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ABSTRACT

Blind Face Restoration (BFR) encounters inherent challenges in exploring its
large solution space, leading to common artifacts like missing details and iden-
tity ambiguity in the restored images. To tackle these challenges, we propose
a Likelihood-Regularized Policy Optimization (LRPO) framework, the first to
apply online reinforcement learning (RL) to the BFR task. LRPO leverages
rewards from sampled candidates to refine the policy network, increasing the
likelihood of high-quality outputs while improving restoration performance on
low-quality inputs. However, directly applying RL to BFR creates incompat-
ibility issues, producing restoration results that deviate significantly from the
ground truth. To balance perceptual quality and fidelity, we propose three key
strategies: 1) a composite reward function tailored for face restoration assess-
ment, 2) ground-truth guided likelihood regularization, and 3) noise-level advan-
tage assignment. Extensive experiments demonstrate that our proposed LRPO
significantly improves the face restoration quality over baseline methods and
achieves state-of-the-art performance. The source codes and models are available
at: https://anonymous.4open.science/r/LRPO-5874.

1 INTRODUCTION

Blind Face Restoration (BFR), which aims to reconstruct high-quality (HQ) faces from low-quality
(LQ) inputs with unknown degradations, has made rapid progress in recent years. Modern BFR
methods typically exploit various types of priors to establish direct mappings from LQ to HQ. These
priors can be categorized into several types: (1) geometric priors (e.g., facial landmarks (Chen et al.,
2018; Kim et al., 2019), parsing maps (Chen et al., 2021), and component heatmaps (Yu et al., 2018))
that provide structural guidance; (2) generative priors (Wang et al., 2021; Chan et al., 2021; Yang
et al., 2021) from pre-trained models like StyleGAN (Karras et al., 2019; 2020) that enable realistic
detail reconstruction; (3) discrete codebook priors (Gu et al., 2022; Zhou et al., 2022) improve
restoration fidelity; and (4) diffusion priors (Wu et al., 2024; Lin et al., 2024; Chen et al., 2024; Yue
& Loy, 2024; Wang et al., 2023b) that have recently attracted significant attention. Diffusion models
offer distinct advantages including robust generative capability, stable optimization, and superior
control over output diversity, making them particularly effective for producing high-quality, visually
pleasing face restorations.

However, despite the advantages of diffusion priors, BFR remains fundamentally challenging. The
task is inherently an ill-posed inverse problem where a single LQ input can correspond to multiple
plausible HQ solutions, making it difficult to determine the optimal restoration. Current methods
are constrained by their deterministic nature–they learn a fixed one-to-one mapping that produces
a single output without considering alternative solutions. This lack of exploration within the vast
solution space prevents these methods from discovering potentially superior restorations, leading to
suboptimal results (Zhou et al., 2021).

To address these exploration limitations, we propose incorporating reinforcement learning (RL)
into BFR. RL has demonstrated remarkable success in expanding performance boundaries across
various domains, particularly in language models (Shao et al., 2024; Yu et al., 2025) and vision
models (Fan et al., 2023; Liu et al., 2025; Wang et al., 2025; Yuan et al., 2025), by enabling diverse
exploration strategies rather than deterministic outputs. Building on recent advances that successfully
integrate RL with diffusion models (Liu et al., 2025; Xue et al., 2025)–where the denoising process
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Figure 1: (Left) Our proposed online RL-based face restoration framework: an LQ face is input to the
policy network πθ, which generates a group of HQ face candidates. The reward function evaluates
each candidate and converts the scores into within-group relative advantages that guide policy
optimization for the next iteration. The comparisons (Right) demonstrate the quality improvement
achieved through RL optimization over the base model.

is formulated as a Markov decision process–we leverage RL’s exploration capabilities alongside
diffusion models’ inherent randomness to systematically search BFR’s solution space for optimal
restorations that enhance both fidelity and perceptual quality.

To this end, we introduce the first online RL framework to BFR: Likelihood-Regularized Policy
Optimization (LRPO). Our framework utilizes a policy network to generate multiple diverse HQ
candidate faces from each LQ input, effectively exploring the solution space rather than following a
single deterministic trajectory. As shown in Figure 1 (left), this multi-candidate sampling strategy
allows systematic exploration of potential solutions. A reward function evaluates each candidate,
and relative advantages computed among candidates from the same input guide the policy network
optimization. Moreover, we introduce three key innovations to enable effective RL optimization: (1)
We design a composite reward function that evaluates restoration quality by incorporating human
preferences, perceptual quality, and fidelity metrics. (2) To prevent reward hacking (Skalse et al.,
2022; Amodei et al., 2016)–where the policy exploits reward signals while deviating from authentic
facial distributions–we implement ground-truth (GT) guided likelihood regularization that anchors the
policy to the true data manifold. (3) We propose a noise-level advantage assignment mechanism that
weights the advantages according to the importance of each denoising step, ensuring more effective
policy updates.

In summary, our main contributions are as follows:

• We introduce online RL to BFR for the first time, modeling the learning process as exploration for
superior restoration solutions. Specifically, we propose an LRPO framework that overcomes the
limitations of single deterministic trajectory generation by exploring multiple restoration candidates
through the RL training.

• We introduce three critical components for our proposed LRPO framework: a multi-faceted reward
function that captures diverse restoration quality aspects, GT guided likelihood regularization
that maintains authentic facial distributions while preventing reward exploitation, and adaptive
advantage weighting that optimizes learning across different denoising stages.

• Our LRPO framework delivers substantial improvements in face restoration quality and establishes
new state-of-the-art performance on standard evaluation metrics.

2 RELATED WORK

Diffusion-based Blind Face Restoration. Blind Face Restoration (BFR) aims to recover high-quality
face images from these degraded inputs while preserving identity consistency and perceptual quality.
Recently, diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) have gained popularity due

2
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to their generative diversity and training stability. DR2 (Wang et al., 2023b) uses a diffusion model
for degradation removal, followed by refinement through an enhancement module. DifFace (Yue &
Loy, 2024) constructs a posterior distribution to map LQ images to HQ counterparts, utilizing the
error-shrinkage property of pre-trained diffusion models for robust restoration. To accelerate training,
LDM (Rombach et al., 2022) recommends training diffusion in the latent space. DiffBIR (Lin et al.,
2024), built on LDM, employs ControlNet to guide restoration using low-quality faces as control
signals. Some variations of diffusion models have been used for face restoration. InterLCM (Li
et al., 2025) leverages the latent consistency model (LCM) to improve semantic consistency, restore
images efficiently. FlowIE (Zhu et al., 2024) uses conditional rectified flow for faster inference with
comparable restoration quality. However, diffusion models often suffer from poor identity consistency
and loss of facial details in restored images. We find that intrinsic randomness of diffusion models
can be leveraged through reinforcement learning with composite reward mechanisms to generate
higher-quality, more detailed facial restorations.

RL in Vision Generation. Reinforcement learning has recently achieved remarkable success in
improving large language model reasoning, particularly through policy gradient approaches such as
PPO (Schulman et al., 2017) and GRPO (Shao et al., 2024). In the text-to-image (T2I) generation
field, many methods have explored incorporating policy gradient approaches (e.g., PPO) to align with
human preferences. These methods explicitly cast diffusion denoising as a multi-step decision process
and update the policy accordingly. DDPO (Black et al., 2023) improves alignment and aesthetics
by optimizing rewards tied to human feedback. DPOK (Fan et al., 2023) studies online RL with
Kullback–Leibler (KL) regularization on SD (Rombach et al., 2022). As a complementary approach
to RL, Diffusion-DPO (Wallace et al., 2024) successfully adapts direct preference optimization
to diffusion likelihoods, achieving significant improvements in human-preference alignment on
SDXL (Podell et al., 2023). Beyond standard diffusion models, Flow-GRPO (Liu et al., 2025) is
the first to bring GRPO into flow-matching model. Building on this, TempFlow-GRPO (He et al.,
2025) further improves efficiency and stability by introducing trajectory branching and enabling
process-level rewards without an intermediate reward model. Motivated by these successes, we
present the first integration of policy gradient-based online RL into the BFR domain.

3 PRELIMINARY

BFR Problem Modeling. BFR is an ill-posed inverse problem. From a mathematical perspective,
given a low-quality observation cLQ, the posterior distribution of its corresponding high-quality x0,
denoted as p(x0|cLQ), has multiple feasible solutions (Menon et al., 2020). This posterior can be
modeled as a mixture distribution:

p(x0|cLQ) =

K∑
k=1

wk · pk(x0|cLQ) (1)

Here, K represents the number of possible high-quality solutions. Each distribution pk(x0|cLQ)
represents a real face distribution compatible with cLQ, having a specific identity, expression,
or detail, with a peak at µk. The term wk denotes the probability of the k-th solution, where∑

wk = 1. This multi-solution nature poses a challenge for existing methods. Without dedicated
exploration mechanisms, restoration models tend to converge toward average solutions, resulting in
characteristically blurry faces that lack rich textural details (Lugmayr et al., 2020).

DDIM. Diffusion models generate data through forward noise addition and reverse denoising pro-
cesses. In the forward diffusion process, the data is progressively perturbed by Gaussian noise,
defined as q(xt|xt−1) = N (

√
αtxt−1, (1 − αt)I), where αt ∈ (0, 1] controls the noise intensity,

and xt represents the noisy data at time step t.

The denoising process recovers data via the conditional distribution pθ(xt−1|xt, c), where c is a
condition. In the DDIM (Song et al., 2020) framework, the network predicts the noise ϵθ(xt, t, c).
The one-step denoising formula (from t to t− 1) is given by:

µθ(xt, t, c) =
√
αt−1 ·

xt −
√
1− αt · ϵθ(xt, t, c)√

αt
+
√
1− αt−1 − σ2

t · ϵθ(xt, t, c), (2)

xt−1 = µθ(xt, t, c) + σt · ϵt, ϵt ∼ N (0, I), (3)

3
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Figure 2: The overview of our proposed LRPO framework. The policy network produces multiple
HQ restoration candidates from a single LQ input, which are then assessed by the reward function and
transformed into advantage scores. The framework assigns weighted advantage scores to individual
denoising steps according to their contribution to restoration quality, and integrates ground-truth
guided likelihood regularization into the RL optimization objective to maintain fidelity.

where σt = η

√
1−αt−1

1−αt
·
(
1− αt

αt−1

)
, and η ∈ [0, 1] controls the randomness. When η = 0, the

sampling is deterministic, producing a fixed generation path. When η > 0, random noise ϵ is
introduced, bringing randomness.

Fan et al. (2023) proposes that DDIM can be formulated as a Markov Decision Process (MDP) defined
by the tuple (S,A, ρ0, π, P,R). At time step t, the state is st ≜ (c, t,xt). The action is the denoised
sample predicted by the model, at ≜ xt−1, with the policy defined as π(at|st) ≜ πθ(xt−1|xt, c).
The state transition is deterministic, given by P (st+1|st,at) ≜ (δc, δat

), where δc denotes the Dirac
distribution at c. The initial state distribution is P0(s0) ≜ (p(c),N (0, I)). The reward is provided
only at the final step: R(st,at) ≜ r(x0, c). When η > 0, the DDIM supporting MDP can achieve
reinforcement learning training.

4 METHODOLOGY

LRPO is an approach that enhances the BFR task using online RL, as shown in Figure 2. First, we
initialize its policy network with an off-the-shelf diffusion-based face restoration model. Specifically,
we employ DiffBIR (Lin et al., 2024) (our base model), a ControlNet-based (Zhang et al., 2023)
approach that uses the LQ input as a control signal to guide restoration. Based on the GRPO (Shao
et al., 2024) algorithm, we propose three core innovations for the BFR task: (1) We design a composite
reward function that provides rewards for the diffusion denoising process. (2) We propose a ground-
truth guided likelihood regularization term to penalize policy updates that deviate from real face data.
(3) We develop a noise-aware advantage assignment mechanism to appropriately weight advantages
based on denoising step significance.

4.1 GROUP RELATIVE POLICY OPTIMIZATION

The optimization goal of reinforcement learning is to maximize the expected cumulative reward.
Unlike PPO (Schulman et al., 2017), GRPO (Shao et al., 2024) samples a group of G trajectories
{{x(i)

T ,x
(i)
T−1, . . . ,x

(i)
0 }}Gi=1, from the policy πθold , obtaining G candidate reconstructions x̂

(i)
0 ,

4
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which are decoded from x
(i)
0 in latent diffusion, and their rewards r(i) = r(x̂

(i)
0 ,xGT), where xGT

denotes the ground truth corresponding to x̂
(i)
0 . Then, the advantage of the i-th sampled trajectory at

time t is calculated by normalizing the group-level rewards:

Â
(i)
t =

r(i) − mean({r(i)}Gi=1)

std({r(i)}Gi=1)
. (4)

Finally, the GRPO algorithm updates the policy model by maximizing the following objective:

JDDIM-GRPO(θ) = EcLQ∼p(cLQ),{x̂(i)}G
i=1∼πθold (·|cLQ)

1

G

G∑
i=1

1

T

T−1∑
t=0

[
min

(
r
(i)
t (θ)Â

(i)
t , clip

(
r
(i)
t (θ), 1− ϵ, 1 + ϵ

)
Â

(i)
t

)
− βDKL(πθ∥πref)

]
,

(5)

where r(i)t (θ) =
πθ(x

(i)
t−1|x

(i)
t ,cLQ)

πθold (x
(i)
t−1|x

(i)
t ,cLQ)

, with T denoting the total timesteps and πref denotes the initialized

pretrained model.

Due to the inherent randomness of the Diffusion model, given the same LQ face cLQ, a set of diverse
candidate faces {x̂(1)

0 , x̂
(2)
0 , . . . , x̂

(G)
0 } can be generated from policy πθ. Ideally, when πθ learns a

posterior distribution capturing different potential solutions, the generated samples cluster around
distinct peaks {µk} in the solution space. Such diverse candidates enable the optimization process to
make meaningful comparisons and drive policy improvements.

Once obtaining the candidate set, we evaluate each generated sample x̂(i)
0 using the composite reward

function r(·). The GRPO algorithm then transforms the absolute rewards r(i) into within-group
relative advantages Â(i)

t (See Eq. 4), which improves the ability to distinguish between high and low-
quality solutions while reducing sensitivity to reward scaling. The core insight of this transformation
is to redirecting optimization from absolute quality assessment (“how good is this solution?”) to
relative comparison (“how does this solution rank within the group?”). Consequently, the policy
gradient update direction is proportional to:

G∑
i=1

T−1∑
t=0

Â
(i)
t ∇θ log πθ

(
a
(i)
t |s(i)t

)
. (6)

Thus, the following conclusion can be drawn: When a sample’s reward exceeds the group average, its
advantage Â

(i)
t is positive, increasing the policy’s selection probability; conversely, below-average

rewards yield negative advantages Â(j)
t , reducing selection likelihood for suboptimal solutions. This

group sampling approach enables parallel exploration of the policy’s learned solution space. To fully
exploit GRPO’s ability to amplify good solutions while suppressing bad ones, we introduce three key
innovations that improve exploration efficiency and enhance face restoration quality.

4.2 LIKELIHOOD-REGULARIZED POLICY OPTIMIZATION

Composite Reward Function. To effectively guide the optimization of the policy network πθ and
enable it to find a better balance in the complex Perception-Distortion Tradeoff (Blau & Michaeli,
2018), we design a multi-objective composite reward function, R(x̂0,xGT). This composite function
measures the quality of generated face images x̂0 from three complementary perspectives:

• Human Preference Reward (rpref): We employ a Face Reward Model (Wu et al., 2025), pre-trained
on a human preference dataset, to score the overall realism and naturalness of facial details, ensuring
alignment with human aesthetic preferences.

• Perceptual Quality (raq): We incorporate CLIP-IQA (Wang et al., 2023a), a no-reference image
quality assessment metric, to objectively measure perceptual quality using knowledge from pre-
trained CLIP (Radford et al., 2021) models.

• Fidelity Reward (rfid): We formulate a fidelity reward based on feature similarity and wavelet low-
frequency constraints to enforce identity consistency, resulting in substantial fidelity improvements
(see Appendix C for implementation details).
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The final total reward R(·) is defined as the weighted sum of these three components:

R(x̂0,xGT) = λ1rpref(x̂0) + λ2raq(x̂0) + λ3rfid(x̂0,xGT) (7)

where λ(·) are the weight coefficients for each term.

Ground-truth Guided Likelihood Regularization. Optimization based solely on reward maxi-
mization is susceptible to reward hacking–the policy may exploit reward function biases to produce
unrealistic outputs. We address this with ground-truth (GT) guided likelihood regularization Rlikelihood,
activated only in the final S timesteps, to maintain realistic and natural face generation.

The regularization leverages GT supervision by using ideal denoising trajectories derived from x̂GT.
For each GT image, we pre-compute the ideal latent trajectory {xGT}Tt=0 through forward noising.
During training, when the policy πθ samples a state xt, we apply regularization by maximizing the
log-likelihood of the model producing the ideal subsequent state xGT

t−1. Thus, the regularization item
is defined as:

Rlikelihood = − log πθ(x
GT
t−1|xt, cLQ) ∝

∥xGT
t−1 − µθ(xt, t, cLQ)∥22

2σ2
t

. (8)

Where µθ and σt refer to the mean and standard deviation of DDIM’s one-step denoising, with
the detailed form provided in Sec. 3. As shown in Eq. 8, this loss term encourages the policy
network πθ to predict a high-probability distribution centered around the ideal target xGT

t−1 at its
explored state xt. This is equivalent to minimizing the variance-weighted Euclidean distance between
the predicted mean µθ(xt, t, c) and the ideal state xGT

t−1. The likelihood regularization Rlikelihood
maintains alignment between restored image and authentic facial distributions, substituting for the
standard KL divergence term in GRPO.

Noise-Level Advantage Assignment. Conventional GRPO-based approaches (Liu et al., 2025; Fan
et al., 2023) treat all timesteps equally when assigning advantage weights, ignoring the inherently
non-uniform importance of different steps in the diffusion process. To address this, inspired by
previous work (He et al., 2025), we introduce a noise-level-aware advantage assignment approach
that correlates advantage weights with the exploration magnitude achieved at each denoising step. In
DDIM sampling, the single-step exploration radius from xt to xt−1 is determined by the standard
deviation σt of the added noise. Therefore, we set the timestep weight wt proportional to σt:

wt ∝ σt, s.t.
1

T

T−1∑
t=0

wt = 1 (9)

The specific form of σt is detailed in Sec. 3. After normalizing the weights {wt}Tt=1, we apply them
to weight the original advantage Â

(i)
t , yielding the final advantage Ã

(i)
t for policy update:

Ã
(i)
t = wt · Â(i)

t (10)

Since σt decreases from high initial values to nearly zero, early denoising steps possess greater
exploration capability. By weighting these steps more heavily in advantage computation, we facilitate
enhanced exploration that yields more diverse high-quality restoration outcomes. Simultaneously, it
reduces interference during the high-frequency detail refinement that occurs in later denoising phases.
This allocation strategy effectively performs weighted adjustment of policy gradients, as detailed in
Appendix A.

LRPO Optimization Objective. By combining these strategies, we formulate an optimization
objective that maximizes policy return while applying likelihood regularization to prevent unrealistic
restorations:

JLRPO(θ) = EcLQ∼p(cLQ),{x̂(i)}G
i=1∼πθold (·|cLQ)

1

G

G∑
i=1

1

T

T−1∑
t=0

[
min

(
r
(i)
t (θ)Â

(i)
t , clip

(
r
(i)
t (θ), 1− ϵ, 1 + ϵ

)
Â

(i)
t

)
+ αR(i)

likelihood

]
,

(11)

Compared to Eq. 5, we replace the KL divergence component with GT-guided likelihood regulariza-
tion in our optimization objective.

6
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5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Experimental hyperparameters are detailed in Appendix B, and composite reward function configura-
tions are provided in Appendix C.

Training and Testing Data. We only use 3000 face images from the FFHQ (Karras et al., 2021)
dataset for training. The degradation strategy from HQ to LQ is based on the following degradation

function: ILQ =

{[
(IHQ ⊗ kkkσ)↓r

+nnnδ

]
JPEGq

}
↑r

, where the HQ images are first convolved with a

Gaussian kernel kkkσ , followed by a downsampling with a factor of r, and then corrupted with Gaussian
noise nnnδ . Subsequently, the images undergo JPEG compression with a quality factor of q. Finally, the
LQ image is resized back to the original 512× 512. Here, σ, r, δ, and q are randomly sampled from
the intervals [0.1, 12], [1, 12], [0, 15], and [30, 100], respectively. Follow previous work Wang et al.
(2021); Gu et al. (2022), we employ the synthetic dataset CelebA-Test (Karras et al., 2017) and two
real-world datasets (Wang et al., 2021) (i.e., LFW-Test and WebPhoto-Test) to validate our method.

Evaluation Metrics. On the Celeba-Test dataset, we utilized six common reference-based metrics:
SSIM (Wang et al., 2004), PSNR, LPIPS (Zhang et al., 2018), CLIP Score (Hessel et al., 2021),
Deg. (Wang et al., 2021), and LMD (Gu et al., 2022), where Deg. and LMD are identity consistency
metrics, along with four non-reference metrics: MUSIQ (Ke et al., 2021), MANIQA (Yang et al.,
2022), CLIPIQA (Wang et al., 2023a), and Aesthetic (LAION-AI, 2022).

Comparison Methods. We compare with not only the base models but also the latest state-of-the-art
methods, including GFPGAN (Chan et al., 2021), CodeFormer (Zhou et al., 2022), VQFR (Gu
et al., 2022), DR2+SPAR (Wang et al., 2023b), RestoreFormer (Wang et al., 2022), DifFace (Yue &
Loy, 2024), OSEDiff (Wu et al., 2024), DiffBIR (Lin et al., 2024), FlowIE (Zhu et al., 2024) and
InterLCM (Li et al., 2025).

Table 1: Performance comparisons on CelebA-Test. The highest score for each metric is highlighted
in red, the second-highest in blue. Metrics with ↑ indicate higher is better, ↓ means lower is better.
Values in parentheses represent our method’s improvements over the base DiffBIR model.

Methods SSIM↑ PSNR↑ LPIPS↓ CLIP Score↑ Deg.↓ LMD↓ MUSIQ↑ MANIQA↑ Aesthetic↑ CLIPIQA↑

Input 0.6994 25.33 0.4866 0.7894 47.94 3.7560 17.00 0.3957 4.0484 0.2957
GFP-GAN 0.6772 24.65 0.3646 0.8410 34.58 2.4110 73.90 0.6522 5.6992 0.6781
CodeFormer 0.6925 25.85 0.3335 0.8931 31.08 1.9963 74.23 0.6520 5.8103 0.6493
VQFR 0.6654 23.76 0.3557 0.8562 42.48 2.9444 73.84 0.6544 5.7844 0.6750
DR2+SPAR 0.6512 22.89 0.4146 0.7437 57.24 4.5449 70.19 0.6374 5.6602 0.5960
DifFace 0.6762 24.80 0.3994 0.8380 45.81 2.9766 68.96 0.6204 5.4708 0.5711
OSEDiff 0.6864 23.96 0.3478 0.7962 46.20 2.8871 73.41 0.6560 5.7720 0.6120
FlowIE 0.6769 24.85 0.3442 0.8961 33.44 2.1995 74.08 0.6720 5.6782 0.6866
InterLCM 0.6819 24.88 0.3349 0.8905 33.58 2.1519 75.16 0.6781 5.7735 0.6748

DiffBIR 0.6775 25.44 0.3811 0.8877 35.16 2.2661 74.46 0.6752 5.7943 0.7200

LRPO (ours)
0.7021 26.15 0.3635 0.9100 31.19 1.9533 75.24 0.6808 5.8126 0.8061
(+0.0246) (+0.71) (+0.0176) (+0.0223) (+3.97) (+0.3128) (+0.78) (+0.0056) (+0.0183) (+0.0861)

5.2 MAIN RESULTS

Results on Synthetic Data. As shown in Table 1, LRPO achieves improvements on all metrics
compared with DiffBIR on the synthetic CelebA-Test dataset. These results indicate that our RL
framework simultaneously improves perceptual quality and identity preservation in restored faces.
Furthermore, LRPO achieves superior performance compared to state-of-the-art approaches across
the majority of evaluation metrics, including SSIM, LMD, and MUSIQ, confirming that it enhances
identity consistency while maintaining perceptual quality. Figure 3 demonstrates LRPO’s superior
performance over methods that fail to restore faces satisfactorily. LRPO delivers more realistic
textures than the baseline, better identity alignment than DR2 and OSEDiff, and more natural results
without the over-smoothing seen in InterICM and FlowIE.
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LQ GFP-GAN CodeFormer VQFR DR2 DifFace

OSEDiff FlowIE InterLCM DiffBIR Ours GT

LQ GFP-GAN CodeFormer VQFR DR2 DifFace

OSEDiff FlowIE InterLCM DiffBIR Ours GT

Figure 3: Qualitative results on CelebA-Test datasets. (Zoom in for details)
LQ CodeFormer DR2 DifFace OSEDiff FlowIE DiffBIR Ours

Figure 4: Qualitative results on real-world datasets. (Zoom in for details)

Table 2: Performance comparisons on wild
datasets. The highest score is highlighted in red,
and the second-highest in blue. Metrics with ↑
indicate higher is better.

Dataset LFW-Test WebPhoto-Test
Methods MUSIQ↑ CLIPIQA↑ MUSIQ↑ CLIPIQA↑

Input 26.87 0.2834 18.63 0.4128
GFP-GAN 73.57 0.6983 72.09 0.6888
CodeFormer 70.69 0.6335 71.16 0.6573
VQFR 74.39 0.7100 70.91 0.6767
DR2+SPAR 72.22 0.6427 63.65 0.5586
DiffFace 69.85 0.6110 65.21 0.5821
OSEDiff 73.40 0.6327 72.60 0.6454
FlowIE 64.29 0.5974 71.45 0.6838
InterLCM 74.18 0.6588 73.91 0.6658
DiffBIR 73.71 0.7296 67.45 0.6630

LRPO (ours) 74.60 0.8073 72.71 0.7040
(+0.89) (+0.0777) (+5.26) (+0.0410)

Results on Real-world Data. Table 2 shows the
quantitative performance evaluation on real-world
datasets LFW-Test and WebPhoto-Test. LRPO
demonstrates significant performance gains com-
pared to the base DiffBIR and outperforms other
state-of-the-art approaches on MUSIQ and CLIP-
IQA metrics. Qualitative results are illustrated in
Figure 4. Due to severe degradation in real-world
inputs, many approaches fail to restore texture de-
tails. In contrast, our method recovers more details
while introducing fewer artifacts.

Human Preference Evaluation. A user study
was conducted with 12 participants of varying
backgrounds to evaluate 100 face images from
the CelebA-Test dataset. Participants evaluated
our method against the base model (DiffBIR) on two criteria: fidelity (identity preservation) and

8
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realism (naturalness with minimal artifacts). As shown in Table 3, our method outperforms the base
model in both fidelity and realism according to human preferences.

5.3 ABLATION STUDY

We conduct the ablation study on CelebA-Test dataset. As shown in Table 4, we analyze the effects of
four key components: Reinforcement Learning (RL), Kullback-Leibler divergence (KL), GT guided
likelihood regularization (Reg.), and noise-level advantage assignment (AdA). Variant 1 demonstrates
improvements across all metrics after incorporating RL, confirming that RL directly enhances BFR
performance. However, adding KL divergence in Variant 2 degrades all metrics without improving
visual quality (See Figure 5(a)). We therefore remove KL divergence from the RL objective in
Eq. 11, reducing computational cost while maintaining visual quality. Without AdA (Variant 3),
the model suffers from detail blurring caused by over-optimization during late denoising stages
(Figure 5(b)). Removing Reg. (Variant 4) leads to decreased SSIM scores and poor fidelity, with the
model producing unrealistic, fantasy-like textures as shown in Figure 5(c). Training dynamics show
that our noise-level advantage assignment facilitates faster convergence to high-reward restoration
trajectories, while GT guided likelihood regularization enhances structural fidelity (Appendix D).

Table 3: User study. Participants selected the winner
between DiffBIR and LRPO restored images in terms
of fidelity and realism.

Comparison Fidelity % Realism %

DiffBIR vs LRPO 38.1% vs 61.9% 27.6% vs 72.4%

Table 4: Ablation Study of LRPO

Struct RL KL Reg AdA SSIM↑ LMD↓ CLIPIQA↑

Base 0.6775 2.2661 0.7200
Variant 1 ✓ 0.6849 2.0503 0.7809
Variant 2 ✓ ✓ 0.6750 2.1602 0.7816
Variant 3 ✓ ✓ 0.6867 2.0078 0.7852
Variant 4 ✓ ✓ 0.6806 1.9551 0.7980
LRPO ✓ ✓ ✓ 0.7021 1.9533 0.8061

Variant 1 Variant 2 GT

Variant 4 Ours GTKL

(a)

(c)

(b)

Variant 3 Ours GT

Figure 5: Ablation study visualizations.

CodeFormerLQ DiffBIR Ours CodeFormerLQ DiffBIR Ours

Figure 6: Failure cases. Restoration of highly rare specialized and individualized objects such as
jewelry achieves suboptimal results.

6 CONCLUSION

In this work, we propose LRPO, the first online reinforcement learning framework applied to
BFR tasks. LRPO exploits RL’s inherent exploration mechanisms to overcome the limitations
of deterministic restoration methods, simultaneously improving perceptual quality and identity
preservation. LRPO integrates three critical innovations: a composite reward function for multi-
perspective image evaluation, GT guided likelihood regularization for fidelity preservation, and
noise-level advantage assignment for efficient optimization. Comprehensive experiments validate
LRPO’s effectiveness in enhancing both identity consistency and perceptual quality compared to
existing approaches.

Limitation. While our method surpasses existing approaches, certain failure cases remain. Figure 6
demonstrates that rare specialized and individualized objects (e.g., jewelry) are restored with artifacts
due to limited prior knowledge in the base model’s training data. These limitations may require
stronger foundation models or more comprehensive training datasets.
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ETHICS STATEMENT

All authors adhere to the ICLR Code of Ethics. Our research is confined to the technical challenge of
image restoration and does not introduce new ethical risks. By improving identity consistency, our
method aims to mitigate known issues in face restoration. All experiments were conducted using
publicly available datasets for training and evaluation.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, our source code and models will be publicly released. Our experiments use
public datasets. All implementation details, training hyperparameters, and the composition of our
reward function are provided in Appendix.
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A ADVANTAGE WEIGHT AS A DIRECT GRADIENT COEFFICIENT

For a generative process parameterized by θ, the policy gradient in the DDIM optimization objective
can be expressed as follows:

∇θJLRPO(θ) =
T−1∑
t=0

ExT ,ϵ

[
∇θ log πθ (xt−1|xt, c) (wt · Ât)

]
(12)

The core of the proof is to expand the log-policy gradient term, ∇θ log πθ. The log-policy is defined
by the Gaussian sampling step:

log πθ(xt−1|xt, c) = −∥xt−1 − µθ(xt, t, c)∥22
2σ2

t

+ Ct (13)

Taking the gradient with respect to θ:

∇θ log πθ(xt−1|xt, c) = ∇θ

(
−∥xt−1 − µθ(xt, t, c)∥22

2σ2
t

)
(14)

= − 1

2σ2
t

· 2(xt−1 − µθ(xt, t, c)) · (−∇θµθ(xt, t, c)) (15)

=
xt−1 − µθ(xt, t, c)

σ2
t

· ∇θµθ(xt, t, c) (16)

Since xt−1 = µθ(xt, t, c) + σtϵ where ϵ ∼ N (0, I):

∇θ log πθ(xt−1|xt, c) =
σtϵ

σ2
t

· ∇θµθ(xt, t, c) =
ϵ

σt
· ∇θµθ(xt, t, c) (17)
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Expanding ∇θµθ(xt, t, c):

∇θµθ(xt, t, c) = ∇θ

[√
αt−1√
αt

xt −
√

αt−1(1− αt)√
αt

ϵθ(xt, t, c) +
√
1− αt−1 − σ2

t · ϵθ(xt, t, c)

]
(18)

= ∇θ

[(√
1− αt−1 − σ2

t −
√

αt−1(1− αt)√
αt

)
ϵθ(xt, t, c)

]
(19)

=

(√
1− αt−1 − σ2

t −
√
αt−1(1− αt)√

αt

)
· ∇θϵθ(xt, t, c) (20)

Let Ct denote the scalar coefficient in parentheses that varies with timestep t. Now, substituting the
expansion of ∇θµθ back into Eq. 17, we establish the direct relationship:

∇θ log πθ(xt−1|xt, c) =
ϵ

σt
Ct︸ ︷︷ ︸

Kt

·∇θϵθ(xt, t, c) (21)

Here, we have explicitly derived the coefficient Kt. Finally, we substitute this complete form into the
LRPO gradient objective:

∇θJLRPO(θ) =

T−1∑
t=0

ExT ,ϵ

[
(Kt · ∇θϵθ(xt, t, c)) (wt · Ât)

]
(22)

=

T−1∑
t=0

ExT ,ϵ

[
(wtKt) · Ât · ∇θϵθ(xt, t, c)

]
(23)

This formally proves that our advantage weight, wt, becomes part of a new scalar term (wtKt) that
directly multiplies the network’s gradient, ∇θϵθ. More importantly, this derivation reveals how our
noise-level advantage assignment directly translates into a principled modulation of the learning
signal at different stages of the denoising process. The final update to the network’s parameters θ is
effectively scaled by our time-dependent weight. In the early stages of denoising, where the model
needs to vigorously explore and establish the image’s overall structure and identity, our mechanism
intelligently increases the optimization intensity. This encourages the policy to discover more diverse
and high-quality solutions. Conversely, during the later stages, when the image is mostly formed and
the task shifts to refining high-frequency details, our method reduces the optimization strength. This
prevents large, disruptive updates from corrupting fine textures and ensures a more stable, fine-grained
training process that converges smoothly.

B IMPLEMENTATION DETAILS

Training Setup. We initialize our policy network with the official pre-trained weights of DiffBIR-v11,
which was pre-trained on the FFHQ dataset. Our entire framework is built upon PyTorch 2.7.0. The
training is conducted on three NVIDIA RTX 4090 GPUs and accelerated using the DeepSpeed library.
A key component of our online training pipeline is a dedicated reward server, which is deployed on a
separate NVIDIA RTX 4090 GPU to efficiently compute and provide reward signals to the policy
network.

Hyperparameters. The policy network is optimized using the Adam optimizer with a learning rate
of 1× 10−6 and a batch-size of 6. For the denoising process, we employ the DDIM sampler. During
training, we set η = 1.0 to introduce stochasticity that encourages exploration, while for inference,
we use η = 0.8 to achieve more deterministic and stable generation. For our LRPO algorithm, we set
the number of candidate samples per group to G = 9 and the policy update clipping range to 1×10−4.
The GT-guided likelihood regularization is weighted by a coefficient of α = 0.001. Crucially, this
regularization is only applied during the final S = 5 steps of the denoising process. This strategic
application prevents the policy’s exploration from being overly constrained during the initial, more
impactful stages of the reverse process.

1The source code and weights from https://github.com/XPixelGroup/DiffBIR.

14

https://github.com/XPixelGroup/DiffBIR


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C COMPOSITE REWARD FUNCTION DETAILS

This section provides more details on the reward function, R(x̂0,xGT). The function is engineered to
deliver a holistic assessment of restored images by balancing human aesthetic preference, perceptual
quality, and fidelity. The total reward score is a weighted aggregation of four components, formulated
as:

R(x̂0,xGT, ctext) = 0.3 · rpref + 0.1 · raq + 0.3 · rlpips + 0.3 · rdwt

where x̂0 is the restored image, xGT is the ground-truth image, and ctext is the textual description
corresponding to xGT. We elaborate on each component below.

Human Preference Reward (rpref). The human preference evaluation we use is based on the previous
work (Wu et al., 2025), called the Face Reward Model. Trained on several human preference datasets,
it is able to provide face restoration evaluations with high human consistency. The Face Reward
Model’s input requires both x̂0 and ctext, the latter corresponding to the GT face.

Perceptual Quality Reward (raq). This component, raq, offers a no-reference evaluation of the image’s
absolute quality. We employ the CLIPIQA (CLIP-based Image Quality Assessment) metric Wang
et al. (2023a) from the pyiqa library. It assesses overall perceptual quality and realism without
requiring a reference image, making it effective for identifying artifacts.

Fidelity Reward (rfid). The fidelity reward ensures the restoration remains faithful to the ground-truth.
Our implementation uses a composite metric combining LPIPS to constrain perceptual similarity and
a DWT-based measure for structural similarity.

LPIPS. The Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018) metric computes
the distance between two images in a deep feature space, which correlates well with perception. As
LPIPS is a distance metric (lower is better), we convert it into a similarity reward (higher is better)
via the transformation: rlpips = 1.0− LPIPS(x̂0,xGT).

DWT. To maintain consistency between the restored image and the GT image, we employ a Discrete
Wavelet Transform (DWT) as a structural constraint. DWT extracts the low-frequency components
of the restored image x̂0 and the GT image x̂GT for the constraint. We leave the high-frequency
components unconstrained to allow for more flexible restoration, reduce interference with high-
frequency information, and make the generation more vivid. The detailed formulation is as follows:

LDWT = ∥DWTLF(x̂0)− DWTLF(x̂GT)∥1

Finally, the LDWT is converted into a reward score using an exponential decay function, which maps
the non-negative loss to a score in the range (0, 1]:

rdwt = exp(−15 · LDWT)

The scaling factor is an empirically chosen value.
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Figure 7: Reward scores during training w/
and w/o noise-level advantage assignment
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D ABLATION STUDY DETAILS

We provide a more detailed explanation of the four variants presented in Table 4 of the main paper.
In Table 4, Variant 2 employs the standard GRPO optimization objective, which includes the KL
divergence term. Building upon this, Variant 1 removes the KL term from the optimization objective.
While both Variant 3 and Variant 4 follow the GRPO training framework, Variant 3 integrates GT-
guided likelihood regularization (Reg.), and Variant 4 integrates noise-level advantage assignment
(AdA). Specifically, Variant 3 adds Reg. to the optimization term, with the advantage being assigned
uniformly across the time steps. Variant 4 uses the suggested noise-level advantage assignment, but
does not incorporate the Reg. term in the optimization objective.

Figure 7 and Figure 8 illustrate the differences in reward and SSIM scores when applying Ada and
Reg strategies, respectively. Training dynamics in Figure 7 demonstrate that noise-level advantage
assignment consistently outperforms uniform weighting, achieving superior reward scores and faster
discovery of optimal restoration solutions. Additionally, Figure 8 validates replacing KL divergence
with GT-guided regularization, as evidenced by improved SSIM convergence on CelebA-Test data,
indicating better structural alignment with ground truth.

E THE DETAILS OF HUMAN PREFERENCE EVALUATION

To complement our quantitative metrics, we conducted a human preference evaluation to assess
the perceptual quality and fidelity of our proposed LRPO against the DiffBIR. The study involved
12 participants from diverse backgrounds, each evaluating 100 randomly selected face restorations
generated by both methods on the CelebA-Test dataset.

For each case, participants were shown the two restored images in a randomized order, along with the
corresponding Ground Truth (GT) image for reference. They were then asked to make a forced-choice
comparison, selecting one of the two images based on two independent criteria:

• Realism: Which image appears more natural and realistic, with richer facial details and
fewer visual artifacts?

• Fidelity: Which restored face image is more consistent with the identity of the GT face?

Preference rates for realism and fidelity were independently calculated for both methods based on the
collected responses. The final results, summarized in Table 3, show that our method was preferred by
participants in terms of both realism and fidelity.

F MORE QUALITATIVE RESULTS

This part shows more quantitative comparisons between our method and others. In Figure 9, we
present additional comparison results between our method and others based on the synthetic dataset
CelebA-Test. In Figure 10, we present additional comparison results between our method and others
based on the real-world datasets.

G LLM USAGE STATEMENT

In the preparation of this manuscript, we utilized a Large Language Model (LLM) as a writing
assistance tool. The role of the LLM was strictly confined to improving the language, including
grammar, phrasing, and overall clarity. All scientific contributions, including the core research ideas,
experimental methodology, and analysis of results, were developed exclusively by the human authors.
The LLM did not contribute to the scientific content of this paper.
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Figure 9: Qualitative results on CelebA-Test datasets. (Zoom in for details)
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Figure 10: Qualitative results on real-world datasets. (Zoom in for details)
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