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Abstract

We address the problem of safely learning controlled stochastic dynamics from
discrete-time trajectory observations, ensuring system trajectories remain within
predefined safe regions during both training and deployment. Safety-critical con-
straints of this kind are crucial in applications such as autonomous robotics, finance,
and biomedicine. We introduce a method that ensures safe exploration and efficient
estimation of system dynamics by iteratively expanding an initial known safe con-
trol set using kernel-based confidence bounds. After training, the learned model
enables predictions of the system’s dynamics and permits safety verification of
any given control. Our approach requires only mild smoothness assumptions and
access to an initial safe control set, enabling broad applicability to complex real-
world systems. We provide theoretical guarantees for safety and derive adaptive
learning rates that improve with increasing Sobolev regularity of the true dynamics.
Experimental evaluations demonstrate the practical effectiveness of our method in
terms of safety, estimation accuracy, and computational efficiency.

1 Introduction

We consider the problem of safely learning the dynamics of controlled continuous-time stochastic
systems from discrete-time observations of trajectory data. This setting is common in applications
such as robotics, finance, and healthcare, where system dynamics are only partially known and
must be estimated from data. A key challenge in these applications is ensuring safety during both
the learning phase and subsequent deployment [1; 2]. As an example, consider an autonomous
robot navigating a partially known and turbulent environment, as illustrated in Figure [l While
the deterministic part of the dynamics may be approximately modeled using prior knowledge, the
stochastic disturbances (represented by the brown region in Figure[I)) due to wind or sensor noise are
often unknown and must be learned. Collecting data through naive exploration can result in unsafe
trajectories, potentially causing damage to the system or its environment. A second example arises
in financial portfolio management, where the drift component of asset prices may be known from
historical data, but market volatility remains uncertain. Safety here may correspond to the requirement
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Figure 1: Illustration of a complex, smooth dynamical system under deterministic conditions (left)
and stochastic conditions with unknown disturbances (right). Shown are 100 simulated trajectories
under three different controls. Ignoring stochastic disturbances (e.g., wind turbulence) can lead
to unsafe trajectories (right), emphasizing the necessity of safe estimation methods that explicitly
account for uncertainty.
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that the portfolio value stays above a critical threshold with high probability, simulating portfolio
loss aversion in risk-sensitive financial decision-making. These examples highlight a common need:
learning stochastic dynamics of a system from data, while ensuring safety throughout the process.
This requires ensuring that all executed trajectories remain within a predefined safe region with high
probability. In addition, at deployment time, the learned model should enable prediction of whether
a proposed control input satisfies the safety requirements, including those not encountered during
training [3} 4.

Outline of contributions. The contributions of this work are as follows.

 Safe learning method. We derive a method that safely learns controlled stochastic dy-
namics, where safety is defined as the requirement that system trajectories remain within
a designated set of safe states with high probability. Our approach incrementally expands
the known safe control set by selecting novel controls to evaluate, collecting corresponding
trajectory data, and refining three models: a dynamics model for predicting state evolution,
a safety model that estimates the probability of remaining within the safe region, and a reset
model that captures the probability of returning the system to its initial state distribution,
enabling repeated safe exploration under uncertainty. Alongside these models, we refine
uncertainty estimates using kernel-based confidence bounds. After training, these models
enable prediction of dynamics, safety, and reset feasibility for any given control, including
those not seen during training.

* Provably safe exploration and adaptive estimation rates. We prove that the proposed
method guarantees safety and derive learning rates for system estimation, with rates that
are adaptive to the Sobolev regularity of the underlying dynamics. Crucially, our approach
requires only smooth dynamics (with respect to time, state, and control variables) and an
initial non-empty set of known safe controls. These mild assumptions make the method
applicable to a broad range of complex real-world systems subject to stochastic disturbances,
found in diverse areas including robotics, fluid flow control, and chemical reaction control
[155 165 175 185 195 110].

* Experimental validation. We empirically demonstrate the performance of the ap-
proach in terms of safety, estimation accuracy, and computational efficiency. Specif-
ically, we evaluate it on a benchmark two-dimensional stochastic dynamical sys-
tem evolving in a bounded, safety-critical environment under stochastic perturbations
(see Figure [I). An open-source Python implementation is provided (available at
github.com/lmotte/dynamics-safe-learn).



2 Background
We formalize the problem of safely learning controlled stochastic dynamical systems as follows.

Controlled SDE. Let X be a dynamical system governed by a non-linear, n-dimensional controlled
SDE [115[12],

dX () = b(X (£), u(t, X (£)))dt + a(X (t), u(t, X(O))dW (), uweH, X(0)~po. (1)

Here, Tinax > 0 is the fixed time horizon, (b, a) are functions mapping R™ x R? to R x R™*",
W (t) is an n-dimensional standard Brownian motion, py is an initial probability density over
R™, and H C F([0, Trmax) X R™,R?) is a finite-dimensional set of admissible controls, where
F([0, Trmax] x R™, R?%) denotes the space of measurable functions from [0, Tjax] % R™ to R?.

Example 1 (Second-order dynamical system). The system
dX(t) = V(t)dt, dv(t) = u(t, X(t))dt + a(X(t))dW(t),

captures second-order dynamics under control u and state-dependent diffusion a (X (t)) Real-world
examples include drones navigating turbulent environments (where u represents thrust or steering,
and a(-) models wind turbulence), fluid-dynamical systems [[[3|], and molecular dynamics (where u
captures external forces such as optical traps, and a(-) reflects spatially varying thermal fluctuations
[14]:[15]:[16]]).

Safety-critical environments. Let g : R” — R be a function that partitions the state space into
safe and unsafe regions. The safe region is given by {x € R™ : g(x) > 0}, while the unsafe region is
given by {z € R" : g(z) < 0}.

Safe control. Let X, denote the solution to Eq. (I) under the control v € H (well-defined by
existence and uniqueness; see Sec.3 in [17]). Let up : [0, Tax] X R" — R? denote a family
of controls parameterized by § € D C R™, where D is a compact subset of R™. Such a finite-
dimensional parameterization is a mild assumption that is widely prevalent in many real-world
applications, including robotics [18]], process control [19]], and financial engineering [20].

We define the safety level of the control ug at time ¢ € [0, Tynax] as

s(0,t) 2 P (g(Xu, (1) > 0). )

We define the safety level up to time T' € [0, Tynax] Of the control uy as
O, T2 inf s(0,t). 3
S(O.T) 2 inf s(6.) G

Learning problem. We formulate the problem of safely learning controlled stochastic dynamical
systems as the estimation of the probability density map

p:(0,t,2) € D X [0, Thax] X R™ — pg(t, ), “4)
where py (¢, x) is the density of the state X, (¢) under control ug, well-defined by standard existence
and uniqueness results (see Sec.3 in [17]). To estimate this density, we collect a dataset of trajectories

(O, Xuy, (wk, t))ke{1, . K}, i€{1,....Q}, IE{1,... My }> (5)

where each w¥ denotes an independent Brownian motion sample path driving the stochastic trajectory,
and M}, denotes the number of time steps in trajectory k. All controls uy, are required to be safe.
Specifically, the minimal probability of remaining within the safe region up to the time horizons
(Tx)r_, = (tam, )5, is constrained by

$°(0k, Ty;) > 1 —¢, foreachk € [1, K]. (6)
This problem poses a fundamental challenge due to the coupling between learning and safety:

accurately estimating the density pg requires data, but collecting data must respect safety constraints
defined by s°°, which themselves depend on the very dynamics encoded in py.



2.1 Related work

Safe learning in control systems under uncertainty is a central topic in reinforcement learning, with
methods built on assumptions such as known dynamics [21], controllability [22} 23 [24]], or recovery
policies [255126].

Much of the literature focuses on discrete-time or discrete-state systems modeled as Markov Decision
Processes (MDPs), where risk-sensitive and safe exploration techniques have been developed [27;
28 126; 29]. Among these, Safe Bayesian Optimization (BO) methods stand out for providing some
of the strongest high-confidence safety guarantees during exploration [30; 315 325 33]], particularly
in MDP settings with known dynamics or access to safety level evaluations [22}[34]]. In continuous
domains, early work focused on designing control policies that avoid unsafe regions [35; 36]], while
more recent approaches incorporate offline learning and online adaptation for nonlinear systems
[37]. Stability-based guarantees via Lyapunov theory offer formal certification but often require
full dynamics knowledge [185138]]. Safe BO has also been adapted to continuous settings [39; 40],
under assumptions such as access to dynamics, safety oracles, or specific control-theoretic properties.
Joint estimation of both dynamics and safety remains comparatively underexplored, particularly in
continuous-time settings [41}142; 43} 1445 1455 1465 1475 148} 149]).

In contrast to much of the literature, we assume no prior model of the system dynamics or safety
function. Instead, we jointly explore and learn both the stochastic dynamics and the safety probabili-
ties from trajectory data. Our method applies to broad classes of continuous-time, continuous-state
stochastic systems, and provides provable guarantees on both safety and estimation accuracy. To
the best of our knowledge, no prior work provides joint safe exploration and density estimation
guarantees in this setting.

3 Assumptions

As formalized by the No-Free-Lunch Theorem [50]], learning is only possible under prior assumptions.
We now state and discuss the key assumptions used in this work.

Assumption (A1) (Initial safe controls). For ¢ € [0, 1], a non-empty set So C D X [0, Trax] is
provided such that

s(0,t) >1—¢ forall (6,t) € Sp. @)

This assumption ensures that at least one control is known to be safe at the outset, allowing safe
exploration to begin. In fact, Sy may be as small as a singleton; only one known safe control is
required. Without such a point, safe learning cannot be initiated. We express the assumption in set
form to allow for larger safe sets, which can accelerate exploration while preserving guarantees. This
is a standard assumption in the literature of safe UCB methods [30; 22 18], and is realistic in many
applications including robotics [39] and safety-critical process control [51]], where systems naturally
start in safe conditions, e.g., So = {(0,0) : 6 € D}.

Resetting control. Let h : R™ — R define a region in the state space from which resets are feasible.
Specifically, if h(X (t)) > 0, then it is feasible to reset the system to the initial distribution py.
Formally, this means there exists a mechanism (or control) that reinitializes the system from the
current state X (¢) to a new state independently sampled from py. We define the reset level at time
t € [0, Tiax) for a given control ug as

r(0,t) £ P (h(Xu,(t)) > 0). ®)

The function h delimits a region of the state space from which resets are feasible. Larger reset regions
correspond to greater operational flexibility. In simulated environments, where resets are effectively
cost-free, the reset region can cover the entire state space R™. In contrast, real-world systems typically
require substantial resources or manual intervention, making resets feasible only in restricted regions
(e.g., near the original distribution py).

Assumption (A2) (Initial resetting controls). For £ € [0, 1], a non-empty set Ry C D X [0, Tynax] is
provided such that

r(0,t) >1—-¢& forall (0,t) € Ry. 9)



This assumption guarantees the existence of at least one control capable of returning the system to the
reset region with high probability. Assumption [(A2)|enables the generation of independent sample
paths starting from the same initial conditions, which is crucial for evaluating variance and managing
uncertainty during safe exploration. As with Assumption one known reset point is sufficient,
though larger reset sets accelerate learning. A simple case is Ry = {(0,0) : 6 € D}, corresponding
to systems that can always be reset from the initial condition. In practice, reset feasibility depends
on system constraints: for instance, batch chemical reactors can often be reset only in early phases,
before irreversible reactions occur [19]]. In contrast, many autonomous systems like drones or driving
robots can usually be reset, at least during training.

Assumption (A3) (Smoothness of system dynamics). The map p lies in the Sobolev space

H”(R™™ ) with v > Lmax(n, m + 1), where n and m denote the state and con-
trol parameter dimensions, respectively. Moreover, sup,cgn p(-,',x)H Hv(Rm+1) < oo,

SUP(9,4) € D x [0, Timax] 1P(0: ts )| v (Rr) < 00.

This smoothness assumption ensures that the system dynamics are sufficiently regular for our purposes.
It is standard in statistical learning theory and underpins our convergence guarantees [52f]. Sobolev
regularity of the drift and diffusion terms in the underlying stochastic differential equation is expected
to imply Sobolev regularity of the resulting state densities under standard conditions. This follows
from classical results in parabolic PDE theory, where solutions typically gain regularity relative to the
coefficients, roughly two derivatives in space and one in time. A formal analysis of this connection is
beyond the scope of the present work and is left for future investigation (see Bonalli and Rudi [[17]]
for related results).

4 Proposed method

We propose a method for safely exploring and learning system dynamics over a parameterized control
space H = {ug | & € D C R™}. Following the safe UCB framework [30; 31} [32]], our goal is to
select controls that reduce model uncertainty while ensuring, with high probability, that trajectories
(i) remain within the safe region and (ii) end in the reset region. We jointly learn three models:
a dynamics model (state densities), a safety model (safety probabilities), and a reset model (reset
probabilities), each equipped with confidence bounds from a shared kernel. This enables active
exploration under high-probability constraints. After training, the learned models support inference
on unseen inputs and yield a certified control set that can be deployed with safety guarantees.

The known safe-resettable set is expanded iteratively by alternating between system estimation
(Section [4.2) and safe sampling (Section .3)), leveraging prior knowledge of the initial safe and reset
sets as well as the regularity of the dynamics (0, ¢, x) — pg(t, x).

A step-by-step breakdown of the overall method is provided in Appendix [B] with algorithm tables for
each module and their computational complexities.

4.1 [Initialization

Let N € N denote the current iteration. We initialize at N = 0 using the known safe set Sy C
D x [0, Tinax) and reset set Ry C D x [0, Tinax]- We define the initial safe-resettable set

o2 {(9,t,T) €D x [0, Twax]? |t < T, (0,) € S forallt’ € [0,T), (6,T) € Ro}.

We select (0, to, Tp) € T'o, ensuring that the control is known to be safe over [0, Tp] and ends in the
reset region.

4.2 System estimation

In this step, we update the dynamics, safety, and reset models based on the observed trajectories, and
compute predictive uncertainty for each.

Estimation at (0, ty). Atiteration N, the control ug,, is evaluated using () stochastic trajectories.
Here, N indexes the iteration, and ¢ indexes the ¢-th trajectory simulated under that control, each
corresponding to an independent sample w7 of the Brownian motion driving the system. We collect



the samples (X, (whN,t N))?Z1 and estimate the state density at (fy,ty) using a kernel density

estimator:
1 Q
ﬁeN,tN(:r) £ QZPR(‘TqueN (wiNvtN))v (10)
i=1

where pr(z) £ R"/?||z||="/?B,,/2(2rR||z||), R > 0, and B,, /> is the Bessel J function of order
n/2 (See Bonalli and Rudi [17]).

We then compute estimates of the safety and reset probabilities

§9N,t1v é/ ﬁ@]\](tl\hx)d'r) 7291\r,t1\] é/ ﬁ@]\](tl\hx)dx' (11)
(2R :g(z)>0} {z€Rn:(z)>0}

Let the collection of values at all observed points ((6;, ti))i]il be

p() £ (ﬁGi,ti('))i]\Ll’ S’ £ (‘§9i~,tz‘)£\;17 RZ (fei,ti)i\;l'

Model update. We fit kernel ridge regressors for the density, safety, and reset functions using a
Matérn kernel k (with Sobolev smoothness ») and regularization A > 0

Po(t,x) 2 P(x)(K + NAXI)“'k(6,1), (System dynamics) (12)
5nv(0,t) & S(K + NAI)"1k(6,1), (Safety function) (13)
Fn(0,t) 2 R(K + NX)“k(0,1), (Reset function) (14)

where k(6,t) = (k((0,t), (0:,t:)X 1, K = (k((6;,t:),(05,t;)))YN._,, and X is a regularization

LN : . : J77 04, g=1> .
term. Although training data consist of discrete-time observations, learned regression models are
defined over continuous time, a distinction seldom addressed in the literature.
The predictive uncertainty at (6, t) is given by

o2:(0,1) 2 k((0,1),(0,1)) — k(0,t)* (K + NXI) " k(0,1). (15)

4.3 Safe sampling

We now select a new point to sample by maximizing uncertainty over the safe-resettable region.

Feasibility criteria. A point (6,¢,T) is feasible if (i) ¢ < T, (ii) the system remains safe up to time
T,ie., s°(0,T) > 1 — ¢, and (iii) the trajectory ends in the reset region with high probability, i.e.,
r(0,T)>1-¢.

We implement these constraints via lower confidence bounds (LCBs)

LCBX(0,T) £ o (85(0,1) — Bion(0,1)), (16)
LCBlr\I (97 T) £ f'N (07 T) - B}‘VJN(Ga T)v (17)

where 33, B > 0 are confidence parameters set from known upper bounds on the RKHS norms of
the safety and reset functions (see Remark|[T).

We then define the safe-resettable feasible set

Iy =Tp U {(9,t,T) € D x [0, Tynax]? | t < T, LCBY(6,T) > 1 — ¢, LCBY(6,T) > 1 — g}.

Sampling rule. We choose the next (On11,tn+1,Tn+1) by maximizing uncertainty over the
feasible set

(On+1,tN+1,Tne1) = argmax opn(0,t). (18)
(0,t, T)eln

Optimization is performed using discretization or gradient-based methods. Several computational
techniques for efficient optimization are presented in the Appendix (see Algorithm 4).



Stopping rule. We stop the exploration once the maximum uncertainty over the feasible set falls
below a threshold 7 > 0

0,t) <mn, 19
(@gg%}éf‘N UN( ) K (19

ensuring that exploration concludes once the models reaches the desired level of accuracy.

Remark 1. The derivation in Appendix[|A.7) shows that the confidence parameters depend on upper
bounds of the RKHS norms of the safety and reset functions. These bounds may be available from
prior knowledge of the system’s regularity. We view this prior knowledge as a reasonable minimal
assumption for guaranteeing safe learning under unknown dynamics. When unavailable, the bounds
can be conservatively overestimated, ensuring safety but potentially leading to slower exploration.
Developing adaptive strategies to estimate these quantities without prior knowledge is a promising
direction for future work, for instance through online adaptation via the doubling trick [53]].

S Safety and estimation guarantees for Sobolev dynamics

Safety and exploration guarantees for safe kernelized UCB methods have been developed in prior
work [30; 315 132]], grounded in kernelized bandit theory [54555; 56], which in turn builds on linear
bandit results [57;158]]. Building on this foundation, we establish novel theoretical guarantees for
safe exploration and dynamics estimation under Sobolev regularity. Complete proofs are deferred to

Appendix [A]
Theorem 5.1 (Safely learning controlled Sobolev dynamics). Let n > 0, and assume Assump-

tions hold. Set R = QY ("*2Y) and \ = N1, Then there exist constants c1, .. .,c5 > 0,
independent of N, Q, §,n, such that if

e log(AN/5)1/2Q3m < N=1/2[]]
then the stopping condition max g ; ryer, On(0,t) < 0 is satisfied after at most N < con~2/(1=2)
iterations for any o > (m +1)/(m + 1 + 2v). Moreover:

* (Safety): All selected triples (0;,t;,T;) satisfy s*(0;,T;) > 1 —ecand r(0;,T;) > 1 — ¢,
providing safety guarantees during training. Moreover, the final set Iy includes only
controls meeting these thresholds and can thus serve as a certified safe set for deployment.

* (Estimation guarantees): For all (0,t,T) € 'y,
1Po(t,-) = po(t, oo < cam,  [Sn(0,1) = s(6,8)] < cam,  [Pn(0,1) —7(6, )] < esm.

This result ensures that our method both respects safety constraints and achieves convergence rates
adaptive to the system’s Sobolev regularity. The condition on @) provides a lower bound on the
number of trajectory samples () required per control to guarantee the prescribed confidence level. Up

to logarithmic factors, it requires
2v+4n

Q2 N#5,
where n is the state dimension and v the Sobolev regularity. For instance, when the system is
sufficiently regular with v > n + m + 1, the algorithm terminates in at most N = O(n~?) iterations,
assuming @) > N3. Although we do not analyze the size of ", its structure can be inferred from the
available uncertainty estimates; a formal characterization of I'y is left to future work.

6 Numerical experiments

We evaluate our method on a representative smooth nonlinear stochastic system. Specifically, the
experiments aim to assess the following: (i) satisfaction of safety and reset constraints, (ii) efficiency
of exploration under different safety thresholds, (iii) prediction accuracy for dynamics, safety, and
reset maps, (iv) computational cost and scalability.

'All exponents in n are to be read as n + €, with € > 0 arbitrarily small.



Figure 2: One trajectory per selected control after 1000 iterations for various thresholds.

System and environment. We consider a 2D second-order dynamical system whose acceleration
is directly controlled by the input. The system evolves according to the controlled SDE

dX(t) = V(t)dt,
{dV(t) = u(t, X (), V())dt + a(X (£))dW,.

where X () € R2, V(t) € R? denote position and velocity, u is the control function, and W; is a
Brownian motion. The noise amplitude a(X) is spatially dependent:

X = X
202 ’

with X, = (5,5), 0 = 2, and A = 5. The initial state follows N (0, o lg2) with g = 0.1, and the
maximal time horizon is Ty,ax = 20. The system evolves within the bounded safe region (—10, 10)2,
and each trajectory must end in the reset region defined as a disk of radius 2.5 centered at the origin.
Such models arise in robotics and autonomous navigation, involving trajectory control with localized
disturbances (e.g., slippery or uneven terrain). Figure [T]illustrates the effect of such state-dependent
noise through 100 trajectories generated under different controls.

a(X) = Aexp (

Control space. Controls are parameterized as sequences of m fixed accelerations of magnitude v,
applied in directions (1, ..., 6.,,). During the exploration phase (0 < ¢ < Tixplo), each direction 6;
is applied over intervals of equal length, yielding

u(t, X, V) = v(cos(b;),sin(6;)) — V,

with damping term —V ensuring velocity convergence. For (¢ > Tyxp15), a feedback controller steers
the system toward piq:

- X
u(t, X, V) =k x (’UMO - V) ,
o — X|
with damping factor > 0. Controls are clipped to keep the system within the safe region. We set
v=2.0,k=0.5,m = 2, Toyplo = 6, and ngeps = 500.

Method’s hyperparameters. Our method depends on several hyperparameters that govern safety
thresholds (e, &), confidence levels (s, 8;), kernel smoothness (A,~), and bandwidth R, with
distinct values for estimating dynamics and constraints. We test (&,£) € {0.1, 0.3, 0.5, 00}, with
1000 iterations and initial safe control (—7 /3, 7/3). Candidate selection for uncertainty maximization
is restricted to a local subset for efficiency (Appendix [B] Algorithm[d). A detailed discussion of each
hyperparameter’s role, tuning procedure, and practical heuristics is provided in Appendix [B.3]

Safe exploration. Figure[2]displays one trajectory per selected control after 1000 iterations, under
various threshold settings (¢ = £ € {0.1,0.3,0.5, +00}). In Figure [3| the top row displays the
learned safety level maps while the bottom row shows the corresponding reset probability maps for
various threshold pairs € = £, with values increasing from left to right in {0.1, 0.3, 0.5, +0c0}. Our
approach only accepts candidate controls whose predicted safety and reset probabilities (estimated
via 200-path Monte Carlo simulations) exceed the predefined thresholds. By filtering only controls
meeting the safety criteria, exploration is confined to a safe region with a chosen probability of
staying safe. Overall, these visualizations highlight how increasing the threshold values influences
control selection, providing insights into the trade-off between exploration and safety.
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Figure 3: Safety (top row) and reset (bottom row) probabilities over iterations for various thresholds.

Exploration rate and coverage. In Figure[d] we plot the selected controls after 1000 iterations
for various threshold pairs ¢ = £, with values increasing from left to right in {0.1, 0.3, 0.5, 4-00}.
Figures[2]and @ clearly illustrate the exploration-safety trade-off. Relaxing thresholds leads to broader
control coverage and faster information gain, but with decreased safety guarantees. Conversely, strict
thresholds restrict exploration, particularly around regions with safety or reset probabilities close to
the specified thresholds. This aligns with the intuition supported by our theoretical analysis: sample
complexity tends to increase in regions where smaller uncertainty is required to proceed safely. As a
result, these regions act as bottlenecks, slowing down the process and potentially stopping exploration
within the connected component that satisfies the constraints and includes the initial safe control.
Additional results on information gain across iterations are provided in Appendix [C.2]

e=¢=0.1 e=¢=0.3 e=¢=0.5

Figure 4: Control coverage for various thresholds.

Safety and reset level prediction. In Table|l} we quantify the accuracy of the learned model for
various threshold pairs ¢ = £ in {0.1, 0.3, 0.5, +00} by evaluating the prediction quality of the
safety and reset levels over 1000 predictions. We report the mean squared error (MSE) and the
standard deviation, with the ground truth provided by Monte Carlo estimates based on 100 samples
(displayed in Figure[5). In Figure[6] we plot the learned safety and reset maps, whose accuracies can
be qualitatively assessed by comparing their values with those in Figure[5] As expected, prediction
accuracy improves as safety constraints are relaxed, due to the broader coverage of the control space.

Table 1: Safety and reset level prediction error statistics (MSE = Std. Dev.)

Model (¢, &) Safety MSE Reset MSE

(0.1,0.1) 0.7010 £ 0.3847 0.6919 £ 0.3764
(0.3,0.3) 0.5217 £0.4254  0.5197 + 0.4161
(0.5,0.5) 0.3736 £ 0.4299 0.3701 £ 0.4258
(+00,400)  0.0023 £ 0.0065 0.0024 £ 0.0062

Dynamics prediction. To verify that our method captures the underlying system dynamics, we
compare predicted trajectory densities with ground-truth trajectories under known-safe controls.
Qualitative results show close agreement in both mean and variance. Full visualizations and evaluation
details are provided in Appendix [C.1]
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Figure 5: Ground-truth safety (left) and reset (right) probabilities estimated via 100 Monte Carlo
samples for 1000 randomly selected controls.

Computational considerations. Our method runs end-to-end in under 32 minutes on standard
hardware, covering candidate selection, simulation, evaluation, and model updates. Appendix@l
provides runtimes, hardware specs, and potential optimizations (e.g., sketching, parallelization),
confirming the method’s practicality on standard hardware.
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Figure 6: Learned safety (top row) and reset (bottom row) level maps for various thresholds.

7 Conclusion

We introduced a provably safe and efficient method for learning controlled stochastic dynamics from
trajectory data. By leveraging kernel-based confidence bounds and smoothness assumptions, our
method incrementally expands an initial safe control set, ensuring that all trajectories remain within
predefined safety regions throughout the learning process. Theoretical guarantees were established
for both safety and estimation accuracy, with learning rates that adapt to the Sobolev regularity of
the true dynamics. Numerical experiments corroborate our theoretical findings regarding safety and
estimation accuracy. By tuning the safety (¢) and reset (&) thresholds, users can explicitly control the
trade-off between conservative safety satisfaction and exploratory behavior. While our experimental
validation focuses on a low-dimensional setting, the theoretical results scale with dimension: the
convergence rates for the proposed estimators decrease polynomially with dimension and can mitigate
the curse of dimensionality under sufficient smoothness. This makes the method applicable to
higher-dimensional systems, which we plan to investigate in future work. Further research will
include validation on physical systems (e.g., autonomous robots), improved scalability through
fast kernel methods (e.g., sketching or incremental updates), comparisons with safe RL baselines,
systematic analyses of kernel and threshold selection, and extensions to handle abrupt dynamics
and non-diffusive disturbances such as jump processes arising in pedestrian—vehicle interactions and
hybrid systems. These developments will further support applications in safety-critical control and
decision-making under uncertainty.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and the introduction clearly state the contributions: a method for
safe learning of controlled dynamics, theoretical guarantees under Sobolev regularity, and
numerical evaluation of performance. These claims are consistently supported throughout
the methodological, theoretical and experimental sections.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper discusses limitations including model assumptions (Sobolev reg-
ularity, known initial safe/reset sets), computational cost (see Assumptions, Theory and
Experiments sections).

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors

should reflect on how these assumptions might be violated in practice and what the

implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All theoretical results are stated with assumptions and formally proved in
Appendix [A] The main theorem clearly specifies conditions on smoothness and sampling.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The main paper and appendix detail the full experimental setup: system
dynamics, control parametrization, thresholds, kernel parameters, and iteration budget. All
elements needed to reproduce the results are included.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code and data will be made publicly available upon publication, and are shared
during the anonymous review phase. Instructions for reproduction are included in the code’s
documentation.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The system definition, exploration policy, control parameters, thresholds, hy-
perparameters, and evaluation metrics are all clearly described in Section []and Appendix [B]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Error bars (mean = std) are reported for prediction error in Table [T}
Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Section [6]and Appendix [B.4]provide runtimes and hardware details.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research adheres to NeurIPS Ethics Guidelines. It does not involve human
subjects, personal data, or high-risk deployments.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: The paper addresses safe learning for stochastic control systems, with ap-
plications in robotics and autonomous systems. It offers methods to ensure safety during
training, which is a positive contribution. We see no direct negative societal impacts from
the proposed methodology.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The method does not involve pretrained models or scraped datasets and poses
minimal risk of misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All external tools used are standard academic libraries. No external datasets
are used.

Guidelines:
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» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new datasets or models are released. The experiments are synthetic.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The research does not involve crowdsourcing or human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No human subjects are involved in this research.
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Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: No LLMs were used in the design, implementation, or analysis of the core
research method.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proofs

A.1 Notations

We denote by S” the set of positive-definite matrices in R™*". The space of all measurable functions
mapping a set A to a set B is denoted by F (A, B). For any vectors u, v, their tensor product is
denoted by u ® v. For any conformable operator A, we define A £ A+ M\, where I is the identity
operator. The minimum and maximum between two scalars a, b are denoted as a A b = min(a, b) and
a Vb £ max(a,b). To quantify function smoothness, we use Sobolev spaces. For a domain Q C R,
the Sobolev space H" (£2) consists of functions whose weak derivatives up to order v exist and are
square-integrable. The Sobolev embedding theorem states that if v > d/2 + k, then functions in
HY () are at least C* (2)-smooth. In our work, we consider domains such as R™ for spatial variables
and D X [0, Tyax] for control-time spaces , where D C R™ is a compact set of control parameters.
Finally, for the RKHS G on D X [0, Tynax] With kernel k, and any p : D X [0, Trpax] X R™ — R, we
(6,t) — p(6,t, x)Hg

define the mixed sup-norm [|p|| Lo (rn;g) = SUP,cpn

A.2 Proofs organization
The proofs are structured as follows.

1. Validity of confidence intervals (Section [A.3): First, we establish the validity of the
confidence intervals.

2. Safety and reset guarantees (Section[A.4): We prove that controls chosen by the algorithm
maintain safety and reset properties.

3. Sample complexity bounds (Section [A.5): Next, we analyze the sample complexity
required to achieve desired accuracy.

4. Learning rates for safety, reset, and density estimates at fixed (6, t) (Section[A.6): We
derive learning rates, under Sobolev regularity, for estimating the safety and reset levels, as
well as the state density, evaluated at fixed (6, t) pairs.

5. Safe learning of controlled Sobolev dynamics (Section[A.7): Finally, we establish com-
plete guarantees for safely learning controlled dynamics with Sobolev regularity.

A.3 Proof of the validity of confidence intervals

Assumption (A4) (Attainability). There exists a bounded and continuous reproducing kernel k
defined on D x [0, Tyax), with associated RKHS G, such that the safety and reset level functions
satisfy

s, 7 €G. (20)

This assumption ensures that the safety and reset level functions can be represented in a suitable
function space for estimation. In particular, it encodes prior knowledge; for example, if the functions
are known to lie in a Sobolev (Hilbert) space H™, one may choose a Sobolev kernel of order m.
This is a standard assumption in the literature on kernel methods. In many practical applications,
such as industrial process control and robotics [39; I51]], SDEs with smooth coefficients produce
smooth probability densities [17], ensuring that s(6, ¢) is smooth and can be accurately represented
by Gaussian or Sobolev kernels. Therefore, this assumption is mild in practice.

This lemma establishes the relevance of the defined confidence intervals.

Lemma A.1 (Validity of confidence intervals). Under Assumptions|(Al)| [(A2)} and[(A4)} for any
(0,t) € D x [0, Tinax) and X > 0,

3n(0,1) — s(0,)] < Byon(0,1), 21)
[Pn(0,1) —7(0,1)| < Byon(8,1), (22)
where ﬁ]g\/ = )‘_1N_1/2 maX;e[i,N] |§9i7ti - S(ei’ti” + HS‘ G B}AV <

ATINTY2maxieqny [o,b, — (03, t:)| + [Irllg.
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Proof. Without loss of generality, we provide the detailed proof only for sy, since the proof for
is entirely analogous.

We start by recalling the definitions

sn(0,t) 2 5" (K + NXI) "'k (0, 1), (23)
ox(0,t) = k((0,1), (e,t)) — k(6,t)" (K + NXI)~"k(6, ), (24)
where k() £ (k((0,1), (0:,1:))IL1, K £ (k((0:, 1), (0, 8))) N,y and S = (3,0, N1
We define the feature map ¢ : (0,t) € D x [0, Tiax] — k((6,1), ) € G, and the operators
R [¢(91,t1) -, 9(0n,tn)] € GRRY, (25)
ca— Z¢ 0:,t:) ® ¢(0:,t:), (26)

such that C' = %fbfb*, K =909, k((@,t), (0',t)) = ((0,t), p(0',t'))g, and k(0,t) = P*p(6,1).
Then,

Sn(0) £ S (K + NAIgn v )~ k(0. 1), 27)

= 5*(®*® + NAIgngpn ) 10%¢(0,1), (28)

= 5*®* (D" + NAlgeg) '¢(0,1), (29)

= N7'S* 0" (C + Mgeg) 1 o(0,1), (30)

using the push-through equality (I + AB)~'A = A(I + BA)~! for any conformal operators A, B.
Moreover,

o3(0) 2 k((0,1),(0,1)) — k(0,t)* (K + NMg~gry )~ k(0,1) (31)

= ¢(0,1)" (Igeg — P(2*® + NAMgvgry) ' 8*)6(0,1) (32)

= ¢(0,1)"(Igeg — NC(NC + NXggg) ")b(0,t) (33)

= A(0,6)"(C + Mgag) ' 0(0,1) (34)

= NICK 2000, )12, (35)

again using the push-through equality.

To bound the error |$x(0,t) — s(6,t)|, we decompose it as

155 (0,8) — 5(0,8)] < |3n5(0,8) — sn(0,)| + |sn (0, 8) — s(0,1)], (36)
£(4) £(B)
where S 2 (5(0;,t;))N.,, and sx(6,1) £ N~18*®*(C + \)~"1¢(6, ).
For the first term (A), we have
(4) = N7Y|(S = 5)"@*C (6, 1) (37)
< N7YIS = S|len[|9*C1 100, 1)l (38)
< NTV2 max 80, = s(0, ) [ICV2CT 600, Do (39)
< N7Y2)\~ 1l€n[[11ax |30,.1, — s(0i,t:)| on(0,1). (40)

From Assumption|(A4), 5(6,t) = (s, ¢(8,1))g, such that S = ®*s, and then s (0, 1) = s*®D*(C +
N)7r(0,t) = s*C(C + N)~1g(0, 1).

Therefore, similarly, for the second term (B), we have

(B) = [s*(CCy' = D)g(0, 1) (41)
= \|s*C5 (0, 1)) (42)
< A2|Isllg)|C5 200, 1)l (43)
= [sllgon(6,1t). (44)
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Combining the bounds for (A) and (B), we obtain the bound for s. Similar proof yields the bound
for r.

O

In the following lemma, we derive confidence intervals for the proposed estimate of the system’s

dynamics p : 0,t,x — py(t, ).

Lemma A.2. Under Assumptions|(Al)||(A2)| and|(A3), for any (6,t) € D x [0, Tinax), we have
1Do(t,-) — po(t, )|l Loemny < BRon(6,1), (45)

by defining 85 & A\~ N V2 maxicp vy Dot (-) — o, (tis )| Lo @ny + 1Pl e )

Proof. Given any (6,t,2) € D X [0, Tinax] X R™, we have

N
2) 23 ai(0,t)po, 1 (x), (46)
with (0, 1) = (K + NAI) " k(t,0), K = (k((0:,t:), (05, 8;))) =1, k(0. 1) = (k(03, 1))},
We define the feature map ¢ = (0,t) € D X [0, Tiax) — k((6,1),-) € G, and the operators
® 2 [¢(91,t1) - ¢(On,tN)] € GORY, 47)
ca— Z (0i,t:) ® B(6;, 1), (48)

such that €' = L&d*, K = @, k((0, 1), (0/,1')) = (6(6,1), 6(8,1))g, and k(6, 1) = D*6(0, 1).

With same derivations than in the proof of Lemmal[A.T] for any (6,¢,2) € D x [0, Thax] x R", we
have

Po(t, z) — po(t, )| < (A) +(B) (49)
with
(A) <AT'NT ”igﬂlgx [P, . () — po, (ti, )| on (6, 1). (50)
(B) < lp-(-;2)llg on (6,1). (1)
Therefore, for any (6,¢,2) € D X [0, Tinax] X R™, we have
[Po(t, ) — po(t, )|l Lo ny < BRon(6,1), (52)

by defining 53, £ AN~V maxseqi vy Do 0: () — o, (tis )| Lo () + 1Pl L (mrs)
O

A4 Proof of safety and reset guarantees

A direct consequence of Lemma[A-T]is the safety and reset guarantees for the method.

Lemma A.3 (Safety guarantees). Under Assumptions|(AT)| and the algorithm selects
only safe trajectories. Namely, for any i € N*, we have s> (0;,T;) > 1 —e.

Proof. Forany i € [1, N], we have by construction inf;e(o 7, (5 (0:,t) — Bvon(0i,1)) =1 —e.

Moreover, from Lemma[A.1] we have s(6,t) > §(6,t) — Byon(0,t) forany (6,t) € D x [0, Tynax),
such that

©(0;,T;) & inf s(6;,t 53
(0:,T3) tel[fims( ) (53)
> inf (5(0;,t) — 0;,t 54
_tel[glyTj] (3(6,t) — Bnon(65,t)) (54)
>1—c¢. (55)

O
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Lemma A .4 (Reset guarantees). Under Assumptions|(AI)| [(A2)| and|(A4)} the algorithm selects only
resetting trajectories. Namely, for any i € N*, we have r(0;,T;) > 1 — &.

Proof. Similar proof as for Lemma O

A.5 Proof of sample complexity of confidence intervals

Assumption (AS) (Sublinear information growth). Let the maximum information gain up to N
observations be defined as

2(0:. )
L E 1 v . 56
TN )N (DX [0 o) o8 ( AN ) 0

We assume there exist constants o € [0, 1] and ¢ > 0 such that, for all N € N,

v < eN®. (57)

This assumption always holds for « = 1 when £ is bounded, since 7y is a sum of terms bounded
by K = SUD(g,1)c Dx [0, Tpnae] K((057), (6:1)). As o decreases within [0, 1], the assumption becomes
stricter. It quantifies the maximal total information that can be acquired about the unknown function
after N observations. Specifically, when o < 1, the sublinear growth of information gain with N
reflects diminishing returns as more data points are observed. This growth rate measures the effective
dimension of the learning problem, influenced by the regularity of the RKHS and the dimensionality
of D x [0, Tinax]; higher regularity of RKHS functions and lower dimensionality of D X [0, Trjax]
lead to a faster decay in information gain.

Example 2 (Sublinear growth for common kernels). For many commonly used kernels, yn exhibits
sublinear growth in N, which is crucial for obtaining sublinear regret bounds in bandit problems.
For example, assuming a compact domain D C R™ and setting A\ = N~ 1:

* RBF kernel: vy = O(log™ ™ N). This logarithmic growth arises from the high smoothness
of the RBF kernel, which causes a rapid reduction in uncertainty about the unknown function
as more observations are collected.

o Matérn kernel with v > 1: vy = O(N™/(m+2v) logzm/(m+2”) N). This sublinear growth
rate is faster than that of the RBF kernel, reflecting the lower smoothness of the Matérn
kernel.

We refer the reader to Seeger et al. [59)]; Srinivas et al. [54)]; Vakili et al. [60]] for additional examples
and their associated proofs, which show that the growth rate of vy depends on the eigenvalue decay
in the Mercer expansion of the kernel, when available.

This lemma establishes the sample complexity of the proposed confidence intervals.

Lemma A.5 (Sample complexity of confidence intervals). Under Assumptions|(AT) [(A2) and[(A3)]
for any n > 0, considering the stopping condition max g ¢+ myer on(0,t) <1, then the proposed

2
method stops in N = cn~ =< steps where ¢ > 0 is a constant that does not depend on N and 7.

Proof. Hence, under Assumption[(A5)] when the algorithm stops we have

Nn? <Za (6:,t:) Zlogl—i—a (0:,t:)) < v < eN?, (58)
=1 =1

using z < 2log(1 + ) for x € [0, 1], and overloading the constant ¢ > 0. Hence, N < c_ln_%.
O

A.6 Proof of learning rates for system maps estimation at fixed (6, ¢)

This lemma provides a bound on the density estimation error at the selected points (6;, t;).
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Lemma A.6 (Density estimation learning rates). For each i € [1, N|, define p; = py, (t:,-), and
Pi £ Po.s, = ZpR — Xo, (wj, 1)), (59)

where pr(z) £ R"/?||z||~"/2B,, (27rRHm||), R >0, and B,/ is the Bessel J function of order
n/2.

Under Assumptions|(A1)i(A2)| assume that SUp g 4)e px[0,Tmas] 1P () ||y < 00 for v > n /2. Set
R= Qﬁ. Then, with probability at least 1 — 6, the following holds

5 — Pil| poo mry < clog(4N/8)Y/2Q s |2 60
igﬁlﬁﬁ\\p pill L@y < clog(4N/8)2Q (60)

for some constant ¢ > 0 independent of N, Q, 9.

Proof. Fix any € > 0. The Sobolev embedding H"/2+¢(R") < L>(R™) gives
19i — pillLoo®ny < cellpi — pill pnrzte mny, i=1,...,N,
where ¢, > 0 depends only on n, .

Following steps 3 and 4 of Theorem 5.3 in Bonalli and Rudi [17], for v > n/2 + ¢ we establish

7 03 n € < 7 v R %+E_V
e 1B = pill gmrote < Jhax [Pl & o
+2"/2HERETE3(V, R)  log(4N/6)/2Q 12
where V,, is the volume of the n-dimensional unit ball.

Under the assumption that SUp ;)cpx (0,1 IP0(t)lH» < oo, we have in particular
max;eq1,n] ||pill z» < oo. Hence, with probability at least 1 — 4,
ma 19i = pillanses < co(RETTY 4 R log(an/9)] P Q7 (@)
i€

for some c. > 0 independent of IV, @), R, d (but possibly depending on n, v, €).

Finally, setting R = ) 712 balances the two terms in (62) and yields

n—2v+42e

max _||p; — pill gns2+e < c[log(AN/8)]/2 Q Znswv (63)
i€[1,N]

for some constant ¢ > 0 that does not depend on NV, ), 6.
O

This lemma bounds the pointwise estimation errors of the safety and reset levels at the selected points
(65, t;) in terms of the L°°-norm error of the corresponding density estimations py, (¢;, -).

Lemma A.7. Under Assumptions (A2)} we have

—5(0;,t:)| < Vs pi — Dill Lo, 64
zElﬂ[f[llaX]]ISol,t s(0;,t:)] e p: — pillz (64)
max |g,,s, — r(0;,t;)| < Vi max |[|p; — pillLee, (65)
i€[1,N] i€[1,N]

where p; = pp, (i, ), Vs £ [on Lig)>orda, and Vi £ [ Lip 00y da.
Proof. For any i € [1, N, using Holder’s inequality, we have
80,6, — s(0i,t:)| < Vsllpi — pill o=, (66)
where p; £ py, (t;,-), and Vy £ [0, Tiy2)>01de.
Similarly, |79, 1, — 7(0;, ;)| < V;|[pi — pill L where V. £ [0 L) >0yda.

Throughout, exponents involving n should be interpreted as n + ¢ for arbitrarily small € > 0.
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A.7 Proof of safe learning of controlled Sobolev dynamics

We conclude the following theorem from all previously established lemmas.

Theorem A.8 (Safely learning controlled Sobolev dynamics). Let n > 0, and assume Assump-
tions|(A1)H(A3)| hold. Set R = Q'/("+2¥)_ Then there exist constants c, . . ., cs > 0, independent of
N,Q,d,n, such that if

o1 Tog(AN/8) 2Q 7 < N2

then the stopping condition max g, ryery on (0,t) < 1 is satisfied after at most N < con~2/(1=2)
iterations for any o > (m +1)/(m + 1 + 2v). Moreover:

* (Safety): All selected triples (0;,t;,T;) satisfy s*(0;,T;) > 1 —ecand r(0;,T;) > 1 — &
The final set I includes only controls meeting these thresholds and can thus serve as a
certified safe set for deployment.

* (Estimation accuracy): For all (0,t,T) € Ty,
Do (t,) —po(t, Moo < cam,  [Sn(0,8) —s(0,1)] < can,  |Fn(0,8) —7(6,8)] < csm.

Proof. From Lemma[A.T|and Lemma[A.2}for any (6,t) € D x [0, Tnax] and A > 0,

|§N(07 t) - 8(97 t)| < 5?\[0—N(07 t)a (67)
[*n(0,t) —7(0,t)] < Byon(6,1), (68)
Do (t, ) — po(t,-)||Loe@mny < BRON(0,1), (69)
where (3% £ AIN—1/2 max;eqny 80,6, — s(0it)] + sllg, By £

ANV 2 maxien vy 1o — (03, t)| + [I7llg, and B £ AN TV maxieqy vy [1Do,. () —
o, (tis )| Lo (mn) + [Pl Lo (B 16)-

Then, from Lemmal[A.7] we have

max |Sg.+ — S ei,ti < LS max f)i — Pi oo, 70
i€[1,N] | it ( )| = i€[1,N] || p ||L (70)
max |Tg. ¢ — T 91,t2 < [/r max AZ' — PillL>, 71
i€[1,N] | 0i,t; ( )| = i€[L,N] Hp p HL (71)

However, from Lemma[A.6] with probability at least 1 — §, we have

max _[[p; — pill Lo zny < clog(4N/6)V/2Q17 7
ie[[l,}]El]]”p Pill Lo mny < clog(4N/6)"/2Q (72)

such that there exists ¢; > 0 independent of IV, @, 6, ) such that if

c1 log(4N/8)/2Q3Fis < (V, Vv V,)"IN~V/2, (73)

then
ArL' - 7 oo n < N71/2. 74
iefl[[llgf]}f/]] 1D = pill oo () < (74)

Therefore, from Lemma we have, if A\ = N~!, forany i € [1, N,

s A N1/2 50, — 854 |+ 75
B D 36,6, — 50,1, + |Isllg (75)
<1+ |sllg- (76)

Similarly, we have S}, < 1+ ||r||g and B}, < 1+ ||p|| Lo (rn;0)-

Assumption (A3) simultaneously guarantees [[p|| Lo (rn.g) = Supgern|| (6,1) = p(60,t,2)||; <
+00, SUP(9,4)e D x [0, Tyna] [Pt )| v < 00 With v/ > n/2. Furthermore, considering a kernel that
induces a Sobolev RKHS G of order v, Assumption [(A4)| holds true, and Assumption [(A3)]holds for
any o > (m + 1)/(m + 1 4 2v) as mentioned in the examples of Assumption|(AS)

Therefore, from Lemma[AZ3] and Lemmal[A-4] we have that:
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* All selected controls are safe, i.e., s°°(0;,T;) > 1 — ¢ for any i € N*.

* All selected controls ensure reset, i.e., 7(6;, T;) > 1 — £ for any ¢ € N*.

Moreover, LemmalA.5]ensures that for any o > (m + 1)/(m + 1 4 2v), with probability at least
1 — 4, the stopping condition

0,t 77
0,tr71'11“a€)1(—‘1\7 UN( ) ) <, ( )

is reached for N < cyfﬁ where co does not depend on N, Q, 6§, .

B Implementation details

This section details the implementation of the method described in Section ] available on GitHub
(Imotte/dynamics-safe-learn) as an open-source Python library. We detail all computational steps, in-
cluding vectorized implementations using Python libraries such as NumPy for efficiency. Additionally,
we outline the computational complexity of each step to provide insights into scalability.

B.1 System estimation

Density estimation. For each data point (6, ¢;, T;), the density is estimated with

Q
i 1 i
Do, t; (l‘) = a ZPR(«T - Xuei (wj7ti))7
j=1

where @ is the number of samples generated for each control 6; and time ¢;, pr(z) is a kernel density
function, typically defined as pr(z) = R"/?||z||~"/2J, 2(27R|z|), with R > 0 and J,, > the
Bessel function of order n/2, Xue,; (w;7 t;) are the system trajectories generated under control ug, .

Computational complexity. Evaluating py, ¢, () requires O(Q) operations per data point. This
step is trivially parallelizable across data points, since all kernel evaluations are independent.

Algorithm 1: DensityEstimation({x }?:1, PR)

Input: @ trajectory samples {z; }jQ:1 at (6;,t;), kernel pg
Output: density estimator Py, ;, : R™ — Rxg

Q
1
1 if x is queried then return py, 1, (x) < ) Z pr(x — ;)
j=1

Probability Computation (S, 7). The vectors P, S, and R are constructed from the observed data
points {(6;,t;, T;) }}, as follows:

Do, Etl, g 56,4, Po,,t,
A ﬁ92 t27 . A ‘§927t2 ~ 7292,152
P(-) = . R S = . s R =

AGN (th ) ‘§9N7tN fGN,tN

The vectors S and R are computed by integrating the densities over the safe and reset regions,
respectively:

§0i7ti :/ ﬁ()utl(f) de‘,
{z€R™:g(x)>0}
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fei,ti = / ]591',751‘ ({L‘) dz.
{z€R™:h(z)>0}

These integrals are approximated using Monte Carlo integration. If we can sample xj ~ P, +,, then

Q' Q'

R 1 R 1

50,4, ~ o Z]l{g(:vk) > 0}, Fo, t; = ] Z]l{h(xk) > 0}.
k=1 k=1

Alternatively, using trajectory samples { Xy, (w t; )} Py

Q Q
A 1 i ~ 1 %
S0i,t ¥ A Z ]l{g(Xuev (wj7ti)) 2 0}7 To.t: ~ = Z ]l{h(Xuev (wj7ti)) 2 O}
Q j=1 ' Q j=1 '
Here 1{-} denotes the indicator function.

Computational complexity. Constructing P involves N density evaluations, each costing O(Q),
for a total of O(NQ). For S and R, Monte Carlo based on samples from p costs O(NQ'), while
using trajectory samples costs O(NQ). Overall, constructing (P, S, R) costs O(NQ) (trajectory

MC) or O(N(Q + Q")) (using both). All computations are trivially parallelizable across evaluation
points.

Algorithm 2: ComputeProbabilities(pg, +,, g, h, Q’, mode)

Input: density estimator py, ;,, constraint functions g, h, number of MC samples Q’, mode
€ {density,trajectory}
Output: probabilities (3, 1,, 7o, ,t;)
1 if mode = density then

2 Sample {xk}l?;l from py, 4,
1 &
3 a Z 1{g(zy) > 0}
5
4| e z: h(zk) > 0}
k=

5 else // trajectory
6 Reuse trajectory samples {x; }?:1 at (0;,t;)
1 Q
7 §+ =) 1{g(z;) >0
Q Z { J }
Q

8 | 7 Z h(z;) > 0}

]:

return (§, )

e

Kernel-based estimation of system maps. Given N observed data points {(6;,t;,T;)}}¥,, the
Gram matrix K is constructed as

Kij = k((eutl)v (0.j7t.j)>7

where k is the kernel function. For a new input (6, ¢), the estimates for the system dynamics, safety,
and reset functions are

polt,x) = P(x)(K + NAI) " k(6,1),
§n(0,t) = S(K + NAI)"Yk(6,1),
Fn(0,t) = R(K + NXI) " k(0,1),
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where k(0,t) = [k((0,1), (6;,t:))]N,, A is a regularization parameter, P(-) £ (pg, +,(-)N,, S =
(§9i7ti)7];\]:1’ R= (fehti)il\;l'
The predictive uncertainty for (6, t) is computed as

o%(0,t) = k((0,1),(0,1)) — k(0,t)* (K + NXI) " 1k(0,1).

Computational complexity. Gram matrix construction requires O(N?) operations, matrix inver-
sion involves O(N?) operations. Evaluating py (6,t), $x(0,t), #x(0,1), or 0%,(6,t), costs O(N?)
per prediction.

Algorithm 3: FitKernelMaps({(6;,t,)}N.,, P(-), S, R, k, \)

Input: inputs {(6;,t;)}N |, targets P(-), S, R, kernel k, regularization \
Output: query operators for py(t, -), §N(0 t), Pn(0,t), 0% (0,t)
1 Build K with K;; < k((0:,4), (0;,1;)): set K « K + NAI

2 Compute and store K !
3 Precompute: ag +— K, 'S, ar+« K, 'R

4 Query at (6, t) (and optionally at x):
L k< [k((evt)7 (elatz)) ]ivzl

Z K;lk // used for variance and density map
sn(0,1) + kTag

. in(0,t) «— kTag

. 0%(0,t) < k((0,1),(0,t) — kT2

. If density at z is requested: build P(z) < [pg, 1, (z), ..., Poy.tx ()] and return
po(t,z) « P(2)T 2

B.2 Safe sampling
Feasibility criteria. The feasibility criteria for safe sampling are defined as:

)

where 33%;, B > 0 are confidence parameters. The safe-resettable feasible set is:
Iy = {(a,t,T) € D x [0, Thnas? ‘ t<T, LCBY(,T)>1—¢c, LCBL(0,T)>1— g} U T,
with
Lo = {(0,t, Tmax) € D x [0, Tmax]” | (,1) € SoN Ry} .
Sampling rule. The next control, time, and trajectory are selected by solving:

(On+1,tN41, Tn41) = argmax on(0,t),
(0,t,T)elN

where
U]2V(9a t) = k((ev t)a (67 t)) - k(ev t)*(K + N)‘[)ilk(ev t)
Stopping rule. Exploration terminates when:

0,t) <n,
(el’tl’ljl?)éFNUN( ) <n

where 1 > 0 is the user-defined uncertainty threshold.
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Computational complexity.

* Set construction (I y): Evaluating LCBY; and LCBY involves O(NN?) operations for each
candidate point. For M candidate points, constructing I' iy costs O(M N?).

* Uncertainty evaluation: Evaluating o involves matrix-vector multiplications and inver-
sions, where Gram matrix construction costs O(N?), matrix inversion costs O(N?), and
per-query uncertainty evaluation costs O(N?).

e Optimization (arg max):

— For discretization over M candidates: O(M N?),

— For gradient-based optimization: O(kN?), where k is the number of optimization
iterations, using a nonlinear constrained solver (e.g. SQP or interior-point). Each
iteration involves computing the gradient of oy (6, t), costing O(N?).

Efficient sampling algorithm. In practice, the sampling process can be improved to reduce
computational costs by focusing on promising regions and avoiding unnecessary evaluation of low-
uncertainty points: (1) threshold-based filtering: select any candidate where o (6,t) > 7 to avoid
costly global optimization while maintaining guarantees; (2) exclude evaluated points: skip candidates
where o (6,t) < 1, assuming the uncertainty is non-increasing (true for A = 1/N); (3) localized
sampling: restrict I' ;- to points near the initial safe set and previously selected points. Algorithm 4]
implements a region-growing strategy that encourages local exploration around previously selected
safe points.

Algorithm 4: Efficient sampling algorithm

Input: Initial safe-resettable set Sy N Ry, threshold 7, feasible set I' 5/
Output: Updated sets Py, Ay, and the selected candidate (if found)

1 Initialization:

2 Set Py =Sy NRyand Ag =0

3 Define the feasible set using a localized search region:

I =Ty n{(0.t,T)|d((0,t),Px) <1} \ A,

where d((6,1), Pj) denotes the minimum Euclidean distance from (6, ¢) to any point in Py,.
4 Iterations:
s fork=0,1,2,...do

6 | foreach candidate (0,t,T) € T* do
7 ifon(60,t) > n then
8 Select the candidate (6,t,T")
9 Update the safe-resettable set:
Pry1 = Pr U {(e,t,T)}
return (Pj41, Ag, (0,¢,7T))
10 end
11 else
12 Update the excluded set:
Apy1 = A U{(0,¢,T)}
13 end
14 end
15 Expand the radius: 7, — 7541
16 | Recompute I'*
17 if ¥ = () then
18 | return (Py, A, None)
19 end
20 end
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Figure 7: Predicted probability density of the trained model (¢ = £ = 0.1) along with 10 true
trajectories, for three test controls ((-0.81 1.20), (-1.07 0.92), (-1.13 1.18)) from the known set of
safe controls for this model. Predictions were computed on a spatial grid of 2500 points and times
t € [0, 16].

B.3 Role and tuning of hyperparameters

Hyperparameters critically influence the balance between exploration, safety, and computational
efficiency in our method. The safety and reset thresholds (e, &) directly control this balance: lower
thresholds enforce stricter constraints, restricting exploration to safer regions at the expense of slower
coverage, whereas higher thresholds allow broader exploration but increase risk. The confidence
parameters (35, £,-) modulate how conservatively the safe-resettable set expands, reflecting tolerance
to uncertainty in safety and reset predictions. The parameters A and  define the smoothness of the
estimated functions, thus capturing prior knowledge about the system dynamics. Different hyperpa-
rameters may be chosen for each map: 7iq4e and Agge for density estimation, and Yeoliects Acollect; eollect
for safety and reset predictions, as these functions may have different smoothness characteristics. Typ-
ically, hyperparameters are tuned using validation data. Parameters for density estimation (Yyge, Akde)
can be optimized after data collection by maximizing log-likelihood. In contrast, the parameters
governing safety and reset exploration (Yeoliect; Acollects Beollect) MUst be set beforehand, as they directly
impact safe exploration. When prior knowledge is limited, we recommend initially conservative
settings—high v, low A, high 3, and large kernel bandwidth R—and gradually relaxing them based on
data-driven insights. In our experiments, 4. and Axqe Were visually tuned using validation controls
(27 /3, —m/3), (—27/3,—m/3), and (0, —7/3). Meanwhile, Ycoliect, Acollect, Bcollect WeTE set heuristi-
cally, assuming reasonable prior smoothness estimates to minimize computational overhead. Without
such prior knowledge, comprehensive hyperparameter tuning would likely demand significantly
higher computational resources, as extensive parameter searches become necessary.

B.4 Computational considerations

To provide practical insight into computational requirements, we report measured execution times
from experiments on a standard machine (Apple M3 Pro, 18GB RAM). Each training iteration
required approximately 1.92s 4 0.02, totaling around 31.77 = 0.38 minutes for 1000 iterations, based
on 20 repeated runs. This includes candidate selection, trajectory simulation, computing safety and
reset probabilities, and model updates at each iteration. Density predictions took approximately
10 seconds in average for computing p(6, ¢, z) over a grid of 2500 x for each considered (0,1).
Although the computational times are non-trivial, they remain manageable on standard hardware
for the problem sizes considered. It should be noted that several approximation methods—such as
sketching for matrix inversion and online matrix inversion—as well as parallelization techniques
(e.g., parallelizing the simulations) can be leveraged to alleviate the computational burden. However,
exploring these techniques is beyond the scope of this paper.

C Additional experimental results

C.1 Dynamics prediction accuracy

In Figure [/ we present the predicted probability density from the model trained with ¢ = £ = 0.1,
alongside 10 true trajectories for three test controls ((-0.81 1.20), (-1.07 0.92), (-1.13 1.18)) chosen
from the known set of safe controls with uncertainty below 0.1. The density is evaluated over a spatial
grid of 2500 points and time steps ¢ € [0, 16]. This visualization provides a qualitative assessment of
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the model’s dynamic prediction accuracy. The predicted probability distributions closely match the
true dynamics, exhibiting similar means and variances over time.

C.2 Information gain over iterations

To complement the analysis of exploration behavior, we report the cumulative information gain over
the course of training, for different safety and reset thresholds e = ¢ € {0.1,0.3,0.5, 4-00}. Figure
shows how the information gain evolves as new trajectory data is collected.

We observe that larger thresholds, which allow more aggressive exploration, result in faster infor-
mation acquisition. In contrast, stricter thresholds slow down exploration and yield more gradual
information growth. This reflects the fundamental trade-off between exploration and safety: ensuring
high-probability safety requires restricting the sampling space, particularly in regions with high
model uncertainty.
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Figure 8: Cumulative information gain over iterations for various thresholds ¢ = ¢ €

{0.1, 0.3, 0.5, +00}.
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