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ABSTRACT

Multi-view clustering (MVC) aims to explore common semantics for multi-view
data and has become an active research topic. However, existing MVC methods
focus on learning from static training data and ignore streaming multi-view data
with incremental classes, which is frequent in real-world applications given the
continually evolving nature of our world. Meanwhile, the existing continual clus-
tering methods only consider single-view data, which cannot effectively mine the
semantics of multi-view data. In this paper, we propose a novel Class-incremental
Continual Multi-View Clustering (CCMVC) method to handle class-incremental
continual learning for multi-view clustering, where multi-view data with incre-
mental semantic classes come sequentially. Our method conducts two iterative
optimization phases, i.e., multi-view cluster search and multi-view cluster con-
solidation, for sequential multi-view training data. In the test, our CCMVC can
perform online multi-view clustering for all emerged classes. Firstly, CCMVC
learns the common feature space for multi-view data and searches clusters for the
incoming data. Secondly, CCMVC harmonizes and consolidates all learned clus-
ters in a unified MVC model with data replay for all emerged classes. In particular,
we propose a cross-view synchronous loss to mitigate the asynchronous conver-
gence problem inherent in multi-view continual learning. Extensive experiments
on six public MVC datasets reveal the superiority of CCMVC compared with the
state-of-the-art methods.

1 INTRODUCTION

With the rapid development of Internet and multimedia, multi-view data (e.g., social media posts
with texts and images) have been increasingly frequent. Therefore, the analysis of multi-view data
has also become an important research topic. Multi-View Clustering (MVC) aims to explore the
semantic structure of multi-view data and cluster multi-view data into different classes, where class
labels are unavailable during training (Zhou & Shen, 2020; Trosten et al., 2021; Xu et al., 2022).
Though researchers have made significant progress in single-view clustering (MacQueen, 1967; Es-
ter et al., 1996; Li et al., 2021), the multi-view nature of MVC makes the problem different. Besides
the richer semantics brought by multiple views, the heterogeneity incurred by the inconsistent distri-
butions of multi-view features can impact the effectiveness of clustering. Therefore, the objective of
multi-view clustering is to overcome the heterogeneity and discover the common clustering structure
by learning from all available views, simultaneously.

Current MVC methods (Xu et al., 2022; Tang & Liu, 2022; Hu et al., 2023) primarily focus on
clustering static multi-view data, where the number of semantic classes remains unchangeable, and
learning the clusters at once on a fixed dataset. However, new data with new semantic classes can
continually emerge in real-world applications. In such a situation, existing MVC models have to
learn clusters for all data from scratch and cannot utilize the already learned knowledge, which in-
curs redundant computation costs and slows down the response to new data. Even worse, in some
scenarios, the model is not allowed to access the complete past data due to limitations such as pri-
vacy problems. To handle the above problems, in this paper, we study Class-incremental Continual
Learning for Multi-View Clustering, which aims at continually learning incremental clusters for
streaming multi-view data of incremental classes. Continual learning (CL) (De Lange et al., 2022;
Kumar et al., 2021b) is the paradigm where a single model is required to learn a sequence of tasks.
Specifically, in the t-th task of class-incremental continual learning (Li & Hoiem, 2016; Kirkpatrick
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Figure 1: (a) Class incremental accuracy Ak on Fashion (left) and MNIST-USPS (right) datasets.
Ak denotes ACC on all past k tasks. (b) Visualization of asynchronous problem across different
views in multi-view continual learning on MNIST-USPS dataset.

et al., 2017; Wan et al., 2022a), a CL model trained on the previous (t − 1) tasks is required to
continually learn clusters for the t-th incoming dataset of newly emerging classes. In the test, the
CL model is required to perform previous t tasks jointly without task identifiers by using the newly
learned knowledge for the t-th task and reusing the already learned knowledge for previous (t− 1)
tasks. Despite the great application value of continual multi-view clustering, it is still an under-
explored problem. To the best of our knowledge, this is the first work to study class-incremental
continual learning for multi-view clustering.

Applying the existing MVC methods to continual learning scenarios usually suffers from the catas-
trophic forgetting problem, where the model forgets the already learned knowledge for previous
tasks while learning a new clustering task. As shown in Figure 1 (a), we compute the class in-
cremental accuracy Ak, which is the accuracy of performing all past k clustering tasks jointly, for
compared methods during continual learning. Ak of the state-of-the-art MVC methods MFLVC (Xu
et al., 2022), DSMVC (Tang & Liu, 2022), and JCT (Hu et al., 2023) drops significantly while learn-
ing more tasks, leaving a large gap between Joint Training which is trained from scratch on joint
k datasets. These results reveal that directly applying existing methods to continual MVC can lead
to catastrophic forgetting, where the models forget the knowledge for performing previous tasks.
Therefore, class-incremental continual learning brings up a new challenge for MVC: (1) How to
continually learn to cluster streaming multi-view data with incremental classes and prevent
catastrophic forgetting?

Furthermore, the core of continual learning is dynamically updating the model to learn new knowl-
edge and prevent forgetting the learned knowledge. Existing work for continual clustering only
considers clustering single-view data (Rao et al., 2019; Kumar et al., 2021a; Korycki & Krawczyk,
2021). However, the multi-view nature makes the problem of continual learning for MVC more diffi-
cult. In multi-view learning, researchers have found that multi-view features can have asynchronous
convergence rates in learning (Wang et al., 2020; Winterbottom et al., 2020). The sequential learn-
ing process of continual learning makes the problem more tricky, where imbalanced update rhythm
across views can be accumulated and amplified to make multi-view features misaligned. As shown
in the upper of Figure 1 (b), without the view synchronization strategy proposed in this paper, the
features of different views may be separated during the continual learning process, which degen-
erates the learned cluster structure. Therefore, we have to address a new challenge for multi-view
continual learning: (2) How to balance the learning rhythm across different views while learning
a new task and memorizing already learned tasks?

To overcome the above challenges, we propose a Class-incremental Continual Multi-view Cluster-
ing (CCMVC) method to handle class-incremental continual learning for MVC, which can con-
tinually learn incremental clusters for streaming multi-view data and memorize learned knowledge
to perform all learned clustering tasks simultaneously. For Challenge (1), we propose a continual
component expansion with self-supervised data replay to continually expand the clustering com-
ponents and prevent catastrophic forgetting. To represent the incremental semantic classes during
continual learning, we learn the clustering components for the current task and dynamically expand
the component pool for all past tasks. To prevent catastrophic forgetting, we maintain a memory to
save a few samples of the past tasks and generate the pseudo labels according to their past clustering
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results. Then, we conduct the data replay with classification loss on pseudo labels to consolidate
all learned clustering components. For Challenge (2), we propose a cross-view synchronous loss to
balance the learning rhythm across different views during continual learning. By using pseudo labels
to construct self-supervised contrastive losses across views, we can force minimizing the learning
difference between different views based on learned knowledge. Therefore, we can keep the simi-
larity between past data and obtain more synchronous multi-view learning rhythms. Comprehensive
experimental results on six MVC datasets demonstrate a significant performance improvement of
our proposed model compared with the state-of-the-art methods.

In brief, the contributions of this paper are listed as follows:

• To the best of our knowledge, this work is the first to study class-incremental contin-
ual learning for multi-view clustering. Besides empirically showing that existing MVC
methods fail to handle class-incremental continual learning, we propose a novel CCMVC
method to cluster multi-view data while new semantic classes continually emerge in
streaming training data.

• We propose a continual component expansion with self-supervised data replay to contin-
ually learn incremental clustering components and prevent catastrophic forgetting. We
maintain a data memory and conduct data replay with self-supervised pseudo labels after
learning a new task to consolidate all learned clustering components.

• We propose a cross-view synchronous loss to balance the learning rhythm across differ-
ent views during continual learning. By developing cross-view self-supervised contrastive
learning, we minimize the difference between multi-view features of the same cluster to
keep the alignment across different views.

• Extensive experiments on six public datasets demonstrate a significant performance im-
provement of the proposed CCMVC compared with both multi-view clustering baselines
and continual learning baselines.

2 RELATED WORK

Multi-view clustering. Multi-View Clustering (MVC) aims to explore the semantic structure of
multi-view data and cluster multi-view data. For instance, Zhang et al. (2021) obtain partition rep-
resentations of each view through deep matrix decomposition, which are jointly utilized with the
optimal partition representation. Subspace clustering methods (Luo et al., 2018; Li et al., 2019)
focus on learning a common subspace representation for multiple views. For example, DiMSC (Cao
et al., 2015) extends the traditional subspace clustering to MVC by proposing a diversity term to
explore the complementarity of multi-view representations. Deep MVC methods (Zhou & Shen,
2020; Trosten et al., 2021) utilize deep learning models to learn effective features for multi-view
data. Among deep methods, MFLVC (Xu et al., 2022) is the state-of-the-art method that learns
different levels of features and achieves the reconstruction objective and consistency objectives in
different feature spaces. Different from the abovementioned methods that focus on clustering static
data with fixed semantic classes, we study the class-incremental continual learning for MVC where
new data and new classes continually emerge in real-world applications.

Continual learning. Continual Learning (CL) studies the problem of learning from streaming data,
with the goal of gradually extending acquired knowledge and using it for future learning (De Lange
et al., 2021; Madaan et al., 2022). The major challenge in CL is to learn without catastrophic
forgetting: performance on a previously learned task should not significantly degrade over time as
new tasks are added. For example, Co2L (Cha et al., 2021) proposes a rehearsal-based algorithm
that focuses on continually learning and maintaining transferable representations. CL has also been
introduced to single-view clustering. For example, Abhishek et al. (Kumar et al., 2021a) propose a
Bayesian VAE to learn the deep structure for each task, which can support inter-task transfer through
weight overlapping. Recently, Wan et al. (Wan et al., 2022b) study view-incremental continual
learning for MVC, where new views continually emerge during training, and propose a late fusion
framework. Differently, we study a more practical problem of class-incremental continual learning
for MVC, where new data with new semantic classes continually emerge during training. To the
best of our knowledge, this is the first work to study class-incremental continual learning for MVC.
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Figure 2: Overview of the proposed CCMVC model: (1) Multi-view training data of task t are
projected into a common feature space by view-related autoencoders; (2) Multi-view features are
utilized to learn Gaussian mixture models with cross-view contrastive loss for task t; (3) A small
number of multi-view data with pseudo labels of task t are added into the task memory; (4) Gaussian
components for task t are added into the global Gaussian mixture models to perform clustering for
tasks 1-t jointly; (5) Data in the task memory are replayed to compute reconstruction loss, self-
supervised cross-entropy loss, and cross-view synchronous loss to consolidate all learned clusters.

3 NOTATION AND PROBLEM DEFINITION

In this paper, we explore class-incremental continual learning (Li & Hoiem, 2016; Kirkpatrick
et al., 2017; Wan et al., 2022a) for multi-view clustering. For a growing unlabeled multi-view data
sequence, the set of the sequentially collected training data is T = {T1, T2, ..., TT }. The training set
of the t-th task is defined as Tt = {Xm

t ∈ RN×Dm}Mm=1 which contains N samples with M views.
We denote Ct as the set of the semantic classes in Tt, which satisfies Ci∩Cj = ∅,∀i ̸= j. The model
is required to learn from the sequential training data T1, T2, ..., Tt and cluster multi-view test data
T̃t belonging to the classes

⋃t
i=1 Ci of all past tasks after learning the t-th task. Note that in class-

incremental continual learning, task identifiers (or task labels) are unavailable in the test. Therefore,
we have to learn a unified model for all past classes. While learning the t-th task, the model is only
allowed to access the t-th training set Tt and memory, where memory preserves a small number of
past samples in

⋃t−1
i=1 Ti. Therefore, a key challenge of continual learning is to prevent forgetting

clusters learned from the previous (t− 1) tasks while learning the t-th task.

4 METHODOLOGY

The overall architecture of our approach is demonstrated in Figure 2, which consists of Multi-view
Cluster Search (MCS) and Multi-view Cluster Consolidation (MCC) during learning the t-th
task. MCS updates the multi-view autoencoders for extracting multi-view common features and
learns the cluster components for the current training set Tt. MCC conducts continual component
expansion with self-supervised data replay to continually expand the clustering components and
prevent catastrophic forgetting. Moreover, we propose a cross-view synchronous loss in MCC to
balance the learning rhythm across different views during continual learning.

4.1 MULTI-VIEW CLUSTER SEARCH (MCS)

While learning the t-th task, the multi-view cluster search aims at updating the multi-view
autoencoders for multi-view feature extraction and learning clustering components Θt =

{(µi, diag(σ
2
i ))}

|Ct|
i=1 of Gaussian mixture models (GMM) for the t-th training set Tt.
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4.1.1 VIEW-RELATED AUTOENCODERS

Following previous work (Xu et al., 2022), we adopt autoencoders (Baldi, 2012) to project multi-
view data into a common space. Specifically, we construct an encoder Em(·; ζm) and a decoder
Dm(·;ϕm) for the m-th view, which are both implemented by multi-layer perceptron (Kim & Adali,
2002). For ∀xm ∈ Xm

t of the m-th view where Xm
t ∈ Tt, it is projected into a D-dimensional

feature space and then reconstructed as follows:

hm = Em(xm; ζm) ∈ RD,m = 1, ...,M,

x̂m = Dm(hm;ϕm) ∈ RDm ,m = 1, ...,M,
(1)

where ζm and ϕm are trainable parameters for the m-th autoencoder and we denote ζ =
{ζm}Mm=1, ϕ = {ϕm}Mm=1. In a continual learning manner, ζ and ϕ are shared across all tasks
to form a union model for performing all learned tasks simultaneously. To learn semantics in the
t-th task and avoid model collapse, we adopted the unsupervised reconstruction loss to update multi-
view autoencoders as follows:

Lrec =
1

M

M∑
m=1

Exm∈Xm
t

{
∥xm − x̂m∥22

}
. (2)

Based on the learned features Hm = {hm|xm ∈ Xm
t },m = 1, ...,M , we aim to conduct multi-

view clustering for the t-th task and mine the common clustering components across all views.

4.1.2 CROSS-VIEW CONTRASTIVE LEARNING FOR GAUSSIAN MIXTURE MODELS

We cluster multi-view features by Gaussian mixture models (GMM) (Pernkopf & Bouchaffra, 2005)
with components Θt = {(µi, diag(σ

2
i ))}

|Ct|
i=1. For ∀hm ∈Hm where m = 1, ...,M , the generative

probability of GMM can be computed as follows:
ym(i) = N

(
hm|µi, diag(σ

2
i )
)
, i = 1, ..., |Ct|, (3)

where ym(i) denotes the probability of the i-th Gaussian component generating hm, and we denote
ym = GMM(hm; Θt) = [ym(1), ..., y

m
(|Ct|)] ∈ [0, 1]|Ct|. For a specific sample, features of different

views are supposed to belong to the same semantic class. Moreover, inspired by the previous work
about contrastive clustering (Li et al., 2021; Zhong et al., 2021), we further design cross-view dual-
anchor contrastive learning on Y m = {ym|xm ∈ Xm

t }(m = 1, ...,M) to align the generative
probability across multiple views. Since labels of the same sample should be consistent across
views, the cross-view contrastive loss between Y m of the m-th view and Y l of the l-th view with
sample-anchor is formulated as follows:

ℓsaml = Exm∈Xm
t

{
− log

exp(cos(ym,yl)/τs)∑
xl

∗∈Xl
t
exp(cos(ym,yl

∗)/τs)

}
, (4)

where cos(·, ·) denotes cosine similarity, τs is a temperature parameter, yl is the generative probabil-
ity of xl, and yl

∗ is the generative probability of xl
∗. To align labels across all views, we accumulate

contrastive losses as follows:

Lsa
con =

M∑
m=1

∑
l ̸=m

ℓsaml. (5)

We design another cross-view contrastive loss with cluster-anchor. Denote the i-th column of Y m ∈
RN×|Ct| as Y m

i ∈ RN , which is the generative probability of the i-th cluster to all N samples.
Since the generative probability of the same cluster should be consistent across views, the cross-
view contrastive loss between Y m of the m-th view and Y l of the l-th view with cluster-anchor is
defined as follows:

ℓcaml = Ei∈[|Ct|]
{
− log

exp(cos(Y m
i ,Y l

i )/τc)∑
j∈[|Ct|] exp(cos(Y

m
i ,Y l

j )/τc)

}
, (6)

where [|Ct|] = {1, 2, ..., |Ct|}, and τc is a temperature parameter. Similarly, we accumulate con-
trastive losses across all views as follows:

Lca
con =

M∑
m=1

∑
l ̸=m

ℓcaml. (7)

5



Under review as a conference paper at ICLR 2024

By optimizing both Lsa
con and Lca

con, we can align both sample features and cluster features across
multiple views to construct the common semantic structure and eliminate view-specific noise in the
label space. When predicting the cluster label L, we mean-pool the generative probabilities over all
views and select the cluster with the highest probability as follows:

L = argmax
i

(
1

M

M∑
m=1

ym(i)). (8)

4.1.3 OPTIMIZATION OF MULTI-VIEW CLUSTER SEARCH

The overall optimization objective of the multi-view cluster search can be written as follows:

LMCS = Lrec + Lsa
con + Lca

con. (9)

4.2 MULTI-VIEW CLUSTER CONSOLIDATION (MCC)

After updating multi-view autoencoders and learning Gaussian components Θt for the t-th task in the
multi-view cluster consolidation, the learned knowledge of the past (t− 1) tasks may be forgotten.
Therefore, we conduct a multi-view cluster consolidation to consolidate all learned clusters and
prevent catastrophic forgetting.

Task memory. In continual learning, the model cannot access the whole past data
⋃t−1

i=1 Ti, but
can access a small memory M = {si = (x1

i , ...,x
M
i , Li)}|M|

i=1 where xj
i is the j-th view of the

i-th sample and Li is its pseudo label. After every MCS phase, we generate pseudo cluster labels
by Equation 8 and randomly push N ′ samples into M, where N ′ ≪ |Tt| is a hyperparameter.
Therefore, M contains N ′ samples of every past task 1-t, based on which we will conduct our
Multi-view Cluster Consolidation.

Continual component expansion. Aiming at conducting multi-view clustering on all learned se-
mantic classes

⋃t
i=1 Ci, we need to integrate all learned knowledge for the past tasks. Therefore, we

continually expand the components of global Gaussian mixture models for solving all past tasks 1-t
simultaneously as follows:

Θ← Θ ∪Θt, (10)
where Θ contains all learned Gaussian components, and we can compute the generative probability
to all learned clusters by GMM(·; Θ).

Self-supervised data replay. To consolidate all learned clusters and recall knowledge from the task
memory, we use the self-supervised pseudo labels to compute the cross-entropy loss as follows:

Lrpl = Esi∈M

{ 1

M

M∑
m=1

CE
(
softmax(GMM(hm

i ; Θ)), Li

)}
, (11)

where hm
i = Em(xm

i ; ζm) is the common feature of xm
i and CE(·, ·) is the cross-entropy function.

The objective of Lrpl is to recover the learned multi-view clusters memorized inM. Therefore, by
optimizing Lrpl with a small number of past samples, we can efficiently update the model to learn
to conduct multi-view clustering on all past semantic classes and recall the learned knowledge for
all past tasks 1-t.

Cross-view synchronous loss. As found in the previous work, multi-view features may have asyn-
chronous convergence rates in learning (Wang et al., 2020; Winterbottom et al., 2020; Peng et al.,
2022). Especially in continual multi-view learning, the unbalanced learning rhythm of different
views can be amplified by our two-phase and sequential learning manner. Subsequently, features
of different views can be misaligned during continual learning, which can impact the effectiveness
of mining common semantics across views. Therefore, we propose a cross-view synchronous loss
to balance the learning rhythm across different views and obtain aligned multi-view features. Our
cross-view synchronous loss between the m-th and l-th views is based on developing the supervised
contrastive loss (Khosla et al., 2020) to cross-view self-supervised contrastive loss as follows:

ℓsyml = ELi=Lj

{
− log

exp(cos(hm
i ,hl

j)/τv)∑
sk∈M exp(cos(hm

i ,hl
k)/τv)

}
, (12)
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where τv is a temperature parameter. We accumulate contrastive losses across all views to obtain
the complete cross-view synchronous loss as follows:

Lsyn =

M∑
m=1

∑
l ̸=m

ℓsyml. (13)

By optimizing Lsyn, we minimize the difference between multi-view features of the same cluster
while maximizing the difference between features of different clusters. Therefore, the multi-view
features can be updated synchronously in continual learning while the discriminative semantic struc-
ture is maintained.

Optimization. We also use reconstruction loss Lrec introduced in Equation 2 for optimization in
the multi-view cluster consolidation. The overall optimization objective of the multi-view cluster
consolidation can be written as follows:

LMCC = Lrpl + Lsyn + Lrec. (14)
The overall optimization procedure is summarized in Appendix A.

Table 1: The information of the datasets in our experiments.
Datasets Training Test Views Classes Task Classes

Caltech-2V 1,120 280 2 7 [2, 2, 3]
Caltech-3V 1,120 280 3 7 [2, 2, 3]
Caltech-4V 1,120 280 4 7 [2, 2, 3]
Caltech-5V 1,120 280 5 7 [2, 2, 3]

MNIST-USPS 4,000 1,000 2 10 [2, 2, 2, 2, 2]
Fashion 8,000 2,000 3 10 [2, 2, 2, 2, 2]

5 EXPERIMENTS

We include more experiments and experimental details in Appendix B. Our code will be made public
after acceptance.

5.1 DATASETS

Following Xu et al. (2022), we adopt six public datasets in experiments, as shown in Table 1. More
details about the datasets are included in Appendix B.2.

5.2 BASELINE METHODS AND EVALUATION METRICS

Baseline methods. To the best of our knowledge, this paper is the first to study class-incremental
continual learning for multi-view clustering. Therefore, we adopt the state-of-the-art MVC methods
MFLVC (Xu et al., 2022), DSMVC (Tang & Liu, 2022), and JCT (Hu et al., 2023) and continual
learning methods EWC (Kirkpatrick et al., 2017), LwF (Li & Hoiem, 2016), and CVS (Wan et al.,
2022a). To construct more strong baselines for continual MVC, we further combine MVC methods
with continual learning strategies EWC and data replay, where data replay utilizes the same task
memory in our CCMVC and replays buffered data for MVC models after learning each task. Addi-
tionally, Joint Training is trained from scratch on all past training sets jointly, using the model and
loss as the same as our multi-view cluster search. We note that Joint Training is not with continual
learning setting, but acts as the performance upper bound of continual learning methods. The
details of baseline methods are included in Appendix B.3.

Evaluation metrics. When complete learning the t-th task on the training set Tt, we evaluate the
model on the test set T̃t for all past tasks, which contains all learned classes

⋃t
i=1 Ci. We report the

mean accuracy At (aka, Class Incremental Accuracy) on T̃t for all t of 10 runs.

5.3 RESULTS AND DISCUSSIONS

The clustering results of all compared methods on six datasets are shown in Tables 2-3. Based on
these results, we have the following observations: (1) Our proposed CCMVC outperforms all base-
line methods with clear margins on all datasets for class-incremental continual learning. Compared
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Table 2: Results of all methods on Caltech dataset with different views. Ai denotes the class incre-
mental accuracy on past i tasks. Bold denotes the best results and underline denotes the second-best.

Methods Caltech-2V Caltech-3V Caltech-4V Caltech-5V
A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3

Joint Training 0.925 0.931 0.660 0.987 0.968 0.681 1.000 0.981 0.817 1.000 0.993 0.835
EWC 0.575 0.543 0.385 0.650 0.456 0.378 0.625 0.437 0.321 0.562 0.493 0.389
LwF 0.825 0.500 0.342 0.885 0.612 0.401 0.912 0.672 0.437 0.925 0.695 0.434
CVS 0.825 0.452 0.298 0.885 0.601 0.438 0.912 0.670 0.458 0.925 0.721 0.490

MFLVC 0.825 0.456 0.282 0.885 0.650 0.403 0.912 0.675 0.422 0.925 0.708 0.451
MFLVC+EWC 0.825 0.531 0.385 0.885 0.600 0.425 0.912 0.712 0.464 0.925 0.721 0.478
MFLVC+replay 0.825 0.538 0.400 0.885 0.582 0.420 0.912 0.702 0.480 0.925 0.728 0.504

MFLVC+EWC+replay 0.825 0.556 0.410 0.885 0.618 0.431 0.912 0.731 0.486 0.925 0.741 0.513
DSMVC 0.800 0.507 0.257 0.850 0.487 0.418 0.875 0.597 0.412 0.898 0.633 0.446

DSMVC+EWC 0.800 0.523 0.308 0.850 0.505 0.437 0.875 0.631 0.452 0.898 0.661 0.510
DSMVC+replay 0.800 0.543 0.365 0.850 0.566 0.472 0.875 0.637 0.481 0.898 0.653 0.549

DSMVC+EWC+replay 0.800 0.588 0.424 0.850 0.602 0.461 0.875 0.655 0.504 0.898 0.683 0.560
JCT 0.825 0.531 0.245 0.862 0.500 0.398 0.892 0.662 0.457 0.940 0.686 0.462

JCT+EWC 0.825 0.538 0.305 0.862 0.516 0.458 0.892 0.689 0.471 0.940 0.693 0.507
JCT+replay 0.825 0.543 0.335 0.862 0.506 0.431 0.892 0.637 0.481 0.940 0.676 0.499

JCT+EWC+replay 0.825 0.601 0.441 0.862 0.668 0.488 0.892 0.677 0.514 0.940 0.793 0.581
CCMVC (Ours) 0.887 0.768 0.489 0.925 0.807 0.557 0.935 0.832 0.585 0.950 0.850 0.645

Table 3: Results of all methods on two datasets. Ai denotes the class incremental accuracy on past
i tasks. Bold denotes the best results and underline denotes the second-best.

Methods Fashion MNIST-USPS
A1 A2 A3 A4 A5 A1 A2 A3 A4 A5

Joint Training 1.000 1.000 0.998 0.965 0.995 1.000 1.000 0.998 0.998 0.997
EWC 0.912 0.690 0.447 0.419 0.340 1.000 0.615 0.528 0.382 0.363
LwF 1.000 0.700 0.709 0.552 0.445 1.000 0.702 0.640 0.550 0.442
CVS 1.000 0.702 0.476 0.344 0.300 1.000 0.695 0.567 0.502 0.412

MFLVC 1.000 0.498 0.493 0.267 0.286 1.000 0.687 0.500 0.380 0.323
MFLVC+EWC 1.000 0.561 0.525 0.348 0.305 1.000 0.710 0.556 0.428 0.366
MFLVC+replay 1.000 0.546 0.503 0.356 0.299 1.000 0.688 0.531 0.398 0.352

MFLVC+EWC+replay 1.000 0.572 0.549 0.370 0.334 1.000 0.710 0.601 0.490 0.405
DSMVC 0.985 0.636 0.564 0.398 0.348 0.995 0.622 0.492 0.387 0.348

DSMVC+EWC 0.985 0.672 0.569 0.417 0.441 0.995 0.663 0.509 0.466 0.365
DSMVC+replay 0.985 0.656 0.587 0.507 0.458 0.995 0.650 0.535 0.488 0.397

DSMVC+EWC+replay 0.985 0.674 0.596 0.573 0.482 0.995 0.684 0.571 0.511 0.404
JCT 1.000 0.683 0.570 0.411 0.299 1.000 0.690 0.530 0.442 0.293

JCT+EWC 1.000 0.701 0.595 0.460 0.352 1.000 0.710 0.546 0.458 0.381
JCT+replay 1.000 0.695 0.583 0.440 0.510 1.000 0.700 0.596 0.478 0.397

JCT+EWC+replay 1.000 0.748 0.686 0.590 0.535 1.000 0.721 0.625 0.535 0.458
CCMVC (Ours) 1.000 0.965 0.923 0.833 0.721 1.000 0.957 0.885 0.776 0.729

with the second-best results, our CCMVC improves the class incremental accuracy of the last task
by 0.089, 0.112, 0.098, 0.112, 0.358, and 0.214 on Caltech-2V, Caltech-3V, Caltech-4V, Caltech-
5V, Fashion, and MNIST-USPS, respectively. These results demonstrate that the proposed CCMVC
can better overcome the catastrophic forgetting problem in continual learning and perform contin-
ual multi-view clustering. (2) The performance of the state-of-the-art MVC method (i.e., MFLVC)
severely drops after learning more tasks, which suggests that class-incremental continual learning
is a challenging problem and cannot be handled well by traditional MVC methods. Moreover, the
results of MFLVC integrated with different CL strategies show that naively combining MVC meth-
ods and CL methods is sub-optimal for solving the CL problem for MVC. (3) The state-of-the-art
method for continual learning (i.e., CVS) performs badly on the adopted multi-view datasets, which
may be due to the neglect of view heterogeneity. Different from single-view learning, MVC re-
quires overcoming heterogeneity and discovering the common clustering structure by learning from
all available views. These results also indicate that our proposed problem (i.e., class-incremental
continual learning) is not a trivial problem in the field of continual learning.

5.4 ABLATION STUDY

To further investigate the effectiveness of the proposed losses in Equations 9 and 14, we design
several variants by removing one of all loss terms to conduct an ablation study. Table 4 shows
the experimental results on two datasets, from which we have the following observations: (1) The
performance of our method declines when removing any one of all loss terms, which demonstrates
every loss component contributes to the final results. (2) The variant w/o Lrec achieves low scores
on two datasets. The reconstruction loss Lrec can prevent the view-related autoencoder from col-
lapsing, which is a basis of multi-view feature learning. (3) The variants w/o Lsa

con or Lca
con perform
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Table 4: Ablation study of loss components on Fashion and Caltech-5V datasets.

Variants Fashion Caltech-5V
A1 A2 A3 A4 A5 A1 A2 A3

w/o Lrec 1.000 0.746 0.664 0.467 0.393 0.915 0.743 0.550
w/o Lsa

con 1.000 0.950 0.828 0.656 0.624 0.937 0.731 0.557
w/o Lca

con 1.000 0.943 0.825 0.698 0.637 0.562 0.525 0.396
w/o Lrpl 1.000 0.931 0.784 0.656 0.539 0.950 0.681 0.560
w/o Lsyn 1.000 0.943 0.822 0.734 0.628 0.950 0.618 0.489
CCMVC 1.000 0.965 0.923 0.833 0.721 0.950 0.850 0.645

badly on two datasets. Different from the traditional EM algorithm for GMM with single-view
data, we propose cross-view contrastive learning to optimize GMM. (4) The variant w/o Lrpl per-
forms significantly worse than CCMVC. By replaying the buffered data with pseudo labels, Lrpl can
optimize the model to recover clusters memorized in the task memory and prevent catastrophic for-
getting. (5) The variant w/o Lsyn performs much worse than CCMVC. By developing cross-view
self-supervised contrastive learning, we minimize the difference of features in the same clusters
across views, which mitigates the asynchronous learning rhythm of different views.

Figure 3: Performance of Different Tasks in the continual learning process on Fashion and Caltech-
5V. The x-axis denotes the sequential learning process and the y-axis denotes the per-task accuracy.

5.5 PERFORMANCE OF DIFFERENT TASKS IN CONTINUAL LEARNING PROCESS

To further investigate the performance of different tasks in continual learning, we show the heatmaps
of per-task accuracy on Fashion and Caltach-5V in Figure 3. In every heat map, the x-axis denotes
the sequential learning process in continual learning and the y-axis denotes the per-task accuracy
while clustering for all past tasks simultaneously. Comparing our CCMVC with the strongest base-
line JCT+EWC+replay, we can find that our CCMVC performs better, if not the same, for all indi-
vidual tasks during the continual learning process, especially for the past tasks. These results further
demonstrate the superiority of our proposed method for alleviating forgetting the knowledge of past
tasks in continual learning and continually conducting clustering for streaming multi-view data.
Moreover, we can also find that the earlier the task, the worse the performance in the whole process
for both compared methods. Therefore, the knowledge-forgetting problem in continual learning is
still not completely solved, which is left as a challenge of class-incremental learning for MVC.

6 CONCLUSION

In this paper, we explore class-incremental continual learning for multi-view clustering for the first
time and propose a Class-incremental Continual Multi-View Clustering (CCMVC) model. To pre-
vent catastrophic forgetting while learning new semantic classes, we propose a continual component
expansion with self-supervised data replay to continually learn incremental clustering components.
To balance the learning rhythm across different views during continual learning, we propose a cross-
view synchronous loss by developing cross-view self-supervised contrastive learning. Extensive
experiments conducted on six public benchmark datasets indicate that CCMVC significantly out-
performs state-of-the-art approaches.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Pierre Baldi. Autoencoders, unsupervised learning, and deep architectures. In Proceedings of ICML
workshop on unsupervised and transfer learning, pp. 37–49. JMLR Workshop and Conference
Proceedings, 2012.

Xiaochun Cao, Changqing Zhang, Huazhu Fu, Si Liu, and Hua Zhang. Diversity-induced multi-
view subspace clustering. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 586–594, 2015.

Hyuntak Cha, Jaeho Lee, and Jinwoo Shin. Co2l: Contrastive continual learning. In Proceedings of
the IEEE/CVF International conference on computer vision, pp. 9516–9525, 2021.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš Leonardis, Gregory
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A OPTIMIZATION PROCEDURE

The overall optimization procedure is demonstrated in Algorithm 1.

Algorithm 1 Optimization procedure of our proposed CCMVC
Input: Sequential training task set {T1, T2, ...}; hyper-parameters D,N ′, τs, τc, τv; batch size bs;

learning rate ξ.
Output: Optimized parameters ζ, ϕ of view-related autoencoders, Θ of Gaussian mixture models.

1: Initialize t=0;
2: while the t-th task comes with training set Tt do
3: Randomly initialize Gaussian components Θt.
4: repeat
5: for ⌊ |Tt|

bs ⌋ iterations do
6: Randomly select bs samples in Tt to form a batch.
7: Obtain the multi-view features by Equation 1 for the batch.
8: Calculate the loss of multi-view cluster search in Equation 9.
9: Back propagate gradients and update model parameters:

(ζ,ϕ,Θt)← (ζ,ϕ,Θt)− ξ ∂
∂(ζ,ϕ,Θt)

LMCS .
10: end for
11: until convergence;
12: Generate pseudo labels for Tt by Equation 8.
13: Randomly add N ′ samples with pseudo labels in Tt into task memoryM.
14: Expand the global Gaussian mixture models: Θ← Θ ∪Θt.
15: repeat
16: for ⌊ |M|

bs ⌋ iterations do
17: Randomly select bs samples inM to form a batch.
18: Obtain the multi-view features by Equation 1 for the batch.
19: Calculate the loss of multi-view cluster consolidation in Equation 14.
20: Back propagate gradients and update model parameters:

(ζ,ϕ,Θ)← (ζ,ϕ,Θ)− ξ ∂
∂(ζ,ϕ,Θ)LMCC .

21: end for
22: until convergence;
23: t← t+ 1.
24: end while

B EXPERIMENTS

B.1 IMPLEMENTATION DETAILS

Our code is implemented by PyTorch (Paszke et al., 2019) and ran on one RTX 3090 GPU. Adam
optimizer (Kingma & Ba, 2015) is adopted for optimization with a learning rate of 3e-4. The batch
size is set as 256 for Fashion and MNIST-USPS and 128 for Caltech. We set the dimension of
common feature space as D = 512, following MFLVC (Xu et al., 2022). The hidden sizes of
each view-related encoder Em are 500, 500, 2000, and 512. The hidden sizes of each view-related
decoder Dm are 2000, 500, 2000, and the dimension of the input data. All layers except the last
layer of encoders and decoders are activated by ReLU function. The buffer size N ′ for the t-th
task is set as 5%|Tt| on all datasets. For contrastive learning, we set τs = 4.3 and τc = 7 on
Fashion, τs = 0.4 and τc = 0.5 on MNIST-USPS, τs = 1 and τc = 1 on Caltech. τv is set as 1 for
all datasets. We follow previous work of multiview clustering (Zhou & Shen, 2020; Trosten et al.,
2021; Xu et al., 2022) to add all losses of our model without trade-off parameters. The same training
setting is applied to all compared methods to conduct a fair comparison.
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B.2 DATASETS

Six public datasets are adopted in experiments. Caltech (Fei-Fei et al., 2004) is an RGB image
dataset with multiple views, based on which four datasets with different numbers of views are built
following Xu et al. (2022). Concretely, Caltech-2V includes WM and CENTRIST; Caltech-3V in-
cludes WM, CENTRIST, and LBP; Caltech-4V includes WM, CENTRIST, LBP, and GIST; Caltech-
5V includes WM, CENTRIST, LBP, GIST and HOG. We manually divide Caltech into 3 tasks with 2,
2, and 3 classes, respectively. MNIST-USPS (LeCun et al., 1998) contains digital images with two
different styles. MNIST-USPS are divided into 5 tasks and each task comprises 2 classes. Fashion
(Xiao et al., 2017) is an image dataset about products, where we follow Xu et al. (2021) to treat
different three styles as three views. Fashion is also divided into 5 tasks and each task comprises 2
classes. All datasets are divided into training sets and test sets with a proportion of 4:1.

B.3 BASELINES

The details of baseline methods are listed as follows:

Joint Training is trained from scratch on all past training sets jointly, using the model and loss as
the same as our plastic stage. We note that Joint Training is not with continual learning setting, but
acts as the performance upper bound of continual learning methods.

MFLVC (Xu et al., 2022) is the state-of-the-art method for multi-view clustering, which learns
different levels of features from the raw features in a fusion-free manner. We adapt MFLVC to our
class-incremental continual learning setting.

DSMVC (Tang & Liu, 2022) is also a state-of-the-art model for multi-view clustering, which is
trained to simultaneously extract complementary information and discard the meaningless noise by
automatically selecting features.

JCT (Hu et al., 2023) is a state-of-the-art model for multi-view clustering, which combines
feature-level alignment-oriented and commonality-oriented contrastive learning, and cluster-level
consistency-oriented contrastive learning.

EWC (Kirkpatrick et al., 2017) remembers old tasks by selectively slowing down learning on the
weights important for those tasks to mitigate catastrophic forgetting in artificial neural networks.

LwF (Li & Hoiem, 2016) exploits knowledge distillation to retrain representation for previous tasks
and uses L2 distance as the regularization term to mitigate catastrophic forgetting.

CVS (Wan et al., 2022a) proposes losses for inter-task data coherence, neighbor-task model coher-
ence, and intra-task discrimination to improve continual learning.

MFLVC/DSMVC/JCT+EWC integrates the multi-view clustering module of
MFLVC/DSMVC/JCT and the continual learning module of EWC to construct a continual
MVC baseline.

MFLVC/DSMVC/JCT+replay utilizes the same task memory in our CCMVC and replays buffered
data for MFLVC/DSMVC/JCT after learning each task.

MFLVC/DSMVC/JCT+EWC+replay integrates the multi-view clustering module of
MFLVC/DSMVC/JCT, the continual learning module of EWC, and data replay to construct a
stronger continual MVC baseline.

We adopt the officially released code to reimplement all baselines.

B.4 ANALYSIS OF CLASS INCREMENTAL ORDER

By default, we utilize the default class order of every dataset, and the classes in the test are incre-
mented from the first to the last class. In this section, we analyze the effect of class incremental
order in continual learning for multi-view clustering. We change the order of the class increments
on Fashion dataset and show the results in Tables 5-7. In these tables, c0, ..., c9 denote 10 classes
with the default class order in Fashion. “Task Classes” denotes the classes in the training set of the
divided tasks. In the i-th test, the test data are from the classes of all past i tasks. From the results,
we have the following observations:
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Table 5: Results on Fashion with different class incremental order. Ai denotes the class incremental
accuracy on all past i tasks. Bold denotes the best results and underline denotes the second-best.

Task Classes c4, c5 c0, c1 c2, c3 c8, c9 c6, c7
Methods A1 A2 A3 A4 A5

LwF 1.000 0.681 0.601 0.501 0.425
CVS 1.000 0.644 0.500 0.433 0.302

DSMVC 0.965 0.592 0.513 0.367 0.345
DSMVC+EWC 0.965 0.640 0.541 0.451 0.405
DSMVC+replay 0.965 0.668 0.570 0.477 0.435

DSMVC+EWC+replay 0.965 0.692 0.614 0.531 0.475
JCT 1.000 0.635 0.574 0.429 0.305

JCT+EWC 1.000 0.682 0.592 0.472 0.341
JCT+replay 1.000 0.688 0.608 0.464 0.441

JCT+EWC+replay 1.000 0.712 0.648 0.569 0.522
CCMVC (Ours) 1.000 0.916 0.848 0.790 0.627

Table 6: Results on Fashion with different class incremental order. Ai denotes the class incremental
accuracy on all past i tasks. Bold denotes the best results and underline denotes the second-best.

Task Classes c5, c7 c0, c3 c1, c2 c8, c9 c4, c6
Methods A1 A2 A3 A4 A5

LwF 1.000 0.690 0.595 0.500 0.400
CVS 1.000 0.678 0.518 0.421 0.322

DSMVC 0.970 0.612 0.505 0.350 0.347
DSMVC+EWC 0.970 0.665 0.537 0.440 0.421
DSMVC+replay 0.970 0.670 0.572 0.465 0.432

DSMVC+EWC+replay 0.970 0.702 0.602 0.524 0.445
JCT 1.000 0.639 0.565 0.417 0.325

JCT+EWC 1.000 0.698 0.588 0.437 0.346
JCT+replay 1.000 0.705 0.601 0.440 0.450

JCT+EWC+replay 1.000 0.721 0.640 0.551 0.525
CCMVC (Ours) 1.000 0.941 0.814 0.721 0.646

Table 7: Results on Fashion with different class incremental order. Ai denotes the class incremental
accuracy on all past i tasks. Bold denotes the best results and underline denotes the second-best.

Task Classes c4, c7 c0, c1 c2, c3 c5, c9 c6, c8
Methods A1 A2 A3 A4 A5

LwF 1.000 0.675 0.592 0.481 0.417
CVS 1.000 0.643 0.519 0.441 0.330

DSMVC 0.932 0.590 0.517 0.360 0.355
DSMVC+EWC 0.932 0.635 0.543 0.446 0.428
DSMVC+replay 0.932 0.667 0.582 0.467 0.435

DSMVC+EWC+replay 0.932 0.691 0.610 0.541 0.481
JCT 1.000 0.640 0.582 0.419 0.335

JCT+EWC 1.000 0.705 0.600 0.472 0.352
JCT+replay 1.000 0.695 0.612 0.451 0.451

JCT+EWC+replay 1.000 0.718 0.668 0.554 0.531
CCMVC (Ours) 1.000 0.945 0.860 0.756 0.675
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• With different class incremental orders, the performance Ai of the compared methods is
also different. This indicates that the class incremental order can affect the model perfor-
mance. Therefore, we compare different methods with the same class incremental order in
our experiments to ensure fairness.

• With different class incremental orders, the performance Ai of our proposed CCMVC con-
sistently outperforms all baselines especially when more classes are learned. These results
further demonstrate the effectiveness of our method for continual multi-view clustering.

(a) CCMVC (Ours) (b) JCT+EWC+replay

Figure 4: Cluster visualization of the learned multi-view features belonging to different classes on
Fashion dataset.

B.5 CLUSTER VISUALIZATION

To further investigate the effectiveness of the learned multi-view features, we visualize the learned
features of CCMVC and JCT+ EWC+replay after learning from all tasks on Fashion to conduct
a comparison. Learned features of all views are visualized via t-SNE algorithm (Van der Maaten
& Hinton, 2008) and dyed with different colors to represent different ground truth classes. The
visualization results are shown in Figure 4, and we have the following observations: The feature
clusters of CCMVC are more compact than the clusters of JCT+EWC+replay. For example, the
features of class 1 or 3 learned by CCMVC are almost in a single cluster, while these features
learned by JCT+EWC+replay are divided and mixed into three clusters. Generally, the small clusters
in Figure 4(a) are more likely to be of a single class than clusters in Figure 4(b). The visualization
results further demonstrate that our CCMVC can better learn multi-view features for continually
clustering multi-view data.

(a) Fashion (b) MNIST-USPS

Figure 5: View asynchronicity of the learned multi-view features belonging to different tasks during
the continual learning process on Fashion and MNIST-USPS datasets.
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B.6 ANALYSIS OF VIEW ASYNCHRONICITY

As discussed in Section 1, the asynchronicity across different views is an important challenge in
multi-view continual learning. Therefore, in this section, we empirically analyze the view asyn-
chronicity in the continual learning process. Specifically, we compute the mean Euclidean distance
among multi-view features of the same test sample to represent the view misalignment. The mean
view misalignment of the test data belonging to specific tasks during the continual learning process
is shown in Figure 5. We compare the results of our CCMVC (w/ Lsyn) and the results of the variant
w/o Lsyn on Fashion and MNIST-USPS datasets. From the experimental results, we can observe
that the view misalignment of all tasks is significantly mitigated on both datasets when applying
our proposed cross-view synchronous loss Lsyn. The proposed Lsyn balances the learning rhythm
across different views and aligns multi-view features during the data replay. Therefore, the multi-
view features can be updated synchronously in continual learning while the discriminative semantic
structure is maintained.

(a) Analysis on buffer size N ′ (b) Analysis on feature dimension D

Figure 6: Analysis of hyperparameter sensitivity on different datasets. Average Incremental Accu-
racy denotes the mean of all Class-incremental Accuracy Ai.

B.7 HYPERPARAMETER SENSITIVITY

In this section, we analyze the sensitivity of the hyper-parameters in our proposed model.

Buffer Size N ′ We explore the sensitivity of buffer size N ′ in the task. We change the value of
N ′ from 16 to 256 and report the average At on Fashion and MNIST-USPS in Figure 6(a). We can
observe that when introducing more memory space, the average accuracy increases since more data
of the learned clusters can be replayed in the stable stage. However, since storing and replaying past
data is expensive in continual learning, an appropriate N ′ should be selected according to practical
conditions.

Feature Dimension D In order to estimate the sensitivity of feature dimension D, we vary D
from 128 to 2048 to evaluate the model performance on six datasets. Figure 6(b) demonstrates the
results, and we can observe that the performance of the model is poor with the lower dimension
because of the insufficient representation ability, and will decrease with the higher dimension due
to the over-fitting problem. By selecting the appropriate dimension, the model can achieve the best
performance.
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