

CHARACTER BEYOND SPEECH: LEVERAGING ROLE-PLAYING EVALUATION IN AUDIO LARGE LANGUAGE MODELS VIA REINFORCEMENT LEARNING

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 The advancement of multimodal large model technology has propelled the simu-
 014 lation of diverse characters in speech dialogue systems, establishing a novel inter-
 015 active paradigm. Character attributes are manifested not only in textual responses
 016 but also through vocal features, with speech containing non-semantic informa-
 017 tion that is challenging to quantify. This poses significant difficulties in evaluat-
 018 ing the character embodiment capabilities of role-playing agents. In response to
 019 these issues, we present the RoleJudge evaluation framework, which leverages au-
 020 dio large language models to systematically assess the alignment between speech
 021 and character across multiple modalities and dimensions. Furthermore, we intro-
 022 duce RoleChat, the first role-playing speech evaluation dataset, comprising both
 023 authentic speech samples and detailed reasoning annotations for evaluation. Ut-
 024 ilizing this dataset, we implement a multi-stage training paradigm and incorpo-
 025 rate standard alignment in reinforcement learning to mitigate reward misalign-
 026 ment during the optimization process. Experimental results on both accuracy and
 027 subjective assessment demonstrate that RoleJudge outperforms various baseline
 028 models, thereby validating the effectiveness of our multidimensional evaluation
 029 framework.

1 INTRODUCTION

030 The continuous advancement of artificial intelligence is profoundly transforming the way humans
 031 interact with digital systems, giving rise to new forms of digital life that seamlessly integrate tech-
 032 nology with human experience. Among these innovations, Role-Playing Agents (RPAs) are partic-
 033 ularly noteworthy, as they embody our aspiration to create virtual entities capable of understanding,
 034 responding, and interacting with users in increasingly human-like ways. By simulating a wide range
 035 of characters, from historical figures and fictional personalities to everyday individuals, these agents
 036 open up new possibilities for virtual assistants, interactive storytelling, and intelligent game charac-
 037 ters.

038 Driven by large language models (Bai et al., 2023; Dubey et al., 2024; Fang et al., 2025; Yang
 039 et al., 2025), text-based RPAs are gradually becoming a reality (Shanahan et al., 2023; Shao et al.,
 040 2023; Wang et al., 2023a), extending to novel applications such as digital humans and character-
 041 driven video games (Xu et al., 2024). With the increasing integration of multimodal technologies
 042 and large-scale models (SpeechTeam, 2024; Chen et al., 2025b; Zhang et al., 2024a), a subset of
 043 RPAs has begun to prioritize direct human-computer interaction through voice-based communica-
 044 tion. (Zhang et al., 2025) Beyond semantic content, spoken language conveys paralinguistic cues,
 045 including style and emotion, that are fundamental to the expression of the character’s personality.
 046 Achieving optimal alignment between model-generated outputs and predefined character profiles
 047 necessitates the production of voice dialogues that faithfully emulate the intended character, thereby
 048 enhancing user immersion. Consequently, a critical challenge has emerged: assessing whether the
 049 speech generated by RPAs authentically embodies the character and systematically exploring char-
 050 acter traits that extend beyond the surface-level linguistic content.

051 The evaluation of textual outputs generated by RPAs constitutes a vibrant area of research, where
 052 authentic character dialogue data sourced from films, novels, and games are utilized to assess agents

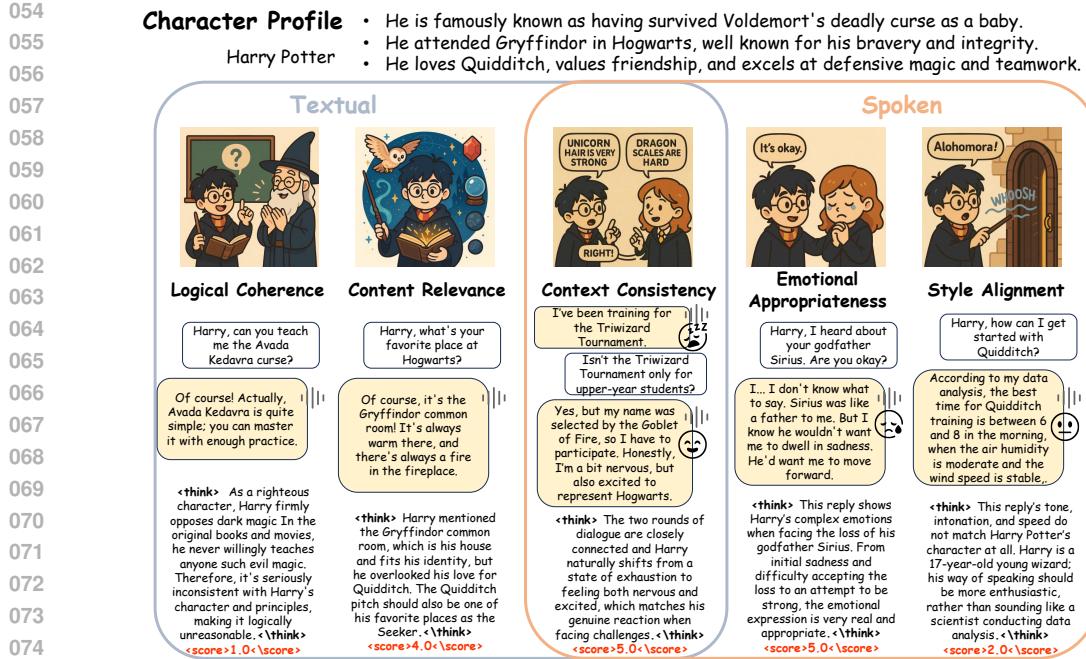


Figure 1: RoleChat encompasses five evaluation dimensions: Logical Coherence, which assesses the logical soundness of the response text; Content Relevance, which evaluates whether the response aligns with the character information; Context Consistency, which measures the semantic coherence across multiple dialogue turns as well as the smoothness of emotional transitions; Emotional Appropriateness, which examines the plausibility of the expressed emotions in the response; and Style Alignment, which determines whether the vocal style matches the character.

across dimensions such as interaction capability, character consistency, and user engagement (Tu et al., 2024; Chen et al., 2024a; Feng et al., 2025). In contrast, spoken language introduces complex acoustic information that is absent in textual modalities, and the nuanced interplay between these acoustic features and character traits renders the evaluation of voice-based RPAs both highly subjective and methodologically challenging. As a result, conventional text-based benchmarks are insufficient for assessing spoken outputs, leaving the evaluation of voice-enabled RPAs as an open research problem. Nonetheless, recent advancements in audio foundation models present promising avenues and novel methodologies for addressing these challenges. Audio foundation models are developed to address a broad spectrum of challenges within the audio and speech domains (Tang et al., 2023; Xu et al., 2025; Chen et al., 2024b; Ghosh et al., 2025; Zhang et al., 2024b). Nevertheless, supervised fine-tuning (SFT) on task-specific datasets often constrains their evaluative capabilities, as these models are predominantly optimized for generation or recognition tasks rather than assessment. Recent efforts have sought to enhance the evaluation capacity of audio models by constructing paired speech-evaluation datasets, targeting applications such as synthetic audio quality assessment (Chen et al., 2025a) and the evaluation of intelligence and emotional quotient in spoken dialogues (Ji et al., 2025). Despite these advancements, the application of such methodologies to the evaluation of RPAs presents two primary challenges: (1) Existing evaluation approaches are typically uni-dimensional, yielding a single score that fails to encapsulate the multifaceted nature of speech quality; (2) The SFT paradigm inherently limits model generalization, which is essential for handling diverse evaluative tasks. Furthermore, reinforcement learning-based methods are highly sensitive to data quality. When reward signals are sparse, models are prone to deviating from the global optimum and getting trapped in local optima due to insufficient feedback (Guo et al., 2025), which ultimately impairs overall performance.

In the light of these challenges, we introduce RoleChat, the first evaluation dataset for role-playing dialogue, comprising 50 distinct characters and 14,032 samples. The dataset consists of both collected and large model-generated samples, with each sample containing character information, dialogue history, user queries, and model outputs. For identical dialogue histories, we sample di-

108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 verse model outputs to enable a more comprehensive understanding of conversations from multiple perspectives. Each sample is annotated with detailed reasoning and scored across five evaluation dimensions: Logical Coherence, Content Relevance, Context Consistency, Emotional Appropriateness, and Style Alignment, as illustrated in Figure 1. The quality of both the speech data and evaluation scores is rigorously ensured. Building upon this dataset, we propose a multidimensional evaluation framework, RoleJudge. Expert models are trained on different evaluation dimensions, and a subset of RoleChat data is utilized for supervised fine-tuning of audio large models to achieve cold-start initialization, equipping the models with fundamental task comprehension and appropriate output formatting capabilities. Subsequently, we employ standard alignment reinforcement learning, where, based on the GRPO framework (Guo et al., 2025), authentic or high-scoring samples are introduced as standards. The model’s understanding of these standard samples represents its evaluative performance on corresponding tasks. The average reward of standard samples is used as a scaling parameter for other samples with identical query, preventing the model from selecting relatively high-reward actions in scenarios with low absolute rewards and thus avoiding local optima. Finally, the weights of expert models are integrated to obtain the final model. Our main contributions are as follows:

- RoleJudge is the first evaluation model specifically designed for voice-based role-playing dialogue. It takes speech-to-speech conversations as input and assesses the quality of responses from multiple perspectives, including text and speech multimodality, as well as alignment and consistency. Extensive experiments demonstrate the effectiveness of RoleJudge.
- RoleJudge introduces standard rewards as absolute guidance in positive and negative multi-sample sampling, optimizing the alignment of reward signals under relative reward settings and thereby enhancing the model’s evaluative capacity.
- We present RoleChat, the first role-playing dialogue evaluation dataset comprising dialogue-score pairs. RoleChat not only includes a diverse set of speech responses generated by large models, but also samples a portion of authentic data as high-quality reference responses.

2 RELATED WORKS

2.1 ROLE-PLAYING AGENTS.

Role-Playing Agents (RPAs) are intelligent agents capable of simulating the knowledge, behaviors, emotions, and communication styles of specific characters, thereby achieving highly anthropomorphic role-playing abilities (Shanahan et al., 2023; Shao et al., 2023). RPAs typically leverage capabilities such as in-context learning, instruction following, and social intelligence to reproduce the linguistic and behavioral characteristics of historical figures, fictional characters, or real individuals (Zhou et al., 2024). The outstanding performance of large language models (LLMs) in generating human-like content has greatly propelled the development of RPAs. Some works employ retrieval-augmented generation (RAG) and similar methods to enable agents to reproduce character-specific knowledge (Li et al., 2023), while other studies focus on aligning the linguistic style with the target persona (Wang et al., 2023b), and yet others aim to train agents with profile and experience perception to reflect deeper personality traits (Lu et al., 2024). Recently, with the advancement of multimodal technologies, RPAs have gradually expanded to include multimodal features such as voice style. For example, OmniCharacter seamlessly integrates speech and language to ensure immersive interactions for RPAs Zhang et al. (2025).

As the application scope of RPAs continues to expand, the evaluation of LLMs’ role-playing abilities has become increasingly important. RoleEval (Shen et al., 2023) constructs a bilingual benchmark dataset and designs multiple-choice questions to assess models’ capabilities in character knowledge acquisition, understanding, and reasoning. On the other hand, TimeChara (Ahn et al., 2024) focus on evaluating the ability of models and agents to identify and correct errors. CharacterEval (Tu et al., 2024) introduces multiple evaluation metrics and establishes a scoring standard for assessing the role-playing effectiveness of models. To facilitate the evaluation of subjective indicators, a human-annotated role-playing reward model, CharacterRM, has been developed. However, text-based dialogue evaluation methods are not well-suited for role-playing voice dialogue scenarios, which are more common and direct in practical applications. Therefore, a more comprehensive assessment framework is required for evaluating RPAs.

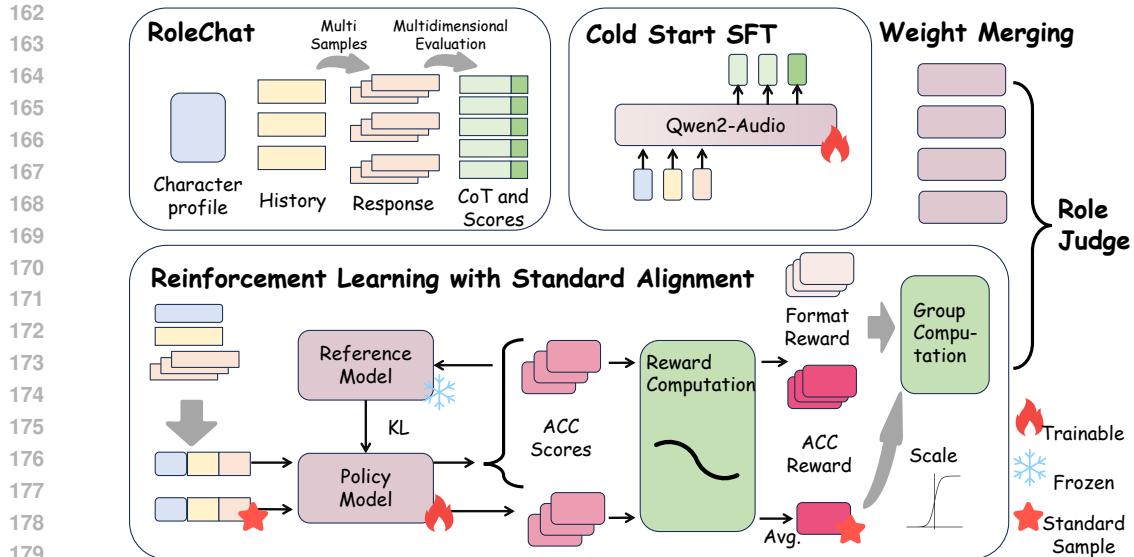


Figure 2: The overall architecture of RoleJudge. It comprises initial model supervised fine-tuning and standard alignment reinforcement learning with single-dimension, followed by weight merging to construct a unified multidimensional evaluation model. Leveraging an audio large model backbone, RoleJudge facilitates joint understanding of textual and acoustic modalities, thereby enabling fine-grained analysis and holistic assessment of role-playing dialogues.

2.2 LLMs FOR SPEECH INFORMATION PERCEPTION.

In recent years, the development of multimodal technologies has enabled the alignment of audio modalities with large model inputs, thereby facilitating extensive audio understanding by large language models. Some studies encode speech into discrete tokens and incorporate them into LLMs, allowing the models to accept audio input, as seen in works such as SpeechGPT (Zhang et al., 2023) and AudioPaLM (Kong et al., 2024). Models like SALMONN (Tang et al., 2023) and Qwen-Audio (Chu et al., 2023; 2024) are trained on large-scale, multi-task datasets, equipping them to perform a variety of downstream tasks including speech recognition, speech translation, and audio event detection. A subset of research applies large audio models to spoken dialogue, enabling more intelligent interactions, for example, by mining paralinguistic factors such as style to generate emotionally rich responses (Lin et al., 2024), or by avoiding cascaded approaches to achieve more real-time interaction. (Zeng et al., 2024)

Recently, some studies have explored the potential of large audio models in evaluating speech-related tasks. For instance, reinforcement learning has been introduced for the first time, utilizing large audio models as descriptive speech quality evaluators to assess TTS outputs and achieve more accurate evaluation (Chen et al., 2025a). WavReward (Ji et al., 2025) further extends this approach by employing chain-of-thought reasoning, using models to evaluate both the intelligence and emotional quotient of end-to-end spoken dialogue systems. These works demonstrate the enhanced generalization capabilities of reinforcement learning in evaluation tasks. However, when facing the multidimensional requirements of role-playing evaluation, the training strategies still require redesign, and high-quality datasets are essential, as annotation errors can adversely affect the learning of reward signals.

To address these challenges, we have constructed RoleChat, a dataset specifically designed for role-playing dialogue evaluation, encompassing five dimensions of assessment. We introduce reinforcement learning with standard alignment, introducing model performance as an absolute score to scale the advantages within positive and negative sample groups, thereby reducing the occurrence of selecting the best among suboptimal options. This approach effectively improves the accuracy of models in role-playing evaluation tasks.

216

3 ROLE JUDGE: MULTIDIMENSIONAL EVALUATION FRAMEWORK

217

3.1 OVERVIEW

218 Following the training framework of DeepSeek-R1 (Guo et al., 2025), the overall pipeline of Role
 219 Judge consists of supervised fine-tuning (SFT) with a subset of data for cold-start initialization,
 220 subsequent reinforcement learning-based post-training with standard alignment, and expert model
 221 weight, as illustrated in Figure 2. The baseline model for Role Judge is Qwen2-Audio Chu et al.
 222 (2024), which demonstrates strong performance across various audio-related tasks. On the input
 223 side, the large language model leverages the alignment between the audio encoder and the language
 224 model, enabling simultaneous comprehension of both semantic and acoustic information within
 225 speech. Compared to cascaded approaches that separately extract audio features and utilize text-
 226 based large language models, Qwen2-Audio is better suited for the evaluation of voice-based role-
 227 playing agents.

228 We define the evaluation task for role-playing speech as follows: Given the character profile P , the
 229 dialogue history sequence $\{h_0, h_1 \dots h_k\}$ between the role and the user, the current user query q ,
 230 and the agent’s response t , the evaluation model is required to understand t from both semantic and
 231 acoustic perspectives. Integrating all available information, the model must assess the agent’s speech
 232 output across five dimensions: response rationality, response consistency, historical coherence,
 233 emotional appropriateness, and stylistic alignment. The model should output both the chain-of-thought
 234 reasoning process c_i and the final scores s_i , with i representing evaluations dimensions.

235 To enhance the model’s ability to distinguish between different evaluation tasks and deepen its un-
 236 derstanding of speech across multiple dimensions, we train separate expert models for each dimen-
 237 sion and subsequently merge their weights to construct a unified evaluation system. For model
 238 training, we directly concatenate the encoded representations of textual and audio information as
 239 the input, thereby improving the model’s capability for multimodal comprehension.

240

3.2 COLD-START SUPERVISED FINE-TUNING

241 To ensure a stable and effective reinforcement learning trajectory, we initiate the training process
 242 with a cold-start supervised fine-tuning (SFT) phase. During this stage, the model is trained on
 243 a curated dataset consisting of paired audio-text samples annotated with detailed chain-of-thought
 244 reasoning and multidimensional quality scores. The objective of SFT is to equip the model with a
 245 foundational understanding of the evaluation task and the required structured output format, thereby
 246 providing a robust starting policy for subsequent reinforcement learning.

247 Formally, given a batch of N training samples $\{(x_i, y_i)\}_{i=1}^N$, where x_i denotes the concatenated
 248 input and y_i represents the structured output (including reasoning and scores), we minimize the
 249 following cross-entropy loss:

$$250 \quad \mathcal{L}_{\text{SFT}} = -\frac{1}{N} \sum_{i=1}^N \log P_{\theta}(y_i | x_i) \quad (1)$$

251 where $P_{\theta}(y_i | x_i)$ is the probability of the model with parameters θ generating the target output y_i
 252 given the input x_i . This supervised fine-tuning stage is crucial for aligning the model’s initial behav-
 253 ior with human-annotated standards and structured reasoning, which facilitates efficient exploration
 254 and optimization in the subsequent reinforcement learning phase.

255

3.3 REINFORCEMENT LEARNING WITH STANDARD ALIGNMENT

256 In large-scale model training, reinforcement learning methods are widely used to optimize the qual-
 257 ity of generated outputs. Classic algorithms such as Proximal Policy Optimization (PPO) (Schulman
 258 et al., 2017; Yu et al., 2022), which relies on a separately defined value function (critic), and Direct
 259 Preference Optimization (DPO) (Rafailov et al., 2023), which leverages preference signals between
 260 candidate outputs and reference answers, have achieved remarkable success. However, these ap-
 261 proaches face challenges in tasks such as role-playing speech evaluation, which require complex
 262 acoustic understanding—the value function is difficult to define and preference signals are hard to
 263 align.

270 Group Relative Policy Optimization (GRPO) (Guo et al., 2025) introduces a group-based sampling
 271 paradigm that is better suited for modeling differences in speech across various dimensions. For each
 272 sample within a specific evaluation dimension, we collect diverse feedback and assign scores. The
 273 mean reward within the group serves as the baseline output, and the relative advantage estimation is
 274 incorporated into the reward objective.

275 Considering that the model generates both reasoning processes c and scoring results s , we define the
 276 reward objective as comprising two parts: r_a and r_f , representing the accuracy reward and the format
 277 reward, respectively. The format reward enforces strict adherence to the required output structure,
 278 if the model’s output conforms to the specified tag format, a reward of 1 is assigned; otherwise, 0.
 279 This ensures the evaluation model produces consistently structured outputs. For accuracy reward,
 280 we adopt a non-linear approach inspired by previous work in speech evaluation tasks (Ji et al.,
 281 2025), $R_a(s, s_c) = 10 \cdot \exp\left(-\frac{(s_c - s)^2}{2\sigma^2}\right)$ where s_c denotes the annotated score for the sample. r_a
 282 decreases exponentially as the scoring difference increases, encouraging the model to achieve higher
 283 accuracy.

284 The GRPO method estimates relative advantage within a group by normalizing rewards, thereby
 285 reducing computational cost. However, when the overall quality of model outputs is low, relying
 286 exclusively on group-relative scores may result in the model favoring outputs that are only relatively
 287 better within a poor-performing group, rather than genuinely high-quality responses. To mitigate
 288 this, we introduce ground-truth data and scores as a standard reward for absolute evaluation. A
 289 key characteristic of role-playing evaluation datasets is that they can be mined from real scenarios,
 290 meaning most collected data contain standard answers. If the model’s reasoning aligns with the
 291 standard answer, it demonstrates a thorough understanding of the speech. Thus, by performing
 292 group sampling and reward calculation on standard samples, we use the average reward r_u as a
 293 scaling factor in the advantage estimation for both positive and negative samples sharing the same
 294 query. Specifically, we modify the advantage estimation as follows:

$$295 \quad A_i = \text{scale}(r_u) \frac{r_i - \frac{1}{N} \sum_{i=1}^N r_i}{\sqrt{\frac{1}{N} \sum_{i=1}^N \left(r_i - \frac{1}{N} \sum_{i=1}^N r_i\right)^2}} \quad (2)$$

296 where $\text{scale}(r_u) = a + (b - a) \cdot \text{sigmoid}(\alpha(r_u - 0.5))$. This represents a smooth scale alignment
 297 based on the standard reward, where a and b control the minimum and maximum scaling factors,
 298 and α determines the sharpness of the transition. In essence, if the model performs poorly on
 299 standard samples, it indicates insufficient evaluative capability for the given query. Even if the
 300 relative advantage is large, it may not represent an optimal direction for model improvement and
 301 could lead to local optima. Therefore, by scaling the advantage, we reduce the magnitude of model
 302 updates for that query, thereby mitigating the risk of suboptimal convergence.

303 By introducing the standard reward, the model achieves greater advantage when its overall performance
 304 is good, leading to more accurate and higher-quality evaluations. To balance the low reward and vanishing gradients caused by uniformly poor outputs, we use the standard reward as a difficulty
 305 coefficient to weight the total reward. If the standard reward is large (indicating poor model
 306 performance), the reward function emphasizes format-based rewards:

$$307 \quad R = \pi r_u \cdot r_a + (1 - \pi r_u) \cdot r_f \quad (3)$$

308 where πr_u is the difficulty coefficient derived from the standard reward r_u , and π is a scaling hyper-
 309 parameter. The calculation of KL divergence and the reinforcement learning loss function are kept
 310 consistent with GRPO.

311 3.4 WEIGHT MERGING

312 After training expert models for each evaluation dimension, we integrate them into a unified multi-
 313 dimensional role-playing dialogue evaluation model using a weighted parameter merging strategy.
 314 Each expert model specializes in a specific aspect of speech quality. We assign weights based on the
 315 relevance and frequency of evaluation tasks for each dimension, and perform weighted averaging of
 316 model parameters. The resulting merged model combines the fine-grained judgment capabilities of
 317 all experts, enabling comprehensive and efficient assessment across multiple dimensions in a single
 318 inference. This approach enhances both generalization and evaluation efficiency, providing a robust
 319 foundation for practical multidimensional role-playing dialogue evaluation.

324 4 ROLE CHAT: FIRST ROLE PLAYING DIALOGUE EVALUATION DATASET
325326 4.1 OVERALL
327328 To enable models to accurately assess the quality of role-playing speech from multiple dimensions,
329 we present role-chat, the first large-scale evaluation dataset encompassing role-playing dialogues.
330 This dataset features comprehensive character profiles and provides diverse responses—including
331 both positive and negative examples—for identical scenarios, as well as a subset of real speech data.
332 Each dialogue sample is annotated with multi-dimensional reasoning and scoring. To ensure the
333 high quality of the dataset, we have established a rigorous and systematic data construction pipeline.
334335 4.2 DATASET CONSTRUCTION
336337 **Stage 1: Character Profile Construction.** To collect authentic speech data, we curate 50 virtual
338 characters from films, television dramas, and other audiovisual works. To ensure the uniqueness of
339 each character profile, we conducted a detailed summary of their personal information. We gather
340 background information, key plot points, and selected lines from these works, and leverage the
341 powerful generative capabilities of large language models (OpenAI et al., 2024) to extract and sum-
342 marize character details, forming comprehensive profiles that include personality traits, experiences,
343 hobbies, and habits. Subsequently, all profiles are manually verified and any unfaithful information
344 was removed to ensure the accuracy of character identities.345 **Stage 2: Dialogue Text Generation.** For the generation of textual dialogues, we adopted a dual
346 approach to construct dialogue histories and user queries. One approach involves collecting authen-
347 tic dialogue histories directly from film and television works, ensuring the data reflects real-world
348 scenarios and remains faithful to the character’s persona. The other approach utilizes synthetic his-
349 torical scenarios, where we employ GPT-4 (OpenAI et al., 2024) to generate plausible interactions
350 between characters and users, covering a wide range of topics such as daily life, character ex-
351 periences, and personal viewpoints. We explicitly require that character utterances do not contradict
352 their profiles, thereby guaranteeing the accuracy of the dialogue history. For the final character re-
353 sponds, the segments to be evaluated, we use models from the Qwen2.5 series (Bai et al., 2023) of
354 various sizes, as well as the GPT series (OpenAI, 2024; OpenAI et al., 2024), to generate diverse
355 replies, sampling a range of response qualities to enrich the evaluation dataset.
356357 **Stage 3: Dialogue Speech Generation.** During the speech dialogue generation phase, for synthetic
358 historical scenarios, we leverage existing character audio and apply zero-shot TTS with CosyVoice
359 (Du et al., 2024) to construct character speech for the dialogue history. For character responses, we
360 randomly select different audio samples from the same character, from other characters, or use the
361 TTS model’s default voice settings with randomly assigned emotions, intonation, speed, and accent
362 to generate a variety of speech samples, thereby maximizing acoustic diversity. Since the reference
363 audio already contains attributes such as emotion and character style, randomly selecting reference
364 samples enables the construction of speech outputs with diverse styles. Additionally, incorporating
365 audio from different characters and instruction-based TTS further enriches the stylistic diversity
366 of the samples. After generating speech samples, we employ the SenseVoice model (SpeechTeam,
367 2024) for ASR and filter out samples with high WER to ensure the quality of the synthesized speech.
368369 **Stage 4: Data Scoring.** For sample reasoning and scoring, we utilize the state-of-the-art audio
370 understanding model Gemini-2.5 Pro (Comanici et al., 2025) to provide detailed descriptions of the
371 generated audio. Based on these descriptions, we use the GPT-4 to perform reasoning and scoring.
372 To ensure the reliability of reasoning and scoring, multiple volunteers were recruited to manually
373 verify and refine the results. For synthetic historical scenarios, we ensure that for each query, there
374 exists at least one sample with the highest score in each evaluation dimension, which is selected as
375 the standard sample for that dimension.
376377 5 EXPERIMENTS
378379 5.1 DATASETS AND BASELINES.
380381 We partitioned 10% of the RoleChat dataset as the evaluation set, within which three roles are
382 included that do not appear in the training set, in order to assess the model’s generalization capability
383

378
 379 Table 1: Accuracy performance of RoleJudge and other baselines on RoleChat across multi evalua-
 380 tion dimensions: Logical Coherence (L-C), Content Relevance (C-R), Context Consistency (C-C),
 381 Emotional Appropriateness (E-A), and Style Alignment (S-A), Overall Acc and Format Acc. The
 382 bolded scores indicate the best performance achieved in each respective dimension.
 383

384	385	Method	386 <i>Textual</i>		387 <i>Spoken</i>		388 C-C	389 Overall Acc	390 Format Acc	
			391 L-C	392 C-R	393 E-A	394 S-A				
<i>Open-Source Models</i>										
395 Text- Modality	396 Qwen3-7B	397 78.2	398 75.4	399 -	400 -	401 -	402 -	403 91.1	404	
	405 Qwen3-32B	406 82.1	407 76.7	408 -	409 -	410 -	411 -	412 94.3	413	
<i>Closed-Source Models</i>										
414 Multi- Modality	415 GPT-4	416 96.6	417 92.1	418 -	419 -	420 -	421 -	422 100	423	
	<i>Open-Source Models</i>									
	424 SALMONN-7B	425 11.2	426 23.2	427 43.2	428 12.1	429 22.1	430 22.36	431 6.2	432	
	433 Qwen-Audio	434 35.2	435 29.3	436 34.2	437 16.2	438 32.3	439 29.48	440 0	441	
	442 Qwen2-Audio	443 40.9	444 25.1	445 42.1	446 11.1	447 34.1	448 30.66	449 10.2	450	
	451 Qwen2.5-Omni	452 62.8	453 43.1	454 51.1	455 21.3	456 35.3	457 42.72	458 73.2	459	
	<i>Closed-Source Models</i>									
	460 GPT-4o-audio	461 65.2	462 42.3	463 61.2	464 52.4	465 44.2	466 53.06	467 94.2	468	
	469 Gemini2.5 Pro	470 86.2	471 72.7	472 75.8	473 51.2	474 62.1	475 69.60	476 100	477	
	478 RoleJudge	479 95.1	480 90.2	481 85.2	482 76.0	483 84.0	484 86.10	485 100	486	

402 to unseen roles after training. Furthermore, each role’s dialogues contain samples entirely drawn
 403 from real-world scenarios, enabling us to test whether the model can maintain accurate evaluation
 404 performance in authentic settings.
 405

406 To comprehensively evaluate the role-playing assessment capability of RoleJudge, we compared
 407 multiple large model-based approaches across different modalities, model sizes, and architectures.
 408 These include single-text modality open-source models such as Qwen3-8B and Qwen3-32B (Yang
 409 et al., 2025), as well as the proprietary GPT-4 (OpenAI et al., 2024), which are used to specifically
 410 assess role-playing evaluation from a text perspective (with ASR results as input). For multimodal
 411 audio models, we included open-source models such as SALMOON, Qwen-Audio (Chu et al.,
 412 2023), Qwen2-Audio (Chu et al., 2024), and Qwen2.5-Omni (Xu et al., 2025), as well as proprietary
 413 models GPT-4o-Audio (OpenAI, 2024) and Gemini2.5Pro (Comanici et al., 2025).

414 For evaluation metrics, we adopted accuracy to measure the discrepancy between the predicted
 415 scores and the annotated scores. We assessed the model’s understanding ability from five dimen-
 416 sions: Logical Coherence, Content Relevance, Context Consistency, Emotional Appropriateness,
 417 and Style Alignment. We also calculated the average accuracy to evaluate the model’s overall capa-
 418 bility, and a format accuracy metric to assess whether the model can follow instructions and generate
 419 the correct reasoning and evaluation structure. Furthermore, we invited volunteers to participate in
 420 our data construction process, generating dialogue data through real-time interactions and conduct-
 421 ing A/B testing of the evaluation models.
 422

423 5.2 MAIN RESULTS

424 As shown in Table 1, we evaluated the performance of RoleJudge and other baseline models on the
 425 RoleChat test set, demonstrating that RoleJudge achieves the best overall evaluation results, sur-
 426 passing all baseline models across different modalities and model sizes. From the perspective of
 427 text-based metrics, RoleJudge performs slightly below its teacher model, GPT-4, which is expected
 428 given the significant disparity in model scale and the fact that GPT-4 served as the annotator for the
 429 training data. Nevertheless, RoleJudge achieves higher evaluation accuracy than the Qwen3 mod-
 430 els of similar size, highlighting its superior semantic understanding capabilities. Compared to other
 431 large audio models with similar input modalities, RoleJudge consistently outperforms the base-
 432 lines across all evaluation dimensions. Notably, in identity-related tasks such as Content Relevance

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
Table 2: A/B Test result for RoleJudge.

Models	RoleJudge Win ↑	RoleJudge Lose ↓
Qwen2.5-Omni	91	9
Gemini2.5Pro	82	18

and Style Alignment, RoleJudge exceeds the best baseline model, Gemini2.5Pro, by 17.5 and 24.8 points, respectively. These results demonstrate that the RoleChat dataset and reinforcement learning training framework contribute significantly to the improved role-playing evaluation performance of RoleJudge. Furthermore, there remains a considerable gap between text and audio modalities in terms of logical and content relevance capabilities, indicating that there is still substantial room for improvement in the design of multimodal large models.

5.3 A/B TEST FOR ROLEJUDGE

A/B testing is a common subjective evaluation method in which human listeners compare two output results and select the one with higher quality. We recruited ten volunteers who, following a process similar to our data construction, interacted with randomly selected models and randomly assigned TTS role-playing agents to generate ten samples each. These samples were then evaluated and scored by RoleJudge, Qwen2.5-Omni, and Gemini2.5Pro. The volunteers performed pairwise comparisons based on the evaluation results and selected the higher-quality option. As shown in Table 2, RoleJudge achieved a significant advantage over the other two models, indicating that its scoring system demonstrates superior performance in real-world scenarios.

5.4 ABLATION EXPERIMENTS

We conducted experiments using three different configurations: training a single model on all data without weight merging, applying GRPO without standard alignment, and performing only supervised fine-tuning (SFT), as shown in Table 3. The results indicate that each component contributes to the overall performance improvement of the model, with reinforcement learning in particular yielding a 14.6-point increase, demonstrating its effectiveness in enhancing the model’s generalization capability.

Table 3: Ablation experiments for RoleJudge.

Reforment Learning	Standard Alignment	Weight Merging	Overall ACC	Format ACC
✓	✓	✗	82.10	100
✓	✗	✗	78.81	100
✗	✗	✗	64.21	85.2

6 CONCLUSION

In this work, we construct RoleChat, the first dataset for role-playing dialogue evaluation, featuring multidimensional assessment and reasoning annotations. To fully leverage this dataset, we develop a multi-stage training paradigm, including cold-start supervised fine-tuning, reinforcement learning, and weight merging. Furthermore, we incorporated standard alignment into the reinforcement learning process, scaling the advantage for more challenging tasks and alleviating issues related to misaligned reward optimization directions. Evaluations on accuracy and A/B testing demonstrate the effectiveness of both the dataset and the proposed methods, providing a solid foundation for the development of role-playing speech agents.

486 REFERENCES
487

488 Jaewoo Ahn, Taehyun Lee, Junyoung Lim, Jin-Hwa Kim, Sangdoo Yun, Hwaran Lee, and Gunhee
489 Kim. Timechara: Evaluating point-in-time character hallucination of role-playing large language
490 models. *arXiv preprint arXiv:2405.18027*, 2024.

491 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
492 Yu Han, Fei Huang, et al. Qwen technical report. *arXiv preprint arXiv:2309.16609*, 2023.

493

494 Chen Chen, Yuchen Hu, Siyin Wang, Helin Wang, Zhehuai Chen, Chao Zhang, Chao-Han Huck
495 Yang, and Eng Siong Chng. Audio large language models can be descriptive speech quality
496 evaluators. *arXiv preprint arXiv:2501.17202*, 2025a.

497 Hongzhan Chen, Hehong Chen, Ming Yan, Wenshen Xu, Xing Gao, Weizhou Shen, Xiaojun Quan,
498 Chenliang Li, Ji Zhang, Fei Huang, et al. Socialbench: Sociality evaluation of role-playing con-
499 versational agents. *arXiv preprint arXiv:2403.13679*, 2024a.

500

501 Junjie Chen, Yao Hu, Junjie Li, Kangyue Li, Kun Liu, Wenpeng Li, Xu Li, Ziyuan Li, Feiyu Shen,
502 Xu Tang, et al. Fireredchat: A pluggable, full-duplex voice interaction system with cascaded and
503 semi-cascaded implementations. *arXiv preprint arXiv:2509.06502*, 2025b.

504

505 Wenxi Chen, Ziyang Ma, Ruiqi Yan, Yuzhe Liang, Xiquan Li, Ruiyang Xu, Zhihang Niu, Yanqiao
506 Zhu, Yifan Yang, Zhanxun Liu, et al. Slam-omni: Timbre-controllable voice interaction system
507 with single-stage training. *arXiv preprint arXiv:2412.15649*, 2024b.

508

509 Yunfei Chu, Jin Xu, Xiaohuan Zhou, Qian Yang, Shiliang Zhang, Zhijie Yan, Chang Zhou, and
510 Jingren Zhou. Qwen-audio: Advancing universal audio understanding via unified large-scale
511 audio-language models. *arXiv preprint arXiv:2311.07919*, 2023.

512

513 Yunfei Chu, Jin Xu, Qian Yang, Haojie Wei, Xipin Wei, Zhifang Guo, Yichong Leng, Yuanjun Lv,
514 Jinzheng He, Junyang Lin, et al. Qwen2-audio technical report. *arXiv preprint arXiv:2407.10759*,
515 2024.

516

517 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
518 Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
519 frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
520 bilities. *arXiv preprint arXiv:2507.06261*, 2025.

521

522 Zhihao Du, Qian Chen, Shiliang Zhang, Kai Hu, Heng Lu, Yexin Yang, Hangrui Hu, Siqi Zheng, Yue
523 Gu, Ziyang Ma, et al. Cosyvoice: A scalable multilingual zero-shot text-to-speech synthesizer
524 based on supervised semantic tokens. *arXiv preprint arXiv:2407.05407*, 2024.

525

526 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
527 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
528 *arXiv preprint arXiv:2407.21783*, 2024.

529

530 Qingkai Fang, Yan Zhou, Shoutao Guo, Shaolei Zhang, and Yang Feng. Llama-omni2: Llm-
531 based real-time spoken chatbot with autoregressive streaming speech synthesis. *arXiv preprint
532 arXiv:2505.02625*, 2025.

533

534 Qiming Feng, Qiujuie Xie, Xiaolong Wang, Qingqiu Li, Yuejie Zhang, Rui Feng, Tao Zhang, and
535 Shang Gao. Emocharacter: Evaluating the emotional fidelity of role-playing agents in dialogues.
536 In *Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association
537 for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp.
538 6218–6240, 2025.

539

540 Sreyan Ghosh, Zhifeng Kong, Sonal Kumar, S Sakshi, Jaehyeon Kim, Wei Ping, Rafael Valle, Di-
541 nesh Manocha, and Bryan Catanzaro. Audio flamingo 2: An audio-language model with long-
542 audio understanding and expert reasoning abilities. *arXiv preprint arXiv:2503.03983*, 2025.

543

544 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
545 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
546 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

540 Shengpeng Ji, Tianle Liang, Yangzhuo Li, Jialong Zuo, Minghui Fang, Jinzheng He, Yifu Chen,
 541 Zhengqing Liu, Ziyue Jiang, Xize Cheng, et al. Wavreward: Spoken dialogue models with gen-
 542 eralist reward evaluators. *arXiv preprint arXiv:2505.09558*, 2025.

543

544 Zhifeng Kong, Arushi Goel, Rohan Badlani, Wei Ping, Rafael Valle, and Bryan Catanzaro. Audio
 545 flamingo: A novel audio language model with few-shot learning and dialogue abilities. *arXiv
 546 preprint arXiv:2402.01831*, 2024.

547 Cheng Li, Ziang Leng, Chenxi Yan, Junyi Shen, Hao Wang, Weishi Mi, Yaying Fei, Xiaoyang Feng,
 548 Song Yan, HaoSheng Wang, et al. Chatharuhi: Reviving anime character in reality via large
 549 language model. *arXiv preprint arXiv:2308.09597*, 2023.

550

551 Guan-Ting Lin, Cheng-Han Chiang, and Hung-yi Lee. Advancing large language models to
 552 capture varied speaking styles and respond properly in spoken conversations. *arXiv preprint
 553 arXiv:2402.12786*, 2024.

554 Keming Lu, Bowen Yu, Chang Zhou, and Jingren Zhou. Large language models are super-
 555 positions of all characters: Attaining arbitrary role-play via self-alignment. *arXiv preprint
 556 arXiv:2401.12474*, 2024.

557 OpenAI. Gpt-4o system card. <https://cdn.openai.com/gpt-4o-system-card.pdf>, 2024.

558

559 OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
 560 cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
 561 Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Moham-
 562 mad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher
 563 Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
 564 man, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann,
 565 Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis,
 566 Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey
 567 Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
 568 Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila
 569 Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
 570 Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gib-
 571 son, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan
 572 Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hal-
 573 lacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan
 574 Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu,
 575 Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
 576 Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
 577 mali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
 578 Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel
 579 Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen
 580 Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel
 581 Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez,
 582 Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv
 583 Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney,
 584 Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick,
 585 Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
 586 Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Ra-
 587 jeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe,
 588 Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel
 589 Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe
 590 de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny,
 591 Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl,
 592 Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra
 593 Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders,
 Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Sel-
 594 sam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,
 Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
 Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,

594 Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
 595 ston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vi-
 596 jayvergyia, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan
 597 Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng,
 598 Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Work-
 599 man, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
 600 Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
 601 Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL
 602 <https://arxiv.org/abs/2303.08774>.

603 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 604 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances*
 605 in neural information processing systems

606 36:53728–53741, 2023.

607 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 608 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

609 Murray Shanahan, Kyle McDonell, and Laria Reynolds. Role play with large language models.
 610 *Nature*, 623(7987):493–498, 2023.

611 Yunfan Shao, Linyang Li, Junqi Dai, and Xipeng Qiu. Character-llm: A trainable agent for role-
 612 playing, 2023. URL <https://arxiv.org/abs/2310.10158>.

613 Tianhao Shen, Sun Li, Quan Tu, and Deyi Xiong. Roleeval: A bilingual role evaluation benchmark
 614 for large language models. *arXiv preprint arXiv:2312.16132*, 2023.

615 Tongyi SpeechTeam. Funaudiollm: Voice understanding and generation foundation models for
 616 natural interaction between humans and llms. *arXiv preprint arXiv:2407.04051*, 2024.

617 Changli Tang, Wenyi Yu, Guangzhi Sun, Xianzhao Chen, Tian Tan, Wei Li, Lu Lu, Zejun Ma,
 618 and Chao Zhang. Salmonn: Towards generic hearing abilities for large language models. *arXiv*
 619 *preprint arXiv:2310.13289*, 2023.

620 Quan Tu, Shilong Fan, Zihang Tian, and Rui Yan. Charactereval: A chinese benchmark for role-
 621 playing conversational agent evaluation. *arXiv preprint arXiv:2401.01275*, 2024.

622 Xintao Wang, Yunze Xiao, Jen-tse Huang, Siyu Yuan, Rui Xu, Haoran Guo, Quan Tu, Yaying Fei,
 623 Ziang Leng, Wei Wang, et al. Incharacter: Evaluating personality fidelity in role-playing agents
 624 through psychological interviews. *arXiv preprint arXiv:2310.17976*, 2023a.

625 Zekun Moore Wang, Zhongyuan Peng, Haoran Que, Jiaheng Liu, Wangchunshu Zhou, Yuhan Wu,
 626 Hongcheng Guo, Ruitong Gan, Zehao Ni, Jian Yang, et al. Rolellm: Benchmarking, eliciting,
 627 and enhancing role-playing abilities of large language models. *arXiv preprint arXiv:2310.00746*,
 628 2023b.

629 Jin Xu, Zhifang Guo, Jinzheng He, Hangrui Hu, Ting He, Shuai Bai, Keqin Chen, Jialin Wang, Yang
 630 Fan, Kai Dang, et al. Qwen2. 5-omni technical report. *arXiv preprint arXiv:2503.20215*, 2025.

631 Rui Xu, Dakuan Lu, Xiaoyu Tan, Xintao Wang, Siyu Yuan, Jiangjie Chen, Wei Chu, and
 632 Yinghui Xu. Mindecho: Role-playing language agents for key opinion leaders. *arXiv preprint*
 633 *arXiv:2407.05305*, 2024.

634 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 635 Chang Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint*
 636 *arXiv:2505.09388*, 2025.

637 Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
 638 surprising effectiveness of ppo in cooperative multi-agent games. *Advances in neural information*
 639 *processing systems*, 35:24611–24624, 2022.

640 Aohan Zeng, Zhengxiao Du, Mingdao Liu, Kedong Wang, Shengmin Jiang, Lei Zhao, Yuxiao Dong,
 641 and Jie Tang. Glm-4-voice: Towards intelligent and human-like end-to-end spoken chatbot. *arXiv*
 642 *preprint arXiv:2412.02612*, 2024.

648 Dong Zhang, Shimin Li, Xin Zhang, Jun Zhan, Pengyu Wang, Yaqian Zhou, and Xipeng Qiu.
 649 Speechgpt: Empowering large language models with intrinsic cross-modal conversational abil-
 650 ities. *arXiv preprint arXiv:2305.11000*, 2023.

651
 652 Haonan Zhang, Run Luo, Xiong Liu, Yuchuan Wu, Ting-En Lin, Pengpeng Zeng, Qiang Qu, Feiteng
 653 Fang, Min Yang, Lianli Gao, et al. Omnicharacter: Towards immersive role-playing agents with
 654 seamless speech-language personality interaction. *arXiv preprint arXiv:2505.20277*, 2025.

655 Pan Zhang, Xiaoyi Dong, Yuhang Cao, Yuhang Zang, Rui Qian, Xilin Wei, Lin Chen, Yifei Li,
 656 Junbo Niu, Shuangrui Ding, Qipeng Guo, Haodong Duan, Xin Chen, Han Lv, Zheng Nie, Min
 657 Zhang, Bin Wang, Wenwei Zhang, Xinyue Zhang, Jiaye Ge, Wei Li, Jingwen Li, Zhongying
 658 Tu, Conghui He, Xingcheng Zhang, Kai Chen, Yu Qiao, Dahua Lin, and Jiaqi Wang. Internlm-
 659 xcomposer2.5-omnilive: A comprehensive multimodal system for long-term streaming video and
 660 audio interactions. *arXiv preprint arXiv:2412.09596*, 2024a.

661 Pan Zhang, Xiaoyi Dong, Yuhang Zang, Yuhang Cao, Rui Qian, Lin Chen, Qipeng Guo, Haodong
 662 Duan, Bin Wang, Linke Ouyang, et al. Internlm-xcomposer-2.5: A versatile large vision language
 663 model supporting long-contextual input and output. *arXiv preprint arXiv:2407.03320*, 2024b.

664 Jinfeng Zhou, Zhuang Chen, Dazhen Wan, Bosi Wen, Yi Song, Jifan Yu, Yongkang Huang, Pei Ke,
 665 Guanqun Bi, Libiao Peng, et al. Characterglm: Customizing social characters with large language
 666 models. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language
 667 Processing: Industry Track*, pp. 1457–1476, 2024.

669
 670 APPENDIX
 671

672 A USE OF LLM
 673

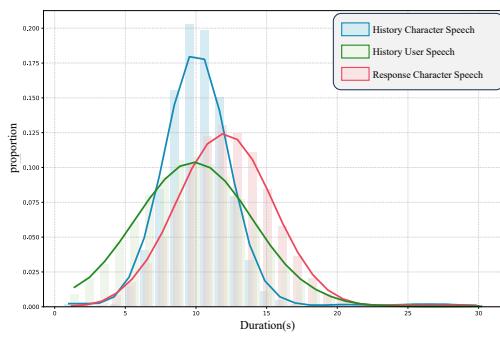
674 In this work, we employed large language models (LLMs) for generating the dialogue data of
 675 RoleChat.
 676

677 B EXPERIMENTAL SETUP
 678

679 We implemented the roleplaying MULTIDIMENSIONAL EVALUATION FRAMEWORK based
 680 on the Qwen2-Audio-7B-Instruct model. The training process is divided into two stages: **Cold-**
 681 **Start Phase**: This phase aims to enable the model to understand the task and generate reasoning
 682 and scores in the correct format. The learning rate is set to 1×10^{-5} , the batch size is 4, and training
 683 is performed on 8 A100 GPUs. **Reinforcement Learning Phase**: In this phase, we expect the
 684 model to accurately comprehend and evaluate speech data across different dimensions. We train five
 685 expert models independently, with hyperparameters set as a learning rate of 5×10^{-7} , batch size
 686 of 2, scaling hyperparameters $a = 0.5$, $b = 1.5$, $\alpha = 8$, and $\pi = 0.8$, as well as a KL-divergence
 687 regularization beta value of 0.01. Training is performed on 32 A100 GPUs.

688
 689 C DATASET STATISTICS
 690

691 RoleChat comprises a total of 50 characters and 14,032 samples, corresponding to 140.2 hours of
 692 audio data. We allocate 75% of the samples for supervised fine-tuning (SFT), 15% for reinforce-
 693 ment learning, and 10% for testing. Further details regarding the distribution of character speech
 694 lengths in the dialogue history, user speech lengths, and the response speech lengths are illustrated
 695 in Figure 3 (a), while the word cloud visualization is presented in Figure 3 (b).



(a) Distribution of audio duration

(b) Word Cloud

Figure 3: Statistics of RoleChat.