
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

AN O(k log n) TIME FOURIER SET QUERY ALGORITHM

Anonymous authors
Paper under double-blind review

ABSTRACT

Fourier transformation is an extensively studied problem in many research fields. It
has many applications in machine learning, signal processing, compressed sensing,
and so on. In many real-world applications, approximated Fourier transformation is
sufficient and we only need to do the Fourier transform on a subset of coordinates.
Given a vector x ∈ Cn, approximation parameters ϵ, δ ∈ (0, 0.1), and a query set
S ⊂ [n] of size k, we propose an algorithm to compute an approximate Fourier
transform result x′ which uses O(ϵ−1k log(n/δ)) Fourier measurements and runs
in O(ϵ−1k log(n/δ)) time. For x̂ being the Fourier transformation result, our
algorithm can output a vector x′ such that ∥(x′ − x̂)S∥22 ≤ ϵ∥x̂S∥22 + δ∥x̂∥21 holds
with probability of at least 9/10, where S denotes the complement of the set S, i.e.,
S := [n] \ S.

1 INTRODUCTION

Fourier transform is ubiquitous in image and audio processing, telecommunications, etc. The
time complexity of the classical Fast Fourier Transform (FFT) algorithm proposed by Cooley and
Turkey Cooley & Tukey (1965) is O(n log n), where n is the number of input points. Optics
imaging (Voelz, 2011; Goodman, 2017), magnetic resonance image (MRI) (Aibinu et al., 2008) and
the physics (Reynolds, 1989) are benefits from this algorithm. The algorithm proposed by Cooley
and Turkey Cooley & Tukey (1965) takes O(n) samples to compute the Fourier transformation result.
The number of samples taken is an important factor. For example, it influences the amount of ionizing
radiation that a patient is exposed to during CT scans. The time that a patient spends within the
scanner can also be reduced by taking fewer samples. Thus, we consider the Fourier Transform
problems in two computational aspects. Thus, we consider two aspects of the Fourier Transform
problems. The first aspect is the reconstruction time which is the time of decoding the signal from
the measurements. The second aspect is the sample complexity. Sample complexity is the number
of noisy samples required by the algorithm. There is a long line of works optimizing the time and
the sample complexity of Fourier Transform in the field of signal-processing and the field of TCS
(Cooley & Tukey, 1965; Reynolds, 1989; Aibinu et al., 2008; Voelz, 2011; Hassanieh et al., 2012a;
Boashash, 2015).

As a result, we can anticipate that algorithms that leverage sparsity assumptions about the input and
outperform FFT in applications will be of significant practical utility. In general, the two most signifi-
cant factors to optimize are the sample complexity and the time complexity of obtaining the Fourier
Transform result. In many real-world applications, computing the approximate Fourier transformation
results for a set of selective coordinates is sufficient, and we can leverage the approximation guarantee
to accelerate the computation. The set query was originally proposed by Price (2011). The original
definition doesn’t have restrictions on Fourier measurements. Then, Kapralov (2017) generalizes the
classical set query definition (Price, 2011) into the Fourier setting.

In this paper, we consider the set estimation based on the Fourier measurement problem (defined by
Kapralov (2017)) where given a vector x ∈ Cn, approximation parameters ϵ, δ ∈ (0, 1) and a query
set S ⊂ [n] with |S| = k, we want to compute an approximate Fourier transform result x′ ∈ Cn

in sublinear time and sample complexity and compared with the standard Fourier transform result
x̂ ∈ Cn, the following approximation guarantee holds:

∥(x′ − x̂)S∥22 ≤ ϵ∥x̂S∥22 + δ∥x̂∥21
with probability at least 9/10. For a set S ⊂ [n] and a vector x ∈ Rn, we define xS by setting if i ∈ S,
(xS)i = xi and otherwise (xS)i = 0. S denotes the complement of the set S, i.e., S := [n] \ S.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Table 1: The comparison between our result and the results from prior works (Hassanieh et al., 2012a;
Kapralov, 2017).

References Samples Time
(Hassanieh et al., 2012a) ϵ−1k log2(n) ϵ−1k log2(n)

(Kapralov, 2017) ϵ−1k ϵ−1k log2.1(n) log(R∗)
Ours ϵ−1k log(n) ϵ−1k log(n)

For this Fourier set query problem, there are two major prior works Kapralov (2017) and Hassanieh
et al. (2012a). Kapralov (2017) studies the problem explicitly, whereas Hassanieh et al. (2012a)
implicitly provides a solution to the Fourier set query, we will provide more details in the later
paragraphs. The work by Kapralov (2017) first explicitly defines the Fourier set query problem and
studies it. Kapralov (2017) obtains an algorithm that has sample complexity O(k/ϵ) and running
time O(ϵ−1k log2.1(n) log(R∗)) for ℓ2/ℓ2 Fourier set query. Here, R∗ is an upper bound on the
∥ · ∥∞ norm of the vector. In most applications, R∗ are considered poly(n). Our approach gives
an algorithm with O(ϵ−1k log(n)) running time. The running time of our result has no dependence
on logR∗, but our result does not achieve the optimal sample complexity. Hassanieh et al. (2012a)
didn’t study the Fourier set query problem, instead, they studied the Fourier sparse recovery problem.
However, applying their algorithm from Hassanieh et al. (2012a) to Fourier set query, it provides
an algorithm with time complexity of O(ϵ−1k log2(n)) and sample complexity of O(ϵ−1k log2(n)).
Our main contributions are summarized as follows:

• We present an efficient algorithm for the Fourier set query problem.
• We provide comprehensive theoretical guarantees to show the predominance of our algo-

rithms over the existing algorithm.

Roadmap. We first present the related work about discrete Fourier transform, continuous Fourier
transform and some applications of Fourier transform in Section 2. We define our problem and present
our main theorem in Section 3. We present a high-level overview of our techniques in Section 4. We
provide some definitions, notations, and technique tools in Section 5. As our main result in this paper,
our algorithm (see Algorithm 1) and the analysis of the correctness and complexity of it is given in
Section 6. Finally, we conclude our paper in Section 7.

2 RELATED WORK

Discrete Fourier Transform For computational jobs, among the most crucial and often employed
algorithms is the discrete Fourier transform (DFT). There is a long line of works focusing on
sparse discrete Fourier transforms. Results can be divided into two kinds: the first kind of results
choose sublinear measurements and achieve sublinear or linear recovery time. This kind of work
includes Gilbert et al. (2005); Hassanieh et al. (2012a;b); Iwen (2013); Indyk et al. (2014); Indyk &
Kapralov (2014); Kapralov (2016; 2017); Nakos et al. (2019).

The second kind of results randomly choose measurements and prove that a generic recovery algorithm
succeeds with high probability. A common generic recovery algorithm that this kind of work uses is
ℓ1 minimization. These results prove the Restricted Isometry Property (Candes et al., 2006; Rudelson
& Vershynin, 2008; Bourgain, 2014). Currently, the first kind of solutions have better theoretical
guarantees in sample and time complexity. However, the second kind of algorithm has high success
probabilities and higher capability in practice.

Continuous Fourier Transform Shi et al. (2013) studies sparse Fourier transforms on continuous
signals. They apply a discrete sparse Fourier transform algorithm, followed by a hill-climbing
method to optimize their solution into a reasonable range. Price & Song (2015) presents an algorithm
whose sample complexity is only linear to k and logarithmic in the signal-to-noise ratio. Their
frequency resolution is suitable for robustly computing sparse continuous Fourier transforms. Jin
et al. (2020) generalizes Price & Song (2015) into high-dimensional setting. Chen et al. (2016)
provides an algorithm that supports the reconstruction of a signal without a frequency gap. They
present a solution to approximate the signal using a constant factor noise growth and take samples

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

polynomial in k and logarithmic in the signal-to-noise ratio. Recently Song et al. (2022) improves
the approximation ratio of Chen et al. (2016).

Application of Fourier Transform Solving partial differential equations is one of the most impor-
tant applications of Fourier transformation. Some differential equations are simpler to understand
in the frequency domain because the action of differentiation in the time domain corresponds to
the multiplication by the frequency. Additionally, frequency-domain multiplication is equivalent to
convolution in the time domain (McGillem & Cooper, 1991; Proakis, 2001; Friedlander et al., 1998).

Various applications of the Fourier transform include nuclear magnetic resonance (NMR) (Hoult &
Bhakar, 1997; Rabi et al., 1938; Schmidt-Rohr & Spiess, 2012), and other types of spectroscopy, such
as infrared (FTIR) (Griffiths, 1983). In NMR, a free induction decay (FID) signal with an exponential
shape is recorded in the time domain and Fourier transformed into a Lorentzian line-shape in the
frequency domain. Mass spectrometry and magnetic resonance imaging (MRI) both employ the
Fourier transform. The Fourier transform is also used in quantum mechanics (Wilde, 2013).

For the spectrum analysis of time-series (Schreier & Scharf, 2010; Scharf & Demeure, 1991), the
Fourier transform is employed. The Fourier transformation is often not applied to the signal itself in
the context of statistical signal processing. It has been discovered in practice that it is best to simulate
a signal by a function (or, alternatively, a stochastic process) that is stationary in the sense that its
distinctive qualities are constant across all time, even though a genuine signal is in fact transitory. It
has been discovered that taking the Fourier transform of the function’s autocorrelation function is
more advantageous for the analysis of signals since the Fourier transform of such a function does not
exist in the conventional sense.

3 FOURIER SET QUERY

In Section 3.1, we formally define the problem we study. In Section 3.2, we present our main result.

Notation We use i to denote
√
−1. Note that eiθ = cos(θ) + i sin(θ). For any complex number

z ∈ C, we have z = a+ ib, where a, b ∈ R. We define the complement of z ∈ C as z = a− ib, and
for a set S, we use S to denote its complement. We define |z| :=

√
zz =

√
a2 + b2, and for a set S,

we use |S| to denote its cardinality. For any complex vector x ∈ Cn, we use supp(x) to denote the
support of x and define ∥x∥0 := | supp(x)|. We define ω = e2πi/n, which is the n-th unitary root i.e.
ωn = 1.

The discrete convolution of functions f and g is given by (f ∗ g)[n] = ∑+∞
m=−∞ f [m]g[n−m]. For

a complex vector x ∈ Cn, we use x̂ ∈ Cn to denote its Fourier spectrum which is defined as:

x̂i =
1√
n

n∑
j=1

e−2πiij/nxj ,∀i ∈ [n].

Then, the inverse transform is as follows:

xj =
1√
n

n∑
i=1

e2πiij/nx̂i,∀j ∈ [n].

We define:

Err(x, k) := min
k-sparse y

∥x− y∥2.

We define xS as a vector by setting if i ∈ S, (xS)i = xi and otherwise (xS)i = 0, for a vector
x ∈ Rn and a set S ⊆ [n].

3.1 FOURIER SET QUERY PROBLEM

In this section, we give a formal definition of the main problem focused on.
Definition 3.1 (Sample Complexity). Given a vector x ∈ Cn, we say the sample complexity of an
algorithm is c (an Algorithm takes c samples) when c is the number of the coordinates used and
c ≤ n.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Definition 3.2 (Main problem). Given a vector x ∈ Cn, we let x̂ ∈ Cn be the Fourier transformation
result. For every ϵ, δ ∈ (0, 1), k ≥ 1, and S ⊆ [n] with |S| = k, our goal is to design an algorithm
that

• Part 1. takes samples from x ∈ Cn (note that we treat each entry of x as a sample), and

• Part 2. takes some time to output a vector x′ ∈ Cn satisfying:

∥(x′ − x̂)S∥22 ≤ ϵ∥x̂S∥22 + δ∥x̂∥21.

We want to optimize both sample complexity (which is the number of coordinates we need to access
in x) and the running time.

3.2 OUR RESULT

Based on the discussion above our main result is presented as follows:
Theorem 3.3 (Informal version of Theorem 6.3). Let x ∈ Cn, ϵ ∈ (0, 1), and δ ∈ (0, 1). Let S ⊆ [n]
satisfying |S| = k. Let x̂ ∈ Cn be the Fourier transformation result. Then, there exists an algorithm
(Algorithm 1) that takes O(ϵ−1k log(n/δ)) samples from x, runs in O(ϵ−1k log(n/δ)) time, and
outputs a vector x′ ∈ Cn satisfying

∥(x′ − x̂)S∥22 ≤ ϵ∥x̂S∥22 + δ∥x̂∥21,
with probability at least 9/10.

4 TECHNIQUE OVERVIEW

In this section, we give an overview of the technique methods used to prove our main result and
the complexity analysis about time and sample (see Definition 3.1). First, we give an introduction
about the main functions and their time complexity as well as other properties used in our algorithm.
Then, based on the functions, we give an analysis of the correctness of our algorithm where, with
probability at least 9/10, it can finally produce a x′ which satisfies

∥(x′ − x̂)S∥22 ≤ ϵ∥x̂S∥22 + δ∥x̂∥21.

The analysis of total complexity comes last, with O(ϵ−1k log(n/δ)) as the sample complexity (see
Definition 3.1) and O(ϵ−1k log(n/δ)) as the time complexity. And then we can make sure the
algorithm solves the problem (see Definition 3.2) with better performance compared to the prior
works Kapralov (2017) and Hassanieh et al. (2012a) (see details in Table 1).

Technique I: HASHTOBINS We first give an overview of the techniques we use from Hassanieh
et al. (2012a). We use the same function HASHTOBINS with the one in Hassanieh et al. (2012a),
which is one of the key parts of the function EstimateValues. We can attain a û, where the ûj for
satisfies the following equation

ûj =
∑

hσ,b(i)=j

̂(x− z)i(Ĝ
′
B,δ,α)−oσ,b(i)ω

aσi ± δ∥x̂∥1,

where Ĝ′
B,δ,α ∈ Rn is defined as in Definition 5.3 when we formally present the techniques from prior

works (also see Figure 1 for a more explicit visualization). hσ,b(i) and oσ,b(i) are the hash and the
offset function, respectively. We use the hashing scheme and filtering to isolate frequencies (see the
concept of well-isolate we develop in the next paragraph). To help the analysis of the time complexity
of our Algorithm 1, the time complexity of the function above is O(Bα log(n/δ)+∥ẑ∥0+ζ log(n/δ)),
with ζ = |{i ∈ supp(ẑ) | Eoff(i)}|.

Technique II: Query Set S Now, we summarize the techniques we develop to support our main
result. We use S as the query set and Si is the set attained by updating S with i− 1 iterations. And
we use ki = kγi−1 where γ ≤ 1

1000 and k ≥ 1. We demonstrate that we can successfully complete
our query, i.e., we can compress Si to a small enough size such that |Si| ≤ ki.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Given a vector x and t ∈ [n] as a coordinate of it, we also define “well-isolated” based on the
concepts above, which are frequencies that don’t suffer from significant interference from other
frequencies in the current iteration. Then, we can prove that with probability at least 1 − 6αi,
where αi = 1/(200i3), we have that t is “well-isolated”. From the definition of well-isolated (see
Definition 5.10), it suffices to bound the probabilities of large offset, large noise, and collision (see
details of the proof in Appendix B.1). This is a crucial property that we frequently use when showing
correctness and complexity: we show our algorithm can estimate these well-isolated frequencies
accurately. By setting |Si| ≤ ki and performing a sufficiently large number of iterations, we can
ensure that |Si| (the number of unfinished queries) is sufficiently small.

Technique III: Correctness and Complexity By the upper bound of ∥x̂(i+1)

Si+1
∥22, we can obtain the

upper bound of error. With probability 1− 10αi/γ, we can have

∥x̂(i+1)

Si+1
∥22 ≤ (1 + ϵi)∥x̂(i)

Si
∥22 + ϵiδ

2n∥x̂∥21,
through combining the concepts of “well-isolated” coordinates (see Definition 5.10), probabilistic
inequalities, and inductive argument (see Appendix B.2 for details).

Then we can demonstrate:
∥x̂S − ẑ(R+1)∥22 ≤ ϵ(∥x̂S∥22 + δ2n∥x̂∥21). (1)

The proof also leverages the iterative nature of the algorithm, which runs for R+ 1 iterations (where
R = log k). Each iteration improves the estimate of the Fourier coefficients. To bound the error
in each iteration, we combine the property of well-isolated coordinates and the properties of the
HashToBins function that we derive in Lemma B.3, namely

Pr

[∥∥∥x̂(i)
Ti
− ŵ(i)

∥∥∥2
2
≤ ϵi

20
(∥x̂(i)

Si
∥22 + δ2n∥x̂∥21)

]
≥ 1− αi.

Notice that the ẑ(R+1) in Eq. (1) is the output of our Algorithm 1 which is also the x′ in our problem
(see Definition 3.2). The above inequalities demonstrate that the Algorithm 1 constructed by us can
output a x′ which satisfies

∥(x̂− x′)S∥22 ≤ ϵ∥x̂S∥22 + δ∥x̂∥21
with a success probability of 9/10. We obtain the sample complexity and time complexity as follows:

R∑
i=1

(Bi/αi) log(n/δ) = ϵ−1k log(n/δ),

where Bi ≥ 1000ki/(α
2
i ϵi).

5 PRELIMINARY

In Section 5.1, we present the basic concepts related to the Fourier transform. We introduce some
technical tools in Section 5.2. Then we introduce spectrum permutations and filter functions in
Section 5.3. They are used as hashing schemes in the Fourier transform literature. In Section 5.4, we
introduce collision events, large offset events, and large noise events.

5.1 FOURIER TRANSFORM

The discrete convolution of functions f and g is defined as follow

(f ∗ g)[n] :=
+∞∑

m=−∞
f [m]g[n−m]

Let x ∈ Cn be a complex vector. The Fourier spectrum of x is denoted by x̂ ∈ Cn

x̂i :=
1√
n

n∑
j=1

e−2πiij/nxj ,∀i ∈ [n].

Then, the inverse transform can be obtained xj =
1√
n

∑n
i=1 e

2πiij/nx̂i,∀j ∈ [n]. We define

Err(x, k) := min
k-sparse y

∥x− y∥2.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

5.2 TECHNICAL TOOLS

We show several technical tools and some lemmas in prior works we used in the following section.
Lemma 5.1 (Markov’s inequality). If X is a nonnegative random variable and a > 0, then the
probability that X is at least a is at most the expectation of X divided by a: Pr[X ≥ a] ≤ E(X)

a .

Let a = ã ·E(X) (where ã > 0). Then we can rewrite the previous inequality as Pr[X ≥ ã ·E(X)] ≤
1
ã

The following two lemmas of complex numbers are standard. We prove the following two lemmas
for the completeness of the paper (see Section A.2).
Lemma 5.2. Given a fixed vector x ∈ Rn and a pairwise independent random variable σi where
σi = ±1 with probability 1/2 respectively. Then we have: Eσ[(

∑n
i=1 σixi)

2] = ∥x∥22
Lemma 5.3. Let a ∼ [n] uniformly at random. Given a fixed vector x ∈ Cn and ωσai, then we have:

E
a
[|

n∑
i=1

xiω
σai|2] = ∥x∥22

5.3 PERMUTATION AND FILTER FUNCTION

We use the same (pseudorandom) spectrum permutation as Hassanieh et al. (2012a):
Definition 5.4. Let a and b are positive integers in [n]. Suppose σ−1 exists (mod n). We define the
permutation Pσ,a,b by

(Pσ,a,bx)i := xσ(i−a)e
−2πiσbi/n,

where i =
√
−1 and i denote the i-th entry of Pσ,a,bx. We also define πσ,b := σ(i− b) (mod n).

Claim 5.5 (Claim 2.2 in Hassanieh et al. (2012a)). Let Pσ,a,bx be defined as in Definition 5.4. We
have that

P̂σ,a,bxπσ,b(i)
= x̂ie

−2πiσai/n.

hσ,b(i) is defined as the “bin” with the mapping of frequency i onto. We define oσ,b(i) as the “offset”.
We formally define them as follows:

Definition 5.6. Let the hash function be defined as hσ,b(i) := round(
πσ,b(i)B

n).

Definition 5.7. Let the offset function be defined as oσ,b(i) := πσ,b(i)− hσ,b(i)
n
B .

In this paper, we use the same filter function as Hassanieh et al. (2012a); Price & Song (2015); Chen
et al. (2016):

Definition 5.8. Given parameters B ≥ 1, δ > 0, α > 0, we say that (G, Ĝ′) = (GB,δ,α, Ĝ
′
B,δ,α) ∈

Rn × Rn is a filter function if it satisfies the following properties:

1. | supp(G)| = O(α−1B log(n/δ)).

2. if |i| ≤ (1− α)n/(2B), Ĝ′
i = 1.

3. if |i| ≥ n/(2B), Ĝ′
i = 0.

4. for all i, Ĝ′
i ∈ [0, 1].

5.
∥∥∥Ĝ′ − Ĝ

∥∥∥
∞

< δ.

5.4 COLLISION EVENT, LARGE OFFSET EVENT, AND LARGE NOISE EVENT

We use three types of events defined in Hassanieh et al. (2012a) as basic building blocks for analyzing
Fourier set query algorithms. For any i ∈ S, we define three types of events associated with i and S
and defined over the probability space induced by σ and b:

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

− (1−α)n
2B

(1−α)n
2B

− n
2B

n
2B

Figure 1: Filter Ĝ′

Definition 5.9 (Collision, large offset, large noise). The definition of three events are given as follow:

• We say “Large offset” event Eoff(i) holds if n(1− α)/(2B) ≤ |oσ,b(i)|.
• We say “Large noise” event Enoise(i) holds if

(αB)−1 · Err2(x̂′, k) ≤ E
[∥∥∥x̂′

h−1
σ,b(hσ,b(i))\S

∥∥∥2
2

]
.

• We say “Collision” event Ecoll(i) holds if hσ,b(i) ∈ hσ,b(S\{i}).
Definition 5.10 (Well-isolated). For a vector x ∈ Rn, we say a coordinate t ∈ [n] is “well isolated”
when none of “Collision” event, “Large offset” and “Large noise” event holds.

6 ANALYSIS ON FOURIER SET QUERY ALGORITHM

In this section, we will give an total analysis about our Algorithm 1. First, we provide the iterative
loop analysis which is the main part of our main function FOURIERSETQUERY in Section 6.1. By
this analysis, we demonstrate an important property of the Algorithm 1 in Section 6.2. In Section 6.3,
we prove the correctness of the algorithm. We also provide the analysis of the complexity (sample
and time) of Algorithm 1. Then we can give a satisfying answer to the problem (see Definition 3.2)
with Algorithm 1 attained by us whose performance (on sample and time complexity) is better than
prior works (see Table 1).

6.1 ITERATIVE LOOP ANALYSIS

Iterative loop analysis for Fourier set query is more tricky than the classic set query, because in
the Fourier case, hashing is not perfect, in the sense that by using spectrum permutation and filter
function (as the counterpart of hashing techniques), one coordinate can non-trivially contribute to
multiple bins.
Lemma 6.1 (Informal version of Lemma B.1). Consider an arbitrary filtering step i. Let x ∈ Rn,
γ ≤ 1/1000, αi = 1/(200i3), for a coordinate t ∈ [n] and each i ∈ [R], with probability at least
1− 6αi. Then, t is “well isolated” (see Definition 5.10).
Lemma 6.2 (Informal version of Lemma B.2). Let C ≥ 1000 and γ ≤ 1/1000. For all k ≥ 1 and
ϵi ∈ (0, 1), we define

ki := kγi−1,

ϵi := ϵ(10γ)i,

αi := 1/(200i3),

Bi := C · ki/(α2
i ϵi).

Let R > 1. If for all i ∈ [R], for all j ∈ [i− 1], we have

1. supp(ŵ(j)) ⊆ Sj .

2. |Sj+1| ≤ kj+1.

3. ẑ(j+1) = ẑ(j) + ŵ(j).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Algorithm 1 Fourier set query algorithm
1: procedure FOURIERSETQUERY(x, S, ϵ, k) ▷ Theorem 6.5
2: γ ← 1/1000, C ← 1000, ẑ(1) ← 0, S1 ← S
3: for i = 1→ R do
4: ki ← kγi, ϵi ← ϵ(10γ)i, αi ← 1/(100i3), Bi ← C · ki/(α2

i ϵi)
5: ŵ(i), Ti ← ESTIMATEVALUES(x, ẑ(i), Si, Bi, δ, αi) ▷ ŵ(i) is |Ti|-sparse
6: Si+1 ← Si\Ti

7: ẑ(i+1) ← ẑ(i) + ŵ(i)

8: end for
9: return ẑ(R+1)

10: end procedure
11: procedure ESTIMATEVALUES(x, ẑ, S,B, δ, α) ▷ Lemma 6.3
12: Choose a, b ∈ [n] uniformly at random
13: Choose σ uniformly at random from the set of odd numbers in [n]
14: û← HASHTOBINS(Pσ,a,b, α, ẑ, B, δ, x)
15: ŵ ← 0, T ← ∅
16: for t ∈ S do
17: if t is isolated from other coordinates of S then ▷ hσ,b(t) /∈ hσ,b(S\{t})
18: if no large offset then ▷ n(1− α)/(2B) > |oσ,b(t)|
19: ŵt ← ûhσ,b(t)e

− 2πi
n σat

20: T ← T ∪ {t}
21: end if
22: end if
23: end for
24: return ŵ, T
25: end procedure
26: procedure HASHTOBINS(Pσ,a,b, α, ẑ, B, δ, x)
27: Compute ŷjn/B for j ∈ [B], where y = GB,α,δ · (Pσ,a,bx)

28: Compute ŷ′jn/B = ŷjn/B − (Ĝ′
B,α,δ ∗ P̂σ,a,bz)jn/B

29: return ûj = ŷ′jn/B
30: end procedure

4. x̂(j+1) = x̂− ẑ(j+1).

5. ∥x̂(j+1)

Sj+1
∥22 ≤ (1 + ϵj)∥x̂(j)

Sj
∥22 + ϵjδ

2n∥x̂∥21,

then, with probability 1− 10αi/γ, we have |Si+1| ≤ ki+1.
Lemma 6.3 (Informal version of Lemma B.4). Let C ≥ 1000 and γ ≤ 1/1000. If for all k ≥ 1,
ϵ ∈ (0, 1), R ≥ 1, i ∈ [R], and j ∈ [i− 1], we have

1. supp(ŵ(j)) ⊆ Sj .

2. |Sj+1| ≤ kj+1.

3. ẑ(j+1) = ẑ(j) + ŵ(j).

4. x̂(j+1) = x̂− ẑ(j+1).

5. ∥x̂(j+1)

Sj+1
∥22 ≤ (1 + ϵj)∥x̂(j)

Sj
∥22 + ϵjδ

2n∥x̂∥21.

Then, with probability 1− 10αi/γ, we have

1. supp(ŵ(i)) ⊆ Si.

2. |Si+1| ≤ ki+1.

3. ẑ(i+1) = ẑ(i) + ŵ(i).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

4. x̂(i+1) = x̂− ẑ(i+1).

5. ∥x̂(i+1)

Si+1
∥22 ≤ (1 + ϵi)∥x̂(i)

Si
∥22 + ϵiδ

2n∥x̂∥21.

The proofs are deferred to Section B.1.

6.2 INDUCTION TO ALL THE ITERATIONS

For completeness, we give the induced result among all the iterations (i ∈ [R]). By the following
lemma at hand, we can finally attain the theorem in Section 6.3.

Lemma 6.4. Given parameters C ≥ 1000, γ ≤ 1/1000. For any k ≥ 1, ϵ ∈ (0, 1), R ≥ 1. For each
i ∈ [R], we have with probability 1− 10αi/γ, we have

|Si+1| ≤ ki

and

∥x̂(i+1)

Si+1
∥22 ≤ (1 + ϵi)∥x̂(i)

Si
∥22 + ϵiδ

2n∥x̂∥21

The details of the proof are provided in Section B.2.

6.3 MAIN RESULT

In this subsection, we give the main result as the following theorem.

Theorem 6.5 (Main result, formal version of Theorem 3.3). If all of the conditions are met

• Condition 1. Let x ∈ Cn, ϵ ∈ (0, 1), δ ∈ (0, 1).

• Condition 2. We denote x̂ as the Fourier transformation result.

• Condition 3. We define S ⊂ [n], |S| = k where k ≥ 1.

An algorithm (Algorithm 1) exists such that

• Part 1. It takes O(ϵ−1k log(n/δ)) samples from x.

• Part 2. It runs in O(ϵ−1k log(n/δ)).

• Part 3. It holds with probability at least 9/10.

• Part 4. It outputs a vector x′ ∈ Cn such that

∥(x′ − x̂)S∥22 ≤ ϵ∥x̂S∥22 + δ∥x̂∥21,

The proof is deferred to Section B.3.

7 CONCLUSION

Fourier transformation is an intensively researched topic in a variety of scientific disciplines. Numer-
ous applications exist within machine learning, signal processing, compressed sensing, etc. In this
paper, we study the problem of Fourier set query. With an approximation parameter ϵ, a vector x ∈ Cn

and a query set S ⊂ [n] of size k, our algorithm uses O(ϵ−1k log(n/δ)) Fourier measurements, runs
in O(ϵ−1k log(n/δ)) time and outputs a vector x′ such that ∥(x′ − x̂)S∥22 ≤ ϵ∥x̂S∥22 + δ∥x̂∥21 with
probability of at least 9/10. Currently, our result only holds for ℓ2, generalizing results to ℓp norm
could be an interesting future direction. This work is purely a theoretical result, we don’t know any
negative societal impact.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Abiodun M Aibinu, Momoh-Jimoh E Salami, Amir A Shafie, and Athaur R Najeeb. Mri reconstruction
using discrete fourier transform: a tutorial. 2008.

Boualem Boashash. Time-frequency signal analysis and processing: a comprehensive reference.
Academic press, 2015.

Jean Bourgain. An improved estimate in the restricted isometry problem. In Geometric Aspects of
Functional Analysis, pp. 65–70. Springer, 2014.

Emmanuel J Candes, Justin K Romberg, and Terence Tao. Stable signal recovery from incomplete and
inaccurate measurements. Communications on pure and applied mathematics, 59(8):1207–1223,
2006.

Xue Chen, Daniel M Kane, Eric Price, and Zhao Song. Fourier-sparse interpolation without a
frequency gap. In Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual Symposium
on, pp. 741–750. IEEE, 2016.

James W Cooley and John W Tukey. An algorithm for the machine calculation of complex Fourier
series. Mathematics of computation, 19(90):297–301, 1965.

Friedrich Gerard Friedlander, Mark Suresh Joshi, M Joshi, and Mohan C Joshi. Introduction to the
Theory of Distributions. Cambridge University Press, 1998.

Anna C Gilbert, S Muthukrishnan, and Martin Strauss. Improved time bounds for near-optimal sparse
Fourier representations. In Optics & Photonics 2005, pp. 59141A–59141A. International Society
for Optics and Photonics, 2005.

J.W. Goodman. Introduction to Fourier Optics. W. H. Freeman, 2017. ISBN 9781319153045. URL
https://books.google.com/books?id=9zY8DwAAQBAJ.

Peter R Griffiths. Fourier transform infrared spectrometry. Science, 222(4621):297–302, 1983.

Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price. Nearly optimal sparse fourier transform.
In Proceedings of the forty-fourth annual ACM symposium on Theory of computing, pp. 563–578.
ACM, 2012a.

Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price. Simple and practical algorithm for
sparse Fourier transform. In Proceedings of the twenty-third annual ACM-SIAM symposium on
Discrete Algorithms, pp. 1183–1194. SIAM, 2012b.

David I Hoult and Balram Bhakar. Nmr signal reception: Virtual photons and coherent spontaneous
emission. Concepts in Magnetic Resonance: An Educational Journal, 9(5):277–297, 1997.

Piotr Indyk and Michael Kapralov. Sample-optimal fourier sampling in any constant dimension. In
Foundations of Computer Science (FOCS), 2014 IEEE 55th Annual Symposium on, pp. 514–523.
IEEE, 2014.

Piotr Indyk, Michael Kapralov, and Eric Price. (Nearly) Sample-optimal sparse Fourier transform.
In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
480–499. SIAM, 2014.

Mark A Iwen. Improved approximation guarantees for sublinear-time Fourier algorithms. Applied
And Computational Harmonic Analysis, 34(1):57–82, 2013.

Yaonan Jin, Daogao Liu, and Zhao Song. A robust multi-dimensional sparse fourier transform in the
continuous setting. arXiv preprint arXiv:2005.06156, 2020.

Michael Kapralov. Sparse Fourier transform in any constant dimension with nearly-optimal sample
complexity in sublinear time. In Symposium on Theory of Computing Conference, STOC’16,
Cambridge, MA, USA, June 19-21, 2016, 2016.

10

https://books.google.com/books?id=9zY8DwAAQBAJ

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Michael Kapralov. Sample efficient estimation and recovery in sparse fft via isolation on average.
In Foundations of Computer Science, 2017. FOCS’17. IEEE 58th Annual IEEE Symposium on.
https://arxiv.org/pdf/1708.04544, 2017.

Clare D McGillem and George R Cooper. Continuous and discrete signal and system analysis.
Harcourt School, 1991.

Vasileios Nakos, Zhao Song, and Zhengyu Wang. (nearly) sample-optimal sparse fourier transform
in any dimension; ripless and filterless. In 2019 IEEE 60th Annual Symposium on Foundations of
Computer Science (FOCS), pp. 1568–1577. IEEE, 2019.

Eric Price. Efficient sketches for the set query problem. In Proceedings of the twenty-second annual
ACM-SIAM symposium on Discrete Algorithms, pp. 41–56. Society for Industrial and Applied
Mathematics, 2011.

Eric Price and Zhao Song. A robust sparse Fourier transform in the continuous setting. In Foundations
of Computer Science (FOCS), 2015 IEEE 56th Annual Symposium on, pp. 583–600. IEEE, 2015.

John G Proakis. Digital signal processing: principles algorithms and applications. Pearson Education
India, 2001.

Isidor Isaac Rabi, Jerrold R Zacharias, Sidney Millman, and Polykarp Kusch. A new method of
measuring nuclear magnetic moment. Physical review, 53(4):318, 1938.

George O Reynolds. The New Physical Optics Notebook: Tutorials in Fourier Optics. ERIC, 1989.

Mark Rudelson and Roman Vershynin. On sparse reconstruction from fourier and gaussian measure-
ments. Communications on Pure and Applied Mathematics, 61(8):1025–1045, 2008.

Louis L Scharf and Cédric Demeure. Statistical signal processing: detection, estimation, and time
series analysis. Prentice Hall, 1991.

Klaus Schmidt-Rohr and Hans Wolfgang Spiess. Multidimensional solid-state NMR and polymers.
Elsevier, 2012.

Peter J Schreier and Louis L Scharf. Statistical signal processing of complex-valued data: the theory
of improper and noncircular signals. Cambridge university press, 2010.

Lixin Shi, Ovidiu Andronesi, Haitham Hassanieh, Badih Ghazi, Dina Katabi, and Elfar Adalsteinsson.
Mrs sparse-fft: Reducing acquisition time and artifacts for in vivo 2d correlation spectroscopy. In
ISMRM13, Int. Society for Magnetic Resonance in Medicine Annual Meeting and Exhibition, 2013.

Zhao Song, Baocheng Sun, Omri Weinstein, and Ruizhe Zhang. Sparse fourier transform over lattices:
A unified approach to signal reconstruction. http://arxiv.org/abs/2205.00658, 2022.

David George Voelz. Computational fourier optics: a MATLAB tutorial. SPIE press Bellingham,
Washington, 2011.

Mark M Wilde. Quantum information theory. Cambridge University Press, 2013.

11

https://arxiv.org/pdf/1708.04544

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

APPENDIX

Roadmap. In Section A, we introduce notations and technique tools used in our paper. In Section B,
our analysis of our main result is presented.

A PRELIMINARY

In this section, we first present some definitions and background for Fourier transform in Section A.1.
We introduce some technical tools in Section A.2. Then we introduce spectrum permutations and
filter functions in Section A.3. They are used as hashing schemes in the Fourier transform literature.
In Section A.4, we introduce collision events. large offset events, and large noise events.

A.1 NOTATIONS

We use i to denote
√
−1. Note that eiθ = cos(θ) + i sin(θ). For any complex number z ∈ C,

we have z = a + ib, where a, b ∈ R. We define the complement of z as z = a − ib. We define
|z| =

√
zz =

√
a2 + b2. For any complex vector x ∈ Cn, we use supp(x) to denote the support of

x, and then ∥x∥0 = | supp(x)|. We define ω = e2πi/n, which is the n-th unitary root i.e. ωn = 1.

The discrete convolution of functions f and g is given by,

(f ∗ g)[n] =
+∞∑

m=−∞
f [m]g[n−m]

For a complex vector x ∈ Cn, we use x̂ ∈ Cn to denote its Fourier spectrum,

x̂i =
1√
n

n∑
j=1

e−2πiij/nxj ,∀i ∈ [n].

Then the inverse transform is

xj =
1√
n

n∑
i=1

e2πiij/nx̂i,∀j ∈ [n].

We define

Err(x, k) := min
k-sparse y

∥x− y∥2.

We define xS as a vector by setting if i ∈ S, (xS)i = xi and otherwise (xS)i = 0, for a vector
x ∈ Rn and a set S ⊆ [n].

A.2 TECHNICAL TOOLS

We show several technical tools and some lemmas in prior works we used in the following section.

Lemma A.1 (Markov’s inequality). If X is a nonnegative random variable and a > 0, then the
probability that X is at least a is at most the expectation of X divided by a:

Pr[X ≥ a] ≤ E(X)

a
.

Let a = ã · E(X) (where ã > 0); then we can rewrite the previous inequality as

Pr[X ≥ ã · E(X)] ≤ 1

ã

The following two lemmas of complex number are standard. We prove the following two lemmas for
the completeness of the paper.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Lemma A.2. Given a fixed vector x ∈ Rn and a pairwise independent random variable σi where
σi = ±1 with probability 1/2 respectively. Then we have:

E
σ
[(

n∑
i=1

σixi)
2] = ∥x∥22

Proof. We have:

E
σ
[(

n∑
i=1

σixi)
2]

= E[
n∑

i=1

σ2
i x

2
i] + E[

∑
i ̸=j

σixiσjxj]

= E[
n∑

i=1

σ2
i x

2
i] +

∑
i ̸=j

E[σiσj]xixj

= E[
n∑

i=1

σ2
i x

2
i] +

∑
i ̸=j

E[σi] · E[σj]xixj

= E[
n∑

i=1

σ2
i x

2
i] + 0

= ∥x∥22
where the first step comes from the linearity of expectation, the second step follows the linearity of
expectation, the third step σi is a pairwise independent random variable, the fourth step follows that
E[σi] = 0 , and the final step comes from the definition of ∥ · ∥2 and σ2

i = 1.

Lemma A.3. Let a ∼ [n] uniformly at random. Given a fixed vector x ∈ Cn and ωσai, then we have:

E
a
[|

n∑
i=1

xiω
σai|2] = ∥x∥22

Proof. For any fixed i ∈ [n], we have the inequality as follows

E
a
[ωai] =

1

n

n∑
a=1

ωai =
1

n
· 1− ωni

1− ωi
= 0 (2)

where the first step comes from geometric sum, and the second step comes from We have:

E
a
[|

n∑
i=1

xiω
σai|2]

= E
a
[(

n∑
i=1

xiω
σai)(

n∑
i=1

x̄iω
−σai)]

= E
a
[

n∑
i=1

xix̄i] + E
a
[
∑
i ̸=j

xiω
σaix̄jω

−σaj]

= E
a
[

n∑
i=1

xix̄i] +
∑
i ̸=j

E
a
[ωσa(i−j)]xix̄j

= E
a
[

n∑
i=1

xix̄i] + 0

= ∥x∥22
where the first step follows that for a complex number z, |z|2 = zz̄, the second step follows the
linearity of expectation, the third step follows the linearity of expectation, where the fourth step
follows Eq.2, and the final step comes from the definition of ∥ · ∥2.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A.3 PERMUTATION AND FILTER FUNCTION

We use the same (pseudorandom) spectrum permutation as Hassanieh et al. (2012a),
Definition A.4. Suppose σ−1 exists mod n. We define the permutation Pσ,a,b by

(Pσ,a,bx)i = xσ(i−a)e
−2πiσbi/n.

We also define πσ,b = σ(i− b) (mod n). Then we have
Claim A.5. We have that

P̂σ,a,bxπσ,b(i)
= x̂ie

−2πiσai/n.

hσ,b(i) is defined as the “bin” with the mapping of frequency i onto. We define oσ,b(i) as the “offset”.
We formally define them as follows:
Definition A.6. Let the hash function be defined as

hσ,b(i) := round(
πσ,b(i)B

n
).

Definition A.7. Let the offset function be defined as

oσ,b(i) := πσ,b(i)− hσ,b(i)
n

B
.

We use the same filter function as Hassanieh et al. (2012a); Price & Song (2015); Chen et al. (2016),

Definition A.8. Given parameters B ≥ 1, δ > 0, α > 0. We say that (G, Ĝ′) = (GB,δ,α, Ĝ
′
B,δ,α) ∈

Rn is a filter function if it satisfies the following properties:

1. | supp(G)| = O(α−1B log(n/δ)).

2. if |i| ≤ (1− α)n/(2B), Ĝ′
i = 1.

3. if |i| ≥ n/(2B), Ĝ′
i = 0.

4. for all i, Ĝ′
i ∈ [0, 1].

5.
∥∥∥Ĝ′ − Ĝ

∥∥∥
∞

<∞.

A.4 COLLISION EVENT, LARGE OFFSET EVENT, AND LARGE NOISE EVENT

We use three types of events defined in Hassanieh et al. (2012a) as basic building blocks for analyzing
Fourier set query algorithms. For any i ∈ S, we define three types of events associated with i and S
and defined over the probability space induced by σ and b:
Definition A.9 (Collision, large offset, large noise). The definition of three events are given as follow:

• We say “Large offset” event Eoff(i) holds if

n(1− α)/(2B) ≤ |oσ,b(i)|.

• We say “Large noise” event Enoise(i) holds if

(αB)−1 · Err2(x̂′, k) ≤ E
[∥∥∥x̂′

h−1
σ,b(hσ,b(i))\S

∥∥∥2
2

]
.

• We say “Collision” event Ecoll(i) holds if

hσ,b(i) ∈ hσ,b(S\{i}).
Definition A.10 (Well-isolated). For a vector x ∈ Rn, we say a coordinate t ∈ [n] is “well isolated”
when none of “Collision” event, “Large offset” and “Large noise” event holds.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Claim A.11 (Claim 3.1 in Hassanieh et al. (2012a)). For all i ∈ S, we have

Pr[Ecoll(i)] ≤ 4
|S|
B

.

Claim A.12 (Claim 3.2 in Hassanieh et al. (2012a)). For all i ∈ S, we have

Pr[Eoff(i)] ≤ α.

Claim A.13 (Claim 4.1 in Hassanieh et al. (2012a)). For any i ∈ S, the event Enoise(i) holds with
probability at most 4α

Pr[Enoise(i)] ≤ 4α.

Lemma A.14 (Lemma 4.2 in Hassanieh et al. (2012a)). With B divide n, a uniformly sampled from
[n] and the others without limitation in

û = HASHTOBINS(Pσ,a,b, α, ẑ, B, δ, x).

With all of Eoff(i), Ecoll(i) and Enoise(i) not holding and j = hσ,b(i), we have for all i ∈ [n],

E
[∣∣∣x̂′

ie
− 2πi

n aσi
∣∣∣2 − ûj

]
≤ 2

ρ2

αB
.

Lemma A.15 (Lemma 3.3 in Hassanieh et al. (2012a)). Suppose B divides n. The output û of
HASHTOBINS satisfies

ûj =
∑

hσ,b(i)=j

̂(x− z)i(Ĝ
′
B,δ,α)−oσ,b(i)ω

aσi ± δ∥x̂∥1.

Let
ζ := |{i ∈ supp(ẑ) | Eoff(i)}|.

The running time of HASHTOBINS is

O(
B

α
log(n/δ) + ∥ẑ∥0 + ζ log(n/δ)).

B ANALYSIS ON FOURIER SET QUERY ALGORITHM

In this section, we will give an total analysis about our Algorithm 1. First, we will provide the iterative
loop analysis which is the main part of our main function FOURIERSETQUERY in Section B.1. By
this analysis, we demonstrate an important property of the Algorithm 1 in Section B.2. In Section B.3,
we prove the the correctness of the algorithm. We also provide the analysis of the complexity (sample
and time) of Algorithm 1. Then we can give an satisfying answer to the problem (See Definition 3.2)
with Algorithm 1 attained by us whose performance (on sample and time complexity) is better than
prior works (See Table 1).

B.1 ITERATIVE LOOP ANALYSIS

Iterative loop analysis for Fourier set query is more tricky than the classic set query, because in
the Fourier case, hashing is not perfect, in the sense that by using spectrum permutation and filter
function (as the counterpart of hashing techniques), one coordinate can non-trivially contribute to
multiple bins. We give iterative loop induction in Lemma B.4.
Lemma B.1. Given a vector x ∈ Rn, γ ≤ 1/1000, αi = 1/(200i3), for a coordinate t ∈ [n] and
each i ∈ [R], with probability at least 1− 6αi, We say that t is “well isolated” (See Definition 5.10).

Proof. Collision. Using Claim A.11, for any t ∈ Si, the event Ecoll(t) holds with probability at most

4|Si|/Bi ≤
4ki

Cki/(α2
i ϵi)

= 4α2
i ϵi/C

≤ αi,

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

where the first step follows from the definition of Bi and the assumption on |Si|, the second step is
straightforward, the third step follows from the definition of ϵi, αi, and C.

It means

Pr
σ,b

[Ecoll(t)] ≤ αi.

Large offset. Using Claim A.12, for any t ∈ Si, the event Eoff(t) holds with probability at most αi,
i.e.

Pr
σ,b

[Eoff(t)] ≤ αi.

Large noise. Using Claim A.13, for any t ∈ Si,

Pr
σ,b

[Enoise(t)] ≤ 4αi.

By a union bound over the above three events, we have t is “well isolated” with probability at least
1− 6αi.

Lemma B.2. Given parameters C ≥ 1000, γ ≤ 1/1000. For any k ≥ 1, ϵ ∈ (0, 1), R ≥ 1. For
each i ∈ [R], we define

ki := kγi−1,

ϵi := ϵ(10γ)i,

αi := 1/(200i3),

Bi := C · ki/(α2
i ϵi).

For each i ∈ [R]: If for all j ≤ [i− 1] we have

1. supp(ŵ(j)) ⊆ Sj .

2. |Sj+1| ≤ kj+1.

3. ẑ(j+1) = ẑ(j) + ŵ(j).

4. x̂(j+1) = x̂− ẑ(j+1).

5. ∥x̂(j+1)

Sj+1
∥22 ≤ (1 + ϵj)∥x̂(j)

Sj
∥22 + ϵjδ

2n∥x̂∥21.

Then, with probability 1− 10αi/γ, we have

|Si+1| ≤ ki+1.

Proof. We consider a particular step i. We can condition on |Si| ≤ ki.

By Lemma 6.1, we have t is “well isolated” with probability at least 1− 6αi.

Therefore, each t ∈ Si lies in Ti with probability at least 1 − 6αi. We have Then by Markov’s
inequality (See Lemma A.1) and assumption in the statement, we have

|Si\Ti| ≤ γki (3)

with probability 1− 6αi/γ. Then we know that

|Si+1| = |Si\Ti|
≤ γki

≤ ki+1.

where the first step follows from the definition of Si+1 = Si\Ti, the second step follows from Eq. (3),
the third step follows from the definition of ki and ki+1.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Lemma B.3. Given parameters C ≥ 1000, γ ≤ 1/1000. For any k ≥ 1, ϵ ∈ (0, 1), R ≥ 1. For
each i ∈ [R], we define

ki := kγi−1,

ϵi := ϵ(10γ)i,

αi := 1/(200i3),

Bi := C · ki/(α2
i ϵi).

For each i ∈ [R]: If for all j ≤ [i− 1] we have

1. supp(ŵ(j)) ⊆ Sj .

2. |Sj+1| ≤ kj+1.

3. ẑ(j+1) = ẑ(j) + ŵ(j).

4. x̂(j+1) = x̂− ẑ(j+1).

5. ∥x̂(j+1)

Sj+1
∥22 ≤ (1 + ϵj)∥x̂(j)

Sj
∥22 + ϵjδ

2n∥x̂∥21.

Then, with probability 1− 10αi/γ, we have

Pr

[∥∥∥x̂(i)
Ti
− ŵ(i)

∥∥∥2
2
≤ ϵi

20
(∥x̂(i)

Si
∥22 + δ2n∥x̂∥21)

]
≥ 1− αi.

Proof. We define ρ(i) and µ(i) as follows

ρ(i) =
∥∥∥x̂(i)

Si

∥∥∥2
2
+ δ2n∥x̂∥21,

µ(i) =
ϵi
ki

(∥∥∥x̂(i)

Si

∥∥∥2
2
+ δ2n∥x̂∥21

)
. (4)

For a fixed t ∈ Si, let j = hσ,b(t). By Lemma A.15, we have

ûj − x̂
(i)
t ωaσt =

∑
t′∈Ti

Ĝ′
−oσ(t′)

x̂
(i)
t′ ω

aσt′ ± δ∥x̂∥1 (5)

For each t ∈ Si, we define set Qi,t = h−1
σ,b(j)\{t}. Let Ti be the set of coordinates t ∈ Si such that

Qi,t ∩ Si = ∅. Then it is easy to observe that

∑
t∈Ti

∣∣∣∣∣∣
∑

t′∈Qi,t

Ĝ′
−oσ(t′)

x̂
(i)
t′ ω

aσt′

∣∣∣∣∣∣
2

=
∑
t∈Ti

∣∣∣∣∣∣
∑

t′∈Qi,t\Si

Ĝ′
−oσ(t′)

x̂
(i)
t′ ω

aσt′

∣∣∣∣∣∣
2

≤
∑
t∈Si

∣∣∣∣∣∣
∑

t′∈Qi,t\Si

Ĝ′
−oσ(t′)

x̂
(i)
t′ ω

aσt′

∣∣∣∣∣∣
2

where the first step comes from Qi,t ∩ Si = ∅, and the second step follows that Ti ⊆ Si.

We can calculate the expectation of ∥x̂(i)
Ti
− ŵ(i)∥22.

We first demonstrate that

E
σ,a,b

[∥∥∥x̂(i)
Ti
− ŵ(i)

∥∥∥2
2

]
= E

σ,a,b

[∑
t∈Ti

|x̂(i)
t − ûhσ,b(t)ω

−aσt|2
]
.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

then get the upper bound of

E
σ,a,b

[∑
t∈Ti

|x̂(i)
t − ûhσ,b(t)ω

−aσt|2
]

.

We have

E
σ,a,b

[∥∥∥x̂(i)
Ti
− ŵ(i)

∥∥∥2
2

]
= E

σ,a,b

[∑
t∈Ti

|x̂(i)
t − ŵ

(i)
t |2

]

= E
σ,a,b

[∑
t∈Ti

|x̂(i)
t − ûhσ,b(t)ω

−aσt|2
]

= E
σ,a,b

[∑
t∈Ti

|x̂(i)
t ωaσt − ûhσ,b(t)|2

]
where the first step follows that summation over Ti, the second step comes from the definition of
ŵ

(i)
t (in Line 19 in Algorithm 1), the third step follows that

|x̂(i)
t − ûhσ,b(t)ω

−aσt| = |ω−aσt| · |x̂(i)
t ωaσt − ûhσ,b(t)|

and |ω−aσt| = 1, the fourth step comes from Eq. (5).

And then we have

E
σ,a,b

[∥∥∥x̂(i)
Ti
− ŵ(i)

∥∥∥2
2

]
= E

σ,a,b

[∑
t∈Ti

|x̂(i)
t ωaσt − ûhσ,b(t)|2

]

≤
∑
t∈Si

2 E
σ,a,b


∣∣∣∣∣∣

∑
t′∈Qi,t\Si

Ĝ′
−oσ(t′)

x̂
(i)
t′ ω

aσt′

∣∣∣∣∣∣
2
+ δ2∥x̂∥21

≤
∑
t∈Si

2 E
σ,b

 ∑
t′∈Qi,t\Si

∣∣∣Ĝ′
−oσ(t′)

x̂
(i)
t′

∣∣∣2
+ δ2∥x̂∥21

=
∑
t∈Si

2 E
σ,b

 ∑
t′∈Si

1(t′ ∈ Qi,t\Si) ·
∣∣∣Ĝ′

−oσ(t′)
x̂
(i)
t′

∣∣∣2
+ δ2∥x̂∥21

≤
∑
t∈Si

(
1

Bi
∥x̂(i)

Si
∥22 + δ2∥x̂∥21)

≤ |Si|
Bi
∥x̂(i)

Si
∥22 + δ2|Si| · ∥x̂∥21

≤ ϵiα
2
i

C
∥x̂(i)

Si
∥22 + δ2|Si| · ∥x̂∥21,

where the first step follows the equation above, the second step follows Lemma 5.3, the third step
follows from expanding the squared sum, the fourth step follows that if A1 ⊆ A2, we have∑

i∈A1

f(i) =
∑
i∈A2

1(i ∈ A1)f(i),

the fifth step follows for two pairwise independent random variable t and t′, we have hσ,b(t) = hσ,b(t
′)

holds with probability at most 1/Bi, the sixth step comes from the summation over Si, and the last
step follows from |Si| ≤ ki and Bi = C · ki/(α2

i ϵi).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Then, using Markov’s inequality, we have,

Pr

[∥∥∥x̂(i)
Ti
− ŵ(i)

∥∥∥2
2
≥ ϵiαi

C
∥x̂(i)

Si
∥22 + δ2

|Si|
αi
∥x̂∥21

]
≤ αi.

Note that

ϵiαi

C
∥x̂(i)

Si
∥22 + δ2

|Si|
αi
∥x̂∥21 ≤

ϵi
C
∥x̂(i)

Si
∥22 + δ2

|Si|
αi
∥x̂∥21

≤ ϵi
C
∥x̂(i)

Si
∥22 +

ϵi
C
δ2Bi∥x̂∥21

≤ ϵi
C
∥x̂(i)

Si
∥22 +

ϵi
C
δ2n∥x̂∥21

≤ ϵi
20

(∥x̂(i)

Si
∥22 + δ2n∥x̂∥21),

where the first step follows by αi ≤ 1, the second step follows by |Si| ≤ ki = ϵiBiα
2
i /C, the third

step follows by Bi ≤ n, the last step follows by C ≥ 1000.

Thus, we have

Pr

[∥∥∥x̂(i)
Ti
− ŵ(i)

∥∥∥2
2
≤ ϵi

20
(∥x̂(i)

Si
∥22 + δ2n∥x̂∥21)

]
≥ 1− αi.

Lemma B.4. Given parameters C ≥ 1000, γ ≤ 1/1000. For any k ≥ 1, ϵ ∈ (0, 1), R ≥ 1. For
each i ∈ [R], we define

ki := kγi−1,

ϵi := ϵ(10γ)i,

αi := 1/(200i3),

Bi := C · ki/(α2
i ϵi).

For each i ∈ [R]: If for all j ≤ [i− 1] we have

1. supp(ŵ(j)) ⊆ Sj .

2. |Sj+1| ≤ kj+1.

3. ẑ(j+1) = ẑ(j) + ŵ(j).

4. x̂(j+1) = x̂− ẑ(j+1).

5. ∥x̂(j+1)

Sj+1
∥22 ≤ (1 + ϵj)∥x̂(j)

Sj
∥22 + ϵjδ

2n∥x̂∥21.

Then, with probability 1− 10αi/γ, we have

1. supp(ŵ(i)) ⊆ Si.

2. |Si+1| ≤ ki+1.

3. ẑ(i+1) = ẑ(i) + ŵ(i).

4. x̂(i+1) = x̂− ẑ(i+1).

5. ∥x̂(i+1)

Si+1
∥22 ≤ (1 + ϵi)∥x̂(i)

Si
∥22 + ϵiδ

2n∥x̂∥21.

Proof. We will prove the five results one by one.

Part 1.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Follows from Line 19 in the Algorithm 1, we have that

supp(ŵ(i)) ⊆ Si.

Part 2.

By Lemma 6.2, we have that

|Si+1| ≤ ki.

Part 3.

Follows from Line 7 in the Algorithm 1, we have that

ẑ(i+1) = ẑ(i) + ŵ(i).

Part 4.

Follows from Line 28 in the Algorithm 1, we have that

x̂(i+1) = x̂− ẑ(i+1).

Part 5.

By Lemma B.3, we have that

Pr

[∥∥∥x̂(i)
Ti
− ŵ(i)

∥∥∥2
2
≤ ϵi

20
(∥x̂(i)

Si
∥22 + δ2n∥x̂∥21)

]
≥ 1− αi. (6)

Recall that

ŵ(i) = ẑ(i+1) − ẑ(i) = x̂(i) − x̂(i+1).

It is obvious that

supp(ŵ(i)) ⊆ Ti.

Conditioning on all coordinates in Ti are well isolated and Eq. (6) holds, we have

∥x̂(i+1)

Si+1
∥22 = ∥(x̂(i) − ŵ(i))Si+1

∥22
= ∥x̂(i)

Si+1
− ŵ

(i)

Si+1
∥22

= ∥x̂(i)

Si+1
− ŵ(i)∥22

= ∥x̂(i)

Si∪Ti
− ŵ(i)∥22

= ∥x̂(i)

Si
∥22 + ∥x̂(i)

Ti
− ŵ(i)∥22

≤ ∥x̂(i)

Si
∥22 + ϵi(∥x̂(i)

Si
∥22 + δ2n∥x̂∥21)

= (1 + ϵi)∥x̂(i)

Si
∥22 + ϵiδ

2n∥x̂∥21.

where the first step comes from x̂(i+1) = x̂(i) − ŵ(i), the second step is due to rearranging the terms,
the third step is due to ŵ(i) = ŵ

(i)

Si+1
, and the fourth step comes from Si = Ti ∪ Si+1, the fifth step

is due to rearranging the terms, the sixth step the comes from a Eq. (6), and the final step comes from
merging the ∥x̂(i)

Si
∥22 terms.

B.2 INDUCTION TO ALL THE ITERATIONS

For completeness, we give the induced result among the all the iterations (i ∈ [R]). By the following
lemma at hand, we can finally attain the theorem in Section B.3.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Lemma B.5. Given parameters C ≥ 1000, γ ≤ 1/1000. For any k ≥ 1, ϵ ∈ (0, 1), R ≥ 1. For
each i ∈ [R], we define

ki := kγi−1,

ϵi := ϵ(10γ)i,

αi := 1/(200i3),

Bi := C · ki/(α2
i ϵi).

For each i ∈ [R], we have with probability 1− 10αi/γ, we have

|Si+1| ≤ ki

and

∥x̂(i+1)

Si+1
∥22 ≤ (1 + ϵi)∥x̂(i)

Si
∥22 + ϵiδ

2n∥x̂∥21

Proof. Our proof can be divided into two parts. At first, we consider the correctness of the inequalities
above with i = 1. And then based on the result we attain above (See Lemma B.4) and inducing over
i ∈ [n], the proof will be complete.

By Lemma 6.1, we have with probability 1− 6α1, t is well isolated (See Definition 5.10).

Part 1.

We have |S1| = |S| ≤ k = ki. (See Definition 3.2). And then by Lemma B.3, we have that for
i ∈ [R], |Si+1| ≤ ki.

Part 2. Given that all coordinates t ∈ [n] in T1 are well isolated, with probability at least 1− 10αi/γ,
we have

∥x̂(2)

S2
∥22 = ∥(x̂(1) − ŵ(1))S2

∥22
= ∥x̂(1)

S2
− ŵ

(1)

S2
∥22

= ∥x̂(1)

S2
− ŵ(1)∥22

= ∥x̂(1)

S1∪T1
− ŵ(1)∥22

= ∥x̂(1)

S1
∥22 + ∥x̂(1)

T1
− ŵ(1)∥22

≤ ∥x̂(1)

S1
∥22 + ϵ1(∥x̂(1)

S1
∥22 + δ2n∥x̂∥21)

= (1 + ϵ1)∥x̂(1)

S1
∥22 + ϵ1δ

2n∥x̂∥21.

where the first step comes from x̂(2) = x̂(1) − ŵ(1), the second step is due to rearranging the terms,
the third step is due to ŵ(1) = ŵ

(1)

S2
, and the forth step comes from S1 = T1 ∪ S2, the fifth step is due

to rearranging the terms, the sixth step the comes from expanding the terms, and the final step comes
from merging the ∥x̂(1)

S1
∥22 terms.

By Lemma B.4, for all i ∈ [R], we can have

∥x̂(i+1)

Si+1
∥22 ≤ (1 + ϵi)∥x̂(i)

Si
∥22 + ϵiδ

2n∥x̂∥21

B.3 MAIN RESULT

In this subsection, we give the main result as the following theorem.

Theorem B.6 (Main result). If all of the requirements are met

• Requirement 1. Let x ∈ C.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

• Requirement 2. We denote x̂ as the Fourier transformation result.

• Requirement 3. Let ϵ ∈ (0, 1), δ ∈ (0, 1).

• Requirement 4. We define S ⊆ [n], |S| = k where k ≥ 1.

An algorithm (Algorithm 1) exists such that

• Part 1. It takes O(ϵ−1k log(n/δ)) samples from x.

• Part 2. It runs in O(ϵ−1k log(n/δ)).

• Part 3. It holds with probability at least 9/10.

• Part 4. It outputs a vector x′ ∈ Cn such that

∥(x′ − x̂)S∥22 ≤ ϵ∥x̂S∥22 + δ∥x̂∥21,

Proof. By Lemma 6.4, we can conclude that with R = log k iterations, we will obtain the result we
want. Then we will give the analysis about the time complexity and sample complexity.

Proof of Part 1. From analysis above, the sample needed in each iteration is O((Bi/αi) log(n/δ))
then we have the following complexity.

The sample complexity of ESTIMATION is

R∑
i=1

(Bi/αi) log(n/δ) = O(ϵ−1k log(n/δ)).

Proof of Part 2. The time in each iteration mainly from two parts. The EstimateValues and
HashToBins functions. For the running time of EstimateValues, its running time is mainly from loop.
The number of the iterations of the loop can be bounded by

O(Bi/αi log(n/δ))

.

By Lemma A.15, we can obtain the time complexity of HashToBins with the bound of

O(Bi/αi log(n/δ)).

This function is used only once at each iteration.

Let R = log k. We can have the following equation. The Time complexity of ESTIMATION is

R∑
i=1

(Bi/αi) log(n/δ) = O(ϵ−1k log(n/δ)).

Proof of Part 3. We union bound the query error probability over the iterations R = log k in
Lemma B.4.

Using Lemma B.4, we can obtain the failure probability in each iteration as alphai/γ.

Thus, the overall failure probability can be expressed as follows:

R∑
i=1

10αi/γ < 1/10.

Proof of Part 4. To bound the query error, we will bound the ∥x̂(i)

Si
∥22 first. By Lemma B.4, it

follows that

∥x̂(i)

Si
∥22 ≤ (1 + ϵi)∥x̂(i)

Si
∥22 + ϵiδ

2n∥x̂∥21

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

≤ (1 + ϵi)(1 + ϵi−1)∥x̂(i−1)

Si−1
∥22

+ ((1 + ϵi)ϵi−1 + ϵi)δ
2n∥x̂∥21

≤
i∏

j=1

(1 + ϵj)∥x̂Sj
∥22 +

i∑
j=1

ϵjδ
2n∥x̂∥21

i∏
l=j+1

(1 + ϵl)

≤ 8(∥x̂Si
∥22 + δ2n∥x̂∥21), (7)

where the first step comes from the assumption in Lemma B.4, the second step comes from the
assumption in Lemma B.4, the third step refers to recursively applying the second step, the last step
follows from simple algebra.

Now the query error can be bounded as follows

∥x̂S − ẑ(R+1)∥22 =

R∑
i=1

∥x̂(i)
Ti
− ŵ(i)∥22

≤
R∑
i=1

kiµ
(i)/20

≤
R∑
i=1

ϵi(∥x̂(i)

Si
∥22 + δ2n∥x̂∥21)/20

≤
R∑
i=1

ϵi · 10(∥x̂S∥22 + δ2n∥x̂∥21)/20

≤ ϵ(∥x̂S∥22 + δ2n∥x̂∥21).

where the first step follows that Ti is well isolated (See Definition 5.10) and ŵ(i) = ẑ(i+1) − ẑ(i), the
second step is by Eq. (6), the third step comes from definition of µ(i) in Eq. (4), the fourth step follows
from Eq.(7), and the final step follows from the geometric sum, ϵi = ϵ(10γ)i and γ ≤ 1/1000.

23

	Introduction
	Related Work
	Fourier set query
	Fourier set query problem
	Our Result

	Technique Overview
	Preliminary
	Fourier transform
	Technical Tools
	Permutation and filter function
	Collision event, large offset event, and large noise event

	Analysis on Fourier Set Query Algorithm
	Iterative loop analysis
	Induction to all the iterations
	Main result

	Conclusion
	Preliminary
	Notations
	Technical Tools
	Permutation and filter function
	Collision event, large offset event, and large noise event

	Analysis on Fourier Set Query Algorithm
	Iterative loop analysis
	Induction to all the iterations
	Main result

