task decomposition
graphs via LLM. Our pipeline will encode its goals and sub-
goals in formal, instead of natural, language. The CaStL
framework Guo et al. (2024) generates a PDDL problem de-
scription and python scripts for constructing constraint ex-
pressions to solve TAMP problems from an input NL goal,
PDDL domain definition, and initial-state scene graph. The
expected end-products of our pipeline are decomposition
methods and we are using NL domain information to inform
the generation of the decompositions.

Translation: NL2TL (Chen et al. 2023) translates NL
to temporal logics (TL); they LLM-generate a synthetic
dataset of (NL, TL) pairs, correcting errors via human-in-
the-loop, then fine-tune an LLM for future translations. Our
pipeline does not generate synthetic data, or use fine-tuning
or human-in-the-loop. Xie et al. (2023) translates NL goal
descriptions to formal language (PDDL) given a PDDL do-
main and a one-shot translation example. They found that
LLMs did this well, but struggled with required numeric and
spatial reasoning. We translate not just the goal, but also gen-
erate (as NL) and translate the preconditions and subgoals.
AutoTAMP (Chen et al. 2024) translates NL to Signal Tem-
poral Logic (STL) combined with error-correction loops to
catch syntax/semantic errors and refine LLM output. While
there are significant similarities with our pipeline, we plan
to comparing performance against a classical planning base-
line instead of an LLM planner. DELTA (Liu et al. 2024)
both converts a scene graph into formal domain and prob-
lem definitions via LLM and decomposes the task into a
single layer of subtasks which are each solved autoregres-
sively. Our proposed pipeline does not use scene graphs and
can further decompose the subgoals by using them as new
gNLinstances.

Minecraft and LLMs: A few works use LLMs to help
agents to solve complex problems in the Minecraft domain.

Voyager (Wang et al. 2023) generates curriculums and
merges skill-implementations to make more complex skills.
Plan4MC (Yuan et al. 2023) constructs skill graphs and finds
paths through the graph to accomplish complex tasks. Ghost
in the Minecraft decomposes complex NL tasks into eas-
ier NL subtasks to enable an LLM planner to construct NL
plans, which are stored for re-use (Zhu et al. 2023). Al-
though some of these generate code, none of them generate
formal planning models as used by a traditional planner.

3 Preliminaries
We modify the definitions used by Höller et al. (2019) for
HGNs, noting that all sets can be assumed to be finite un-
less otherwise specified: Let L = (P, T, V, C) where P is
a set of lifted predicates, T is a set of types, V is a set
of typed variables, and C is a set of typed constants. An
HGN planning domain model, DH , is (L, G, M, O) where
L is as previously defined, G is a set of lifted goal expres-
sions, M is a set of decomposition methods describing how
to decompose a goal into subgoals, and O is a set of opera-
tors. A method, m ∈ M , is (Name(m), Goal(m), Par(m),
Pre(m), Sub(m)), respectively the method name, goal, pa-
rameters, preconditions, and subgoals. An action model,
DCL, is (L, O), where L is as previously defined and O is a
set of operators. An operator, o ∈ O, is (Name(o), Par(o),
Pre(o), Eff (o)), respectively the operator name, parame-
ters, lifted preconditions, and lifted effects. A state, s, is a
set of fully ground (i.e., containing no variables) subset of
predicates from P . An action, a ∈ A, is an operator fully-
ground (all variables replaced with constants) to some state
s, defined as (Name(a), Pre(a), Eff (a)), respectively the
action name, ground preconditions, and ground effects.

4 Pipeline
We propose a domain-independent pipeline, with pseudo-
code in Algorithm 1 and a flow chart in Figure 1, that takes
in (1) a NL goal description, gNL, (2) an PDDL-based ac-
tion model, DCL, annotated with descriptions of its types,
predicates, and operators, and (3) hand-selected domain-
knowledge necessary for accomplishing to the goal, KNL;
it outputs a goal decomposition method, m, written in an
HDDL-like language. We supply a PDDL model as input
to ensure consistency of predicates and types in each gener-
ated method. While it would be valuable to allow the system
to suggest symbols for the predicates and types needed for
its decompositions, it requires a more complex pipeline to
generate a cohesive set of symbols (as indicated by previ-
ous work on learning PDDL (Smirnov et al. 2024)) and it
would require translating or re-generating the PDDL action
model to use the new symbols, which would also be difficult
and error-prone and introduce more points of failure to the
pipeline. For now, we expect the pipeline to be provided with
a correct expert-written or LLM-generated PDDL model.
Hand-selecting KNLis a significant amount of work, which
could be accomplished with RAG. This is not included in
the current pipeline because it is not clear how best to incor-
porate it and how to detect missing knowledge.

The steps of the pipeline are as follows. The Decom-
position Stage (Line 1) decomposes the user-provided tar-
get goal gNL into a semi-structured NL goal-decomposition
specification dgNL, comprising target goal, preconditions,
and subgoals of the target goal. The NL subgoals gener-
ated in this stage can be used as new target goals gNL. The
Translation Stage (Line 2) translates the components of the
NL goal-decomposition specification dgNL from NL into
a predicate-based specification dg using the user-provided
action model DCL. The Repair Stage (Lines 4-5) detects,
describes, and repairs errors in the initial translation. The
Methodization Stage (Line 8) inserts the formalized, cor-
rected components of the dg into a template to construct
a decomposition method m. Excepting the Repair Stage
which calls multiple functions, each stage corresponds to
one function. The Decomposition, Translation, and Repair
functions all prepare the prompt according to a prompt tem-
plate and the function inputs, submit the prompt to the LLM,
and process the LLMs response to extract the result, which
they return. The ErrorDetect and Convert functions are both
hard-coded procedures which do not interact with an LLM.

The pipeline tackles the decomposition and translation as
two separate stages for several reasons. The first reason is
that previous works have already demonstrated that LLMs
can do these tasks separately, therefore combining them into
a single stage without first testing the performance of sep-
arate stages is risky for the second and third reasons. The
second reason is that generating a decomposition in for-
mal language forces the LLM to decompose and translate
simultaneously, which preliminary testing suggested would
increase errors. This could be remedied via chain-of-thought
prompting which asks the LLM to do both tasks in sequence,
but these prompts are generally more difficult to engineer.
The third reason is information control: breaking the pro-
cess into two stages allows more control over the informa-
tion that the LLM has access to for a particular stage, pre-
venting it from becoming ‘distracted’ by knowledge used
in other stages. I.e., we can ‘hide’ DCL from the Decom-
position Stage and KNL from the Translation Stage. Future
work could compare this initial pipeline design with alter-
natives using chain-of-thought prompting to merge decom-
position and translation and/or varying the levels of infor-
mation restriction between stages. An additional benefit of
the current design is that because the decomposition stage
generates subgoals as NL, each subgoal in dgNL can be ex-
tracted and directly used as a new gNL input for the pipeline
without any further prompting and with minimal processing.

At present, we will not attempt to generate multiple meth-
ods with different preconditions for the same goal. We an-
ticipate this having minor impact, as planners skip trivial
subgoals, ensuring that methods can be applied to states
where some of their subgoals are accomplished, if the pre-
conditions do not prevent it. Therefore, many minimal-
precondition methods with subgoals that assume the agent
“starts from scratch” (which is possible in the case-study do-
main) will be usable in many situations.

Decomposition [semistructured NL decompositions]
(Line 1) generates a semi-structured goal-decomposition
specification for a user-provided NL goal description. It

Figure 1: The proposed pipeline showing LLM processes
(lavender), provided content (gray), LLM output (wavy line
boxes), the Convert procedure (rounded white) and the final
HDDL output. Numbers in the figure reference the line of
the Procedure 1.

Algorithm 1: Generate decomposition method m for target
NL goal gNL, using NL domain knowledge KNL, and action
model (DCL).
Input: gNL, KNL, DCL

1. dgNL:= Decompose(gNL, KNL)
2. dg:=Translate(dgNL, DCL)
3. i := 0
4. while (E := ErrorDetect(dg, DCL)) and i ≤ 5 do
5. dg:= Repair(dg, E , DCL)
6. if E then
7. return false
8. m := Convert(dg)
9. return m

takes as input (1) a NL goal description, gNL, and (2) a col-
lection of user-provided NL domain information pertaining
to the goal, KNL. It outputs dgNL, a python dict with three
fields: (1) goal: the NL goal description provided by the user,
gNL, (2) precondition: an LLM-generated preconditions of
the decomposition expressed in NL, and (3) subgoals: an
LLM-generated sequence of subgoals for decomposing the
goal expressed as NL. The following shows an example for
the goal “player has crafttable”.
{"goal": "player has crafttable",

"precondition": "player can collect logs",

"subgoals": "player has: logs, planks, crafttable"}

This stage comprises injecting the inputs into a provided
prompt template to form the prompt, querying the LLM,
and extracting the output from the response. Once extracted,
each subgoal can be used as a new target goal, gNL. This
stage is loosely based on the decomposition process from
the work of Zhu et al. (2023), which also generates decom-
positions as text, and the prompt is a modified version of a
prompt used by their LLM Decomposer.

Translation [Predicates] (Line 2) translates the NL goal-
decomposition specification into a predicate-based goal-
decomposition specification. It takes as input (1) the semi-
structured NL goal-decomposition specification dgNL and
(2) an action model annotated with descriptions of its types,
predicates, and actions, DCL. It outputs the dg, a python dic-
tionary with four fields: (1) goal, Goal(gNL): the goal de-
scribed as a predicate, (2) precondition, Pre(Goal(gNL)):
the precondition of the decomposition expressed as a list of
predicates, (3) subgoals, Sub(Goal(gNL)): the subgoal se-

quence expressed as a list of predicates, and (4) a python
list of (parameter, type) pairs containing each of the param-
eters, Par(Goal(gNL)), used in the previous three fields.
The following shows an example for the goal “player has
crafttable”.
{"goal": "agent_has(?table)",

"precondition": ["(object_located_at ?logs ?logs_loc)"],

"subgoals": ["(agent_has ?logs)", "(agent_has ?planks)",

"(agent_has ?table)"}],

"parameters": [("?logs", "wood"), ("?logs_at","loc"),

("?planks","plank"), ("?table", "table")]}

In this stage, the pipeline will inject the inputs into a pro-
vided prompt template to form the prompt, prompt the LLM,
and extract the output from its response.

Repair [revised specification] (Lines 4-5) detects errors
produced in the translation stage, and prompts the LLM to
re-generate dg based on the errors. It takes as input (1) the
predicate-based goal decomposition, dg, (2) the annotated
action-model, DCL. It outputs either a corrected dgor false
if none was created. The stage comprises an error-detection
substage which generates error messages for each error
found, and a repair stage which re-prompts the LLM with in-
struction to repair dg according to the provided errors. The
error detection substage incorporates HDDL parsers and a
custom logic checker. It cannot ensure that the decompo-
sition is correct, but it can identify python syntax errors,
malformed predicates (due to wrong name, arity, or param-
eter type), and other formatting errors in dg, and generate
error messages using error message templates. The error-
detection loop will run some maximum number of times,
tentatively 5, before returning failure.

Convert [HDDL] plugs the components of dg into the ap-
propriate elements of the decomposition method, m. It is
fully procedural and does not use an LLM.

5 Proposed Evaluation
We propose to evaluate the generated decomposition meth-
ods by comparing their performance during planning against
that of a classical planning action model, DCL, using an
HGN planner which can fallback on classical planning to
solve a subproblem when the decomposition methods are in-
sufficient. The fallback ability allows the planner to continue
when provided incomplete methods.

We will measure performance as a metric of: (1) planning
time, (2) problems solved within a timelimit, (3) plan length,
(4) proportion of time spent classical planning, and (5) pro-
portion of plan generated by decomposition, planning. We
expect that as problem difficult/size increases, an effective
HGN planning model will eventually require shorter plan-
ning times than the classical planning model. We can eval-
uate the performance of the hierarchical planning model as
we add more methods to the pipeline, tracking its improve-
ment or degradation as a function of (5) and (4).

We plan to test methods for Minecraft, which has a com-
plex technology tree and significant existing corpus of do-
main information in user-authored wikis, making it a good
domain for domain-knowledge-informed method genera-
tion. Additionally, the success of the work of Zhu et al.

(2023), which also used Minecraft, in NL-based decompo-
sition planning supports this as a reasonable domain.

We will be hand-selecting text from the major Minecraft
wiki1 to create KNL for each goal.

We plan to use test-goals based on the pickaxe series of
items of the Minecraft because it is central to the game.
Initial states will be set at different levels of the technol-
ogy tree, by changing what level of pickaxe the agent starts
with (possibly none) and if the agent has access to the nec-
essary craft stations to create its target pickaxe. Varying the
level at which the agent start to climb the tech tree can help
establish generalizability of methods. Assuming reasonable
performance of the generated HGN, we will ablate KNL to
examine its role in producing a quality planning model.

6 Conclusion
We have described a pipeline for generating decomposition
methods for goals provided as NL, using NL domain infor-
mation and an NL annotated action model. We have pre-
sented a plan for evaluating the pipeline-generated decom-
position methods against a classical planning baseline.

Expansions of the proposed work could include (1) eval-
uating the system on additional test domains to expand
our case study into a full experiment set– some possibil-
ities include Overcooked, Civilization, and Hex, as these
have existing documentation; (2) adding a stage for docu-
ment-informed construction of the action model or compo-
nents; (3) adding a stage for extracting goal-pertinent do-
main knowledge from a larger corpus of domain knowledge;
(4) adding a stage for prompting the LLM to imagine dif-
ferent situations in which the agent might want to achieve
the goal, so we have multiple different decompositions with
different precondition sets; (5) adding a stage for using plan-
ning, gameplay, or simulator interaction to refine the domain
model; (6) adding a module for processing tables containing
domain knowledge such that the LLM can use their infor-
mation; (7) comparing the pipeline against an alternate ver-
sion where decomposition and translation are accomplished
in one prompt, possibly with C-o-T; and (8) varying what
information each stage has access to, to determine if decom-
position or translation perform better given access to other
inputs in the pipeline.

Acknowledgements
We thank NRL for funding this research.

References
Alford, R.; Shivashankar, V.; Roberts, M.; Frank, J.; and
Aha, D. W. 2016. Hierarchical Planning: Relating Task and
Goal Decomposition with Task Sharing. 3022–3029.
Chen, Y.; Arkin, J.; Dawson, C.; Zhang, Y.; Roy, N.; and
Fan, C. 2024. Autotamp: Autoregressive Task and Motion
Planning with Llms as Translators and Checkers. In 2024
IEEE International Conference on Robotics and Automation
(ICRA), 6695–6702. IEEE.

1https://minecraft.fandom.com/wiki/Minecraft Wiki

Chen, Y.; Gandhi, R.; Zhang, Y.; and Fan, C. 2023. NL2TL:
Transforming Natural Languages to Temporal Logics Using
Large Language Models. arXiv:2305.07766.
Cosler, M.; Hahn, C.; Mendoza, D.; Schmitt, F.; and Trippel,
C. 2023. Nl2spec: Interactively Translating Unstructured
Natural Language to Temporal Logics with Large Language
Models. In Enea, C.; and Lal, A., eds., Computer Aided Ver-
ification, 383–396. Springer Nature Switzerland.
Ding, Y.; Zhang, X.; Amiri, S.; Cao, N.; Yang, H.; Kamin-
ski, A.; Esselink, C.; and Zhang, S. 2023. Integrating Action
Knowledge and LLMs for Task Planning and Situation Han-
dling in Open Worlds. Autonomous Robots, 47(8): 981–997.
Erol, K.; Hendler, J.; and Nau, D. 1994a. HTN Planning:
Complexity and Expressivity. In Proceedings of the Twelfth
AAAI National Conference on Artificial Intelligence.
Erol, K.; Hendler, J. A.; and Nau, D. S. 1994b. Semantics
for Hierarchical Task-Network Planning.
Fine-Morris, M.; Floyd, M. W.; Auslander, B.; Pennisi, G.;
Gupta, K.; Roberts, M.; Heflin, J.; and Munoz-Avila, H.
2022. Learning Decomposition Methods with Numeric
Landmarks and Numeric Preconditions. In Proceedings of
the 5th ICAPS Workshop on Hierarchical Planning (Hplan
2022), 29–37.
Gopalakrishnan, S.; Muñoz-Avila, H.; and Kuter, U. 2018.
Learning Task Hierarchies Using Statistical Semantics and
Goal Reasoning. AI Communications, 31(2): 167–180.
Guan, L.; Valmeekam, K.; Sreedharan, S.; and Kambham-
pati, S. 2024. Leveraging Pre-Trained Large Language Mod-
els to Construct and Utilize World Models for Model-Based
Task Planning. In Proceedings of the 37th International
Conference on Neural Information Processing Systems.
Guo, W.; Kingston, Z.; and Kavraki, L. E. 2024.
CaStL: Constraints as Specifications through LLM Trans-
lation for Long-Horizon Task and Motion Planning.
arXiv:2410.22225.
Hayes, B.; and Scassellati, B. 2016. Autonomously Con-
structing Hierarchical Task Networks for Planning and
Human-Robot Collaboration. In 2016 IEEE International
Conference on Robotics and Automation (ICRA), 5469–
5476.
Hogg, C.; Muñoz-Avila, H.; and Kuter, U. 2016. Learning
Hierarchical Task Models from Input Traces. Computational
Intelligence, 32(1): 3–48.
Hérail, P.; and Bit-Monnot, A. 2023. Leveraging Demon-
strations for Learning the Structure and Parameters of Hier-
archical Task Networks. The International FLAIRS Confer-
ence Proceedings, 36.
Höller, D.; Behnke, G.; Bercher, P.; Biundo, S.; Fiorino, H.;
Pellier, D.; and Alford, R. 2019. HDDL–a Language to De-
scribe Hierarchical Planning Problems. HPlan 2019, 6.
Langley, P. 2024. Learning Hierarchical Problem Networks
for Knowledge-Based Planning. In Muggleton, S. H.; and
Tamaddoni-Nezhad, A., eds., Inductive Logic Programming,
volume 13779, 69–83. Springer Nature Switzerland.
Li, R.; Nau, D.; Roberts, M.; and Fine-Morris, M. 2024. Au-
tomatically Learning HTN Methods from Landmarks. The
International FLAIRS Conference Proceedings, 37(1).

Liu, B.; Jiang, Y.; Zhang, X.; Liu, Q.; Zhang, S.; Biswas,
J.; and Stone, P. 2023. LLM+P: Empowering Large
Language Models with Optimal Planning Proficiency.
arxiv:2304.11477.
Liu, J. X.; Yang, Z.; Schornstein, B.; Liang, S.; Idrees, I.;
Tellex, S.; and Shah, A. 2022. Lang2LTL: Translating Nat-
ural Language Commands to Temporal Specification with
Large Language Models.
Liu, Y.; Palmieri, L.; Koch, S.; Georgievski, I.; and
Aiello, M. 2024. DELTA: Decomposed Efficient Long-
Term Robot Task Planning Using Large Language Models.
arXiv:2404.03275.
Lotinac, D.; and Jonsson, A. 2016. Constructing Hierarchi-
cal Task Models Using Invariance Analysis. In ECAI 2016,
1274–1282. IOS Press.
Nguyen, C.; Reifsnyder, N.; Gopalakrishnan, S.; and
Munoz-Avila, H. 2017. Automated Learning of Hierarchical
Task Networks for Controlling Minecraft Agents. In 2017
IEEE Conference on Computational Intelligence and Games
(CIG), 226–231.
Nottingham, K.; Ammanabrolu, P.; Suhr, A.; Choi, Y.; Ha-
jishirzi, H.; Singh, S.; and Fox, R. 2023. Do Embod-
ied Agents Dream of Pixelated Sheep: Embodied Deci-
sion Making Using Language Guided World Modelling.
arXiv:2301.12050.
Oates, T.; Alford, R.; Johnson, S.; and Hall, C. 2024. Us-
ing Large Language Models to Extract Planning Knowledge
from Common Vulnerabilities and Exposures. In Working
notes of the Workshop on Knowledge Engineering for Plan-
ning and Scheduling (KEPS) at ICAPS 2024.
Oswald, J.; Srinivas, K.; Kokel, H.; Lee, J.; Katz, M.; and
Sohrabi, S. 2024. Large Language Models as Planning Do-
main Generators. Proc. of the International Conference on
Automated Planning and Scheduling.
Segura-Muros, J. A.; Pérez, R.; and Fernández-Olivares, J.
2017. Learning Htn Domains Using Process Mining and
Data Mining Techniques. In ICAPS Workshop on General-
ized Planning. Pittsburgh, United States.
Smirnov, P.; Joublin, F.; Ceravola, A.; and Gienger, M.
2024. Generating Consistent PDDL Domains with Large
Language Models. arxiv:2404.07751.
Wang, G.; Xie, Y.; Jiang, Y.; Mandlekar, A.; Xiao, C.;
Zhu, Y.; Fan, L.; and Anandkumar, A. 2023. Voyager: An
Open-Ended Embodied Agent with Large Language Mod-
els. arxiv:2305.16291.
Wu, Y.; Prabhumoye, S.; Min, S. Y.; Bisk, Y.; Salakhutdinov,
R.; Azaria, A.; Mitchell, T.; and Li, Y. 2023. SPRING: GPT-
4 Out-performs RL Algorithms by Studying Papers and Rea-
soning. arXiv:2305.15486.
Xie, Y.; Yu, C.; Zhu, T.; Bai, J.; Gong, Z.; and Soh, H. 2023.
Translating Natural Language to Planning Goals with Large-
Language Models. arXiv:2302.05128.
Yang, Q.; Pan, R.; and Pan, S. J. 2007. Learning Recursive
HTN-Method Structures for Planning.
Yuan, H.; Zhang, C.; Wang, H.; Xie, F.; Cai, P.; Dong,
H.; and Lu, Z. 2023. Plan4MC: Skill Reinforcement

Learning and Planning for Open-World Minecraft Tasks.
arxiv:2303.16563.
Yuan, Q.; Kazemi, M.; Xu, X.; Noble, I.; Imbrasaite, V.; and
Ramachandran, D. 2024. TaskLAMA: Probing the Com-
plex Task Understanding of Language Models. Proceedings
of the AAAI Conference on Artificial Intelligence, 38(17):
19468–19476.
Zhu, X.; Chen, Y.; Tian, H.; Tao, C.; Su, W.; Yang, C.;
Huang, G.; Li, B.; Lu, L.; Wang, X.; Qiao, Y.; Zhang, Z.;
and Dai, J. 2023. Ghost in the Minecraft: Generally Capa-
ble Agents for Open-World Environments via Large Lan-
guage Models with Text-based Knowledge and Memory.
arxiv:2305.17144.
Zhuo, H. H.; Muñoz-Avila, H.; and Yang, Q. 2014. Learn-
ing Hierarchical Task Network Domains from Partially Ob-
served Plan Traces. Artif. Intell., 212(1): 134–157.

A Prompts
Each prompt is formed by inserting the input components into the fields of the prompt. Fields are labels wrapped in curly
braces,{}. Instance of double curly braces, {{}}, are not fields but part of the python dictionary syntax. After formatting the
string so that the fields are replaced with their content, these double curly braces become single curly braces used by python to
denote a dictionary.

All prompts have a “domain” field, which was always replaced with “the video game Minecraft”.

A.1 Decomposition Prompt Template
To make the Decomposition Prompt from the template below, the {goal} field is replaced with gNL, and the {bgknowledge}
field is replaced with KNL.

You are an assistant for {domain}.
I will give you a goal and domain background knowledge pertaining to that goal. Please

describe a way to decompose that goal into subgoals. Please write the decomposition in
the standard form.

The standard form of the goal is as follows:
‘‘‘
{{

"goal": "the goal description",
"subgoals": "a comma-separated series of subgoals into which the goal can be decomposed",
"preconditions": "the minimal facts about the world that must be true before the subgoals

of this goal can be achieved and which do not include the subgoals themselves"
}}
‘‘‘

The information I will give you:
The goal: a description of the goal condition in natural language.
Background knowledge: some knowledge related to the goal.

Requirements:
1. You must generate the subgoals and preconditions based on the provided background

knowledge instead of purely depending on your own knowledge.
2. The "subgoals" and "preconditions" should be as compact as possible, at most 3 sentences.

The knowledge I give you may be raw texts from Wiki documents. Please extract and
summarize important information instead of directly copying all the texts.

3. The "subgoals" should not include the work "or", i.e., the subgoals must be chosen such
that they must be achieved in sequence to achieve the final goal.

4. The "preconditions" should not include the word "or" and they should not repeat the "
subgoals" verbatim.

The goal:
{goal}

Background knowledge:
{bgknowledge}

A.2 Translation Prompt
To make the Translation Prompt from the template below, the {goaldecomp} field is replaced with dgNL, and the {actionNL}
field is replaced with DCL.

You are a planning-domain designer for {domain}. Your task is to translate a provided goal
specification comprising natural language descriptions of a goal, subgoals, and
preconditions into pddl goal, subgoals, and preconditions. Add a new "parameters" field
to each translated specification dictionary which lists (variable, variable type) pairs
for the variables used in the goals, subgoals, and preconditions. Use the predicates,
types, objects, and action names in the action model I provide you to construct the pddl
descriptions based on the natural-language descriptions in the goal specification. You
may only use the action names for translating subgoals. If the provided predicates, types
, objects, and actions are insufficient to express a component (goal, subgoals,
preconditions) of the goal specification, write ’UNSUPORRTED’ in the value for that
component. I will provide natural-language descriptions of the predicates and actions and
you should consider them when creating your translations.

Note that in pddl, variables are prefixed by "?". When writing a predicate, ommit the type
annotations for its parameters as these are unnecessary. Predicates can be negated with
the ’not’ keyword, i.e. the negation of the predicate "(name ?param1 ?param2)" is "(not (
name ?param1 ?param2))". No predicates that occur in the subgoals should be exactly
replicated in the preconditions, and none of the preconditions should occur in the
subgoals because preconditions are conditions which are already true in the world while
subgoals are conditions which must become true in the future in order to achieve the goal
. You may use operators such as "and" to indicate that a set of predicates must be true
at the same time, using the format "(and predicate1 predicate2)".

In your response, be sure to put each of your translated goal summaries in a python dict
enclosed in ‘‘‘ symbols.

Goal specification:
{goaldecomp}

Action Model & Natural-language Descriptions of Predicates and Actions:
{actionNL}

Translate the contents of each goal summary into a python dict with entries for ’goal’, ’
subgoals’, ’precondition’, and ’parameters’. Provide the subgoals entry as a list of
strings. Wrap python the dict inside ‘‘‘ symbols.

A.3 Repair Prompt
To make the Repair Prompt from the template below, the {pddlgoalspec} field is replaced with dg, the {nlgoalspec} field is
replaced with dgNL, the {actionNL} field is replaced with DCL, and the {errors} field is replaced with E .

You are a planning-domain designer for {domain}. Your task is to correct a predicate-based
goal decomposition specification based on an error message.

I will give you the following information:
(1) the predicate-based goal decomposition (goal, parameters, precondition, and subgoals)

formatted as a python dict,
(2) the natural language translation of the goal decomposition (goal, precondition, and

subgoals)
(3) an action model describing the domain, with the actions, predicates, and types you may

use to create the new goal-decomposition
(4) the error message describing the problem with the predicate-based goal decomposition

Remember that in pddl, variables are prefixed by "?". When writing a predicate, omit the type
annotations for its parameters as these are unnecessary. Predicates can be negated with

the ’not’ keyword, i.e. the negation of the predicate "(name ?param1 ?param2)" is "(not (
name ?param1 ?param2))". No predicates that occur in the subgoals should be exactly
replicated in the preconditions, and none of the preconditions should occur in the
subgoals because preconditions are conditions which are already true in the world while
subgoals are conditions which must become true in the future in order to achieve the goal
. You may use operators such as "and" to indicate that a set of predicates must be true
at the same time, using the format "(and predicate1 predicate2)".

PDDL goal specification:
{pddlgoalspec}

Natural language goal specification:
{nlgoalspec}

Action model & natural-language descriptions of predicates and actions:
{actionNL}

Error message:
{errors}

Please fix the PDDL goal decomposition specification to resolve the issues indicated by the
error message, while also ensuring that your result is a reasonable translation of the
natural-language verions of that decomposition specification. Remember to use proper PDDL
syntax and consider the provided action model and predicates as well as and the original
goal specification.

