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ABSTRACT

End-to-end Large Speech Language Models (LSLMs) demonstrate strong poten-
tial in response latency and speech comprehension capabilities, showcasing gen-
eral intelligence across speech understanding tasks. However, the ability to follow
speech instructions has not been fully realized due to the lack of datasets and heav-
ily biased training tasks. Leveraging the rich ASR datasets, previous approaches
have used Large Language Models (LLMs) to continue the linguistic information
of speech to construct speech instruction datasets. Yet, due to the gap between
LLM-generated results and real human responses, the continuation methods fur-
ther amplify these shortcomings. Given the high costs of collecting and annotating
speech instruction datasets by humans, using speech synthesis to construct large-
scale speech instruction datasets has become a balanced and robust alternative.
Although modern Text-To-Speech (TTS) models have achieved near-human-level
synthesis quality, it is challenging to appropriately convert out-of-distribution text
instruction to speech due to the limitations of the training data distribution in TTS
models. To address this issue, we propose a query rewriting framework with multi-
LLM knowledge fusion, employing multiple agents to annotate and validate the
synthesized speech, making it possible to construct high-quality speech instruc-
tion datasets without relying on human annotation. Experiments show that this
method can transform text instructions into distributions more suitable for TTS
models for speech synthesis through zero-shot rewriting, increasing data usability
from 72% to 93%. It also demonstrates unique advantages in rewriting tasks that
require complex knowledge and context-related abilities.

1 INTRODUCTION

LLMs have demonstrated powerful performance in general intelligence, profoundly changing the
way humans interact with AI systems (OpenAI et al., 2024; Abdin et al., 2024; Dubey et al., 2024).
However, constrained by the text modality, existing LLMs are unable to meet the needs of rich
real-world interactive scenarios, making it a natural idea to extend this general capability to more
modalities (Fang et al., 2024). Recently, end-to-end LSLMs have shown great potential in terms of
response latency and speech understanding, making it possible to extend this general performance to
scenarios better suited for verbal interaction (Chu et al., 2023; 2024; Zhang et al., 2023a; Fathullah
et al., 2024). However, due to the lack of high-quality speech instruction datasets and heavily biased
training tasks, the ability of LSLMs to follow speech instructions is not fully realized, resulting in
a lack of intent perception in verbal interaction scenarios. Thus, building a high-quality large-scale
speech instruction dataset becomes a crucial foundation for advancing the ability to follow speech
instructions.

Benefiting from abundant Automatic Speech Recognition (ASR) datasets (Ardila et al., 2020; Pratap
et al., 2020; Guoguo Chen, 2021; Wang et al., 2024), early work aligned speech and text modali-
ties by having models repeat or recognize linguistic information in speech through textual instruc-
tions (Gong et al., 2023). To enhance the model’s understanding of paralinguistic information in
speech, traditional tasks in the speech domain (such as speaker classification, speech entity recogni-
tion, etc.) were integrated into training (Chu et al., 2023; Tang et al., 2024; Das et al., 2024). These
training methods, which treat the speech modality as files rather than instructions, cause the model
to lack the ability to follow speech instructions and lead to hallucinations due to the severe bias in
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task distribution. To unlock the model’s potential to follow speech instructions, previous approaches
constructed speech instruction datasets by continuing the linguistic information of speech through
LLMs to restore the model’s instruction-following capabilities (Fathullah et al., 2024). However,
due to the gap between the generated results of LLMs and human-annotated ground truth answers,
using such continuation methods may further amplify these shortcomings.

Unlike the image domain, which has abundant human-annotated data (Laurençon et al., 2024; Lin
et al., 2015), constructing large-scale, manually narrated, and annotated speech instruction datasets
from scratch is challenging due to the high costs of collection and annotation. As a result, using
speech synthesis to construct datasets becomes a robust choice after weighing the pros and cons.
However, due to differences between TTS models and human speech narration, as well as halluci-
nation issues during the speech synthesis process, it is necessary to verify whether the synthesized
speech is linguistically equivalent to the text. On the other hand, since TTS models have a lim-
ited vocabulary, they cannot accurately convert out-of-distribution text, such as compound words,
abbreviations, or mathematical formulas, into speech, leading to the loss of linguistic information.

Previous work has shown that the semantic similarity between two texts can be calculated using em-
bedding models, demonstrating better robustness compared to methods like WER and more closely
aligned with how humans assess textual similarity (Muennighoff et al., 2023). Some high-quality
human-annotated datasets achieve superior annotation results by integrating the opinions of multi-
ple annotators, making the sample distribution more representative of real-world scenarios (Deitke
et al., 2024; Liu et al., 2021). Meanwhile, query rewriting optimizes the text distribution without
significantly altering the semantics, making it better aligned with a specific distribution (Ye et al.,
2024).

Inspired by this, we propose a query rewriting method with multi-LLM knowledge fusion, along
with multi-agent annotation and data quality validation. Specifically, we leverage LLMs’ general-
ization ability in zero-shot tasks to guide the rewriting of text instructions to fit the training distribu-
tion of TTS models. Additionally, we use multiple distinct LLMs to rewrite the text from different
perspectives. Next, we automatically extract linguistic information from the speech using multiple
models and calculate its average similarity to the original text in the embedding space to avoid an-
notation errors and achieve semantically optimal results. Finally, we fuse the knowledge of different
LLMs in this zero-shot rewriting task to tackle challenging rewrites that require complex knowledge.
Experimental results show that our method increased data usability from 71% to 93% and improved
the semantic similarity between the linguistic information in speech and the original text by 5%.

The main contribution of this paper can be summarised as follows:

• We propose a query rewriting framework with multi-LLM knowledge fusion, along with
a multi-agent annotation and validation method based on embedding space similarity, en-
abling the low-cost, automated construction of high-quality speech instruction datasets.

• Experiments show that our proposed method demonstrates unique advantages in rule-based
query rewriting, context-aware understanding, and complex knowledge integration, in-
creasing the average data usability from 72% to 93%, while maintaining consistent per-
formance across different validation methods.

• By comparing the training results using voice data of varying quality and alignment ob-
jectives, we validated the significant advantages of high-quality synthesized speech data in
alignment effectiveness and cross-modal consistency. It also demonstrates the importance
of learning from real human responses to enhance the model’s ability to follow speech
instructions.

2 RELATED WORK

Text-To-Speech TTS models have recently demonstrated impressive performance in terms of syn-
thesis quality and fluency. However, constrained by the reliance on reference speech, they lack
diversity in style (Wang et al., 2023; Le et al., 2023). Inspired by the image modality, using natu-
ral language descriptions of speaker styles to address this issue has become a promising approach.
However, due to the lack of large-scale speech datasets containing natural language descriptions, it
is difficult to freely use natural language to control the style of speech synthesis. Lyth & King (2024)
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constructed a large-scale speech dataset using multiple attributes for automated labeling, which sig-
nificantly improved the synthesis diversity of TTS models. In this work, we utilize GPT-4 (OpenAI
et al., 2024) to synthesize style descriptions and use Parler-TTS (Lacombe et al., 2024) to synthesize
speech.

Speech-text alignment training in LSLMs Aligning speech and text modalities is crucial for
building the speech understanding capability of end-to-end LSLMs. Benefiting from abundant ASR
datasets (Ardila et al., 2020; Pratap et al., 2020; Guoguo Chen, 2021; Wang et al., 2024), early work
aligned the two modalities by instructing the model to repeat or recognize the linguistic information
in the speech (Shu et al., 2023; Zhang et al., 2023a; Gong et al., 2023; Chu et al., 2023). However,
due to the severely biased task distribution, the model ignored following the instructions in the
speech and defaulted to performing language recognition (Fathullah et al., 2024). Recent work has
employed a continuation approach to construct speech instruction data, aiming to restore the model’s
ability to follow spoken instructions (Fathullah et al., 2024; Fang et al., 2024). Due to the gap
between the language model’s generated outputs and real human responses, using the continuation
method to train the model can further amplify this deficiency (Seddik et al., 2024; Chen et al., 2024).
In this work, we propose a high-quality speech instruction synthesis method to address this issue.

3 PROBLEM FORMULATION

Figure 1: Some recognition errors in ASR models. Sentence Pattern Error indicates that the ASR
model failed to provide appropriate punctuation based on the user’s intent. In the given examples,the
original sentence expresses a question, while the ASR-recognized sentence, lacking proper punctu-
ation, conveys a tone of disdain or assertion.

Our goal is to automatically obtain synthesized speech that is linguistically equivalent to the text.
For a given TTS model and text instruction co, we can get the synthesized speech so.

Ideally, we can get the linguistic information c̄o in so by ASR model, it should satisfies

c̄o = co (1)

which mean that the so is linguistically equivalent to co strictly.

As shown in Figure 1, we present some recognition errors in ASR models. Due to the inherent gap
between ASR models and humans in speech recognition, it is challenging to get c̄o that satisfies
equation (1), even for speech that contains equivalent linguistic information. Therefore, using the
strict linguistic equivalence condition in equation (1) to evaluate the quality of synthesized speech
can lead to inappropriate data rejection and cause a shift in the dataset distribution. Inspired by the
work on Semantic Textual Similarity (Muennighoff et al., 2023), we use the similarity between c̄o
and co as a criterion for judging their linguistic equivalence. Given the similarity calculation method
F , our goal is to get s to maximize the number of

q = F (c̄, c). (2)

where c is the original text and c̄ is the linguistic information in s that usually to be the best speech
recognition result by ASR model.
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Figure 2: The structure of Question Rewriting with Multi-LLM.

4 METHOD

4.1 MULTI-AGENT ANNOTATION AND VERIFICATION

Accurate recognition of linguistic information in speech is fundamental for assessing the quality of
speech instruction synthesis, as incorrect recognition can lead to improper filtering of the data. How-
ever, achieving accurate assessment is challenging due to the common recognition errors present in
ASR models (Radford et al., 2022; Srivastav et al., 2023). Some human-annotated datasets integrate
the opinions of multiple annotators to achieve high-quality annotation results (Deitke et al., 2024;
Liu et al., 2021). Inspired by this, we propose a Multi-agent annotation and verification method.
By using three ASR models and three Embedding models, we simulate multiple annotators and
validators to jointly enhance the quality of the evaluation.

Specifically, for an original text instruction co and its’ synthesized speech so, we can obtain multiple
recognition results C̄o = { c̄o,j |j ∈ {0, 1, 2}} through multiple ASR models A = {A0, A1, A2}.
Then we use embedding models E = {E0, E1, E2} to get the similarity between the original text
instruction and the recognition result by

F (co, c̄o,j) =
1

3

2∑
z=0

Ez(co) · Ez(c̄o,j)

∥Ez(co)∥∥Ez(c̄o,j)∥
. (3)

where ¯co,j is the recognition result of so byAj ∈ A. The quality for so could get by

q(A,E) = max
j

(F (co, c̄o,j)). (4)

When using the same similarity calculation method, higher orthogonality in ASR model perfor-
mance helps to avoid consistent ASR errors, thereby improving the accuracy of the evaluation.
Therefore, we use whisper-large-v3 1 (Radford et al., 2022), canary-1b 2 and parakeet-tdt-1.1b 3

as ASR models, which have similar ASR performance in OpenASR Leaderboard (Srivastav et al.,
2023) but different architectures.

4.2 QUESTION REWRITING FOR LINGUISTIC PRESERVATION

Due to the limited vocabulary of the TTS model, it is unable to properly convert out-of-distribution
text, such as compound words, abbreviations, and mathematical formulas into speech, resulting
in the loss of linguistic information. Previous work mainly relied on manually designed rules to

1https://huggingface.co/openai/whisper-large-v3
2https://huggingface.co/nvidia/canary-1b
3https://huggingface.co/nvidia/parakeet-tdt-1.1b
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rewrite these contents, which inevitably led to a dependency on manual efforts, making it difficult
to construct large-scale speech instruction datasets (Yang et al., 2024b). The strong performance of
large language models on zero-shot tasks makes it a natural idea to use this capability for rewriting
text as a solution to this problem.

Specifically, we propose a query rewriting framework based on multiple LLMs to avoid the loss of
linguistic information during speech synthesis, as shown in Figure 2. For an original text instruction
co, we use Llama-3-8B-Instruct (Dubey et al., 2024), Phi-3-small-8k-instruct (Abdin et al., 2024)
and Qwen2-7B-Instruct (Yang et al., 2024a) to rewrite the instructions, resulting in the candidate
text set C = {co, cl, cp, cq}. To enhance the diversity of speech styles, we used GPT-4 to generate
descriptions for 192 different speakers D = {d0, d1, . . . , d191} to control the speech styles. Then,
we can get the candidate speech set S = {so, sl, sp, sq} by TTS model and randomly selected
description text d ∈ D. Following the evaluation and validation methods mentioned in Section 4.1,
we can obtain the quality of every synthesized speech through

q(A,E|c, co) = max
j

(F (co, c̄j)), c ∈ C. (5)

where c̄j is the speech recognition result of s ∈ S by ASR model Aj ∈ A (4.1). Then we can obtain
the optimal synthesized speech s and the text ĉ ∈ C which is the optimal input into TTS.

Figure 3: The structure of Knowledge Fusion.

4.3 KNOWLEDGE FUSION FOR CHALLENGING QUERY REWRITING

The performance of the models on challenging zero-shot tasks shows a degree of orthogonality due
to differences in their knowledge. However, they exhibit limitations in tasks that require multi-
perspective capabilities. Recent studies have shown that knowledge fusion can effectively leverage
the knowledge of multiple models (Wan et al., 2024). By learning from data generated by different
models with unique perspectives, the model’s ability to understand complex tasks is significantly
enhanced. Inspired by this, we propose a knowledge fusion method to address challenging rewriting
tasks as shown in Figure 3. By integrating the rewriting capabilities of multiple LLMs, we aim to
correct failed samples.

Specifically, for a dataset X = {c0, c1, c2, . . . , cn−1}, we can obtain the optimal set Xb =
{ĉ0, ĉ1, ĉ2, . . . ĉn−1} for input into TTS using the method from Section 4.2. Then, we consider
the sample pairs < ci, ĉi >, i ∈ [0, n− 1] that satisfy q(A,E|ĉi, ci) > α and q(A,E|ci, ci) < α as
successfully rewritten samples for knowledge fusion training, and the sample pairs < ci, ĉi >, i ∈
[0, n−1] that satisfy q(A,E|ĉi, ci) < α as the samples with failed rewrites, α is the hyperparameters
used to control data quality, where q(A,E|ci, ci) fellow equation (5). In this paper, we set α = 0.9.

We use Meta-Llama-3-8B-Instruct (Dubey et al., 2024) as the backbone model and employ
LoRA (Hu et al., 2021) to train the model. Our goal is to minimize the

L = −
M∑
i=0

logP (yi|x, c, y<i) . (6)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where < c, y > is the successfully rewritten sample, x is the prompt. Then we can get the new
rewrite set Cn = {ci,n|q(A,E|ĉi, ci) < α} for the samples with failed rewrites by the model with
knowledge fusion. Finally, following equation (5), we can obtain the new optimal set Xnb for input
into TTS.

5 EXPERIMENT AND RESULT

5.1 EXPERIMENT SETTINGS

Dataset In real user interaction scenarios, it is rare to use lengthy speech to provide a detailed
task definition; instead, users often ask brief questions expecting responses that meet their expec-
tations. Therefore, in this paper, we selected several QA datasets with short questions to validate
the effectiveness of our method. Specifically, we use DROP (Dua et al., 2019), Quoref (Dasigi
et al., 2019), ROPES(Lin et al., 2019), NarrativeQA (Kočiský et al., 2017), TAT-QA (Zhu et al.,
2021), SQUAD1.1 (Rajpurkar et al., 2016) and SQUAD2.0 (Rajpurkar et al., 2018) to validate the
effectiveness of the proposed method, We provide more information about the dataset in Appendix
B.3.

For the training data to train LSLMs, we calculate the data quality using Equation (5) and set a
threshold t. The quality of all data used for training the model must exceed t. For data derived from
the same original text, only the speech instruction with the highest quality that meets the threshold
requirement is included in the training. We train LSLMs using data synthesized under the Multi-
Speaker Setting, combining all datasets to train it.

Baseline We use the following setup as our baseline: (1) Original: Directly using the original text
as TTS input for speech synthesis; (2) TN (Text Normalization): This is a commonly used method
in the industry to optimize TTS inputs. We implement text normalization using the method proposed
by (piAI, 2017), which achieved an accuracy of 98.27% in Text Normalization Challenge (Howard
et al., 2017).

To evaluate the effectiveness of each component of our proposed method, we adopt the following
configurations as ablation methods: (1) Phi3/Qwen2/Llama3: Follow the synthesis framework in
Figure 2 but only use Phi-3-small-8k-instruct/Qwen2-7B-Instruct/Llama-3-8B-Instruct to rewrite
queries; (2) Ours w/o KF: Use only the synthesis framework in Figure 2 without knowledge fusion.

Considering that speech style descriptions can impact speech synthesis, we adopt the following two
configurations to evaluate the generalization ability of our proposed method across different TTS
models: (1) Multi-Speaker Setting: Following the framework in Figure 2, we use GPT-4 (OpenAI
et al., 2024) to generate diverse speech descriptions and employ Parler-TTS-Large-v1 as the TTS
model; (2) Single-Speaker Setting: We include two additional widely-used vocoder-based TTS
models, MeloTTS (Zhao et al., 2023) and MMS-TTS-ENG (Pratap et al., 2023), to evaluate the
effectiveness of our method across three TTS models.

For the training of LSLMs, we use Qwen2-Audio-7B-Instruct as the backbone, we adopt the follow-
ing two alignment target settings: (1) Golden: Using high-quality human-annotated answers. The
dataset used in this paper includes high-quality official annotations for responses, which we have
reused; (2) Continue: Aligning with answers generated by LLM. In this paper, we use Llama-3-8B-
Instruct to generate the answers. For the test dataset, We use the MeloTTS to synthesize speech and
discard all data with inconsistent linguistic information. We provide an introduction to the training
method in Appendix B.2.

Speech style control For Multi-Speaker Setting, to enhance the diversity of speech styles and
make the dataset’s style distribution more closely resemble that of human datasets, following the
approach of Lacombe et al. (2024), we used six attributes to describe the vocal characteristics and
employed GPT-4 to generate natural language descriptions, the prompt is in Appendix A. Table
1 provides examples of speech style descriptions, with additional examples available in the appendix
D. During the speech synthesis process, we randomly selected a speech description for each text. To
maintain consistency, the rewritten text and the original text used the same vocal style description.
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Table 1: Examples of speech style descriptions generated by GPT-4 (OpenAI et al., 2024).

Name Description
Luminous A male voice with an American accent speaks slowly, enunciating each word clearly. The speaker’s voice

is close-sounding and quite clean, maintaining a monotone pitch throughout. The recording captures his
voice with good clarity.

Timothy A male voice with an American accent speaks slowly, with a close-sounding and quite clean delivery. The
speaker’s pitch is very monotone, and the recording captures his voice with good clarity.

Jocelyn A female voice with a Canadian accent speaks slowly. The speaker’s voice is close-sounding and quite
clean, with a monotone pitch. The recording captures the voice with a clear and precise quality.

Nadine A female voice with an American accent speaks normally. The voice is close-sounding and quite clean,
with a slightly expressive and animated pitch. The recording captures a subtly engaging tone.

Table 2: Evaluation results on SIM for different datasets under the Multi-Speaker Setting.

Method DROP Quoref ROPES NarrativeQA TAT-QA SQUAD1.1 SQUAD2.0 Average
Original 93.71 96.25 97.07 95.87 82.24 93.40 93.42 93.14
TN 95.95 97.18 97.63 97.75 89.07 94.88 94.93 95.34

Phi3 97.24 98.07 98.32 97.64 95.29 96.39 96.39 97.05
Qwen2 96.45 97.64 98.05 97.08 90.31 95.68 95.69 95.84
Llama3 97.30 97.88 98.25 97.22 95.27 96.35 96.34 96.94
Ours w/o KF 98.02 98.57 98.79 98.14 97.12 97.37 97.36 97.91

Ours 98.11 98.62 98.82 98.24 97.18 97.47 97.49 97.99

For Single-Speaker Setting, each TTS model uses a fixed speech style. For Parler-TTS-Large-v1,
we use Jon’s voice is monotone yet slightly fast in delivery, with a very close recording that almost
has no background noise as the speaker style descriptions. For MeloTTS (Zhao et al., 2023), we
use the officially provided EM-US setting. For MMS-TTS-ENG, no additional speaker style control
measures are provided by the official implementation, so we follow the default settings.

Implementation Details We provide implementation details in Appendix B.1.

5.2 EVALUATION METRICS

Synthetic data quality evaluation We use the following metrics to evaluate the performance of
our proposed method in terms of data synthesis quality: (1) SIM: The similarity in the embedding
space between the linguistic information in the speech and the original text, calculated following the
method we proposed in Section 4.1; (2) WER (Word Error Rate): This metric is commonly used to
assess the accuracy of speech recognition and is similar to the strict linguistic equivalence judgment
in Equation (1); (3) Pass: The proportion of speech in the dataset with a quality higher than α = 0.9,
calculated according to Equation (5).

Generative evaluation To evaluate the quality of the generated results in DROP, Quoref, ROPES
and NarrativeQA, we use ROUGE-L (Lin, 2004) as evaluation metrics.

Table 3: Evaluation results on Pass for different datasets under the Multi-Speaker Setting.

Method DROP Quoref ROPES NarrativeQA TAT-QA SQUAD1.1 SQUAD2.0 Average
Original 74.40 84.78 89.80 83.63 25.85 73.39 73.45 72.19
TN 84.94 89.29 91.18 93.29 50.49 82.66 82.52 82.05

Phi3 89.82 92.69 94.60 91.04 79.46 85.91 85.84 88.48
Qwen2 87.28 91.70 94.09 89.38 56.63 83.46 83.53 83.72
Llama3 90.40 92.23 94.44 89.37 80.21 85.92 85.96 88.36
Ours w/o KF 93.43 95.24 96.32 93.54 88.72 90.20 90.19 92.52

Ours 94.11 95.59 96.71 94.29 89.12 90.78 90.93 93.07
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Table 4: Evaluation results of the generation quality of LSLMs trained with different methods.

Backbone Model Training Target Threshold (t) Data Construction Method Drop Quoref Ropes NarrativeQA Average

Qwen2-Audio-7B-Instruct

- - - 17.40 55.98 42.69 43.02 39.77
Golden 0.00 Original 29.25 76.01 55.42 48.34 52.26

LLM Continue 0.00 Ours 30.08 75.05 57.15 47.88 52.54
Golden 0.00 Ours 42.78 86.58 60.48 52.15 60.50
Golden 85.00 Ours 42.95 85.18 56.47 53.61 59.55
Golden 90.00 Ours 44.35 86.81 64.24 56.76 68.43
Golden 95.00 Ours 41.86 86.73 58.55 54.61 60.44

Table 5: Evaluation results of different ASR methods under the Multi-Speaker Setting. Using WER
as the evaluation metric.

ASR Method DROP Quoref ROPES NarrativeQA TAT-QA SQUAD1.1 SQUAD2.0 Average
canary 10.93 5.46 6.97 8.88 18.61 10.19 9.55 10.08
whisper 11.18 5.32 7.09 8.53 19.98 9.67 9.71 10.21
parakeet 10.42 5.08 6.21 8.39 18.44 9.79 9.14 9.64

Ours 9.19 4.14 5.18 6.21 18.31 7.74 7.74 8.36

5.3 MAIN RESULT

Synthetic data quality For the Multi-Speaker Setting, we present the evaluation results of the
SIM and Pass in Table 2 and Table 3. The experimental results demonstrate that our proposed
method consistently shows effectiveness across all datasets, increasing the similarity between the
linguistic information of the synthetic speech and the original text in the embedding space from
93.06% to 97.98%. For the Single-Speaker Setting, we present the evaluation results of the SIM and
Pass in Table 14 and Table 15. The experimental results on multiple TTS models demonstrate the
excellent generalization ability of our proposed method. Using our method, the absolute difference
in embedding space quality between MeloTTS and Parler-TTS-Large-v1 is reduced from 3.96% to
0.09%, and the gap in data usability is narrowed from 13.95% to 0.9%. This bridges the quality gap
in synthesized data between vocoder-based TTS models and autoregressive TTS models.

Use Synthetic data finetune LSLMs As shown in Table 4, we present the evaluation results of
models trained under different experimental settings. The experimental results demonstrate that
using Golden as the alignment target exhibits significant superiority compared to the Continue
approach. This provides new insights into the training of LSLMs, indicating that in the process
of aligning speech instructions, continuation data generated by LLMs cannot replace high-quality
human-annotated data. On the other hand, training the model with training sets obtained using dif-
ferent sampling thresholds achieved the best performance at a threshold of 0.90. This validates the
rationality of our threshold setting in the Pass metric. It also demonstrates that discarding low-
quality samples through an appropriate threshold can effectively improve the model’s performance.

5.4 ABLATION EXPERIMENT

Orthogonality of LLM performance As mentioned in Section 4.2, the degree of orthogonality
among different LLMs in this zero-shot task is positively correlated with the improvement in qual-
ity. We present more detailed evaluation results across multiple datasets in Tables 2 and 14. The
experimental results show that the performance of using a single LLM is inferior to that of using
multiple LLMs together, and there are subtle differences in the performance of different LLMs on
this task.

The effectiveness of multi-agent annotation and validation As shown in Tables 5, we present
the evaluation results of using different ASR models for speech recognition. The experimental re-
sults demonstrate that the combined use of multiple different ASR models consistently improves
WER, showcasing the advantages of this approach in reducing automatic annotation errors and
avoiding inappropriate data filtering. Meanwhile, additional evaluation results under various simi-
larity calculation methods are provided in Appendix C.2, consistently verifying the effectiveness of
the approach. As shown in Table 6, we provide the performance of different similarity calculation
methods in selecting recognition results based on synthesized speech from original text. We use
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Table 6: Results using different word embedding models on various datasets, without LLM-based
rewriting. All datasets are evaluated using WER as the metric.

Embedding Model DROP↓ ROPES↓ Ropes↓ NarrativeQA↓ Tat-Qa↓ SQUAD1.1↓ SQUAD2.0↓ Average↓
gte 9.289 4.144 5.193 6.296 18.980 7.857 7.869 8.518
mxbai 9.256 4.170 5.205 6.221 18.331 7.792 7.786 8.394
stella 9.129 4.211 5.326 6.330 18.212 7.765 7.768 8.392

gte+mxbai+stella 9.188 4.143 5.176 6.209 18.312 7.741 7.738 8.358

Table 7: Estimated results of the experimental cost.

Speech Collection Method Quality Validation Speakers Num Human Time Cost Gpu Time Cost Money Cost
Human Human ∞ 562 0 4215
Human Single ASR ∞ 281 6 2110.02
Human Multi ASR + Emb ∞ 281 16 2114.22
MeloTTS+Original Single ASR 1 0 14 5.88
Parler+Original Single ASR 192 0 127 53.34
MeloTTS+Ours w/o KF Multi ASR + Emb 1 0 82 34.44
Parler+Ours w/o KF Multi ASR + Emb 192 0 534 224.28
Parler+Ours Multi ASR + Emb 192 0 558 234.36

WER as the evaluation metric here, primarily because the original text was directly used for synthe-
sizing speech, without altering the text distribution. WER is more suitable than semantic similarity
for assessing data quality in this context. The experiments show that using the average semantic
similarity of multiple embedding models, compared to a single model, offers certain advantages in
terms of average WER across various datasets.

5.5 EXPERIMENTAL COST COMPARISON

To thoroughly demonstrate the advantages of our proposed method in terms of efficiency and ex-
perimental costs, we present the experimental expenses calculated based on the lowest standard, as
shown in Table 7. For labor costs, we calculate the time for speech collection and data annotation at
a 1:1 ratio, using a labor rate of $7.50 per hour, which is the minimum wage mandated by the USA
government. In reality, the minimum wage across states is generally higher than this. Meanwhile,
we calculate GPU costs using the lowest rate for a single NVIDIA A40 GPU card from cloud service
providers, which is $0.42 per hour per device, excluding any additional time costs related to data
transfer and other operations. The experimental results show that the cost of our method is less than
one-tenth of that of high-quality human datasets, achieving a good balance between expense and
dataset quality.

Figure 4: Examples of successfully rewritten queries.
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5.6 CASE STUDY

As shown in Figure 4, we present some examples of successful rewrites. We demonstrate the unique
advantages of our proposed method through three typical rewriting scenarios: (1) Rule-based rewrit-
ing, (2) Context-aware rewriting, and (3) Rewriting requiring complex comprehension abilities. In
the Rule-based rewriting example, the LLM follows the rule of converting numbers into English
words. In the Context-aware rewriting scenario, Llama-3-8B-Instruct combines information from
the context to infer that EU is the abbreviation for European Union and correctly completes the
rewrite. In the Rewriting requiring complex comprehension abilities, Phi-3-small-8k-instruct suc-
cessfully combines context and inference to deduce that 2019/18 in the original text refers to the
period from 2017 to 2018, and rewrites the text into a form more suitable for speech synthesis.
These examples illustrate the unique advantages of our proposed method in both adhering to estab-
lished rules and leveraging comprehension to tackle complex rewrites.

As shown in Table 8, we provide response examples from models trained with different speech data
and alignment objectives. The results indicate that the model trained with high-quality speech data
aligned with human responses accurately perceived the speech instructions and produced results that
closely matched human responses.

Table 8: Example of responses from different models.

Context
System Prompt This is a chat between a user and an artificial intelligence assistant. The assistant gives helpful, detailed,

and polite answers to the user’s questions based on the context. The assistant should also indicate when the
answer cannot be found in the context.

Document The story follows a dinner party given by Bertha Young and her husband, Harry. The writing shows Bertha
depicted as a happy soul, though quite naive about the world she lives in and those closest to her. The
story opened up a lot of questions, about deceit, about knowing oneself and also about the possibility of
homosexuality at the start of the 20th century. The story gives us a bird’s eye view of the dinner party, which
is attended by a couple, Mr. and Mrs. Norman Knight, who are close friends to Bertha and Harry. Guest,
Eddie Warren, is an effeminate character, who adds an interesting mix to the party. The only other guest,
Pearl Fulton, is someone who Bertha is mysteriously drawn to for reasons unknown to her at the start. The
interesting thing is that Bertha’s husband is presented to the reader as Bertha perceives him in her mind.
Because Bertha is so naive, the reader first gets the impression that Harry is a crude, disinterested person
who has a strong dislike for Pearl by his conversational tone and curtness towards her as the conversation
unfolds. As the dinner party progresses, Bertha questions her own interest and fascination towards Pearl.
The fact that Eddie, who is most likely homosexual, is present, lends an air to the possibility that Bertha’s
interest in Pearl is more than a platonic feeling one has towards a friend of the same sex. It is only after
Bertha analyzes her feelings towards Pearl that she realizes that the connection she feels with Pearl is their
mutual attraction for Harry, and coming out of her ”blissful” reverie she makes the discovery that Harry and
Pearl are having an affair. The title to this story alludes to the sentiment that ignorance is bliss. The story
leaves the question about whether it is best to live blissfully ignorant of the truth or live with the knowledge
of a harsh reality.

Prompt Answer the following question with a short span. The answer needs to be just in a few words. What is
Bertha’s downfall when it comes to observing life and people?

Speech Instruction What is Bertha’s downfall when it comes to observing life and people?

Response
Reference She is naive.

Original+Golden Harry.

Ours+Continue Bertha’s downfall comes from her naivety and inability to see the truth.

Ours+Golden Bertha is naive.

6 CONCLUSION

In this paper, we propose a query rewriting method based on multi-LLM knowledge fusion, with
multi-agent annotation and validation for data quality. Experiments demonstrate that this method
consistently performs well across multiple datasets, improving the average data usability from 72%
to 93%. Through ablation studies, we analyzed the effectiveness of each component, and the results
show that different LLMs exhibit a certain degree of orthogonality in this zero-shot task. Moreover,
using multiple annotation agents helps to better reduce data quality evaluation errors and improper
data filtering caused by recognition and annotation errors of a single model. Our work enables the
automated construction of high-quality language instruction datasets.
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Implementation details We give the Implementation details in Section 5.1.

Code And Dataset We provide the main code of this paper in the supplementary materials, along
with some data examples. The complete project files will be compiled in the near future and open
sourced in the github repository after the paper is accepted.

Assets and licenses We have provided assets and licenses on all the open-source datasets, open-
source models, and key open-source project used in this paper in Appendix E, along with download
URL.
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thetransparency and reproducibility of the code while taking measures to avoid potential discrimi-
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A THE PROMPTS USED

Table 9: Prompts input to GPT-4 for generating speech descriptions.

# Task Define #
Generate a description of the speaker’s voice in English according to the description and
rules below.

# The rules #
(1) Six characteristics are given below to describe the speaker’s voice
(2) Please refer to the features and examples to give corresponding descriptions

# Example #

A female voice with an American accent enunciates every word with precision. The
speaker’s voice is very close-sounding and clean, and the recording is excellent, captur-
ing her voice with crisp clarity.

Table 10: Prompt for query rewriting.

# Task Define # Please express the non-word parts of the text as English words without
changing the original meaning of the text. Follow the format of the example and output the
result directly without any output that is not related to the result.

# The rules #

(1) For the year, month and other parts containing numbers, please use English words to
express these numbers.

(2) For Roman numerals and Greek symbols. Please convert the same form to the corre-
sponding English word.

(3) For the symbols of chemistry, physics and other fields, please express these symbols in
the form of English words.
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Table 11: The prompts used for fine-tuning LSLMs. Document refers to the text associated with the
Speech, Speech represents the user’s query, and Response refers to the reference reply, which serves

as the alignment target for training.

<|im start|>system

This is a chat between a user and an artificial intelligence assistant. The assistant gives help-
ful, detailed, and polite answers to the user’s questions based on the context. The assistant
should also indicate when the answer cannot be found in the context.

{document}
<|im end|>
<|im start|>user
Answer the following question with a short span. The answer needs to be just in a few
words.
{Speech} <|im end|>
<|im start|>assistant
{Response}
<|im end|>

Table 12: Prompts for consistency verification.

# Task #

Please evaluate whether the following two sentences convey identical meanings in content.
Use yes or no to give your verdict.

# Sentence 1 #

{original text}

# Sentence 2 #

{rewrite text}
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B MORE EXPERIMENT SETTINGS

B.1 IMPLEMENTATION DETAILS

In this paper, we use LoRA (Hu et al., 2021) for training. For the training in Knowledge Fusion,
we setting r = 8 and a = 16. The peak learning rate was set to 3e-4, and the cosine scheduler
was used for learning rate adjustment. For the training in LSLMs Finetune, we set r = 8 and
a = 32. The peak learning rate was set to 3e-5, and the cosine scheduler was used for learning rate
adjustment. During training, we utilized 4 NVIDIA A40 GPUs, enabled gradient checkpointing to
save memory, and applied gradient accumulation with backward occurring every 64 samples. The
batch size per device was set to 1. For the generative evaluation phase, we evaluated our results on a
single NVIDIA A40 GPU, setting top-p to 0.5, top-k to 20, repetition penalty to 1.1, and temperature
to 0.7. For speech synthesis, we use a single NVIDIA A40 GPU with the batch size set to 1.

B.2 TRAINING METHOD FOR LSLMS

We follow the method of (Chu et al., 2023) to train LSLMs. Specifically, for a speech instruction
s and its text response y = (y1, y2, . . . , yT ), our goal is to maximize the product of the conditional
probabilities:

P (y|d, s) =
T∏

t=1

P (yt|d,Encoder(s), y1:t−1)

where d represents the text context, Encoder represents the audio encoder in LSLMs.

B.3 MORE INFORMATION ABOUT THE DATASET

In Table 13, we provide more information about the dataset we used.

Table 13: Description and num of the datasets used in this paper. Num refers to the number of
samples in the dataset.

Dataset Name Description Num
DROP A reading comprehension dataset that requires systems to perform discrete reasoning. 29k

Quoref A reading comprehension dataset that focuses on coreference resolution. 11k

ROPES A reading comprehension dataset requires reasoning about the effects of causes in
unfamiliar situations using provided passages.

10k

NarrativeQA A reading comprehension dataset requires answering questions based on understand-
ing long, complex narrative texts.

40k

TAT-QA A tabular and textual question-answering dataset requiring numerical reasoning over
tables and text.

11k

SQUAD1.1 A reading comprehension dataset where models answer questions based on Wikipedia
passages.

87k

SQUAD2.0 It extends SQuAD1.1 by adding unanswerable questions, requiring models to not only
answer questions based on Wikipedia passages but also determine when no answer is
possible.

87k

B.4 THE EMBEDDING MODELS USED IN THIS PAPER

gte-large-en-v1.5 is a text embedding model from the GTE-v1.5 series, developed by the Insti-
tute for Intelligent Computing at Alibaba Group. The model supports a context length of up to
8192 and is built on a Transformer++ encoder backbone, which combines BERT, RoPE, and GLU
technologies.

mxbai-embed-large-v1 is a text embedding model which developed by Mixedbread.
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stella en 400M v5 is a text embedding model that is based on the Alibaba-NLP/gte-large-en-
v1.5 and Alibaba-NLP/gte-Qwen2-1.5B-instruct models. The model simplifies the use of prompts,
providing two main prompts for general tasks: one for sentence-to-paragraph (s2p) and another for
sentence-to-sentence (s2s) tasks.

C MORE EXPERIMENTAL RESULTS

C.1 EXPERIMENTAL RESULTS UNDER THE SINGLE-SPEAKER SETTING

Table 14: Evaluation results on SIM for different datasets under the Single-Speaker Setting.

TTS Model Method Drop narrativeqa Quoref ropes squad1.1 squad2.0 tatqa Average

MeloTTS

Original 96.61 95.13 97.27 98.22 95.75 93.48 97.43 96.27
TN 97.50 96.36 98.00 98.83 94.86 95.54 97.96 97.01
Phi3 97.57 95.82 97.81 98.70 96.74 95.71 98.29 97.23
Qwen2 97.59 96.42 98.01 98.85 96.98 95.68 98.19 97.39
Llama3 97.65 96.32 98.01 98.91 97.10 95.78 98.30 97.44
Ours w/o KF 98.19 97.02 98.37 99.12 97.59 96.80 98.53 97.94

MMS-TTS-ENG

Original 92.05 91.46 93.77 93.42 91.28 91.23 84.61 91.12
TN 94.22 93.82 95.64 95.14 93.86 93.26 90.75 93.81
Phi3 95.06 93.00 95.46 94.97 93.90 93.86 92.52 94.11
Qwen2 95.18 91.47 95.51 95.04 94.32 94.62 91.81 93.99
Llama3 94.52 91.47 95.51 94.98 94.85 94.82 94.30 94.35
Ours w/o KF 96.86 93.01 96.51 95.95 95.96 96.07 96.17 95.79

Parler-TTS-Large-v1

Original 93.04 95.26 95.51 96.01 92.75 91.99 81.63 92.31
TN 96.41 97.39 97.63 98.06 95.89 95.61 89.07 95.72
Phi3 97.21 97.40 97.95 97.97 96.49 96.19 93.80 96.72
Qwen2 97.17 97.51 97.93 98.05 96.29 95.64 91.63 96.32
Llama3 97.41 97.41 97.78 96.74 96.74 96.44 96.01 96.93
Ours w/o KF 98.09 98.19 98.52 98.30 97.31 97.32 97.21 97.85

Table 15: Evaluation results on Pass for different datasets under the Single-Speaker Setting.

TTS Model Method Drop narrativeqa Quoref ropes squad1.1 squad2.0 tatqa Average

MeloTTS

Original 86.12 79.21 88.57 93.21 82.91 74.87 90.25 85.02
TN 90.04 84.60 92.19 95.84 83.53 82.38 92.46 88.72
Phi3 90.51 82.16 91.08 95.41 87.20 83.30 93.79 89.07
Qwen2 90.59 85.27 92.20 96.17 88.32 83.32 93.42 89.90
Llama3 90.84 84.63 92.12 96.48 88.74 83.58 93.93 90.05
Ours w/o KF 93.27 87.89 93.96 97.37 90.86 87.69 94.70 92.25

MMS-TTS-ENG

Original 64.55 63.18 72.36 73.53 64.58 64.28 31.22 61.96
TN 76.63 72.99 81.00 81.84 74.56 71.95 59.02 74.00
Phi3 80.50 69.30 80.37 81.11 75.01 74.80 66.08 75.31
Qwen2 81.38 63.24 80.83 81.51 77.14 78.34 61.32 74.82
Llama3 81.48 63.18 80.56 81.24 79.13 78.97 73.09 76.81
Ours w/o KF 86.98 69.33 85.76 86.49 84.08 96.07 84.19 84.70

Parler-TTS-Large-v1

Original 73.56 82.91 83.68 88.04 72.83 70.41 26.07 71.07
TN 85.52 90.54 91.05 94.44 83.13 82.43 49.38 82.36
Phi3 90.25 90.47 92.92 94.10 86.74 85.91 75.21 87.94
Qwen2 90.40 91.16 92.42 94.64 86.24 83.92 63.68 86.07
Llama3 91.34 90.59 92.16 93.61 87.88 87.14 85.22 89.71
Ours w/o KF 94.37 94.32 95.61 96.39 90.37 90.85 90.12 93.15
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C.2 RESULTS EVALUATED BY DIFFERENT WORD EMBEDDING MODELS

Table 16: The quality evaluation results of our proposed method in datasets. The similarity here is
the average of the results calculated by gte-large-en-v1.5 (Appendix B.4).

Method ASR Model DROP Quoref ROPES

WER↓ SIM↑ Pass↑ WER↓ SIM↑ Pass↑ WER↓ SIM↑ Pass↑
- canary 10.928 91.301 67.491 5.455 93.745 76.792 6.971 95.572 82.754
- whisper 11.175 91.568 69.139 5.322 93.964 77.965 7.087 95.458 82.726
- parakeet 10.416 90.881 67.717 5.084 93.632 77.656 6.208 95.419 84.237
- Ours 9.289 93.488 74.396 4.144 95.836 84.058 5.193 97.122 89.290
phi3 Ours 4.967 97.225 89.169 2.533 97.877 91.788 3.602 98.368 94.150
llama3 Ours 5.458 97.299 89.772 3.219 97.683 91.188 4.071 98.295 94.077
qwen2 Ours 7.902 96.633 87.577 3.884 97.507 90.806 5.238 98.161 93.757
Ours w/o KF Ours 4.683 98.078 92.896 2.518 98.475 94.352 3.467 98.833 96.146

Method ASR Model NarrativeQA TAT-QA

WER↓ SIM↑ Pass↑ WER↓ SIM↑ Pass↑
- canary 8.880 93.011 72.518 18.608 75.349 21.685
- whisper 8.527 93.149 73.500 19.981 75.993 22.259
- parakeet 8.387 91.975 71.255 18.441 76.808 21.146
- Ours 6.296 95.572 82.375 18.980 79.366 24.633

phi3 Ours 4.326 97.432 89.725 7.784 94.583 77.193
llama3 Ours 5.637 97.017 88.140 9.398 94.593 78.263
qwen2 Ours 6.532 97.008 88.593 17.817 89.507 52.456
Ours w/o KF Ours 4.451 98.035 92.527 6.894 96.675 86.923

Rewrite LLM ASR Model SQUAD1.1 SQUAD2.0

WER↓ SIM↑ Pass↑ WER↓ SIM↑ Pass↑
- canary 10.186 89.936 64.974 9.553 90.634 65.544
- whisper 9.672 90.760 66.432 9.711 90.810 66.478
- parakeet 9.788 89.588 65.401 9.139 90.257 65.762
- Ours 7.857 93.054 72.938 7.869 93.080 73.043

phi3 Ours 5.575 96.189 85.164 5.532 96.185 85.101
llama3 Ours 7.014 96.184 85.218 6.996 96.177 85.252
qwen2 Ours 8.659 95.633 83.233 8.641 95.638 83.334
Ours w/o KF Ours 6.051 97.299 89.662 6.049 97.284 89.612
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Table 17: The quality evaluation results of our proposed method in datasets. The similarity here is
the average of the results calculated by mxbai-embed-large-v1 (Appendix B.4).

Method ASR Model DROP Quoref ROPES

WER↓ SIM↑ Pass↑ WER↓ SIM↑ Pass↑ WER↓ SIM↑ Pass↑
- canary 10.928 90.239 64.929 5.455 93.874 76.701 6.971 95.069 81.930
- whisper 11.175 90.490 66.607 5.322 94.061 77.583 7.087 94.796 81.866
- parakeet 10.416 89.920 66.056 5.084 93.209 76.973 6.208 94.836 83.422
- Ours 9.256 92.677 71.714 4.170 95.836 83.467 5.205 96.732 88.594

phi3 Ours 4.977 96.565 87.032 2.563 97.782 91.306 3.653 98.127 93.867
llama3 Ours 5.466 96.628 87.649 3.152 97.602 90.879 4.078 98.026 93.537
qwen2 Ours 7.836 95.913 85.114 3.917 97.481 90.951 5.332 97.890 93.436
Ours w/o KF Ours 4.756 97.508 91.012 2.497 98.387 94.171 3.480 98.656 95.817

Method ASR Model NarrativeQA TAT-QA

WER↓ SIM↑ Pass↑ WER↓ SIM↑ Pass↑
- canary 8.880 92.451 70.950 18.608 77.890 22.076
- whisper 8.527 92.676 71.990 19.981 78.071 22.355
- parakeet 8.387 92.030 71.198 18.441 79.429 21.972
- Ours 6.221 95.256 81.240 18.331 81.174 24.954

phi3 Ours 4.258 97.221 88.945 7.857 94.705 76.863
llama3 Ours 5.474 96.764 87.197 9.136 94.636 76.941
qwen2 Ours 6.353 96.785 87.873 17.150 89.297 54.143
Ours w/o KF Ours 4.300 97.844 91.843 6.443 96.815 86.566

Rewrite LLM ASR Model SQUAD1.1 SQUAD2.0

WER↓ SIM↑ Pass↑ WER↓ SIM↑ Pass↑
- canary 10.186 89.429 64.035 9.553 90.112 64.475
- whisper 9.672 90.215 65.480 9.711 90.264 65.553
- parakeet 9.788 89.013 64.434 9.139 89.661 64.881
- Ours 7.792 92.632 71.678 7.786 92.647 71.726

phi3 Ours 5.517 95.923 84.290 5.488 95.919 84.210
llama3 Ours 6.910 95.855 84.071 6.903 95.847 84.071
qwen2 Ours 8.494 95.290 82.023 8.484 95.300 82.162
Ours w/o KF Ours 5.986 97.030 88.820 5.950 97.020 88.790
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Table 18: The quality evaluation results of our proposed method in datasets. The similarity here is
the average of the results calculated by stella en 400M v5 (Appendix B.4).

Method ASR Model DROP Quoref ROPES

WER↓ SIM↑ Pass↑ WER↓ SIM↑ Pass↑ WER↓ SIM↑ Pass↑
- canary 10.928 93.968 76.376 5.455 96.079 84.804 6.971 96.398 87.294
- whisper 11.175 93.806 76.232 5.322 96.009 84.876 7.087 95.967 86.012
- parakeet 10.416 93.251 75.242 5.084 95.272 84.895 6.208 95.545 87.596
- Ours 9.129 95.394 82.028 4.211 97.311 90.342 5.326 97.581 92.411

phi3 Ours 4.929 98.228 95.177 2.590 98.727 96.708 3.849 98.663 96.192
llama3 Ours 5.359 98.259 95.592 3.139 98.580 96.490 4.223 98.623 96.476
qwen2 Ours 7.426 97.283 92.201 3.663 98.230 95.298 5.356 98.388 95.798
Ours w/o KF Ours 4.490 98.787 97.503 2.399 99.075 98.081 3.656 99.061 97.620

Method ASR Model NarrativeQA TAT-QA

WER↓ SIM↑ Pass↑ WER↓ SIM↑ Pass↑
- canary 8.880 95.257 82.498 18.608 85.716 30.345
- whisper 8.527 95.180 82.428 19.981 85.661 31.241
- parakeet 8.387 94.083 81.247 18.441 84.981 27.911
- Ours 6.330 97.009 89.823 18.212 87.321 35.562

phi3 Ours 4.342 98.461 95.740 7.528 97.012 89.740
llama3 Ours 5.523 98.146 94.857 8.836 96.989 90.210
qwen2 Ours 6.075 97.837 93.648 16.726 92.936 72.959
Ours w/o KF Ours 4.230 98.826 97.343 6.058 98.214 94.748

Rewrite LLM ASR Model SQUAD1.1 SQUAD2.0

WER↓ SIM↑ Pass↑ WER↓ SIM↑ Pass↑
- canary 10.186 92.488 72.194 9.553 93.203 72.817
- whisper 9.672 93.012 72.568 9.711 93.053 72.555
- parakeet 9.788 91.678 71.369 9.139 92.353 71.717
- Ours 7.765 94.869 79.243 7.768 94.893 79.299

phi3 Ours 5.415 97.372 90.391 5.387 97.381 90.379
llama3 Ours 6.732 97.327 90.619 6.742 97.326 90.586
qwen2 Ours 8.022 96.574 87.689 7.992 96.579 87.733
Ours w/o KF Ours 5.676 98.121 93.862 5.654 98.107 93.746
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Table 19: The quality evaluation results of our proposed method in datasets. The similarity here
is the average of the results calculated by gte-large-en-v1.5 and mxbai-embed-large-v1 (Appendix
B.4).

Method ASR Model DROP Quoref ROPES

WER↓ SIM↑ Pass↑ WER↓ SIM↑ Pass↑ WER↓ SIM↑ Pass↑
- canary 10.928 90.770 65.679 5.455 93.810 76.619 6.971 95.320 82.479
- whisper 11.175 91.029 67.501 5.322 94.012 77.410 7.087 95.127 82.314
- parakeet 10.416 90.401 66.501 5.084 93.420 77.155 6.208 95.127 84.044
- Ours 9.254 92.980 72.540 4.152 95.777 83.439 5.157 96.876 88.887

phi3 Ours 4.930 96.830 87.905 2.513 97.785 91.324 3.590 98.204 93.876
llama3 Ours 5.419 96.902 88.443 3.136 97.591 90.933 4.035 98.117 93.601
qwen2 Ours 7.828 96.179 85.977 3.857 97.431 90.697 5.236 97.973 93.510
Ours w/o KF Ours 4.661 97.734 91.766 2.455 98.386 94.180 3.456 98.704 95.844

Method ASR Model NarrativeQA TAT-QA

WER↓ SIM↑ Pass↑ WER↓ SIM↑ Pass↑
- canary 8.880 92.731 71.408 18.608 76.620 21.285
- whisper 8.527 92.913 72.425 19.981 77.032 21.781
- parakeet 8.387 92.003 70.888 18.441 78.119 20.989
- Ours 6.214 95.363 81.463 18.410 80.022 23.989

phi3 Ours 4.255 97.283 89.105 7.740 94.520 76.124
llama3 Ours 5.519 96.836 87.405 9.092 94.501 76.376
qwen2 Ours 6.347 96.832 87.958 17.274 89.209 52.795
Ours w/o KF Ours 4.320 97.891 91.970 6.510 96.652 85.949

Rewrite LLM ASR Model SQUAD1.1 SQUAD2.0

WER↓ SIM↑ Pass↑ WER↓ SIM↑ Pass↑
- canary 10.186 89.682 64.276 9.553 90.373 64.787
- whisper 9.672 90.488 65.755 9.711 90.537 65.790
- parakeet 9.788 89.301 64.652 9.139 89.959 65.044
- Ours 7.799 92.755 71.883 7.787 92.777 71.992

phi3 Ours 5.509 95.983 84.439 5.473 95.982 84.305
llama3 Ours 6.938 95.947 84.358 6.898 95.941 84.364
qwen2 Ours 8.510 95.368 82.319 8.513 95.378 82.385
Ours w/o KF Ours 5.972 97.094 88.972 5.937 97.083 88.862
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Table 20: The quality evaluation results of our proposed method in datasets. The similarity here is
the average of the results calculated by gte-large-en-v1.5 and stella en 400M v5 (Appendix B.4).

Method ASR Model DROP Quoref ROPES

WER↓ SIM↑ Pass↑ WER↓ SIM↑ Pass↑ WER↓ SIM↑ Pass↑
- canary 10.928 92.635 70.300 5.455 94.912 79.502 6.971 95.985 84.722
- whisper 11.175 92.687 71.317 5.322 94.987 80.047 7.087 95.713 83.916
- parakeet 10.416 92.066 70.108 5.084 94.452 79.984 6.208 95.482 85.655
- Ours 9.191 94.344 76.890 4.141 96.511 85.858 5.203 97.304 90.525

phi3 Ours 4.834 97.657 91.588 2.524 98.251 93.725 3.663 98.471 95.029
llama3 Ours 5.318 97.707 92.249 3.118 98.070 93.243 4.110 98.412 95.103
qwen2 Ours 7.510 96.827 89.049 3.726 97.781 92.370 5.202 98.209 94.590
Ours w/o KF Ours 4.421 98.352 94.907 2.373 98.714 95.999 3.509 98.902 96.723

Method ASR Model NarrativeQA TAT-QA

WER↓ SIM↑ Pass↑ WER↓ SIM↑ Pass↑
- canary 8.880 94.134 76.648 18.608 80.533 23.363
- whisper 8.527 94.165 77.020 19.981 80.827 24.241
- parakeet 8.387 93.029 74.910 18.441 80.895 22.407
- Ours 6.246 96.233 85.490 18.406 83.036 27.163

phi3 Ours 4.255 97.891 92.533 7.607 95.700 83.149
llama3 Ours 5.484 97.508 91.083 8.929 95.704 83.975
qwen2 Ours 6.173 97.312 90.745 17.060 91.020 60.569
Ours w/o KF Ours 4.198 98.352 94.730 6.241 97.362 90.644

Rewrite LLM ASR Model SQUAD1.1 SQUAD2.0

WER↓ SIM↑ Pass↑ WER↓ SIM↑ Pass↑
- canary 10.186 91.212 67.328 9.553 91.919 67.956
- whisper 9.672 91.886 68.469 9.711 91.932 68.413
- parakeet 9.788 90.633 67.245 9.139 91.305 67.735
- Ours 7.759 93.870 74.947 7.754 93.897 74.958

phi3 Ours 5.460 96.701 87.152 5.404 96.705 87.093
llama3 Ours 6.825 96.674 87.268 6.816 96.671 87.255
qwen2 Ours 8.248 95.982 84.654 8.249 95.988 84.734
Ours w/o KF Ours 5.802 97.624 91.259 5.791 97.610 91.219
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Table 21: The quality evaluation results of our proposed method in datasets. The similarity here is
the average of the results calculated by mxbai-embed-large-v1 and stella en 400M v5 (Appendix
B.4).

Method ASR Model DROP Quoref ROPES

WER↓ SIM↑ Pass↑ WER↓ SIM↑ Pass↑ WER↓ SIM↑ Pass↑
- canary 10.928 92.104 68.601 5.455 94.977 79.902 6.971 95.734 84.282
- whisper 11.175 92.148 69.580 5.322 95.035 80.384 7.087 95.381 83.733
- parakeet 10.416 91.585 68.971 5.084 94.241 80.102 6.208 95.190 85.427
- Ours 9.091 93.926 75.143 4.164 96.520 86.077 5.186 97.094 90.287

phi3 Ours 4.876 97.313 90.420 2.526 98.209 93.707 3.689 98.343 94.901
llama3 Ours 5.332 97.358 90.940 3.110 98.037 93.389 4.073 98.269 94.929
qwen2 Ours 7.527 96.458 87.577 3.707 97.773 92.816 5.251 98.056 94.443
Ours w/o KF Ours 4.479 98.056 93.859 2.352 98.673 95.980 3.483 98.805 96.732

Method ASR Model NarrativeQA TAT-QA

WER↓ SIM↑ Pass↑ WER↓ SIM↑ Pass↑
- canary 8.880 93.854 75.658 18.199 83.984 27.980
- whisper 8.527 93.928 76.183 19.981 81.866 24.833
- parakeet 8.387 93.056 74.910 18.441 82.205 23.554
- Ours 6.213 96.071 84.898 18.608 81.803 24.094

phi3 Ours 4.243 97.784 92.123 7.662 95.750 81.619
llama3 Ours 5.394 97.381 90.575 8.962 95.706 82.141
qwen2 Ours 6.084 97.200 90.335 16.919 90.915 59.847
Ours w/o KF Ours 4.145 98.257 94.463 6.205 97.434 90.270

Rewrite LLM ASR Model SQUAD1.1 SQUAD2.0

WER↓ SIM↑ Pass↑ WER↓ SIM↑ Pass↑
- canary 10.186 90.958 66.916 9.553 91.657 67.379
- whisper 9.672 91.614 67.941 9.711 91.659 67.922
- parakeet 9.788 90.346 66.793 9.139 91.007 67.177
- Ours 7.723 93.661 74.226 7.726 93.682 74.242

phi3 Ours 5.424 96.565 86.757 5.378 96.570 86.638
llama3 Ours 6.765 96.505 86.738 6.766 96.501 86.706
qwen2 Ours 8.155 95.810 84.055 8.158 95.817 84.126
Ours w/o KF Ours 5.733 97.487 90.908 5.719 97.476 90.841
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D MORE SPEAKER INFORMATION

As shown in Table 22, we provide more examples of speaker descriptions. These descriptions are
presented to Parler in a variety of speech styles.

Table 22: Additional examples of speaker descriptions.

Name Gender Position Speech Rate Clarity Accent Speaker Pitch Description

Melvin male close-sounding slowly quite clean English very expressive and
animated

A male voice with an English accent
speaks slowly, with a close-sounding and
quite clean delivery. The speaker’s pitch is
very expressive and animated, adding a vi-
brant and dynamic quality to the recording
while maintaining good clarity.

Igor male close-sounding slowly quite clean Pakistani very expressive and
animated

A male voice with a Pakistani accent
speaks slowly, with a close-sounding and
quite clean delivery. The speaker’s pitch is
very expressive and animated, adding a vi-
brant and dynamic quality to the recording
while maintaining good clarity

Samuel male close-sounding slowly quite clean Italian very expressive and
animated

A male voice with an Italian accent speaks
slowly, with a close-sounding and quite
clean delivery. The speaker’s pitch is
very expressive and animated, infusing the
recording with a dynamic and lively qual-
ity while maintaining good clarity.

Joey male close-sounding slowly quite clean Canadian slightly expressive
and animated

A male voice with a Canadian accent
speaks slowly. The speaker’s voice is
close-sounding and quite clean, with a
slightly expressive and animated pitch.
The recording captures the speaker’s sub-
tle vocal nuances with good clarity.

Sherard male close-sounding slowly quite clean Chinese monotone A male voice with a Chinese accent speaks
slowly. The speaker’s voice is close-
sounding and quite clean, with a monotone
pitch. The recording captures the speaker’s
steady, unvaried tone with clear definition.

Wyman male close-sounding normally quite clean American very expressive and
animated

A male voice with an American accent
speaks normally. The speaker’s voice is
close-sounding and quite clean, with a very
expressive and animated pitch. The record-
ing captures the speaker’s dynamic vocal
quality with clear, engaging detail.

Beatrix female close-sounding slowly quite clean English slightly expressive
and animated

A female voice with an English accent
speaks slowly. The speaker’s voice is
close-sounding and quite clean, with a
slightly expressive and animated pitch.
The recording captures the voice with a
clear and engaging quality.

Jeanne female close-sounding normally quite clean South African slightly expressive
and animated

A female voice with a South African ac-
cent speaks at a normal rate. The speaker’s
voice is close-sounding and quite clean,
with a slightly expressive and animated
pitch. The recording is clear and lively.

Amiable female close-sounding quickly quite clean Pakistani slightly expressive
and animated

A female voice with a Pakistani accent
speaks quickly. The speaker’s voice is
close-sounding and quite clean, with a
slightly expressive and animated pitch.
The recording is clear and lively.

Harmony female close-sounding quickly quite clean Indian slightly expressive
and animated

A female voice with an Indian accent
speaks quickly. The speaker’s voice is
close-sounding and quite clean, with a
slightly expressive and animated pitch.
The recording is clear and lively.

Alanna female close-sounding slowly quite clean South African very expressive and
animated

A female voice with a South African ac-
cent speaks slowly. The speaker’s voice is
close-sounding and quite clean, with a very
expressive and animated pitch. The record-
ing captures the voice with a clear and vi-
brant quality.

Kirstyn female close-sounding slowly quite clean Indian very expressive and
animated

A female voice with an Indian accent
speaks slowly. The voice is close-sounding
and quite clean, with a very expressive and
animated pitch. The recording captures a
dynamic and lively tone.
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E ASSETS AND LICENSES

Below, we provide the access links and open-source licenses for the models, datasets and main code
used in this paper.

E.1 MODELS

• Qwen2-7B-Instruct

– Download URL:
https://huggingface.co/Qwen/Qwen2-7B-Instruct

– License: Apache-2.0
https://choosealicense.com/licenses/apache-2.0/

• Phi-3-small-8k-instruct

– Download URL:
https://huggingface.co/microsoft/Phi-3-small-8k-instruct

– License: MIT
https://choosealicense.com/licenses/mit/

• Meta-Llama-3-8B-Instruct

– Download URL:
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct

– License: llama3
https://llama.meta.com/llama3/license

• parler-tts-large-v1

– Download URL:
https://huggingface.co/parler-tts/parler-tts-large-v1

– License: Apache-2.0
https://choosealicense.com/licenses/apache-2.0/

• whisper-large-v3

– Download URL:
https://huggingface.co/openai/whisper-large-v3

– License: Apache-2.0
https://choosealicense.com/licenses/apache-2.0/

• canary-1b

– Download URL:
https://huggingface.co/nvidia/canary-1b

– License: CC-BY-NC-4.0
https://spdx.org/licenses/CC-BY-NC-4.0

• parakeet-tdt-1.1b

– Download URL:
https://huggingface.co/nvidia/parakeet-tdt-1.1b

– License: CC-BY-4.0
https://choosealicense.com/licenses/cc-by-4.0/

• gte-large-en-v1.5

– Download URL:
https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5

– License: Apache-2.0
https://choosealicense.com/licenses/apache-2.0/

• mxbai-embed-large-v1

– Download URL:
https://huggingface.co/mixedbread-ai/
mxbai-embed-large-v1
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– License: Apache-2.0
https://choosealicense.com/licenses/apache-2.0/

• stella en 400M v5

– Download URL:
https://huggingface.co/dunzhang/stella_en_400M_v5

– License: MIT
https://choosealicense.com/licenses/mit/

E.2 DATASETS

• TAT-QA

– Download URL:
https://github.com/NExTplusplus/TAT-QA/tree/master/
dataset_raw

– License: CC-BY-4.0
https://creativecommons.org/licenses/by/4.0/

• DROP

– Download URL:
https://huggingface.co/datasets/ucinlp/DROP

– License: CC-BY-SA-4.0
https://choosealicense.com/licenses/cc-by-sa-4.0/

• SQUAD1.1

– Download URL:
https://huggingface.co/datasets/rajpurkar/squad

– License: CC-BY-SA-4.0
https://choosealicense.com/licenses/cc-by-sa-4.0/

• SQUAD2.0

– Download URL:
https://rajpurkar.github.io/SQuAD-explorer/

– License: CC-BY-SA-4.0
https://choosealicense.com/licenses/cc-by-sa-4.0/

• ROPES

– Download URL:
https://huggingface.co/datasets/allenai/ropes

– License: CC-BY-SA-4.0
https://choosealicense.com/licenses/cc-by-4.0/

• NarrativeQA

– Download URL:
https://huggingface.co/datasets/deepmind/narrativeqa

– License: Apache-2.0
https://choosealicense.com/licenses/apache-2.0/

• Quoref

– Download URL:
https://huggingface.co/datasets/allenai/quoref

– License: CC-BY-4.0
https://creativecommons.org/licenses/by/4.0/

E.3 CODE

• VLLM

– Download URL:
https://github.com/vllm-project/vllm
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– License: Apache-2.0
https://choosealicense.com/licenses/apache-2.0/

• Transformers
– Download URL:
https://github.com/huggingface/transformers

– License: Apache-2.0
https://choosealicense.com/licenses/apache-2.0/

• pyTorch
– Download URL:
https://github.com/pytorch/pytorch

– License: PyTorch
https://github.com/pytorch/pytorch?tab=
License-1-ov-file#readme

31

https://choosealicense.com/licenses/apache-2.0/
https://github.com/huggingface/transformers
https://choosealicense.com/licenses/apache-2.0/
https://github.com/pytorch/pytorch
https://github.com/pytorch/pytorch?tab=License-1-ov-file#readme
https://github.com/pytorch/pytorch?tab=License-1-ov-file#readme

	Introduction
	Related Work
	Problem Formulation
	Method
	Multi-agent annotation and verification
	Question Rewriting for Linguistic Preservation
	Knowledge Fusion for Challenging Query Rewriting

	Experiment And Result
	Experiment Settings
	Evaluation Metrics
	Main Result
	Ablation experiment
	Experimental cost comparison
	Case Study

	Conclusion
	The prompts used
	More Experiment Settings
	Implementation Details
	Training Method for LSLMs
	More Information About The Dataset
	The embedding models used in this paper

	More Experimental Results
	Experimental results under the Single-Speaker Setting
	Results evaluated by different word embedding models

	More Speaker Information
	Assets and licenses
	Models
	Datasets
	Code


