

000 001 002 003 004 005 LRPO: ENHANCING BLIND FACE RESTORATION 006 THROUGH ONLINE REINFORCEMENT LEARNING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025

ABSTRACT

026 Blind Face Restoration (BFR) encounters inherent challenges in exploring its
027 large solution space, leading to common artifacts like missing details and iden-
028 tity ambiguity in the restored images. To tackle these challenges, we propose
029 a **Likelihood-Regularized Policy Optimization** (LRPO) framework, the first to
030 apply online reinforcement learning (RL) to the BFR task. LRPO leverages
031 rewards from sampled candidates to refine the policy network, increasing the
032 likelihood of high-quality outputs while improving restoration performance on
033 low-quality inputs. However, directly applying RL to BFR creates incompat-
034 ibility issues, producing restoration results that deviate significantly from the
035 ground truth. To balance perceptual quality and fidelity, we propose three key
036 strategies: 1) a composite reward function tailored for face restoration assess-
037 ment, 2) ground-truth guided likelihood regularization, and 3) noise-level advan-
038 tage assignment. Extensive experiments demonstrate that our proposed LRPO
039 significantly improves the face restoration quality over baseline methods and
040 achieves *state-of-the-art* performance. The source codes and models are available
041 at: <https://anonymous.4open.science/r/LRPO-5874>.
042

043 1 INTRODUCTION

044 Blind Face Restoration (BFR), which aims to reconstruct high-quality (HQ) faces from low-quality
045 (LQ) inputs with unknown degradations, has made rapid progress in recent years. Modern BFR
046 methods typically exploit various types of priors to establish direct mappings from LQ to HQ. These
047 priors can be categorized into several types: (1) *geometric priors* (e.g., facial landmarks (Chen et al.,
048 2018; Kim et al., 2019), parsing maps (Chen et al., 2021), and component heatmaps (Yu et al., 2018))
049 that provide structural guidance; (2) *generative priors* (Wang et al., 2021; Chan et al., 2021; Yang
050 et al., 2021) from pre-trained models like StyleGAN (Karras et al., 2019; 2020) that enable realistic
051 detail reconstruction; (3) *discrete codebook priors* (Gu et al., 2022; Zhou et al., 2022) improve
052 restoration fidelity; and (4) *diffusion priors* (Wu et al., 2024; Lin et al., 2024; Chen et al., 2024; Yue
053 & Loy, 2024; Wang et al., 2023b) that have recently attracted significant attention. Diffusion models
054 offer distinct advantages including robust generative capability, stable optimization, and superior
055 control over output diversity, making them particularly effective for producing high-quality, visually
056 pleasing face restorations.

057 However, despite the advantages of diffusion priors, BFR remains fundamentally challenging. The
058 task is inherently an ill-posed inverse problem where a single LQ input can correspond to multiple
059 plausible HQ solutions, making it difficult to determine the optimal restoration. Current methods
060 are constrained by their deterministic nature—they learn a fixed one-to-one mapping that produces
061 a single output without considering alternative solutions. This lack of exploration within the vast
062 solution space prevents these methods from discovering potentially superior restorations, leading to
063 suboptimal results (Zhou et al., 2021).

064 To address these exploration limitations, we propose incorporating reinforcement learning (RL)
065 into BFR. RL has demonstrated remarkable success in expanding performance boundaries across
066 various domains, particularly in language models (Shao et al., 2024; Yu et al., 2025) and vision
067 models (Fan et al., 2023; Liu et al., 2025; Wang et al., 2025; Yuan et al., 2025), by enabling diverse
068 exploration strategies rather than deterministic outputs. Building on recent advances that successfully
069 integrate RL with diffusion models (Liu et al., 2025; Xue et al., 2025)—where the denoising process

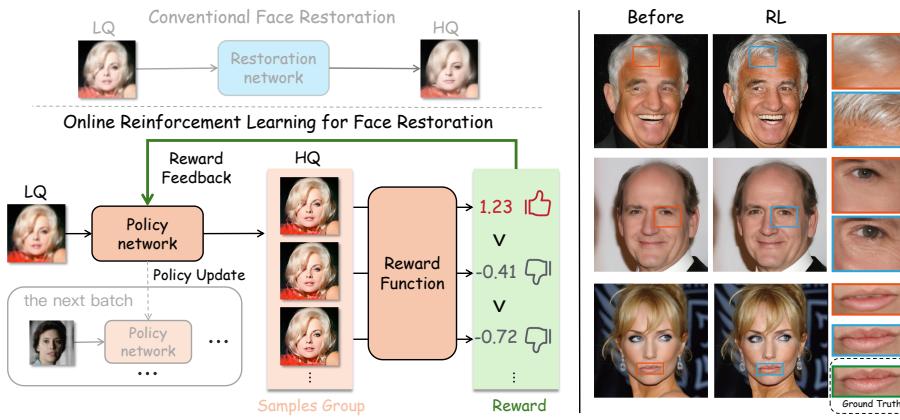


Figure 1: (Left) Our proposed online RL-based face restoration framework: an LQ face is input to the policy network π_θ , which generates a group of HQ face candidates. The reward function evaluates each candidate and converts the scores into within-group relative advantages that guide policy optimization for the next iteration. The comparisons (Right) demonstrate the quality improvement achieved through RL optimization over the base model.

is formulated as a Markov decision process—we leverage RL’s exploration capabilities alongside diffusion models’ inherent randomness to systematically search BFR’s solution space for optimal restorations that enhance both fidelity and perceptual quality.

To this end, we introduce the first online RL framework to BFR: Likelihood-Regularized Policy Optimization (LRPO). Our framework utilizes a policy network to generate multiple diverse HQ candidate faces from each LQ input, effectively exploring the solution space rather than following a single deterministic trajectory. As shown in Figure 1 (left), this multi-candidate sampling strategy allows systematic exploration of potential solutions. A reward function evaluates each candidate, and relative advantages computed among candidates from the same input guide the policy network optimization. Moreover, we introduce three key innovations to enable effective RL optimization: (1) We design a composite reward function that evaluates restoration quality by incorporating human preferences, perceptual quality, and fidelity metrics. (2) To prevent reward hacking (Skalse et al., 2022; Amodei et al., 2016)—where the policy exploits reward signals while deviating from authentic facial distributions—we implement ground-truth (GT) guided likelihood regularization that anchors the policy to the true data manifold. (3) We propose a noise-level advantage assignment mechanism that weights the advantages according to the importance of each denoising step, ensuring more effective policy updates.

In summary, our main contributions are as follows:

- We introduce online RL to BFR for the first time, modeling the learning process as exploration for superior restoration solutions. Specifically, we propose an LRPO framework that overcomes the limitations of single deterministic trajectory generation by exploring multiple restoration candidates through the RL training.
- We introduce three critical components for our proposed LRPO framework: a multi-faceted reward function that captures diverse restoration quality aspects, GT guided likelihood regularization that maintains authentic facial distributions while preventing reward exploitation, and adaptive advantage weighting that optimizes learning across different denoising stages.
- Our LRPO framework delivers substantial improvements in face restoration quality and establishes new *state-of-the-art* performance on standard evaluation metrics.

2 RELATED WORK

Diffusion-based Blind Face Restoration. Blind Face Restoration (BFR) aims to recover high-quality face images from these degraded inputs while preserving identity consistency and perceptual quality. Recently, diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) have gained popularity due

108 to their generative diversity and training stability. DR2 (Wang et al., 2023b) uses a diffusion model
 109 for degradation removal, followed by refinement through an enhancement module. DiffFace (Yue &
 110 Loy, 2024) constructs a posterior distribution to map LQ images to HQ counterparts, utilizing the
 111 error-shrinkage property of pre-trained diffusion models for robust restoration. To accelerate training,
 112 LDM (Rombach et al., 2022) recommends training diffusion in the latent space. DiffBIR (Lin et al.,
 113 2024), built on LDM, employs ControlNet to guide restoration using low-quality faces as control
 114 signals. Some variations of diffusion models have been used for face restoration. InterLCM (Li
 115 et al., 2025) leverages the latent consistency model (LCM) to improve semantic consistency, restore
 116 images efficiently. FlowIE (Zhu et al., 2024) uses conditional rectified flow for faster inference with
 117 comparable restoration quality. However, diffusion models often suffer from poor identity consistency
 118 and loss of facial details in restored images. We find that intrinsic randomness of diffusion models
 119 can be leveraged through reinforcement learning with composite reward mechanisms to generate
 120 higher-quality, more detailed facial restorations.

121 **RL in Vision Generation.** Reinforcement learning has recently achieved remarkable success in
 122 improving large language model reasoning, particularly through policy gradient approaches such as
 123 PPO (Schulman et al., 2017) and GRPO (Shao et al., 2024). In the text-to-image (T2I) generation
 124 field, many methods have explored incorporating policy gradient approaches (e.g., PPO) to align with
 125 human preferences. These methods explicitly cast diffusion denoising as a multi-step decision process
 126 and update the policy accordingly. DDPO (Black et al., 2023) improves alignment and aesthetics
 127 by optimizing rewards tied to human feedback. DPOK (Fan et al., 2023) studies online RL with
 128 Kullback–Leibler (KL) regularization on SD (Rombach et al., 2022). As a complementary approach
 129 to RL, Diffusion-DPO (Wallace et al., 2024) successfully adapts direct preference optimization
 130 to diffusion likelihoods, achieving significant improvements in human-preference alignment on
 131 SDXL (Podell et al., 2023). Beyond standard diffusion models, Flow-GRPO (Liu et al., 2025) is
 132 the first to bring GRPO into flow-matching model. Building on this, TempFlow-GRPO (He et al.,
 133 2025) further improves efficiency and stability by introducing trajectory branching and enabling
 134 process-level rewards without an intermediate reward model. Motivated by these successes, we
 135 present the first integration of policy gradient-based online RL into the BFR domain.

3 PRELIMINARY

138 **BFR Problem Modeling.** BFR is an ill-posed inverse problem. From a mathematical perspective,
 139 given a low-quality observation \mathbf{c}_{LQ} , the posterior distribution of its corresponding high-quality \mathbf{x}_0 ,
 140 denoted as $p(\mathbf{x}_0|\mathbf{c}_{\text{LQ}})$, has multiple feasible solutions (Menon et al., 2020). This posterior can be
 141 modeled as a mixture distribution:

$$p(\mathbf{x}_0|\mathbf{c}_{\text{LQ}}) = \sum_{k=1}^K w_k \cdot p_k(\mathbf{x}_0|\mathbf{c}_{\text{LQ}}) \quad (1)$$

142 Here, K represents the number of possible high-quality solutions. Each distribution $p_k(\mathbf{x}_0|\mathbf{c}_{\text{LQ}})$
 143 represents a real face distribution compatible with \mathbf{c}_{LQ} , having a specific identity, expression,
 144 or detail, with a peak at μ_k . The term w_k denotes the probability of the k -th solution, where
 $\sum w_k = 1$. This multi-solution nature poses a challenge for existing methods. Without dedicated
 145 exploration mechanisms, restoration models tend to converge toward average solutions, resulting in
 146 characteristically blurry faces that lack rich textural details (Lugmayr et al., 2020).

147 **DDIM.** Diffusion models generate data through forward noise addition and reverse denoising
 148 processes. In the forward diffusion process, the data is progressively perturbed by Gaussian noise,
 149 defined as $q(\mathbf{x}_t|\mathbf{x}_{t-1}) = \mathcal{N}(\sqrt{\alpha_t}\mathbf{x}_{t-1}, (1-\alpha_t)\mathbf{I})$, where $\alpha_t \in (0, 1]$ controls the noise intensity,
 150 and \mathbf{x}_t represents the noisy data at time step t .

151 The denoising process recovers data via the conditional distribution $p_\theta(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{c})$, where \mathbf{c} is a
 152 condition. In the DDIM (Song et al., 2020) framework, the network predicts the noise $\epsilon_\theta(\mathbf{x}_t, t, \mathbf{c})$.
 153 The one-step denoising formula (from t to $t-1$) is given by:

$$\mu_\theta(\mathbf{x}_t, t, \mathbf{c}) = \sqrt{\alpha_{t-1}} \cdot \frac{\mathbf{x}_t - \sqrt{1-\alpha_t} \cdot \epsilon_\theta(\mathbf{x}_t, t, \mathbf{c})}{\sqrt{\alpha_t}} + \sqrt{1-\alpha_{t-1}-\sigma_t^2} \cdot \epsilon_\theta(\mathbf{x}_t, t, \mathbf{c}), \quad (2)$$

$$\mathbf{x}_{t-1} = \mu_\theta(\mathbf{x}_t, t, \mathbf{c}) + \sigma_t \cdot \epsilon_t, \quad \epsilon_t \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \quad (3)$$

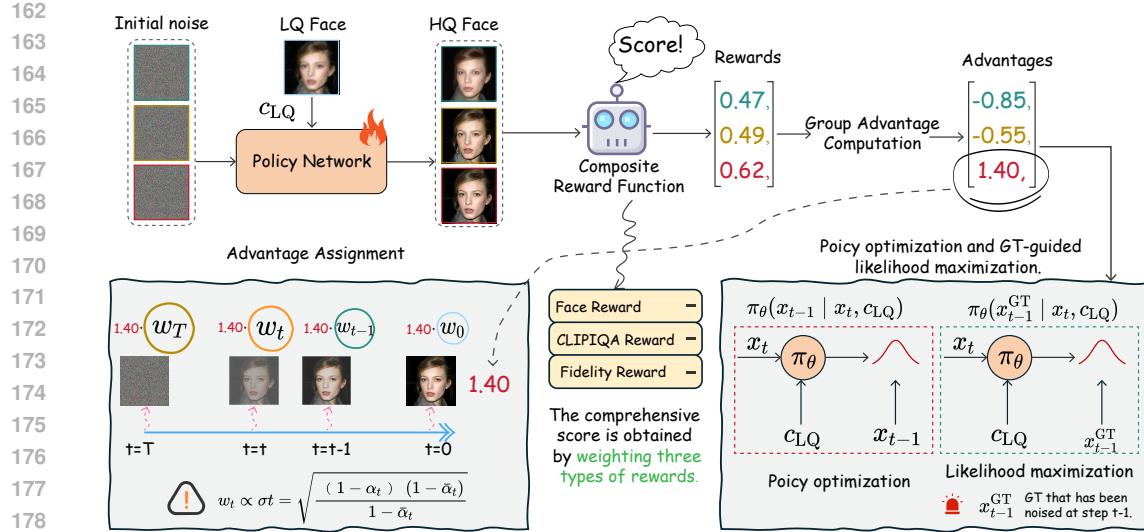


Figure 2: The overview of our proposed LRPO framework. The policy network produces multiple HQ restoration candidates from a single LQ input, which are then assessed by the reward function and transformed into advantage scores. The framework assigns weighted advantage scores to individual denoising steps according to their contribution to restoration quality, and integrates ground-truth guided likelihood regularization into the RL optimization objective to maintain fidelity.

where $\sigma_t = \eta \sqrt{\frac{1-\alpha_{t-1}}{1-\alpha_t} \cdot \left(1 - \frac{\alpha_t}{\alpha_{t-1}}\right)}$, and $\eta \in [0, 1]$ controls the randomness. When $\eta = 0$, the sampling is deterministic, producing a fixed generation path. When $\eta > 0$, random noise ϵ is introduced, bringing randomness.

Fan et al. (2023) proposes that DDIM can be formulated as a Markov Decision Process (MDP) defined by the tuple $(S, A, \rho_0, \pi, P, R)$. At time step t , the state is $s_t \triangleq (c, t, \mathbf{x}_t)$. The action is the denoised sample predicted by the model, $a_t \triangleq \mathbf{x}_{t-1}$, with the policy defined as $\pi(a_t | s_t) \triangleq \pi_\theta(\mathbf{x}_{t-1} | \mathbf{x}_t, c)$. The state transition is deterministic, given by $P(s_{t+1} | s_t, a_t) \triangleq (\delta_c, \delta_{a_t})$, where δ_c denotes the Dirac distribution at c . The initial state distribution is $P_0(s_0) \triangleq (p(c), \mathcal{N}(0, \mathbf{I}))$. The reward is provided only at the final step: $R(s_t, a_t) \triangleq r(\mathbf{x}_0, c)$. When $\eta > 0$, the DDIM supporting MDP can achieve reinforcement learning training.

4 METHODOLOGY

LRPO is an approach that enhances the BFR task using online RL, as shown in Figure 2. First, we initialize its policy network with an *off-the-shelf* diffusion-based face restoration model. Specifically, we employ DiffBIR (Lin et al., 2024) (our base model), a ControlNet-based (Zhang et al., 2023) approach that uses the LQ input as a control signal to guide restoration. Based on the GRPO (Shao et al., 2024) algorithm, we propose three core innovations for the BFR task: (1) We design a composite reward function that provides rewards for the diffusion denoising process. (2) We propose a ground-truth guided likelihood regularization term to penalize policy updates that deviate from real face data. (3) We develop a noise-aware advantage assignment mechanism to appropriately weight advantages based on denoising step significance.

4.1 GROUP RELATIVE POLICY OPTIMIZATION

The optimization goal of reinforcement learning is to maximize the expected cumulative reward. Unlike PPO (Schulman et al., 2017), GRPO (Shao et al., 2024) samples a group of G trajectories $\{\{\mathbf{x}_T^{(i)}, \mathbf{x}_{T-1}^{(i)}, \dots, \mathbf{x}_0^{(i)}\}\}_{i=1}^G$, from the policy $\pi_{\theta_{\text{old}}}$, obtaining G candidate reconstructions $\hat{\mathbf{x}}_0^{(i)}$,

216 which are decoded from $\mathbf{x}_0^{(i)}$ in latent diffusion, and their rewards $r^{(i)} = r(\hat{\mathbf{x}}_0^{(i)}, \mathbf{x}_{\text{GT}})$, where \mathbf{x}_{GT}
 217 denotes the ground truth corresponding to $\hat{\mathbf{x}}_0^{(i)}$. Then, the advantage of the i -th sampled trajectory at
 218 time t is calculated by normalizing the group-level rewards:
 219

$$220 \quad \hat{A}_t^{(i)} = \frac{r^{(i)} - \text{mean}(\{r^{(i)}\}_{i=1}^G)}{\text{std}(\{r^{(i)}\}_{i=1}^G)}. \quad (4)$$

223 Finally, the GRPO algorithm updates the policy model by maximizing the following objective:
 224

$$225 \quad \mathcal{J}_{\text{DDIM-GRPO}}(\theta) = \mathbb{E}_{\mathbf{c}_{\text{LQ}} \sim p(\mathbf{c}_{\text{LQ}}), \{\hat{\mathbf{x}}^{(i)}\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot | \mathbf{c}_{\text{LQ}})} \\ 226 \quad \frac{1}{G} \sum_{i=1}^G \frac{1}{T} \sum_{t=0}^{T-1} \left[\min \left(r_t^{(i)}(\theta) \hat{A}_t^{(i)}, \text{clip} \left(r_t^{(i)}(\theta), 1 - \epsilon, 1 + \epsilon \right) \hat{A}_t^{(i)} \right) - \beta D_{KL}(\pi_{\theta} \| \pi_{\text{ref}}) \right], \quad (5)$$

227 where $r_t^{(i)}(\theta) = \frac{\pi_{\theta}(\mathbf{x}_{t-1}^{(i)} | \mathbf{x}_t^{(i)}, \mathbf{c}_{\text{LQ}})}{\pi_{\theta_{\text{old}}}(\mathbf{x}_{t-1}^{(i)} | \mathbf{x}_t^{(i)}, \mathbf{c}_{\text{LQ}})}$, with T denoting the total timesteps and π_{ref} denotes the initialized
 228 pretrained model.
 229

230 Due to the inherent randomness of the Diffusion model, given the same LQ face \mathbf{c}_{LQ} , a set of diverse
 231 candidate faces $\{\hat{\mathbf{x}}_0^{(1)}, \hat{\mathbf{x}}_0^{(2)}, \dots, \hat{\mathbf{x}}_0^{(G)}\}$ can be generated from policy π_{θ} . Ideally, when π_{θ} learns a
 232 posterior distribution capturing different potential solutions, the generated samples cluster around
 233 distinct peaks $\{\mu_k\}$ in the solution space. Such diverse candidates enable the optimization process to
 234 make meaningful comparisons and drive policy improvements.
 235

236 Once obtaining the candidate set, we evaluate each generated sample $\hat{\mathbf{x}}_0^{(i)}$ using the composite reward
 237 function $r(\cdot)$. The GRPO algorithm then transforms the absolute rewards $r^{(i)}$ into within-group
 238 relative advantages $\hat{A}_t^{(i)}$ (See Eq. 4), which improves the ability to distinguish between high and low-
 239 quality solutions while reducing sensitivity to reward scaling. The core insight of this transformation
 240 is to redirecting optimization from absolute quality assessment (“how good is this solution?”) to
 241 relative comparison (“how does this solution rank within the group?”). Consequently, the policy
 242 gradient update direction is proportional to:
 243

$$244 \quad \sum_{i=1}^G \sum_{t=0}^{T-1} \hat{A}_t^{(i)} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_t^{(i)} | \mathbf{s}_t^{(i)}). \quad (6)$$

245 Thus, the following conclusion can be drawn: When a sample’s reward exceeds the group average, its
 246 advantage $\hat{A}_t^{(i)}$ is positive, increasing the policy’s selection probability; conversely, below-average
 247 rewards yield negative advantages $\hat{A}_t^{(j)}$, reducing selection likelihood for suboptimal solutions. This
 248 group sampling approach enables parallel exploration of the policy’s learned solution space. To fully
 249 exploit GRPO’s ability to amplify good solutions while suppressing bad ones, we introduce three key
 250 innovations that improve exploration efficiency and enhance face restoration quality.
 251

252 4.2 LIKELIHOOD-REGULARIZED POLICY OPTIMIZATION

253 **Composite Reward Function.** To effectively guide the optimization of the policy network π_{θ} and
 254 enable it to find a better balance in the complex Perception-Distortion Tradeoff (Blau & Michaeli,
 255 2018), we design a multi-objective composite reward function, $R(\hat{\mathbf{x}}_0, \mathbf{x}_{\text{GT}})$. This composite function
 256 measures the quality of generated face images $\hat{\mathbf{x}}_0$ from three complementary perspectives:
 257

- 258 • *Human Preference Reward* (r_{pref}): We employ a Face Reward Model (Wu et al., 2025), pre-trained
 259 on a human preference dataset, to score the overall realism and naturalness of facial details, ensuring
 260 alignment with human aesthetic preferences.
- 261 • *Perceptual Quality* (r_{aq}): We incorporate CLIP-IQA (Wang et al., 2023a), a no-reference image
 262 quality assessment metric, to objectively measure perceptual quality using knowledge from pre-
 263 trained CLIP (Radford et al., 2021) models.
- 264 • *Fidelity Reward* (r_{fid}): We formulate a fidelity reward based on feature similarity and wavelet low-
 265 frequency constraints to enforce identity consistency, resulting in substantial fidelity improvements
 266 (see Appendix C for implementation details).

270 The final total reward $R(\cdot)$ is defined as the weighted sum of these three components:
 271

$$272 R(\hat{\mathbf{x}}_0, \mathbf{x}_{\text{GT}}) = \lambda_1 r_{\text{pref}}(\hat{\mathbf{x}}_0) + \lambda_2 r_{\text{aq}}(\hat{\mathbf{x}}_0) + \lambda_3 r_{\text{fid}}(\hat{\mathbf{x}}_0, \mathbf{x}_{\text{GT}}) \quad (7)$$

273 where $\lambda(\cdot)$ are the weight coefficients for each term.
 274

275 **Ground-truth Guided Likelihood Regularization.** Optimization based solely on reward maxi-
 276 mization is susceptible to reward hacking—the policy may exploit reward function biases to produce
 277 unrealistic outputs. We address this with ground-truth (GT) guided likelihood regularization $\mathcal{R}_{\text{likelihood}}$,
 278 activated only in the final S timesteps, to maintain realistic and natural face generation.

279 The regularization leverages GT supervision by using ideal denoising trajectories derived from $\hat{\mathbf{x}}^{\text{GT}}$.
 280 For each GT image, we pre-compute the ideal latent trajectory $\{\mathbf{x}_t^{\text{GT}}\}_{t=0}^T$ through forward noising.
 281 During training, when the policy π_θ samples a state \mathbf{x}_t , we apply regularization by maximizing the
 282 log-likelihood of the model producing the ideal subsequent state $\mathbf{x}_{t-1}^{\text{GT}}$. Thus, the regularization item
 283 is defined as:

$$284 \mathcal{R}_{\text{likelihood}} = -\log \pi_\theta(\mathbf{x}_{t-1}^{\text{GT}} | \mathbf{x}_t, \mathbf{c}_{\text{LQ}}) \propto \frac{\|\mathbf{x}_{t-1}^{\text{GT}} - \mu_\theta(\mathbf{x}_t, t, \mathbf{c}_{\text{LQ}})\|_2^2}{2\sigma_t^2}. \quad (8)$$

287 Where μ_θ and σ_t refer to the mean and standard deviation of DDIM’s one-step denoising, with
 288 the detailed form provided in Sec. 3. As shown in Eq. 8, this loss term encourages the policy
 289 network π_θ to predict a high-probability distribution centered around the ideal target $\mathbf{x}_{t-1}^{\text{GT}}$ at its
 290 explored state \mathbf{x}_t . This is equivalent to minimizing the variance-weighted Euclidean distance between
 291 the predicted mean $\mu_\theta(\mathbf{x}_t, t, \mathbf{c})$ and the ideal state $\mathbf{x}_{t-1}^{\text{GT}}$. The likelihood regularization $\mathcal{R}_{\text{likelihood}}$
 292 maintains alignment between restored image and authentic facial distributions, substituting for the
 293 standard KL divergence term in GRPO.

294 **Noise-Level Advantage Assignment.** Conventional GRPO-based approaches (Liu et al., 2025; Fan
 295 et al., 2023) treat all timesteps equally when assigning advantage weights, ignoring the inherently
 296 non-uniform importance of different steps in the diffusion process. To address this, inspired by
 297 previous work (He et al., 2025), we introduce a noise-level-aware advantage assignment approach
 298 that correlates advantage weights with the exploration magnitude achieved at each denoising step. In
 299 DDIM sampling, the single-step exploration radius from \mathbf{x}_t to \mathbf{x}_{t-1} is determined by the standard
 300 deviation σ_t of the added noise. Therefore, we set the timestep weight w_t proportional to σ_t :

$$301 w_t \propto \sigma_t, \quad \text{s.t.} \quad \frac{1}{T} \sum_{t=0}^{T-1} w_t = 1 \quad (9)$$

304 The specific form of σ_t is detailed in Sec. 3. After normalizing the weights $\{w_t\}_{t=1}^T$, we apply them
 305 to weight the original advantage $\hat{A}_t^{(i)}$, yielding the final advantage $\tilde{A}_t^{(i)}$ for policy update:
 306

$$307 \tilde{A}_t^{(i)} = w_t \cdot \hat{A}_t^{(i)} \quad (10)$$

308 Since σ_t decreases from high initial values to nearly zero, early denoising steps possess greater
 309 exploration capability. By weighting these steps more heavily in advantage computation, we facilitate
 310 enhanced exploration that yields more diverse high-quality restoration outcomes. Simultaneously, it
 311 reduces interference during the high-frequency detail refinement that occurs in later denoising phases.
 312 This allocation strategy effectively performs weighted adjustment of policy gradients, as detailed in
 313 Appendix A.

314 **LRPO Optimization Objective.** By combining these strategies, we formulate an optimization
 315 objective that maximizes policy return while applying likelihood regularization to prevent unrealistic
 316 restorations:
 317

$$318 \mathcal{J}_{\text{LRPO}}(\theta) = \mathbb{E}_{\mathbf{c}_{\text{LQ}} \sim p(\mathbf{c}_{\text{LQ}}), \{\hat{\mathbf{x}}^{(i)}\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot | \mathbf{c}_{\text{LQ}})} \\ 319 \quad \frac{1}{G} \sum_{i=1}^G \frac{1}{T} \sum_{t=0}^{T-1} \left[\min \left(r_t^{(i)}(\theta) \hat{A}_t^{(i)}, \text{clip} \left(r_t^{(i)}(\theta), 1 - \epsilon, 1 + \epsilon \right) \hat{A}_t^{(i)} \right) + \alpha \mathcal{R}_{\text{likelihood}}^{(i)} \right], \quad (11)$$

322 Compared to Eq. 5, we replace the KL divergence component with GT-guided likelihood regulariza-
 323 tion in our optimization objective.

324

5 EXPERIMENTS

325

5.1 EXPERIMENTAL SETTINGS

326 Experimental hyperparameters are detailed in Appendix B, and composite reward function configura-
 327 tions are provided in Appendix C.

328 **Training and Testing Data.** We only use 3000 face images from the FFHQ (Karras et al., 2021)
 329 dataset for training. The degradation strategy from HQ to LQ is based on the following degradation
 330 function: $\mathbf{I}_{\text{LQ}} = \left\{ \left[(\mathbf{I}_{\text{HQ}} \otimes \mathbf{k}_\sigma)_{\downarrow r} + \mathbf{n}_\delta \right]_{\text{JPEG}_q} \right\}_{\uparrow r}$, where the HQ images are first convolved with a
 331 Gaussian kernel \mathbf{k}_σ , followed by a downsampling with a factor of r , and then corrupted with Gaussian
 332 noise \mathbf{n}_δ . Subsequently, the images undergo JPEG compression with a quality factor of q . Finally, the
 333 LQ image is resized back to the original 512×512 . Here, σ , r , δ , and q are randomly sampled from
 334 the intervals $[0.1, 12]$, $[1, 12]$, $[0, 15]$, and $[30, 100]$, respectively. Follow previous work Wang et al.
 335 (2021); Gu et al. (2022), we employ the synthetic dataset CelebA-Test (Karras et al., 2017) and two
 336 real-world datasets (Wang et al., 2021) (i.e., LFW-Test and WebPhoto-Test) to validate our method.
 337

338 **Evaluation Metrics.** On the CelebA-Test dataset, we utilized six common reference-based metrics:
 339 SSIM (Wang et al., 2004), PSNR, LPIPS (Zhang et al., 2018), CLIP Score (Hessel et al., 2021),
 340 Deg. (Wang et al., 2021), and LMD (Gu et al., 2022), where Deg. and LMD are identity consistency
 341 metrics, along with four non-reference metrics: MUSIQ (Ke et al., 2021), MANIQA (Yang et al.,
 342 2022), CLIPQA (Wang et al., 2023a), and Aesthetic (LAION-AI, 2022).

343 **Comparison Methods.** We compare with not only the base models but also the latest state-of-the-art
 344 methods, including GFPGAN (Chan et al., 2021), CodeFormer (Zhou et al., 2022), VQFR (Gu
 345 et al., 2022), DR2+SPAR (Wang et al., 2023b), RestoreFormer (Wang et al., 2022), DiffFace (Yue &
 346 Loy, 2024), OSEDiff (Wu et al., 2024), DiffBIR (Lin et al., 2024), FlowIE (Zhu et al., 2024) and
 347 InterLCM (Li et al., 2025).

348 Table 1: Performance comparisons on CelebA-Test. The highest score for each metric is highlighted
 349 in red, the second-highest in blue. Metrics with \uparrow indicate higher is better, \downarrow means lower is better.
 350 Values in parentheses represent our method’s improvements over the base DiffBIR model.

354 Methods	SSIM \uparrow	PSNR \uparrow	LPIPS \downarrow	CLIP Score \uparrow	Deg. \downarrow	LMD \downarrow	MUSIQ \uparrow	MANIQA \uparrow	Aesthetic \uparrow	CLIPQA \uparrow
355 Input	0.6994	25.33	0.4866	0.7894	47.94	3.7560	17.00	0.3957	4.0484	0.2957
356 GFP-GAN	0.6772	24.65	0.3646	0.8410	34.58	2.4110	73.90	0.6522	5.6992	0.6781
357 CodeFormer	0.6925	25.85	0.3335	0.8931	31.08	1.9963	74.23	0.6520	5.8103	0.6493
358 VQFR	0.6654	23.76	0.3557	0.8562	42.48	2.9444	73.84	0.6544	5.7844	0.6750
359 DR2+SPAR	0.6512	22.89	0.4146	0.7437	57.24	4.5449	70.19	0.6374	5.6602	0.5960
360 DiffFace	0.6762	24.80	0.3994	0.8380	45.81	2.9766	68.96	0.6204	5.4708	0.5711
361 OSEDiff	0.6864	23.96	0.3478	0.7962	46.20	2.8871	73.41	0.6560	5.7720	0.6120
362 FlowIE	0.6769	24.85	0.3442	0.8961	33.44	2.1995	74.08	0.6720	5.6782	0.6866
363 InterLCM	0.6819	24.88	0.3349	0.8905	33.58	2.1519	75.16	0.6781	5.7735	0.6748
364 DiffBIR	0.6775	25.44	0.3811	0.8877	35.16	2.2661	74.46	0.6752	5.7943	0.7200
365 LRPO (ours)	0.7021	26.15	0.3635	0.9100	31.19	1.9533	75.24	0.6808	5.8126	0.8061
(+0.0246) (+0.71) (+0.0176) (+0.0223) (+3.97) (+0.3128) (+0.78) (+0.0056) (+0.0183) (+0.0861)										

367

5.2 MAIN RESULTS

368 **Results on Synthetic Data.** As shown in Table 1, LRPO achieves improvements on all metrics
 369 compared with DiffBIR on the synthetic CelebA-Test dataset. These results indicate that our RL
 370 framework simultaneously improves perceptual quality and identity preservation in restored faces.
 371 Furthermore, LRPO achieves superior performance compared to state-of-the-art approaches across
 372 the majority of evaluation metrics, including SSIM, LMD, and MUSIQ, confirming that it enhances
 373 identity consistency while maintaining perceptual quality. Figure 3 demonstrates LRPO’s superior
 374 performance over methods that fail to restore faces satisfactorily. LRPO delivers more realistic
 375 textures than the baseline, better identity alignment than DR2 and OSEDiff, and more natural results
 376 without the over-smoothing seen in InterLCM and FlowIE.

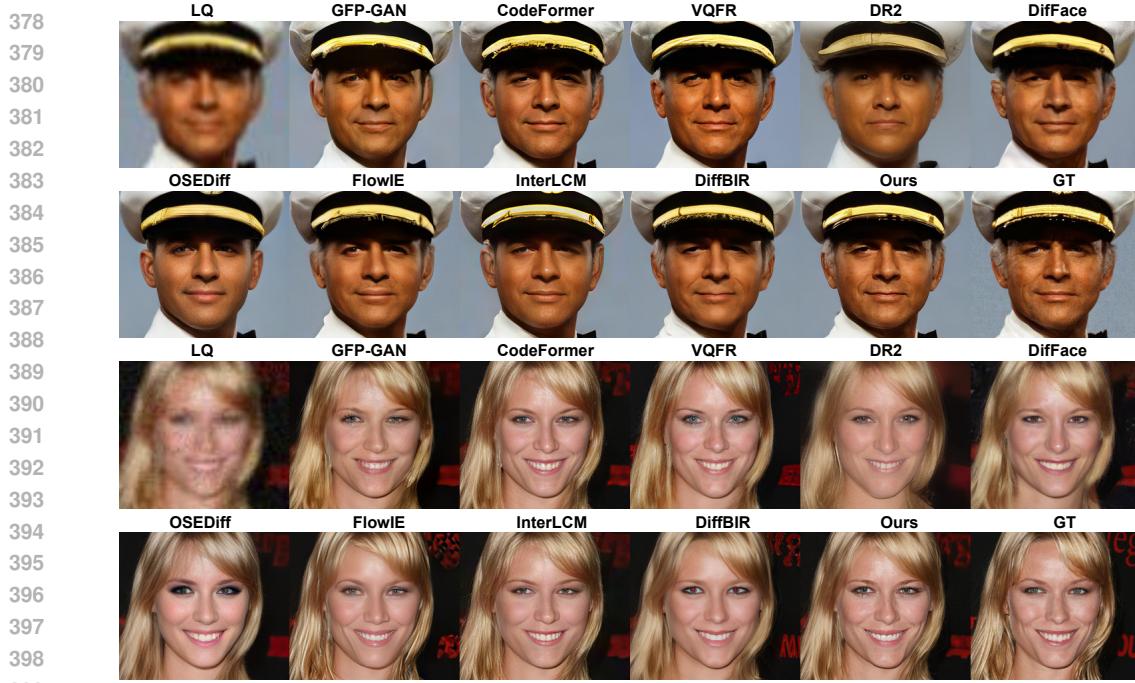


Figure 3: Qualitative results on CelebA-Test datasets. (Zoom in for details)

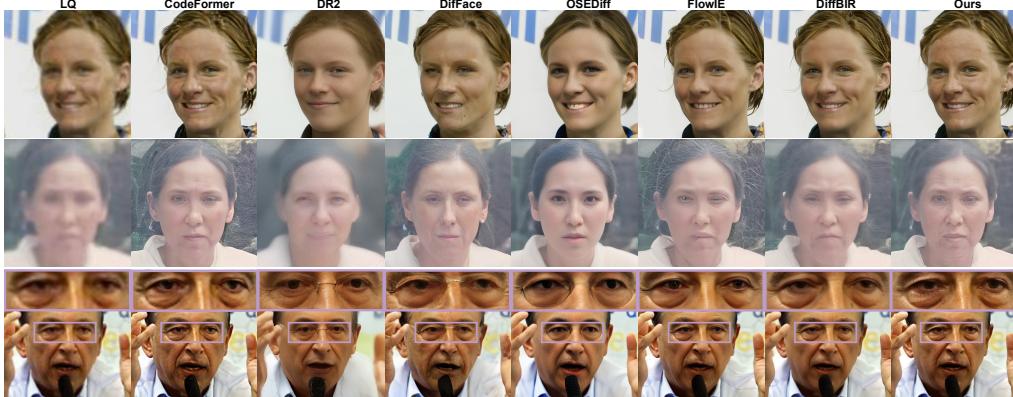


Figure 4: Qualitative results on real-world datasets. (Zoom in for details)

Results on Real-world Data. Table 2 shows the quantitative performance evaluation on real-world datasets LFW-Test and WebPhoto-Test. LRPO demonstrates significant performance gains compared to the base DiffBIR and outperforms other state-of-the-art approaches on MUSIQ and CLIP-IQA metrics. Qualitative results are illustrated in Figure 4. Due to severe degradation in real-world inputs, many approaches fail to restore texture details. In contrast, our method recovers more details while introducing fewer artifacts.

Human Preference Evaluation. A user study was conducted with 12 participants of varying backgrounds to evaluate 100 face images from the CelebA-Test dataset. Participants evaluated our method against the base model (DiffBIR) on two criteria: *fidelity* (identity preservation) and

Table 2: Performance comparisons on wild datasets. The highest score is highlighted in **red**, and the second-highest in **blue**. Metrics with \uparrow indicate higher is better.

Dataset Methods	LFW-Test		WebPhoto-Test	
	MUSIQ \uparrow	CLIPQA \uparrow	MUSIQ \uparrow	CLIPQA \uparrow
Input	26.87	0.2834	18.63	0.4128
GFP-GAN	73.57	0.6983	72.09	0.6888
CodeFormer	70.69	0.6335	71.16	0.6573
VQFR	74.39	0.7100	70.91	0.6767
DR2+SPAR	72.22	0.6427	63.65	0.5586
DiffFace	69.85	0.6110	65.21	0.5821
OSEDiff	73.40	0.6327	72.60	0.6454
FlowIE	64.29	0.5974	71.45	0.6838
InterLCM	74.18	0.6588	73.91	0.6658
DiffBIR	73.71	0.7296	67.45	0.6630
LRPO (ours)	74.60 (+0.89)	0.8073 (+0.0777)	72.71 (+5.26)	0.7040 (+0.0410)

432 *realism* (naturalness with minimal artifacts). As shown in Table 3, our method outperforms the base
 433 model in both fidelity and realism according to human preferences.
 434

435 5.3 ABLATION STUDY

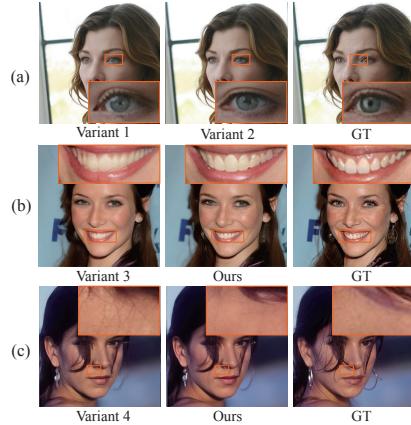
437 We conduct the ablation study on CelebA-Test dataset. As shown in Table 4, we analyze the effects of
 438 four key components: Reinforcement Learning (RL), Kullback-Leibler divergence (KL), GT guided
 439 likelihood regularization (Reg.), and noise-level advantage assignment (Ada). Variant 1 demonstrates
 440 improvements across all metrics after incorporating RL, confirming that RL directly enhances BFR
 441 performance. However, adding KL divergence in Variant 2 degrades all metrics without improving
 442 visual quality (See Figure 5(a)). We therefore remove KL divergence from the RL objective in
 443 Eq. 11, reducing computational cost while maintaining visual quality. Without Ada (Variant 3),
 444 the model suffers from detail blurring caused by over-optimization during late denoising stages
 445 (Figure 5(b)). Removing Reg. (Variant 4) leads to decreased SSIM scores and poor fidelity, with the
 446 model producing unrealistic, fantasy-like textures as shown in Figure 5(c). Training dynamics show
 447 that our noise-level advantage assignment facilitates faster convergence to high-reward restoration
 448 trajectories, while GT guided likelihood regularization enhances structural fidelity (Appendix D).
 449

450 Table 3: User study. Participants selected the winner
 451 between DiffBIR and LRPO restored images in terms
 452 of fidelity and realism.

Comparison	Fidelity %	Realism %
DiffBIR vs LRPO	38.1% vs 61.9%	27.6% vs 72.4%

453 Table 4: Ablation Study of LRPO

Struct	RL	KL	Reg	Ada	SSIM↑	LMD↓	CLIPQA↑
Base					0.6775	2.2661	0.7200
Variant 1	✓				0.6849	2.0503	0.7809
Variant 2	✓	✓			0.6750	2.1602	0.7816
Variant 3	✓		✓		0.6867	2.0078	0.7852
Variant 4	✓			✓	0.6806	1.9551	0.7980
LRPO	✓		✓	✓	0.7021	1.9533	0.8061



454 Figure 5: Ablation study visualizations.

455 Figure 6: Failure cases. Restoration of highly rare specialized and individualized objects such as
 456 jewelry achieves suboptimal results.

473 6 CONCLUSION

474 In this work, we propose LRPO, the first online reinforcement learning framework applied to
 475 BFR tasks. LRPO exploits RL’s inherent exploration mechanisms to overcome the limitations
 476 of deterministic restoration methods, simultaneously improving perceptual quality and identity
 477 preservation. LRPO integrates three critical innovations: a composite reward function for multi-
 478 perspective image evaluation, GT guided likelihood regularization for fidelity preservation, and
 479 noise-level advantage assignment for efficient optimization. Comprehensive experiments validate
 480 LRPO’s effectiveness in enhancing both identity consistency and perceptual quality compared to
 481 existing approaches.
 482

483 **Limitation.** While our method surpasses existing approaches, certain failure cases remain. Figure 6
 484 demonstrates that rare specialized and individualized objects (e.g., jewelry) are restored with artifacts
 485 due to limited prior knowledge in the base model’s training data. These limitations may require
 486 stronger foundation models or more comprehensive training datasets.

486 ETHICS STATEMENT
487488 All authors adhere to the ICLR Code of Ethics. Our research is confined to the technical challenge of
489 image restoration and does not introduce new ethical risks. By improving identity consistency, our
490 method aims to mitigate known issues in face restoration. All experiments were conducted using
491 publicly available datasets for training and evaluation.
492493 REPRODUCIBILITY STATEMENT
494495 To ensure reproducibility, our source code and models will be publicly released. Our experiments use
496 public datasets. All implementation details, training hyperparameters, and the composition of our
497 reward function are provided in Appendix.
498500 REFERENCES
501502 Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané.
503 Concrete problems in ai safety. *arXiv preprint arXiv:1606.06565*, 2016.504 Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion
505 models with reinforcement learning. *arXiv preprint arXiv:2305.13301*, 2023. URL <https://arxiv.org/abs/2305.13301>.
506507 Yochai Blau and Tomer Michaeli. The perception-distortion tradeoff. In *Proceedings of the IEEE*
508 conference on computer vision and pattern recognition, pp. 6228–6237, 2018.
509510 Kelvin CK Chan, Xintao Wang, Xiangyu Xu, Jinwei Gu, and Chen Change Loy. Glean: Generative
511 latent bank for large-factor image super-resolution. In *Proceedings of the IEEE/CVF Conference*
512 on Computer Vision and Pattern Recognition (CVPR), 2021.
513514 Chaofeng Chen, Xiaoming Li, Lingbo Yang, Xianhui Lin, Lei Zhang, and Kwan-Yee K Wong.
515 Progressive semantic-aware style transformation for blind face restoration. In *Proceedings of the*
516 *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2021.
517518 Xiaoxu Chen, Jingfan Tan, Tao Wang, Kaihao Zhang, Wenhan Luo, and Xiaochun Cao. Towards
519 real-world blind face restoration with generative diffusion prior. *IEEE Transactions on Circuits*
520 and Systems for Video Technology, 2024.
521522 Yu Chen, Ying Tai, Xiaoming Liu, Chunhua Shen, and Jian Yang. Fsrnet: End-to-end learning face
523 super-resolution with facial priors. In *Proceedings of the IEEE/CVF Conference on Computer*
524 *Vision and Pattern Recognition (CVPR)*, 2018.
525526 Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,
527 Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Dpok: Reinforcement learning for
528 fine-tuning text-to-image diffusion models. *Advances in Neural Information Processing Systems*,
36:79858–79885, 2023.
529530 Yuchao Gu, Xintao Wang, Liangbin Xie, Chao Dong, Gen Li, Ying Shan, and Ming-Ming Cheng.
531 Vqfr: Blind face restoration with vector-quantized dictionary and parallel decoder. In *European*
532 *Conference on Computer Vision (ECCV)*, 2022.
533534 Xiaoxuan He, Siming Fu, Yuke Zhao, Wanli Li, Jian Yang, Dacheng Yin, Fengyun Rao, and Bo Zhang.
535 Tempflow-grpo: When timing matters for grpo in flow models. *arXiv preprint arXiv:2508.04324*,
2025.
536537 Jack Hessel, Ari Holtzman, Maxwell Forbes, and Yejin Choi. Clipscore: A reference-free evaluation
538 metric for image captioning. *arXiv preprint arXiv:2104.08718*, 2021.
539540 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
541 *Neural Information Processing Systems (NeurIPS)*, 2020.
542

540 T. Karras, S. Laine, and T. Aila. A style-based generator architecture for generative adversarial
 541 networks. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 43(12):4217–4228, dec
 542 2021. ISSN 1939-3539. doi: 10.1109/TPAMI.2020.2970919.

543

544 Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for
 545 improved quality, stability, and variation. *arXiv preprint arXiv:1710.10196*, 2017.

546

547 Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
 548 adversarial networks. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 549 *Pattern Recognition (CVPR)*, 2019.

550

551 Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing
 552 and improving the image quality of stylegan. In *Proceedings of the IEEE/CVF Conference on*
 553 *Computer Vision and Pattern Recognition (CVPR)*, 2020.

554

555 Junjie Ke, Qifei Wang, Yilin Wang, Peyman Milanfar, and Feng Yang. Musiq: Multi-scale image
 556 quality transformer. In *Proceedings of the IEEE/CVF International Conference on Computer*
 557 *Vision (ICCV)*, 2021.

558

559 Deokyun Kim, Minseon Kim, Gihyun Kwon, and Dae-Shik Kim. Progressive face super-resolution
 560 via attention to facial landmark. *arXiv preprint arXiv:1908.08239*, 2019.

561

562 LAION-AI. Aesthetic predictor: A linear estimator on top of clip to predict the aesthetic quality of
 563 pictures. <https://github.com/LAION-AI/aesthetic-predictor>, 2022. Accessed:
 564 2025-05-13.

565

566 Senmao Li, Kai Wang, Joost van de Weijer, Fahad Shahbaz Khan, Chun-Le Guo, Shiqi Yang, Yaxing
 567 Wang, Jian Yang, and Ming-Ming Cheng. Interlcm: Low-quality images as intermediate states of
 568 latent consistency models for effective blind face restoration. *arXiv preprint arXiv:2502.02215*,
 569 2025.

570

571 Xinqi Lin, Jingwen He, Ziyan Chen, Zhaoyang Lyu, Bo Dai, Fanghua Yu, Yu Qiao, Wanli Ouyang,
 572 and Chao Dong. Diffbir: Toward blind image restoration with generative diffusion prior. In
 573 *European Conference on Computer Vision (ECCV)*, 2024.

574

575 Jie Liu, Gongye Liu, Jiajun Liang, Yangguang Li, Jiaheng Liu, Xintao Wang, Pengfei Wan, Di Zhang,
 576 and Wanli Ouyang. Flow-grpo: Training flow matching models via online rl. *arXiv preprint*
 577 *arXiv:2505.05470*, 2025.

578

579 Andreas Lugmayr, Martin Danelljan, Luc Van Gool, and Radu Timofte. Srfflow: Learning the
 580 super-resolution space with normalizing flow. In *European conference on computer vision*, pp.
 581 715–732. Springer, 2020.

582

583 Sachit Menon, Alexandru Damian, Shijia Hu, Nikhil Ravi, and Cynthia Rudin. Pulse: Self-supervised
 584 photo upsampling via latent space exploration of generative models. In *Proceedings of the*
 585 *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2020.

586

587 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 588 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 589 synthesis. *arXiv preprint arXiv:2307.01952*, 2023.

590

591 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 592 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 593 models from natural language supervision. In *International Conference on Machine Learning*
 594 (*ICML*), 2021.

595

596 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 597 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Confer-*
 598 *ence on Computer Vision and Pattern Recognition (CVPR)*, 2022.

599

600 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 601 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

594 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 595 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemat-
 596 ical reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

597

598 Joar Skalse, Nikolaus Howe, Dmitrii Krasheninnikov, and David Krueger. Defining and characterizing
 599 reward gaming. *Advances in Neural Information Processing Systems*, 35:9460–9471, 2022.

600

601 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 602 learning using nonequilibrium thermodynamics. In *International Conference on Machine Learning
 (ICML)*, 2015.

603

604 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv
 605 preprint arXiv:2010.02502*, 2020.

606

607 Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi Zhou, Aaron Lou, Senthil Purushwalkam,
 608 Stefano Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik. Diffusion model alignment using
 609 direct preference optimization. In *Proceedings of the IEEE/CVF Conference on Computer Vision
 and Pattern Recognition (CVPR)*, 2024.

610

611 Jianyi Wang, Kelvin CK Chan, and Chen Change Loy. Exploring clip for assessing the look and feel
 612 of images. In *Proceedings of the AAAI Conference on Artificial Intelligence (AAAI)*, 2023a.

613

614 Junke Wang, Zhi Tian, Xun Wang, Xinyu Zhang, Weilin Huang, Zuxuan Wu, and Yu-Gang Jiang.
 615 Simplear: Pushing the frontier of autoregressive visual generation through pretraining, sft, and rl.
 616 *arXiv preprint arXiv:2504.11455*, 2025.

617

618 Xintao Wang, Yu Li, Honglun Zhang, and Ying Shan. Towards real-world blind face restoration
 619 with generative facial prior. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
 Pattern Recognition (CVPR)*, 2021.

620

621 Zhixin Wang, Ziying Zhang, Xiaoyun Zhang, Huangjie Zheng, Mingyuan Zhou, Ya Zhang, and
 622 Yanfeng Wang. Dr2: Diffusion-based robust degradation remover for blind face restoration. In
 623 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
 624 2023b.

625

626 Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
 627 from error visibility to structural similarity. *IEEE Transactions on Image Processing (TIP)*, 13(4):
 628 600–612, 2004.

629

630 Zhouxia Wang, Jiawei Zhang, Runjian Chen, Wenping Wang, and Ping Luo. Restoreformer: High-
 631 quality blind face restoration from undegraded key-value pairs. 2022.

632

633 Bin Wu, Wei Wang, Yahui Liu, Zixiang Li, and Yao Zhao. Diffusionreward: Enhancing blind face
 634 restoration through reward feedback learning. *arXiv preprint arXiv:2505.17910*, 2025.

635

636 Rongyuan Wu, Lingchen Sun, Zhiyuan Ma, and Lei Zhang. One-step effective diffusion network for
 637 real-world image super-resolution. *Advances in Neural Information Processing Systems (NeurIPS)*,
 638 2024.

639

640 Zeyue Xue, Jie Wu, Yu Gao, Fangyuan Kong, Lingting Zhu, Mengzhao Chen, Zhiheng Liu, Wei
 641 Liu, Qiushan Guo, Weilin Huang, et al. Dancegrpo: Unleashing grpo on visual generation. *arXiv
 642 preprint arXiv:2505.07818*, 2025.

643

644 Sidi Yang, Tianhe Wu, Shuwei Shi, Shanshan Lao, Yuan Gong, Mingdeng Cao, Jiahao Wang, and
 645 Yujiu Yang. Maniq: Multi-dimension attention network for no-reference image quality assessment.
 646 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
 647 2022.

648

649 Tao Yang, Peiran Ren, Xuansong Xie, and Lei Zhang. Gan prior embedded network for blind face
 650 restoration in the wild. In *Proceedings of the IEEE/CVF conference on Computer Vision and
 651 Pattern Recognition (CVPR)*, 2021.

648 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
649 Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system at
650 scale. *arXiv preprint arXiv:2503.14476*, 2025.

651 Xin Yu, Basura Fernando, Bernard Ghanem, Fatih Porikli, and Richard Hartley. Face super-resolution
652 guided by facial component heatmaps. In *European conference on computer vision (ECCV)*, 2018.

654 Shihao Yuan, Yahui Liu, Yang Yue, Jingyuan Zhang, Wangmeng Zuo, Qi Wang, Fuzheng Zhang,
655 and Guorui Zhou. Ar-grpo: Training autoregressive image generation models via reinforcement
656 learning. *arXiv preprint arXiv:2508.06924*, 2025.

657 Zongsheng Yue and Chen Change Loy. Difface: Blind face restoration with diffused error contraction.
658 *IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)*, 2024.

660 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
661 diffusion models. In *Proceedings of the IEEE/CVF International Conference on Computer Vision
662 (ICCV)*, 2023.

663 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
664 effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE/CVF Conference
665 on Computer Vision and Pattern Recognition (CVPR)*, 2018.

666 Hangqi Zhou, Chao Huang, Shangqi Gao, and Xiahai Zhuang. Vspsr: Explorable super-resolution
667 via variational sparse representation. In *Proceedings of the IEEE/CVF Conference on Computer
668 Vision and Pattern Recognition (CVPR)*, 2021.

669 Shangchen Zhou, Kelvin Chan, Chongyi Li, and Chen Change Loy. Towards robust blind face
670 restoration with codebook lookup transformer. *Advances in Neural Information Processing
671 Systems (NeurIPS)*, 2022.

673 Yixuan Zhu, Wenliang Zhao, Ao Li, Yansong Tang, Jie Zhou, and Jiwen Lu. Flowie: Efficient image
674 enhancement via rectified flow. In *Proceedings of the IEEE/CVF Conference on Computer Vision
675 and Pattern Recognition (CVPR)*, 2024.

676

A ADVANTAGE WEIGHT AS A DIRECT GRADIENT COEFFICIENT

678 For a generative process parameterized by θ , the policy gradient in the DDIM optimization objective
679 can be expressed as follows:

$$682 \quad \nabla_{\theta} \mathcal{J}_{\text{LRPO}}(\theta) = \sum_{t=0}^{T-1} \mathbb{E}_{\mathbf{x}_T, \epsilon} \left[\nabla_{\theta} \log \pi_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{c}) (w_t \cdot \hat{A}_t) \right] \quad (12)$$

686 The core of the proof is to expand the log-policy gradient term, $\nabla_{\theta} \log \pi_{\theta}$. The log-policy is defined
687 by the Gaussian sampling step:

$$688 \quad \log \pi_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{c}) = -\frac{\|\mathbf{x}_{t-1} - \mu_{\theta}(\mathbf{x}_t, t, \mathbf{c})\|_2^2}{2\sigma_t^2} + \mathcal{C}_t \quad (13)$$

691 Taking the gradient with respect to θ :

$$692 \quad \nabla_{\theta} \log \pi_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{c}) = \nabla_{\theta} \left(-\frac{\|\mathbf{x}_{t-1} - \mu_{\theta}(\mathbf{x}_t, t, \mathbf{c})\|_2^2}{2\sigma_t^2} \right) \quad (14)$$

$$695 \quad = -\frac{1}{2\sigma_t^2} \cdot 2(\mathbf{x}_{t-1} - \mu_{\theta}(\mathbf{x}_t, t, \mathbf{c})) \cdot (-\nabla_{\theta} \mu_{\theta}(\mathbf{x}_t, t, \mathbf{c})) \quad (15)$$

$$697 \quad = \frac{\mathbf{x}_{t-1} - \mu_{\theta}(\mathbf{x}_t, t, \mathbf{c})}{\sigma_t^2} \cdot \nabla_{\theta} \mu_{\theta}(\mathbf{x}_t, t, \mathbf{c}) \quad (16)$$

700 Since $\mathbf{x}_{t-1} = \mu_{\theta}(\mathbf{x}_t, t, \mathbf{c}) + \sigma_t \epsilon$ where $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$:

$$701 \quad \nabla_{\theta} \log \pi_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{c}) = \frac{\sigma_t \epsilon}{\sigma_t^2} \cdot \nabla_{\theta} \mu_{\theta}(\mathbf{x}_t, t, \mathbf{c}) = \frac{\epsilon}{\sigma_t} \cdot \nabla_{\theta} \mu_{\theta}(\mathbf{x}_t, t, \mathbf{c}) \quad (17)$$

702 Expanding $\nabla_{\theta}\mu_{\theta}(\mathbf{x}_t, t, \mathbf{c})$:

$$704 \nabla_{\theta}\mu_{\theta}(\mathbf{x}_t, t, \mathbf{c}) = \nabla_{\theta} \left[\frac{\sqrt{\alpha_{t-1}}}{\sqrt{\alpha_t}} \mathbf{x}_t - \frac{\sqrt{\alpha_{t-1}(1-\alpha_t)}}{\sqrt{\alpha_t}} \epsilon_{\theta}(\mathbf{x}_t, t, \mathbf{c}) + \sqrt{1-\alpha_{t-1}-\sigma_t^2} \cdot \epsilon_{\theta}(\mathbf{x}_t, t, \mathbf{c}) \right] \quad (18)$$

$$708 = \nabla_{\theta} \left[\left(\sqrt{1-\alpha_{t-1}-\sigma_t^2} - \frac{\sqrt{\alpha_{t-1}(1-\alpha_t)}}{\sqrt{\alpha_t}} \right) \epsilon_{\theta}(\mathbf{x}_t, t, \mathbf{c}) \right] \quad (19)$$

$$711 = \left(\sqrt{1-\alpha_{t-1}-\sigma_t^2} - \frac{\sqrt{\alpha_{t-1}(1-\alpha_t)}}{\sqrt{\alpha_t}} \right) \cdot \nabla_{\theta}\epsilon_{\theta}(\mathbf{x}_t, t, \mathbf{c}) \quad (20)$$

713 Let C_t denote the scalar coefficient in parentheses that varies with timestep t . Now, substituting the
714 expansion of $\nabla_{\theta}\mu_{\theta}$ back into Eq. 17, we establish the direct relationship:

$$716 \nabla_{\theta} \log \pi_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{c}) = \underbrace{\frac{\epsilon}{\sigma_t} C_t}_{K_t} \cdot \nabla_{\theta}\epsilon_{\theta}(\mathbf{x}_t, t, \mathbf{c}) \quad (21)$$

719 Here, we have explicitly derived the coefficient K_t . Finally, we substitute this complete form into the
720 LRPO gradient objective:

$$721 \nabla_{\theta}\mathcal{J}_{\text{LRPO}}(\theta) = \sum_{t=0}^{T-1} \mathbb{E}_{\mathbf{x}_T, \epsilon} \left[(K_t \cdot \nabla_{\theta}\epsilon_{\theta}(\mathbf{x}_t, t, \mathbf{c})) (w_t \cdot \hat{A}_t) \right] \quad (22)$$

$$725 = \sum_{t=0}^{T-1} \mathbb{E}_{\mathbf{x}_T, \epsilon} \left[(w_t K_t) \cdot \hat{A}_t \cdot \nabla_{\theta}\epsilon_{\theta}(\mathbf{x}_t, t, \mathbf{c}) \right] \quad (23)$$

727 This formally proves that our advantage weight, w_t , becomes part of a new scalar term ($w_t K_t$) that
728 directly multiplies the network’s gradient, $\nabla_{\theta}\epsilon_{\theta}$. More importantly, this derivation reveals how our
729 noise-level advantage assignment directly translates into a principled modulation of the learning
730 signal at different stages of the denoising process. The final update to the network’s parameters θ is
731 effectively scaled by our time-dependent weight. In the early stages of denoising, where the model
732 needs to vigorously explore and establish the image’s overall structure and identity, our mechanism
733 intelligently increases the optimization intensity. This encourages the policy to discover more diverse
734 and high-quality solutions. Conversely, during the later stages, when the image is mostly formed and
735 the task shifts to refining high-frequency details, our method reduces the optimization strength. This
736 prevents large, disruptive updates from corrupting fine textures and ensures a more stable, fine-grained
737 training process that converges smoothly.

739 B IMPLEMENTATION DETAILS

741 **Training Setup.** We initialize our policy network with the official pre-trained weights of DiffBIR-v1¹,
742 which was pre-trained on the FFHQ dataset. Our entire framework is built upon PyTorch 2.7.0. The
743 training is conducted on three NVIDIA RTX 4090 GPUs and accelerated using the DeepSpeed library.
744 A key component of our online training pipeline is a dedicated reward server, which is deployed on a
745 separate NVIDIA RTX 4090 GPU to efficiently compute and provide reward signals to the policy
746 network.

747 **Hyperparameters.** The policy network is optimized using the Adam optimizer with a learning rate
748 of 1×10^{-6} and a batch-size of 6. For the denoising process, we employ the DDIM sampler. During
749 training, we set $\eta = 1.0$ to introduce stochasticity that encourages exploration, while for inference,
750 we use $\eta = 0.8$ to achieve more deterministic and stable generation. For our LRPO algorithm, we set
751 the number of candidate samples per group to $G = 9$ and the policy update clipping range to 1×10^{-4} .
752 The GT-guided likelihood regularization is weighted by a coefficient of $\alpha = 0.001$. Crucially, this
753 regularization is only applied during the final $S = 5$ steps of the denoising process. This strategic
754 application prevents the policy’s exploration from being overly constrained during the initial, more
755 impactful stages of the reverse process.

¹The source code and weights from <https://github.com/XPixelGroup/DiffBIR>.

756 C COMPOSITE REWARD FUNCTION DETAILS

758 This section provides more details on the reward function, $R(\hat{x}_0, x_{\text{GT}})$. The function is engineered to
 759 deliver a holistic assessment of restored images by balancing human aesthetic preference, perceptual
 760 quality, and fidelity. The total reward score is a weighted aggregation of four components, formulated
 761 as:

$$762 \quad R(\hat{x}_0, x_{\text{GT}}, c_{\text{text}}) = 0.3 \cdot r_{\text{pref}} + 0.1 \cdot r_{\text{aq}} + 0.3 \cdot r_{\text{lips}} + 0.3 \cdot r_{\text{dwt}}$$

763 where \hat{x}_0 is the restored image, x_{GT} is the ground-truth image, and c_{text} is the textual description
 764 corresponding to x_{GT} . We elaborate on each component below.

766 *Human Preference Reward* (r_{pref}). The human preference evaluation we use is based on the previous
 767 work (Wu et al., 2025), called the Face Reward Model. Trained on several human preference datasets,
 768 it is able to provide face restoration evaluations with high human consistency. The Face Reward
 769 Model’s input requires both \hat{x}_0 and c_{text} , the latter corresponding to the GT face.

770 *Perceptual Quality Reward* (r_{aq}). This component, r_{aq} , offers a no-reference evaluation of the image’s
 771 absolute quality. We employ the CLIPQA (CLIP-based Image Quality Assessment) metric Wang
 772 et al. (2023a) from the `pyiqa` library. It assesses overall perceptual quality and realism without
 773 requiring a reference image, making it effective for identifying artifacts.

774 *Fidelity Reward* (r_{fid}). The fidelity reward ensures the restoration remains faithful to the ground-truth.
 775 Our implementation uses a composite metric combining LPIPS to constrain perceptual similarity and
 776 a DWT-based measure for structural similarity.

777 *LPIPS*. The Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018) metric computes
 778 the distance between two images in a deep feature space, which correlates well with perception. As
 779 LPIPS is a distance metric (lower is better), we convert it into a similarity reward (higher is better)
 780 via the transformation: $r_{\text{lips}} = 1.0 - \text{LPIPS}(\hat{x}_0, x_{\text{GT}})$.

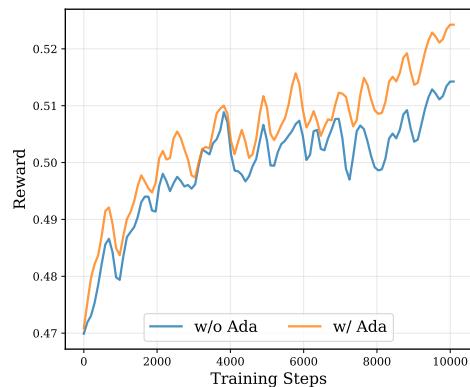
781 *DWT*. To maintain consistency between the restored image and the GT image, we employ a Discrete
 782 Wavelet Transform (DWT) as a structural constraint. DWT extracts the low-frequency components
 783 of the restored image \hat{x}_0 and the GT image \hat{x}_{GT} for the constraint. We leave the high-frequency
 784 components unconstrained to allow for more flexible restoration, reduce interference with high-
 785 frequency information, and make the generation more vivid. The detailed formulation is as follows:

$$787 \quad L_{\text{DWT}} = \|\text{DWT}_{\text{LF}}(\hat{x}_0) - \text{DWT}_{\text{LF}}(\hat{x}_{\text{GT}})\|_1$$

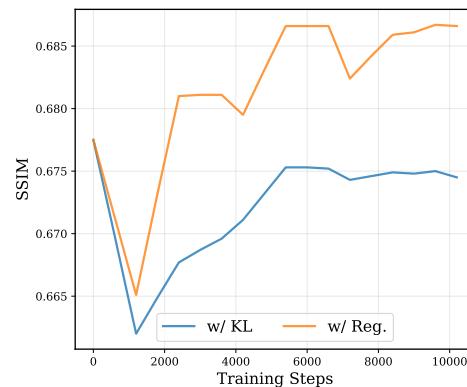
789 Finally, the L_{DWT} is converted into a reward score using an exponential decay function, which maps
 790 the non-negative loss to a score in the range $(0, 1]$:

$$791 \quad r_{\text{dwt}} = \exp(-15 \cdot L_{\text{DWT}})$$

793 The scaling factor is an empirically chosen value.



808 Figure 7: Reward scores during training w/
 809 and w/o noise-level advantage assignment



808 Figure 8: During RL training, the SSIM trend
 809 changes are compared between KL and Reg.

810 **D ABLATION STUDY DETAILS**
811812 We provide a more detailed explanation of the four variants presented in Table 4 of the main paper.
813 In Table 4, Variant 2 employs the standard GRPO optimization objective, which includes the KL
814 divergence term. Building upon this, Variant 1 removes the KL term from the optimization objective.
815 While both Variant 3 and Variant 4 follow the GRPO training framework, Variant 3 integrates GT-
816 guided likelihood regularization (Reg.), and Variant 4 integrates noise-level advantage assignment
817 (AdaA). Specifically, Variant 3 adds Reg. to the optimization term, with the advantage being assigned
818 uniformly across the time steps. Variant 4 uses the suggested noise-level advantage assignment, but
819 does not incorporate the Reg. term in the optimization objective.820 Figure 7 and Figure 8 illustrate the differences in reward and SSIM scores when applying Ada and
821 Reg strategies, respectively. Training dynamics in Figure 7 demonstrate that noise-level advantage
822 assignment consistently outperforms uniform weighting, achieving superior reward scores and faster
823 discovery of optimal restoration solutions. Additionally, Figure 8 validates replacing KL divergence
824 with GT-guided regularization, as evidenced by improved SSIM convergence on CelebA-Test data,
825 indicating better structural alignment with ground truth.827 **E THE DETAILS OF HUMAN PREFERENCE EVALUATION**
828829 To complement our quantitative metrics, we conducted a human preference evaluation to assess
830 the perceptual quality and fidelity of our proposed LRPO against the DiffBIR. The study involved
831 12 participants from diverse backgrounds, each evaluating 100 randomly selected face restorations
832 generated by both methods on the CelebA-Test dataset.833 For each case, participants were shown the two restored images in a randomized order, along with the
834 corresponding Ground Truth (GT) image for reference. They were then asked to make a forced-choice
835 comparison, selecting one of the two images based on two independent criteria:837

- *Realism*: Which image appears more natural and realistic, with richer facial details and
838 fewer visual artifacts?
- *Fidelity*: Which restored face image is more consistent with the identity of the GT face?

841 Preference rates for realism and fidelity were independently calculated for both methods based on the
842 collected responses. The final results, summarized in Table 3, show that our method was preferred by
843 participants in terms of both realism and fidelity.844 **F MORE QUALITATIVE RESULTS**
845847 This part shows more quantitative comparisons between our method and others. In Figure 9, we
848 present additional comparison results between our method and others based on the synthetic dataset
849 CelebA-Test. In Figure 10, we present additional comparison results between our method and others
850 based on the real-world datasets.852 **G LLM USAGE STATEMENT**
853854 In the preparation of this manuscript, we utilized a Large Language Model (LLM) as a writing
855 assistance tool. The role of the LLM was strictly confined to improving the language, including
856 grammar, phrasing, and overall clarity. All scientific contributions, including the core research ideas,
857 experimental methodology, and analysis of results, were developed exclusively by the human authors.
858 The LLM did not contribute to the scientific content of this paper.859
860
861
862
863

Figure 9: Qualitative results on CelebA-Test datasets. (Zoom in for details)

Figure 10: Qualitative results on real-world datasets. (Zoom in for details)