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Abstract

Accurate estimation of predictive uncertainty (model calibration) is essential for the
safe application of neural networks. Many instances of miscalibration in modern
neural networks have been reported, suggesting a trend that newer, more accurate
models produce poorly calibrated predictions. Here, we revisit this question for
recent state-of-the-art image classification models. We systematically relate model
calibration and accuracy, and find that the most recent models, notably those not
using convolutions, are among the best calibrated. Trends observed in prior model
generations, such as decay of calibration with distribution shift or model size, are
less pronounced in recent architectures. We also show that model size and amount
of pretraining do not fully explain these differences, suggesting that architecture is
a major determinant of calibration properties.

1 Introduction

Neural networks, especially vision models, are increasingly used in safety-critical applications such
as autonomous driving (Bojarski et al., 2016), medical diagnosis (Esteva et al., 2017; Jiang et al.,
2012), and meteorological forecasting (Sønderby et al., 2020). For such applications, it is essential
that model predictions are not just accurate, but also well calibrated. Model calibration refers to the
accuracy with which the scores provided by the model reflect its predictive uncertainty. For example,
in a medical application, we would like to defer images for which the model makes low-confidence
predictions to a physician for review (Kompa et al., 2021). Skipping human review due to confident,
but incorrect, predictions, could have disastrous consequences.

While intense research and engineering effort has focused on improving the predictive accuracy of
models, less attention has been given to model calibration. In fact, over the last few years, there have
been many reports that calibration of modern neural networks can be surprisingly poor, despite the
advances in accuracy (e.g. Guo et al. 2017; Lakshminarayanan et al. 2017; Malinin & Gales 2018;
Thulasidasan et al. 2019; Hendrycks et al. 2020b; Ovadia et al. 2019; Wenzel et al. 2020; Havasi et al.
2021; Rahaman & Thiery 2020; Leathart & Polaczuk 2020). Some works suggest a trend for larger,
more accurate models to be worse calibrated (Guo et al., 2017).

These concerns are more relevant than ever, since the architecture size, amount of training data,
and computing power used by state-of-the-art models continue to increase. At the same time,
rapid advances in model architecture (Tolstikhin et al., 2021; Dosovitskiy et al., 2021) and training
approaches (Chen et al., 2020; Mahajan et al., 2018; Radford et al., 2021) raise the question whether
past results on calibration, largely obtained on standard convolutional architectures, extend to current
state-of-the-art models. Since model advances are quickly translated to real-world, safety-critical
applications (e.g. Mustafa et al. 2021), there is an urgent need to re-assess the calibration properties
of current state-of-the-art models.
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Contributions. To address this need, we provide a systematic comparison of recent image classifi-
cation models, relating their accuracy, calibration, and design features. We find that:

1. The best current models, including the non-convolutional MLP-Mixer (Tolstikhin et al., 2021)
and Vision Transformers (Dosovitskiy et al., 2021), are well calibrated compared to past models
and their performance is more robust to distribution shift.

2. In-distribution calibration slightly deteriorates with increasing model size, but this is out-
weighed by a simultaneous improvement in accuracy.

3. Under distribution shift, calibration improves with model size, reversing the trend seen in-
distribution.

4. Accuracy and calibration are correlated under distribution shift, such that optimizing for
accuracy may also benefit calibration.

5. Model size, pretraining duration, and pretraining dataset size cannot fully explain differences
in calibration properties between model families.

Our results suggest that further improvements in model accuracy will continue to benefit calibration.
They also hint at architecture as an important determinant of model calibration. We provide code and
a large dataset of calibration measurements, comprising 180 distinct models from 16 families, each
evaluated on 79 ImageNet-scale datasets and 28 metric variants.1

2 Related Work

Measures of model calibration. The losses that are commonly used to train classification models,
such as cross-entropy and squared error, are proper scoring rules (Gneiting et al., 2007) and are
therefore guaranteed to yield perfectly calibrated models at their minimum—in the infinite-data
limit. However, in practice, due to model mismatch and overfitting, even losses based on proper
scoring rules may result in poor model calibration. Miscalibration is commonly quantified in terms
of Expected Calibration Error (ECE; Naeini et al. 2015), which measures the absolute difference
between predictive confidence and accuracy. We focus on ECE because it is a widely used and
accepted calibration metric. Nevertheless, it is well understood that estimating ECE accurately is
difficult because estimators can be strongly biased and many estimator variants exist (Nixon et al.,
2019; Roelofs et al., 2020; Vaicenavicius et al., 2019; Gupta et al., 2021). Section 5 discusses these
issues and our approaches to mitigate them.

Alternatives to ECE include likelihood measures, Brier score (Brier, 1950), Bayesian methods (Gel-
man et al., 2013), and conformal prediction (Shafer & Vovk, 2008). Further, model calibration can be
represented visually with reliability diagrams (DeGroot & Fienberg, 1983). Figure 8 and Appendix F
provide likelihoods, Brier scores, and reliability diagrams for our main analyses.

Empirical studies of model calibration. There have been many recent empirical studies on the
robustness (accuracy under distribution shift) of image classifiers (Geirhos et al., 2019; Taori et al.,
2020; Djolonga et al., 2020; Hendrycks et al., 2020a). Several works have also studied calibration.
Most notable is Guo et al. (2017), who found that “modern neural networks, unlike those from
a decade ago, are poorly calibrated”, that larger networks tend to be calibrated worse, and that
“miscalibration worsen[s] even as classification error is reduced.” Other works have corroborated
some of these findings (e.g., Thulasidasan et al. 2019; Wen et al. 2021). This line of work suggests
a trend that larger models are worse calibrated, which would have major implications for research
toward bigger models and datasets. We show that for more recent models, this trend is negligible
in-distribution and in fact reverses under distribution shift.

Ovadia et al. (2019) empirically study calibration under distribution shift and provide a large compar-
ison of methods for improving calibration. They report that both accuracy and calibration deteriorate
with distribution shift. While we observe the same trend, we find that the calibration of some recent
model families decays so slowly under distribution shift that the decay in accuracy is likely more
relevant in practice (Section 4.3).

Ovadia et al. also find that, across methods for improving calibration, improvements on in-distribution
data do not necessarily translate to out-of-distribution data. This finding may suggest that there is
little correlation between in-distribution and out-of-distribution calibration in general. However, our

1Available at https://github.com/google-research/robustness_metrics/tree/master/
robustness_metrics/projects/revisiting_calibration.
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results show that, across model architectures, the models with the best in-distribution calibration are
also the best-calibrated on a range of out-of-distribution benchmarks. The important implication of
this result is that designing models based on in-distribution performance likely also benefits their
out-of-distribution performance.

Improving calibration. Many strategies have been proposed to improve model calibration such
as post-hoc rescaling of predictions (Guo et al., 2017), averaging multiple predictions (Lakshmi-
narayanan et al., 2017; Wen et al., 2020), and data augmentation (Thulasidasan et al., 2019; Wen
et al., 2021). Here, we focus on the intrinsic calibration properties of state-of-the-art model families,
rather than methods to further improve calibration.

As a baseline on top of a model’s intrinsic calibration properties, we study temperature scaling (Guo
et al., 2017). It is effective in improving calibration and so simple that it can be applied in many cases
at minimal additional cost, in contrast to many more sophisticated methods. Temperature scaling
re-scales a model’s logits by a single parameter, chosen to optimize the model’s likelihood on a
held-out portion of the training data. This temperature factor changes the model’s confidence, i.e.,
whether the model predictions are on average too certain (overconfident), optimally confident, or too
uncertain (underconfident). The classification accuracy of the model is not affected by temperature
scaling. A large fraction of model miscalibration is typically due to average over- or underconfidence,
e.g. due to suboptimal training duration (Guo et al., 2017). By normalizing a model’s confidence,
temperature scaling not only improves calibration, but also removes a primary confounder that can
hide trends in calibration between models (see Section 4.2 and Appendix D). Therefore, we study
both unscaled and temperature-scaled predictions in the paper.

3 Definitions and Notation

We consider the multi-class classification problem, as analyzed by Bröcker (2009), where we observe
a variable X and predict a categorical variable Y ∈ {1, 2, . . . , k}. We model our predictor f as a
function that maps every input instanceX to a categorical distribution over k labels, represented using
a vector f(X) belonging to the (k − 1)-dimensional simplex ∆ = {p ∈ [0, 1]k |

∑k
y=1 py = 1}.

Intuitively, a model f is well-calibrated if its output truthfully quantifies the predictive uncertainty.
For example, if we take all data points x for which the model predicts [f(x)]y = 0.3, we expect 30%
of them to indeed take on the label y. Formally, the model f is said to be calibrated if (Bröcker, 2009)

∀p ∈ ∆: P (Y = y | f(X) = p) = py. (1)

We will focus on a slightly weaker, but more practical condition, called top-label or argmax calibration
(Kumar et al., 2019; Guo et al., 2017). This requires that the above holds only for the most likely
label, i.e., ∀p∗ ∈ [0, 1]

P (Y ∈ arg max p | max f(X) = p∗) = p∗, (2)

where the max and arg max act coordinate-wise.

The most common measure of the degree of miscalibration is the Expected Calibration Error (ECE),
which computes the expected disagreement between the two sides of eq. (2)

E
[
|p∗ − E[Y ∈ arg max f(X) | max f(X) = p∗|

]
. (3)

Unfortunately, eq. (3) cannot be estimated without quantization as it conditions on a null event.
Hence, one typically first buckets the predictions intom binsB1, . . . , Bm based on their top predicted
probability, and then takes the expectation over these buckets. Namely, if we are given a set of n
i.i.d. samples (x1, y1), . . . , (xn, yn) distributed as P (X,Y ), then we assign each j ∈ {1, . . . , n}
to a bucket Bi based on max f(xj). Then, we compute in each bucket Bi the confidence(Bi) =
1
|Bi|

∑
j∈Bi

max f(xj) and the accuracy(Bi) = 1
|Bi|

∑
j∈Bi

Jyj ∈ arg max f(xj)K, where J·K is the
Iverson bracket. Finally, we construct an estimator by taking the expectation over the bins

ÊCE =

m∑
i=1

|Bi|
n
|accuracy(Bi)− confidence(Bi)| . (4)

In Section 5 we discuss the statistical properties of this estimator, possible pitfalls, and several
mitigation strategies.
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Figure 1: Some modern neural network families are both highly accurate and well-calibrated. Left:
Expected calibration error (ECE) vs. classification error on IMAGENET for state-of-the-art image
classification models. Marker size indicates relative model size within its family. Points labeled
“Guo et al.” are the values reported for DenseNet-161 and ResNet-152 in Guo et al. (2017). Right:
Confidence distribution (top row) and reliability diagrams (bottom row) for some of the models.

4 Empirical Evaluation

4.1 Experimental Setup

Model families. In this study, we consider a range of recent and some historic state-of-the-art
image classification models. Our selection of models covers convolutional and non-convolutional
architectures, as well as supervised, weakly supervised, unsupervised and zero-shot training. We
follow the original publications in naming the model variants within each family (e.g. different model
sizes). See Appendix A.1 for a detailed description of all used models.

1. MLP-Mixer (Tolstikhin et al., 2021) is based exclusively on multi-layer perceptrons (MLPs)
and is pre-trained on large supervised datasets.

2. ViT (Dosovitskiy et al., 2021) processes images with a transformer architecture originally
designed for language (Vaswani et al., 2017) and is also pre-trained on large supervised datasets.

3. BiT (Kolesnikov et al., 2020) is a ResNet-based architecture (He et al., 2016). It is also
pre-trained on large supervised datasets.

4. ResNext-WSL (Mahajan et al., 2018) is based on the ResNeXt architecture and trained with
weak supervision from billions of hashtags on social media images.

5. SimCLR (Chen et al., 2020) is a ResNet, pretrained with an unsupervised contrastive loss.
6. CLIP (Radford et al., 2021) is pretrained on raw text and imagery using a contrastive loss.
7. AlexNet (Krizhevsky et al., 2012; Krizhevsky, 2014) was the first convolutional neural network

to win the ImageNet challenge.

All models are either trained or fine-tuned on the IMAGENET training set, except for CLIP, which
makes zero-shot predictions using IMAGENET class names as queries.

Datasets. We evaluate accuracy and calibration on the IMAGENET validation set and the following
out-of-distribution benchmarks using the Robustness Metrics library (Djolonga et al., 2020):

1. IMAGENETV2 (Recht et al., 2019) is a new IMAGENET test set collected by closely following
the original IMAGENET labeling protocol.

2. IMAGENET-C (Hendrycks & Dietterich, 2019) consists of the images from IMAGENET,
modified with synthetic perturbations such as blur, pixelation, and compression artifacts at a
range of severities.

3. IMAGENET-R (Hendrycks et al., 2020a) contains artificial renditions of IMAGENET classes
such as art, cartoons, drawings, sculptures, and others.

4. IMAGENET-A (Hendrycks et al., 2021) contains images that are classified as belonging to
IMAGENET classes by humans, but adversarially selected to be hard to classify for a ResNet50
trained on IMAGENET.

For the post-hoc recalibration of models, we reserve 20% of the IMAGENET validation set (randomly
sampled) for fitting the temperature scaling parameter. All reported metrics are computed on the
remaining 80% of the data. For evaluations on IMAGENET-C, we also exclude the 20% of images
that are based on the IMAGENET images used for temperature scaling.
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Calibration metric. Throughout the paper, we estimate ECE using equal-mass binning and 100
bins. Appendix E shows that our results hold for other ECE variants and are consistent with the Brier
score and model likelihood.

4.2 In-Distribution Calibration

We begin by considering ECE on clean IMAGENET images (referred to as in-distribution). Figure 1
shows in-distribution ECE and reliability diagrams before any recalibration of the predicted prob-
abilities. We find that several recent model families (MLP-Mixer, ViT, and BiT) are both highly
accurate and well-calibrated compared to prior models, such as AlexNet or the models studied by
Guo et al. (2017). This suggests that there may be no continuing trend for highly accurate modern
neural networks to be poorly calibrated, as suggested previously (Guo et al., 2017; Lakshminarayanan
et al., 2017; Malinin & Gales, 2018; Thulasidasan et al., 2019; Hendrycks et al., 2020b; Ovadia et al.,
2019; Wenzel et al., 2020; Havasi et al., 2021; Rahaman & Thiery, 2020; Leathart & Polaczuk, 2020).
In addition, we find that a recent zero-shot model, CLIP, is well-calibrated given its accuracy.

Temperature scaling reveals consistent properties of model families. The poor calibration of
past models can often be remedied by post-hoc recalibration such as temperature scaling (Guo et al.,
2017), which raises the question whether a difference between models remains after recalibration. We
find that the most recent architectures are better calibrated than past models even after temperature
scaling (Figure 2, right).
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Figure 2: Temperature scaling reveals consistent
properties of model families. Left: ECE vs. clas-
sification error as in Figure 1. Right: ECE after
applying temperature scaling.

More generally, temperature scaling reveals con-
sistent trends in the calibration properties be-
tween families that are obscured in the unscaled
data by simple over- or underconfidence mis-
calibration. Before temperature scaling (Fig-
ure 2, left), several families overlap in their ac-
curacy/calibration properties (MLP-Mixer, ViT,
BiT). After temperature scaling (Figure 2, right),
a clearer separation of families and consistent
trends between accuracy and calibration within
each family become apparent. Notably, temper-
ature scaling reconciles our results for BiT (a
ResNet architecture) with the results reported by
Guo et al. for ResNets trained on IMAGENET.
Furthermore, models pretrained without addi-
tional labels (SimCLR) or with noisy labels (ResNeXt-WSL) tend to be calibrated worse for a given
accuracy than ResNets trained with supervision (BiT and the models studied by Guo et al.). Finally,
non-convolutional model families like MLP-Mixer and ViT can perform just as well, if not better,
than convolutional ones.

Differences between families are not explained by model size or pretraining amount. We next
attempt to disentangle how the differences between model families affect their calibration properties.
We focus on model size and amount of pretraining, both important trends in state of-the-art models.

We first consider model size. Prior work has suggested that larger neural networks are worse
calibrated (Guo et al., 2017). We also find that within most families, larger members tend to have
higher calibration error (Figure 2, right). However, at the same time, larger models have consistently
lower classification error. This means that each model family occupies a different Pareto set in
the tradeoff between accuracy and calibration. For example, our results suggest that, at any given
accuracy, ViT models are better calibrated than BiT models. Changing the size of a BiT model cannot
move it into the Pareto set of ViT models. Model size can therefore not fully explain the intrinsic
calibration differences between these model families.2

We next consider model pretraining. Many current state-of-the-art image models use transfer learning,
in which a model is pre-trained on a large dataset and then fine-tuned to the task of interest (Kolesnikov
et al., 2020; Chen et al., 2020; Xie et al., 2020). With transfer learning, large data sources can be

2This relationship between model size, accuracy and calibration holds for all families we study except
ResNeXt-WSL, for which increasing model sizes improves both accuracy and calibration. While investigating
this difference was out of the scope of this work, it may be a promising direction for future research.

5



exploited to train the model, even if little data are available for the final task. To test how the amount
of pretraining affects calibration, we compare BiT models pretrained on IMAGENET (1.3M images),
IMAGENET-21K (12.8M images), or JFT-300 (300M images; Sun et al. 2017).
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Figure 3: Family differences are not fully ex-
plained by the amount of pretraining. Each
column shows ECE vs. classification error on
ImageNet for BiT models pre-trained with a
different dataset: IMAGENET (1.3M images),
IMAGENET-21K (12.8M images), or JFT-300
(300M images). The values for other models are
provided for reference in light shading (same val-
ues as in Figure 2). Note how all BiT models
remain in the same relative location between ViT
and SimCLR across a 300-fold difference in pre-
training data size.

More pretraining data consistently increases ac-
curacy, especially for larger models. It has no
consistent effect on calibration (Figure 3). In
particular, after temperature scaling, ECE is
essentially unchanged across this 300-fold in-
crease in pretraining dataset size (e.g. for BiT-
R50x1 pretrained on IMAGENET, IMAGENET-
21K and JFT-300, the ECEs are 0.0185, 0.0182,
0.0185, respectively; for BiT-R101x3, they are
0.0272, 0.0311, 0.0236; Figure 3, bottom).
Therefore, regardless of the pretraining dataset,
BiT always remains Pareto-dominant over Sim-
CLR and Pareto-dominated by ViT and MLP-
Mixer in our experiments.

The BiT models compared in Figure 3 differ
in both the amount of pretraining data and the
duration of pretraining (see Kolesnikov et al.
(2020) for details). To further disentangle these
variables, we trained BiT models on varying
numbers of pretraining examples while holding
the number of training steps constant, and vice
versa. We find that pretraining dataset size has
no significant effect on calibration, while pre-
training duration only shifts the model within its
accuracy/calibration Pareto set (longer-trained
models are more accurate and worse calibrated;
Figure 10). These results suggest that pretrain-
ing alone cannot explain the differences between
model families that we observe.

In summary, our results show that some modern neural network families combine high accuracy and
state-of-the-art calibration on in-distribution data, both before and after post-hoc recalibration by
temperature scaling. In Figure 8 and Appendices E and F, we show that these results generally hold
for other measures of model calibration (other ECE variants, Brier score, and model likelihood). Our
experiments further suggest that model size and pretraining amount do not fully explain the intrinsic
calibration differences between model families. Given that the best-calibrated families (MLP-Mixer
and ViT) are non-convolutional, we speculate that model architecture, and in particular its spatial
inductive bias, play an important role.

4.3 Accuracy and Calibration Under Distribution Shift

For safety-critical applications, the model should produce reasonable uncertainty estimates not just
in-distribution, but also under distribution shifts that were not anticipated at training time. We first
assess out-of-distribution calibration on the IMAGENET-C dataset, which consists of images that
have been synthetically corrupted at five different severities. As expected, both classification and
calibration error generally increase with distribution shift (Figure 4; Ovadia et al. 2019; Hendrycks &
Dietterich 2019). Interestingly, this decay in calibration performance is slower for MLP-Mixer and
ViT than for the other model families, both before and after temperature scaling.

Regarding the effect of model size on calibration, we observed some trend towards worse calibration
of larger models on in-distribution data. However, the trend is reversed for most model families as
we move out of distribution, especially after accounting for confidence bias by temperature scaling
(note positive slope of the gray lines at high corruption severities in Figure 4, bottom row). In other
words, the calibration of larger models is more robust to distribution shift (Figure 5).
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Figure 4: Calibration and accuracy on IMAGENET-C before (top) and after (bottom) temperature
scaling on IMAGENET. Severity 0 refers to the clean IMAGENET test set; marker size indicates
relative model size within its family (see Table 1 for model details). The calibration of some recent
model families, e.g. MLP-Mixer and ViT, is more robust to distribution shift than past models.

We next consider to what degree the insights from in-distribution and IMAGENET-C calibration
transfer to natural out-of-distribution data. Previous work on IMAGENET-C suggests that, when
comparing recalibration methods, better in-distribution calibration and accuracy do not usually predict
better calibration under distribution shift (Ovadia et al., 2019). Here, comparing model families, we
find that the performance on several natural out-of-distribution datasets is largely consistent with
that on IMAGENET (Figure 6). In particular, models that are Pareto-optimal (i.e. no other model is
both more accurate and better calibrated) on IMAGENET remain Pareto-optimal on the OOD datasets.
Further, we observe a strong correlation between accuracy and calibration on the OOD datasets. This
relationship is consistent across models within a family and across datasets, over a wide range of
accuracies (Figure 11).
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Figure 5: Classification error and ECE for the top
three families on IMAGENET-C, relative to the
largest model variant in each family. As distribu-
tion shift increases, both errors tend to increase
more slowly for larger models. Also note that
changes in ECE are much smaller than changes in
classification error.

These results suggest that larger and more accu-
rate models, and in particular MLP-Mixer and
ViT, can maintain their good in-distribution cal-
ibration even under severe distribution shifts.
Based on the observed relationship between cal-
ibration and accuracy, we can reasonably hope
that good calibration on in-distribution data (and
anticipated distribution shifts) generally trans-
lates into good calibration on unanticipated out-
of-distribution data, similar to what has been
observed for accuracy (Djolonga et al., 2020).

4.4 Relating Accuracy
and Calibration Within Model Families

Our data suggest that most model families lie on
different Pareto sets in the accuracy/calibration
space, which establishes a clear preference be-
tween families. We next consider how to com-
pare individual models within a family (or more
specifically, within a Pareto set), where one
model is more accurate but worse calibrated, and
the other is less accurate but better calibrated.
Which model should a practitioner choose for a
safety-critical application?
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IMAGENET-R and IMAGENET-A use a reduced subset of 200 classes; we follow the literature and
select the subset of the model logits for these classes before evaluation. Out-of-distribution calibration
tends to correlate with in-distribution calibration (Figure 1) and out-of-distribution accuracy.
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Figure 7: Relative cost of BiT-R152x4 and BiT-
R50x1 models in a selective prediction scenario,
computed as a combination of the misclassifica-
tion and abstention costs at a given cost ratio
(x-axis) and abstention rate (y-axis). Blue indi-
cates regions where the higher-accuracy model
(R152x4) achieves a lower cost than the better-
calibrated model (R50x1). The accuracy advantage
outweighs the calibration advantage for practical
rejection rates, across all tested abstention costs.

The answer depends on the cost structure of
the specific application (Hernández-Orallo et al.,
2012). As an example, consider the scenario of
selective prediction, which is common in med-
ical diagnosis. In this task, one can choose to
ignore the model prediction (“abstain”) at a fixed
cost if the prediction confidence is low, rather
than risking a (more costly) prediction error.

Figure 7 compares the expected cost for two
BiT variants, one with better classification er-
ror (R152x4, by 0.08), and one with better ECE
(R50x1, by 0.009). For abstention rates up to
70% (which covers most practical scenarios with
abstention rates low enough for the model to
be useful), the model with better accuracy has
a lower overall cost than the model with bet-
ter ECE. The same is true for all other model
families we study (Appendix B.3). For these
families and this cost scenario, a practitioner
should therefore always choose the most accu-
rate available model regardless of differences in calibration. Ultimately, real-world cost structures are
complex and may yield different results; Figure 7 presents one common scenario with downstream
ramifications for the importance of the calibration differences compared to accuracy.

5 Pitfalls and Limitations

For this study, we approached calibration with a simple, practical question: Given two models, one
more accurate and the other better calibrated, which should a practitioner choose? While working
towards answering this question, we encountered several pitfalls that complicate the interpretation of
calibration results.

Measuring calibration is challenging, and while the quantity we want to estimate is well specified,
the estimator itself can be biased. There are two sources of bias: (i) from estimating ECE by binning,
and (ii) from the finite sample size used to estimate the per-bin statistics.
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Figure 8: Alternative calibration metrics: negative log-likelihood (NLL) and Brier score. For
comparison, the first row shows ECE as in Figure 6. Since NLL, Brier score, and classification error
are all highly correlated, we also provide the residuals of NLL and Brier score after regressing out
classification error (third and fifth row). Specifically, we first fit a linear regression yi = β0 + β1xi,
where xi is the classification error and yi is the calibration measure of model i. We then report the
residual yi − (β0 + β1xi) on the y-axis of the plots in the third and fifth row. The residuals show
which models have better (or worse) NLL and Brier score than what can be expected from their
accuracy alone. The relationships between model families are largely similar across all calibration
metrics.

The first of these biases is always negative (Kumar et al., 2019), while the second one is always
positive. Thus, the estimator can both under- and over-estimate the true value, and the magnitude of
the bias can depend on multiple factors. In practice, this means that the ranking of models depends
on which ECE variant is chosen to estimate calibration (Nixon et al., 2019). As we show below, this
is especially problematic for the positive bias, because this bias depends on the accuracy of the model.
It is therefore possible to arrive at opposite conclusions about the relationship between accuracy and
calibration, depending on the chosen bin size (Figure 9), especially when comparing models with
widely varying accuracies.
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Figure 9: The effect of binning-induced bias in
ECE depends on accuracy. Each dot represents a
BiT ResNet model. Plotted models differ in model
size, pretraining dataset size, and pretraining dura-
tion. All models are fine-tuned and evaluated on
IMAGENET. After temperature scaling, there is a
near-linear relationship between ECE and classifi-
cation error. However, whether this relationship is
positive or negative depends on the number of bins
used for estimating ECE. This effect is explained
by an accuracy-dependent bias that increases with
the number of bins.

Intuitively, a larger number of bins implies
fewer points per bin and thus higher variance
of the estimate of the model accuracy in each
bin, which adds positive bias to the estimate of
ECE. More formally, to estimate accuracy(Bi)
precisely, we need a number of samples in-
versely proportional to the standard deviation√
pi(1− pi)/|Bi|, where pi is the expected ac-

curacy in Bi. This indicates that the bias would
be smaller for models with extreme average
accuracies (i.e. close to 0 or 1) and larger for
models with an accuracy close to 0.5. A de-
tailed analysis reveals additional effects that fur-
ther reduce the bias for higher-accuracy mod-
els (Appendix C). In particular, if we estimate
(E[accuracy(Bi)]−E[confidence(Bi)])

2 for any
bin i with ni samples (using the sample means
of the confidences and the accuracies), the bias
can be shown to be equal to (conditioning on
X ∈ Bi omitted for brevity)

1

ni

(
V[A] + V[C]− 2Cov[C,A]

)
, (5)

where A = JY ∈ arg max f(X)K and C = max f(X). Hence, from Equation 5 we can conclude
that higher accuracy models have a lower bias not only due to higher accuracy (lower V[A]), but also
because their outputs correlate more with the correct label (higher covariance).

In addition to a careful choice of bin size, considering accuracy and calibration jointly mitigates this
issue, because the Pareto-optimal models rarely change, even if the ranking based on ECE alone
does (Appendix E). In Appendices E and F, we provide the main figures of the paper for other ECE
variants (number of bins, binning scheme, normalization metric, top-label, all-label, class-wise).

Finally, metrics such as Brier score (Brier, 1950) and likelihood provide alternative assessments
of model calibration that do not require estimating expected calibration error. We find that the
relationships between model families are consistent across ECE, NLL and Brier score (Figure 8). In
particular, the same models (specifically the largest MLP-Mixer and ViT variants) remain Pareto-
optimal with respect to the calibration metric and classification error in most cases. The relationship
between models is visualized especially clearly after regressing out from the calibration metrics their
correlation with classification error (Figure 8, third and fifth row).

6 Conclusion

We performed a large study of the calibration of recent state-of-the-art image models and its relation-
ship with accuracy. We find that modern image models are well calibrated across distribution shifts
despite being designed with a focus on accuracy. Our results suggest that there is no general trend for
recent or highly accurate neural networks to be poorly calibrated compared to older or less accurate
models.

Our experiments suggest that simple dimensions such as model size and pretraining amount do
not fully account for the performance differences between families, pointing towards architecture
as a major determinant of calibration. Of particular note is the finding that MLP-Mixer and Vi-
sion Transformers—two recent architectures that are not based on convolutions—are among the
best-calibrated models both in-distribution and out-of-distribution. Self-attention (which Vision
Transformers employ heavily) has been shown previously to be beneficial for certain kinds of out-
of-distribution robustness (Hendrycks et al., 2020a). Our work now hints at calibration benefits of
non-convolutional architectures more broadly, for certain kinds of distribution shift. Further work on
the influence of architectural inductive biases on calibration and out-of-distribution robustness will
be necessary to tell whether these results generalize. If so, they may further hasten the end of the
convolutional era in computer vision.
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