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Abstract001

Typically, parametric adaptation methods such002
as domain-adaptive pretraining (DAP) and003
retrieval-augmented generation (RAG) have004
been considered effective approaches for adapt-005
ing large language models (LLMs) to new006
knowledge or domains. To unify positive007
effects of parametric adaptation and RAG,008
this paper proposes GenPoE, i.e., “generative”009
passage-level mixture of experts (MoEs) for010
enhancing knowledge of LLMs. The key com-011
ponent is its novel MoE-generating hypernet-012
work which takes in-context retrieved passages013
and generates their “expert” parameters, where014
these generated parameters are then integrated015
into LLMs by forming expert networks. With016
its use of “generated” parameters, GenPoE does017
not require a separate parameter training or fine-018
tuning stage, which is often costly. By param-019
eterizing passages into expert networks, Gen-020
PoE likely exhibits robustness even when the021
retrieved passages are irrelevant. Experiment022
results in two open-domain question answer-023
ing (QA) tasks present that GenPoE shows024
improved performances over other passage-025
level knowledge editing, and its combination026
of RAG produces superior performances over027
RAG. Our data and code will be available at028
https://github.com/XXX/XXX.029

1 Introduction030

Large Language Models (LLMs) have achieved re-031

markable success across a wide range of natural lan-032

guage processing tasks, especially in knowledge-033

intensive applications due to their vast pretrained034

knowledge (Zhao et al., 2023; Hadi et al., 2023).035

However, the dynamic nature of real-world knowl-036

edge necessitates continuous and efficient updates037

to these models.038

Existing methods for enhancing knowledge of039

LLMs are broadly categorized to two approaches –040

parametric adaptation and RAG (Lewis et al., 2020;041

Pan et al., 2024); 1) Parametric adaptation – such042

as domain-adaptive pretraining (DAP) (Ke et al., 043

2023) or parametric knowledge editing (De Cao 044

et al., 2021; Meng et al., 2022a) 1 – modifies or 045

updates the parameters of large language models 046

(LLMs). However, it often requires substantial 047

computational and memory cost due to LLM’s 048

huge parameters and the training time, and may 049

suffer from the catastrophic forgetting, which can 050

degrade previously learned knowledge and task per- 051

formance. 2) RAG retrieves relevant passages and 052

uses them as additional in-context prompts before 053

generating responses. However, RAG likely suffers 054

from performance degradation due to noisy or irrel- 055

evant retrieved content (Yoran et al., 2023; Tu et al., 056

2025), and its lack of parameter-level integration 057

may limit the model’s ability to accumulate and 058

evolve knowledge over time. 059

Given these characteristics, we assume that para- 060

metric adaptation and RAG serve as complemen- 061

tary solutions, each addressing the limitations of 062

the other. RAG is less likely to suffer from com- 063

putational overhead and catastrophic forgetting, 064

while parametric adaptation tends to avoid the in- 065

fluence of noisy or irrelevant retrieved content due 066

to its access to internalized parametric knowledge. 067

To unify these complementary effects, this paper 068

proposes GenPoE, i.e., “generative” passage-level 069

MoEs for enhancing knowledge of LLMs, by in- 070

ternalizing passages into MoE parameters based 071

on our novel MoE-generating hypernetwork. More 072

specifically, the MoE-generating hypernetwork is 073

trained via meta-learning framework: given a ques- 074

tion and its corresponding gold passage, it learns to 075

produce passage-level MoE parameters such that 076

the resulting MoE-equipped LLMs maximize the 077

autoregressive likelihood of generating the cor- 078

1In this paper, we refer to parametric knowledge editing as
encompassing locate- parametric approaches described in (Yao
et al., 2023), excluding memory-based methods. it does not
include in-context knowledge editing as proposed in (Zheng
et al., 2023a).
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rect answer to the question. During inference,079

as an alternative to RAG, GenPoE employs the080

MoE-generating hypernetwork through a passage081

injection stage to incorporate retrieved passages.082

Once the top-k passages are retrieved, the hyper-083

network dynamically constructs k passage-level084

MoEs, which are then integrated with the original085

LLM parameters, as illustrated in Figure 1.086

Experimental results on standard open-domain087

question answering (QA) datasets—including Nat-088

ural Questions (NQ) (Kwiatkowski et al., 2019),089

and TriviaQA (TQA) (Joshi et al., 2017)—demon-090

strate that GenPoE achieves a stronger passage in-091

jection effect by outperforming baseline parametric092

knowledge editing methods. When combined with093

RAG, GenPoE gives rise to a more powerful RAG094

variant that surpasses the performance of existing095

advanced RAG approaches, confirming the comple-096

mentary relationship between RAG and parametric097

adaptation.098

Our main contributions are summarized as fol-099

lows:100

1. We propose GenPoE, a novel passage injec-101

tion framework for enhancing the knowledge102

of large language models (LLMs), which103

leverages hypernetwork to generate passage-104

level Mixture-of-Experts (MoE) parameters105

for open-domain question answering tasks.106

2. We present a novel meta-learning framework107

for training a MoE-generating hypernetwork,108

where the hypernetwork is trained in an end-109

to-end manner to minimize the loss of gen-110

erating correct answers, given a question, its111

corresponding gold passage, and the ground-112

truth answer.113

3. We present comprehensive empirical results114

on standard QA benchmarks, demonstrat-115

ing that GenPoE consistently outperforms116

conventional parametric knowledge editing117

approaches and parameter-efficient tuning118

methods, and further enhances performance119

when combined with retrieval-based genera-120

tion (RAG), forming a more powerful RAG121

variant.122

2 Related Work123

2.1 Knowledge Enhancement124

Knowledge injection has emerged as a crucial tech-125

nique for enhancing the performance of language126

Figure 1: Once the top-k retrieved passages are obtained,
GenPoE transforms this knowledge into passage-level
MoEs using the MoE-generating hypernetwork, which
is pretrained via a meta-learning framework. The re-
sulting passage-level MoEs are then combined with the
original feed-forward network (FFN) parameters – with-
out modifying them – to generate a response to the given
question.

models by efficiently integrating external knowl- 127

edge. Two primary approaches have gained sig- 128

nificant attention: parameter-efficient tuning and 129

model editing. 130

Parameter-efficient tuning enhances large pre- 131

trained models by introducing small trainable mod- 132

ules while keeping most parameters frozen. Key 133

approaches include adapter (Houlsby et al., 2019), 134

which adds neural network bottlenecks to trans- 135

former blocks; Prompt Tuning (Li and Liang, 136

2021), which optimizes the appended prompts for 137

task adaptation; and LoRA (Hu et al., 2021), which 138

updates rank decomposition matrices. Recent ad- 139

vances, such as DyLoRA (Valipour et al., 2022), 140

improve efficiency by selectively updating partial 141

parameters. Building on DyLoRA, MELO (Yu 142

et al., 2024) introduces a neuron-indexed dynamic 143

LoRA mechanism. 144

Model editing focuses on maintaining the re- 145

liability of edited knowledge, ensuring that the 146

changes successfully address the target queries. 147

Additionally, it emphasizes enhancing the gener- 148

ality, allowing the edited model to generalize the 149
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new knowledge to related queries effectively. Fur-150

thermore, it seeks to preserve locality, ensuring151

that the modifications do not interfere with the152

retention of unrelated original knowledge. It is153

categorized into three types: Meta-learning edi-154

tors (De Cao et al., 2021; Mitchell et al., 2021; Tan155

et al., 2023), which use hyper-networks to adjust156

gradients; Locate-then-edit editors (Meng et al.,157

2022a,b; Li et al., 2024), which identify and update158

relevant parameters; and Memory-based editors,159

where (Zheng et al., 2023b; Zhong et al., 2023; Gu160

et al., 2023; Cheng et al., 2023) update knowledge161

from prompts using in-context learning without gra-162

dient updates or parameter modifications, where163

other approaches like T-Patcher (Huang et al.) and164

MEMoE (Wang and Li, 2024) store the memory of165

edited facts using additional parameters.166

Further, PRAG (Su et al., 2025) is a novel167

RAG paradigm that integrates external knowledge168

into a LLM’s FFN layers by parameterizing pas-169

sage representations into LoRA weights. The re-170

cently proposed DyPRAG (Tan et al., 2025) ex-171

tends PRAG by introducing a hypernetwork com-172

ponent that enables dynamic generation of passage-173

specific LoRA parameters at inference time. More-174

over, DyPRAG employs a two-stage training proce-175

dure: it first learns passage-specific LoRA weights,176

which are then used as supervision to train the hy-177

pernetwork for dynamic LoRA parameter gener-178

ation during inference. By comparison, our pro-179

posed method, GenPoE, is an end-to-end frame-180

work that trains the hypernetwork using only the181

answer as supervision, enabling dynamic MoE pa-182

rameter generation at inference time without requir-183

ing any additional training stage.184

2.2 Mixture of Experts185

In transformer-based Large Language Models186

(LLMs), Mixture-of-Experts (MoE) layers utilize a187

set of expert networks and a gating mechanism to188

route inputs to the most suitable experts (Shazeer189

et al., 2017; Antoniak et al., 2023). These layers are190

strategically positioned after the self-attention sub-191

layer to optimize feed-forward network (FFN) se-192

lection, significantly reducing computational over-193

head in large models like PaLM (Chowdhery et al.,194

2023), where FFN layers account for the majority195

of parameters.196

Dense MoE approaches activate all available ex-197

perts simultaneously, which enhances predictive198

accuracy but demands substantial computational199

resources. Early implementations (Jacobs et al.,200

1991; Rasmussen and Ghahramani, 2001; Aljundi 201

et al., 2017) demonstrated this effectiveness, and 202

more recent methods like EvoMoE (Nie et al., 203

2021), MoLE (Wu et al., 2024), LoRAMoE (Dou 204

et al., 2023), and DSMoE (Pan et al., 2024) have 205

refined the dense MoE structure to balance perfor- 206

mance and efficiency. 207

Sparse MoE improves computational efficiency 208

by selecting only the top-k experts for each input, 209

thereby maintaining accuracy while reducing pro- 210

cessing demands (Shazeer et al., 2017). However, 211

this selective activation can cause load imbalances, 212

where certain experts are overused while others 213

are underutilized. To counter this, auxiliary loss 214

functions are introduced to distribute tokens more 215

evenly across experts, as seen in (Lepikhin et al., 216

2020; Jiang et al., 2024a; Du et al., 2022; Fedus 217

et al., 2022). This strategy allows sparse MoE 218

models to scale effectively by expanding param- 219

eter capacity without a corresponding increase in 220

computational cost. 221

3 Methodology 222

Figure 2 provides an overview of GenPoE, high- 223

lighting its two key stages: (1) the meta-learning 224

stage for training the hypernetwork (Section 3.2), 225

and (2) the passage injection via MoEs during infer- 226

ence (Section 3.3.1). In the following sections, we 227

first introduce our MoE framework that integrates 228

passage-level experts. 229

3.1 Passage-level MoE 230

In GenPoE, passages are parameterized to passage- 231

level experts, referred to as passage-level MoEs, 232

and original parameters of LLMs are not modified. 233

More specifically, each passage-level expert mod- 234

ule is constructed as an auxiliary FFN that operates 235

in parallel with the original FFN layer of the base 236

transformer model. Formally, we denote the origi- 237

nal FNN block as FFNl(xl
t), defined as follows: 238

FFNl(xl
t) = ReLU

(
xl
tW

l
K

)
Wl

V (1) 239

where xl
t ∈ Rdm is the input representation of t-th 240

token at l-th FFN layer, and WK ∈ Rdm×d and 241

WV ∈ Rd×dm represent the up and down projec- 242

tion matrices at the original FFN layer, respectively. 243

In addition to the original FFN, a passage-level 244

expert El(xl
t) is incorporated. To reduce parameter 245

overhead and enable efficient training, we apply 246

low-rank matrix factorization to the expert’s up 247
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Figure 2: An overview of the proposed GenPoE framework: 1) Meta-learning for training the MoE-generating
hypernetwork: For each tuple (query, gold passage, answer) in the dataset D, the hypernetwork Hϕ is trained
to generate passage-specific expert parameters. This ensures that contextual information from each passage is
effectively incorporated into the model to support reasoning, by optimizing the meta-loss defined in Eq. (5) (see
§3.2.2). 2) Inference via Passage Injection: At inference time, given the top-retrieved passages for a test query
qtest, obtained through a retrieval and reranking process (see § 3.3.2), GenPoE applies the hypernetwork Hϕ to
generate passage-specific expert parameters. These parameters are then dynamically integrated into the sparse
mixture-of-experts (MoE) architecture (see § 3.3.1), enabling the model to perform query-aware reasoning by
incorporating contextual knowledge from the retrieved content.

and down projection matrices, resulting in a low-248

rank approximated FFN:249

El
θE

(xl
t) = ReLU

(
xl
tW

l
up1W

l
up2

)
Wl

dw1W
l
dw2

(2)250

where θE =
{
Wup1

l,Wl
up2,W

l
dw1,W

l
dw2

}
,251

Wl
up1 ∈ Rdm×k, Wl

up2 ∈ Rk×dm , Wl
dw1 ∈252

Rdm×k, and Wl
dw2 ∈ Rk×dm represent the low-253

rank approximations of the up and down projection254

metrices for the passage-level expert.255

The expert is inserted alongside the original FFN256

block, forming the following “passage-level” MoE257

layer:258

yl
t = FFNl(xl

t) + λlEl
θE

(xl
t) (3)259

where λt is the mixing parameter, set to 1 for a260

specific layer l and 0 otherwise, depending on the261

layer index (i.e. λl=0, no expert module is inserted262

at the current layer), enabling sparse expert selec-263

tion and targeted knowledge editing at the passage264

level.265

3.2 Meta Learning for Training 266

MoE-generating Hypernetwork 267

The expert parameters θE need to be specifically 268

determined for each passage. Instead of applying 269

parametric adaptation methods such as fine-tuning 270

for individual passages, GenPoE “generates” these 271

parameters of the passage-specific expert using the 272

MoE-generating hypernetwork, inspired by the gen- 273

erative adaptor proposed in (Chen et al., 2025). 274

3.2.1 Hypernetwork Architecture 275

The structure of the MoE-generating hypernetwork 276

is illustrated in upper part of Figure 2; it takes a 277

passage representation as input and produces the 278

expert parameters θE as output. 279

Suppose a passage psg = w1 · · ·wT of length T 280

is given. The passage psg is fed into the word 281

embedding layer of the LLM, and mean pool- 282

ing is applied to produce a passage embedding 283

Emd(psg) ∈ R1×dm . The hypernetwork, consist- 284

ing of two linear layers with a ReLU activation 285

function, takes Emd(psg) as input and generates 286

the expert parameters, formulated as follows: 287
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Hϕ (Emd(psg)) =
Linear (ReLU (Linear(Emd(psg)))) ∈ Rdout

(4)288

where dout corresponds to the concatenated di-289

mension of the expert parameters, i.e., 2 × 2 ×290

(dm × k). We reshape the output Hϕ (Emd(psg))291

to obtain θE , which represents the expert parame-292

ters for the given passage psg.293

3.2.2 Meta Learning for Training294

Hypernetwork295

To inject passage-specific knowledge into the ex-296

pert modules, we train a hypernetwork to dynami-297

cally generate the parameters of each expert based298

on its corresponding passage. To this end, we first299

prepare a training dataset D = (qi, p
qi
g , aqi)

N
i=1,300

collected from QA tasks, where qi denotes the i-301

th question, pqig is its corresponding gold passage,302

and aqi is the ground-truth answer. Suppose that303

P (y | x,θE) denotes the probability of generating304

a sequence y given input x, using Eq. (3), where305

θE represents the expert parameters used in El
θE

.306

For designing the meta loss, which serves as the307

objective function for training the parameters ϕ that308

generate the expert parameters, we use a simple309

“autoregressive” language modeling loss over the310

question-answer text, ensuring that the generated311

expert enhances the model’s response capability312

for a given question, formally defined as follows:313

L (ϕ) = −
∑

(q,p,a)∈D

logP (a | q,Hϕ(p)) (5)314

3.3 Inference via Passage Injection315

During inference, GenPoE first retrieves the top316

passages for a given test query qtest, using dense317

retrieval followed by a reranking step to refine318

the results. Based on the top-retrieved passages319

TopK(qtest), GenPoE then performs “passage in-320

jection”, which dynamically generates the corre-321

sponding expert parameters by Hϕ, allowing the322

model to adapt its reasoning process to the contex-323

tualized knowledge retrieved at inference time.324

3.3.1 Passage Injection to MoE325

Given TopK(qtest), the meta-learned MoE-326

generating hypernetwork Hϕ generates expert-327

specific parameter residuals θj for each selected328

passage pj ∈ TopK(qtest), which are then injected329

into the expert modules for inference.330

Single-Expert Mode: In the single-expert set-331

ting (K = 1), only the top passage is selected,332

where the inference is conducted using Eq. (3), 333

where the parameters for the expert is generated 334

according to Eq. (4). 335

Multi-Expert Mode: Generalizing to the multi- 336

expert setting (K > 1), as shown in the Figure 1, 337

the model incorporates information from knowl- 338

edge in top K-retrieved passages TopK(qtest). The 339

Eq. (3) is then further extended to the following: 340

yl
t = FFNl(xl

t) + λt
l

K∑
k=1

rk · El
Hϕ(pk)

(xl
t)(6) 341

where El
Hϕ(pk)

is the expert module using the gen- 342

erated parameters for pk by the hypernetwork Hϕ, 343

and the relevance vector r ∈ RK is computed ac- 344

cording to the relevance distribution over top k 345

passages, which will be presented in Section 3.3.2. 346

The multi-expert setting enhances the model’s 347

ability to capture diverse contextual information 348

by aggregating knowledge from multiple source 349

passages, thereby improving the robustness and 350

accuracy of response generation. 351

3.3.2 Retrieval-Reranker 352

Given a test query qtest, Dense Passage Retrieval 353

(DPR) (Karpukhin et al., 2020) uses both the query 354

vector Emd(qtest) and the passage vector Emd(pi) 355

for pi in WiKipage database (Kwiatkowski et al., 356

2019), and computes inner product similarity be- 357

tween them: 358

score(qtest, pi) = Emd(qtest)
⊤Emd(pi) (7) 359

For the reranking, we incorporate BAAI/bge- 360

reranker-v2-gemma2 (Xiao et al., 2024) as a 361

reranker model and fine-tune it to improve pas- 362

sage relevance. For the finetuning the reranker, we 363

additionally construct a training dataset passages 364

retrieved by DPR. To optimize the reranker, we 365

adopt a contrastive loss function (Sohn, 2016), en- 366

suring that relevant passages receive higher scores 367

than irrelevant ones. For a given question q in the 368

training set, let p+ be a positive passage, and let 369

(p
(1)
− , . . . , p

(L)
− ) be L negative passages for q. The 370

loss function is defined as: 371

Lreranker = −log
exp (scorererank (q, p+))∑L+1

i=1 exp (scorererank(q, p(i)))
(8) 372

The details and results of the re-ranker can be found 373

in Appendix B. 374

2https://huggingface.co/BAAI/
bge-reranker-v2-gemma
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The relevance vector r ∈ RK in Eq. (6) is ob-375

tained after reranking step, defined as:376

r = softmax
(
topK

(
[scorererank(qtest, pj)]

K
j=1

))
(9)377

4 Experiments378

In this part, we explain the experimental setup and379

present the key results of our experiments.380

4.1 Experimental Setup381

Dataset: To evaluate the proposed method’s effec-382

tiveness in paragraph-level editing, we conduct ex-383

periments using the open-domain question answer-384

ing datasets Natural Questions (NQ) (Kwiatkowski385

et al., 2019) and TriviaQA (TQA) (Joshi et al.,386

2017). These datasets provide a diverse set of387

challenging questions across various domains, en-388

abling a comprehensive assessment of model per-389

formance.390

Backbone Model: We select Llama27B (Tou-391

vron et al., 2023) and the more advanced392

Baichuan27B (Baichuan, 2023) as base models,393

into which we integrate expert modules to imple-394

ment our proposed framework.395

Methods: We evaluate several widely-used knowl-396

edge editing methods for comparison, including397

MEMIT (Meng et al., 2022b), MEND (Mitchell398

et al., 2021), MALMEN (Tan et al., 2023) and Fine-399

tuning with LoRA (FT-LoRA) (Hu et al., 2021).400

All methods are implemented using the standard-401

ized configurations provided by the EasyEdit 3402

framework (Wang et al., 2024), a unified library403

for model editing. See the Appendix A for more404

details.405

Metric: We use Exact Match (EM) and F1-score406

(F1), which are standard metrics (Rajpurkar, 2016)407

in question answering for evaluating answer accu-408

racy and completeness.409

Implementation Details: All experiments, in-410

cluding data construction, knowledge editing, and411

evaluation, were conducted on workstations with412

8×NVIDIA RTX A6000 GPUs. For training the hy-413

pernetwork, we used the AdamW (Loshchilov and414

Hutter, 2019) optimizer for 1 epoch, with the learn-415

ing rate decaying from 1e-4 to 1e-6 using cosine416

annealing. The expert module, implemented as a417

low-rank adaptation with k = 512, is integrated418

into the 12th layer of the transformer.419

3https://github.com/zjunlp/EasyEdit

Figure 3: Normalized EM for expert insertion at differ-
ent layers using Llama27B on the NQ dataset.

4.2 Selection of Effective Layer 420

To identify the most effective layer for expert in- 421

sertion, we conducted experiments by injecting 422

experts at each transformer layer using QA pairs 423

from the validation set, as shown in Figure 3. This 424

layer-wise analysis allows us to evaluate how well 425

injected knowledge is utilized at different depths 426

of the model. We observe that the 12-th layer 427

yields better performance on the Llama2 model. 428

Given that Baichuan2 shares the same architecture 429

as Llama2, we adopt the same insertion layer for 430

consistency. 431

4.3 Main Results and Analysis 432

We evaluate the effectiveness of GenPoE under two 433

distinct evaluation paradigms: the W/o-RAG Set- 434

ting and the Vanilla-RAG Setting, as summarized 435

in Table 1. 436

W/o-RAG Setting: In the W/o-RAG Setting, 437

models are directly evaluated on the updated pa- 438

rameters using only the test question qtest, without 439

access to retrieved passages. This setup isolates 440

the effect of model editing alone. Results indi- 441

cate that GenPoE significantly outperforms exist- 442

ing editing baselines (e.g., MEMIT, MEND, MAL- 443

MEN, and FT-LoRA) across all datasets and both 444

model backbones. The results demonstrating su- 445

perior passage-level knowledge incorporation. In 446

contrast, other editing methods show minimal or 447

negligible gains, highlighting their limited applica- 448

bility in real-world QA scenarios. 449

Vanilla-RAG Setting: Models receive both the 450

retrieved passages and the test question as input, 451

allowing them to leverage explicit external knowl- 452

edge during inference. Even in this more favor- 453

able setting, GenPoE continues to outperform both 454

the base RAG models and fine-tuning baselines. 455

This suggests that GenPoE not only enhances the 456

model’s internal knowledge via editing but also syn- 457

ergizes effectively with external retrieval, yielding 458

substantial improvements over standard retrieval- 459
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W/o-RAG Setting Vanilla-RAG Setting
NQ TQA NQ TQA

Model Methods EM F1 EM F1 EM F1 EM F1

Llama27B

Base 7.80 16.89 49.47 59.38 13.60 23.46 54.40 67.49
MEMIT 1.01 1.97 6.45 8.62 1.01 6.36 8.60 14.45
MEND 0.13 0.17 0.07 0.24 0.13 0.20 0.13 0.40

MALMEN 24.53 33.18 34.73 45.35 27.07 36.43 30.80 41.92
FT-LoRA 19.53 29.33 54.60 63.96 21.20 31.02 58.53 67.98
GenPoE 33.60 42.05 60.73 66.98 45.13 54.82 70.07 76.61

Baichuan27B

Base 6.07 14.54 43.47 53.07 10.47 19.81 50.47 60.18
MEMIT 2.50 3.50 0.84 2.47 1.67 3.86 0.84 2.01
MEND 15.33 22.70 24.60 32.97 17.27 25.97 27.06 36.21

MALMEN 22.93 31.97 30.93 42.23 20.53 29.66 28.00 38.86
FT-LoRA 19.87 28.56 49.73 56.80 38.07 48.78 64.67 72.47
GenPoE 24.53 32.12 52.80 58.44 42.33 52.96 69.80 75.56

Table 1: Performance of Llama27B and Baichuan27B on the NQ and TQA datasets underW/o-RAG and Vanilla-
RAG settings. Performance of Llama27B and Baichuan27B on the NQ and TQA datasets under W/o-RAG and
Vanilla-RAG settings. In the W/o-RAG setting, only the test question qtest is provided as input to the model, while
in the Vanilla-RAG setting, the input consists of a concatenation of the retrieved passage and qtest, i.e., [retrieved
passage, qtest].

augmented approaches.460

4.4 Effect of the Number of Passage for461

Enhancement462

Based on the trends illustrated in the Figure 4, we463

can observe the influence of passage quantity on464

model performance. As the number of retrieved465

passages increases during inference, Vanilla-RAG466

shows a noticeable decline in both EM and F1467

scores. This degradation suggests that longer input468

contexts, caused by more passages, make it increas-469

ingly difficult for the model to focus on the correct470

evidence, thereby hampering answer accuracy.471

In contrast, GenPoE demonstrates greater robust-472

ness to the increasing number of passages. This is473

largely due to its multi-expert architecture, which474

distributes the processing passages load across mul-475

tiple specialized experts. Each expert is exposed to476

one passage, which helps maintain context clarity477

and ensures the preservation of answer quality even478

when more passages are retrieved. These results479

highlight the scalability advantage of GenPoE in480

handling expanded input without suffering from the481

noise and distraction often introduced by lengthy482

contexts in conventional RAG approaches.483

4.5 Sequential Enhancement Progress484

Recent works (Gupta et al., 2024; Jiang et al.,485

2024b) has highlighted the limitations of current486

knowledge editing methods in continual learning487

Figure 4: Ablation study on inference with varying num-
bers of passages, using Llama27B on the NQ dataset.

or editing settings. Specifically, sequential edits 488

often lead to catastrophic forgetting of previously 489

injected knowledge and may cause interference or 490

conflicts between newly added and existing infor- 491

mation. In contrast, our proposed method demon- 492

strates superior robustness in continual editing sce- 493

narios. 494

As shown in Figure 5, we divide 1500 editing 495

instances into batches of 250 and compute the aver- 496

age EM and F1 scores after each batch. Each diag- 497

onal block in the heatmap represents the model’s 498

performance on a batch of edited samples immedi- 499

ately after their insertion. The results indicate that 500

our method maintains strong performance across 501

editing steps. This advantage primarily stems from 502

the design of our method, where each passage is 503
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Figure 5: Continuous learning study of using Llama27B
on the NQ dataset. Continuous learning study of using
Llama27B on the NQ dataset. The upper part shows
results under the W/o-RAG setting, while the lower part
corresponds to the W/ RAG setting.

associated with an independent and pluggable ex-504

pert module. This modular structure enables new505

knowledge to be integrated without overwriting pre-506

viously acquired information, thereby alleviating507

forgetting and enhancing stability throughout the508

continual editing process.509

4.6 Robustness Analysis510

To assess robustness under challenging conditions,511

we evaluate models in the Oracle-negative set-512

ting, where retrieved passages do not contain the513

ground truth answer. This simulates a realistic514

open-domain QA scenario with incomplete infor-515

mation. As shown in Table 2, Vanilla-RAG per-516

forms similarly to the Base W/o-RAG baseline, in-517

dicating limited benefit without answer-containing518

passages. This suggests Vanilla-RAG heavily de-519

pends on explicit answer spans. In contrast, Gen-520

PoE remains robust. Even without RAG, it achieves521

strong results, significantly outperforming base-522

lines. With RAG on non-answer passages, GenPoE523

still performs competitively, showing its ability to524

leverage partial or noisy content through its expert-525

based design.526

These results demonstrate that GenPoE not only527

excels in standard settings but also preserves its528

advantage in robustness under conditions where529

conventional retrieval-augmented methods fail.530

Method EM F1
Base W/o-RAG 7.80 16.89

Base Vanilla-RAG 7.33 16.12
GenPoE (W/o RAG) 32.13 40.98
GenPoE (W/ RAG) 29.53 38.24

Table 2: Robustness analysis under retrieval failure:
results of Llama27B on the NQ dataset.

Method Injection Inference All
Base - 0.427s 0.427s

MEMIT 52.494s 0.427s 52.921s
MEND 1.258s 0.427s 1.685s

MALMEN 1.717s 0.427s 2.144s
FT-LoRa 7.646s 0.427s 8.073s
GenPoE 0.006s 0.447s 0.453s

Table 3: Efficiency analysis on the NQ dataset using the
Llama27B model

4.7 Efficiency Analysis 531

The efficiency comparison in Table 3 demonstrates 532

the superior speed of our method. Benefiting from 533

the lightweight design of the hypernetwork, Gen- 534

PoE integrates paragraph-level information into the 535

model with minimal injection time (0.006s), signif- 536

icantly outperforming other editing methods. Addi- 537

tionally, since expert modules are only inserted at 538

a single transformer layer, the increase in inference 539

time is negligible (from 0.427s to 0.447s), main- 540

taining efficiency comparable to the base model. 541

This design ensures that GenPoE achieves high 542

editing effectiveness with minimal computational 543

overhead. 544

5 Conclusion 545

In this work, we propose GenPoE, a hypernetwork- 546

driven mixture-of-experts framework for passage- 547

level knowledge enhancement, aimed at addressing 548

the limitations of large language models in utilizing 549

external prompts. Given a query, relevant passages 550

are encoded into expert modules via a hypernet- 551

work, enabling the injection of knowledge into the 552

model. Experiments on NQ and TQA demonstrate 553

that this approach effectively incorporates knowl- 554

edge while alleviating the degradation commonly 555

observed in general parameter-update-based meth- 556

ods. For future work, we aim to explore more 557

efficient and expressive hypernetwork and MoE ar- 558

chitectures, and develop stable continual learning 559

techniques to improve the adaptability and scalabil- 560

ity of the framework. 561
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Limitations562

In the current setup, while GenPoE demonstrates563

strong performance in passage-level knowledge564

injection, it relies on a hypernetwork to dynam-565

ically generate expert parameters conditioned on566

retrieved passages. The effectiveness of this gen-567

eration process is inherently constrained by the568

representational capacity of the hypernetwork. In569

more complex tasks involving nuanced or diverse570

knowledge, the current design may struggle to pro-571

duce accurate and generalizable experts, potentially572

limiting the model’s ability to fully exploit the re-573

trieved information. Future work should explore574

more expressive and robust hypernetwork archi-575

tectures to improve expert generation stability and576

scalability under challenging settings.577
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A Limited editing approaches 855

Most existing knowledge editing or augmentation 856

methods are designed and evaluated under ideal- 857

ized settings, making them difficult to generalize or 858

apply directly to real-world scenarios (Yang et al., 859

2025) (See the Table 4). In this section, we cate- 860

gorize and analyze current editing approaches by 861

their limitations in three key dimensions: Editing 862

Input, Generation Strategy, and Output Truncation. 863

Editing Input: Some representative methods, 864

such as ROME and MEMIT, impose strict con- 865

straints on the editing input format. Specifically, 866

they require a structured triple input, typically rep- 867

resented as (subject, relation, target). This restricts 868

their applicability in open-domain or flexible edit- 869

ing tasks where knowledge is expressed more freely 870

or contextually, such as full passages or natural 871

questions. In contrast, MEND and MALMEN re- 872

lax this constraint by allowing more flexible QA- 873

style inputs. However, these methods still require 874

that the editing and testing queries follow the same 875

format and linguistic style. As a result, they strug- 876

gle to support use cases like updating passage-level 877

knowledge based on question-answer inputs. our 878

proposed method, GenPoE, overcomes these limi- 879

tations by leveraging a hypernetwork that generates 880

expert parameters from diverse types of knowledge 881

input. This flexibility allows GenPoE to support 882

editing at the passage, sentence, or even entity level. 883

To ensure fair comparison during experiments, we 884

convert the passage-level knowledge into formats 885
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Method Input Type Generation Strategy Output Truncation Real-world Friendliness
ROME Triple data teacher forcing ground truth length /
MEMIT Triple data teacher forcing ground truth length /
MEND Context-free teacher forcing ground truth length ,

MALMEN Context-free teacher forcing ground truth length ,
GenPoE Context-guided autoregressive decoding natural stopping criteria -

Table 4: Comparison of current editing methods in real-world applications. /: unfriendly, ,: moderately friendly,
and -: highly friendly.

compatible with MEMIT, MEND, and MALMEN.886

Details of this transformation process can be found887

in Appendix D.888

Generation Strategy: Another major limitation889

of prior work lies in the generation strategy. Most890

existing methods (ROME (Meng et al., 2022a),891

MEMIT (Meng et al., 2022b), MEND (Mitchell892

et al., 2021), MALMEN (Tan et al., 2023)) use893

teacher forcing during generation. While this sim-894

plifies training and evaluation, it leads to overly895

optimistic results, as the model is always condi-896

tioned on the ground truth tokens. This setting897

hides generation errors that may occur in actual898

deployment, such as token drift or hallucination.899

In contrast, GenPoE adopts a fully autoregressive900

decoding process, better simulating real inference901

scenarios. This strategy allows us to assess the true902

quality and robustness of the edited model outputs.903

Output Truncation: Output truncation strate-904

gies in prior works further exaggerate their per-905

formance under unrealistic assumptions. Existing906

methods commonly truncate model outputs to the907

same length as the gold answer. While this cre-908

ates a cleaner evaluation setup, it masks issues like909

repetition, irrelevance, or incomplete answers that910

naturally arise when relying on the model’s own911

stopping behavior. Our method avoids this artifi-912

cial constraint by allowing natural stopping criteria913

during decoding. This setup more accurately re-914

flects real-world model usage, where answers are915

generated until a learned end-of-sequence signal is916

reached.917

As summarized in Table 4, these limitations col-918

lectively make many prior methods less suitable919

for real-world deployment. Our method, GenPoE,920

addresses all three limitations, making it signifi-921

cantly more adaptable and effective in practical922

knowledge editing scenarios.923

B Details of Reranker924

This section presents the performance of apply-925

ing a re-ranker to refine the retrieval results of926

Top-K Type NQ TQA

@1
Before 44.60 56.53
After 64.67 76.33

@2
Before 55.73 65.27
After 71.73 79.60

@4
Before 64.47 72.07
After 77.87 82.80

@8
Before 72.93 76.73
After 81.47 84.53

Table 5: Comparison of DPR retrieval accuracy results
before and after applying the re-ranker we trained.

DPR (Karpukhin et al., 2020), comparing the ac- 927

curacy before and after re-ranking. In a question- 928

answering system, the accuracy of the retrieval 929

source plays a crucial role in the overall result. Ad- 930

ditionally, the scoring produced by the re-ranker is 931

important for merging between experts. The im- 932

provements were evaluated using Top-K accuracy, 933

which measures the presence of a golden passage, 934

ensuring a stable document source for responing 935

answer. 936

C Case Study 937

Table 6 presents a case study illustrating the effec- 938

tiveness of different methods in answering the ques- 939

tion “Who produced A Change Is Gonna Come?” 940

The target answer is "Hugo & Luigi". 941

The retrieved top-1 document provides relevant 942

information, stating that the song was produced 943

by "Hugo & Luigi". However, both the Base and 944

Vanilla-RAG methods incorrectly answer "Sam 945

Cooke", indicating a failure to extract the precise 946

producer information from the retrieved passage. 947

In contrast, the GenPoE method, whether ap- 948

plied without retrieval augmentation (W/o RAG) 949

or with retrieval augmentation (W/ RAG), success- 950

fully generates the correct answer "Hugo & Luigi", 951

demonstrating its superior ability to leverage the 952

retrieved evidence for precise question answering. 953

This case exemplifies the advantage of Gen- 954
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Question: Who produced a change is gonna come?
Target answer: Hugo & Luigi
Retrieved Top-1 Documents: A Change Is Gonna
Come" is a song by American recording artist Sam
Cooke. It initially appeared on Cooke’s album
"Ain’t That Good News", released March 1, 1964
by RCA Victor; a slightly edited version of the
recording was released as a single on December 22,
1964. Produced by Hugo & Luigi and arranged and
conducted by René Hall, · · ·

Method Answer Status
Base Sam Cooke ✗

Vanilla-RAG Sam Cooke ✗

GenPoE (W/o RAG) Hugo & Luigi ✓

GenPoE (W/ RAG) Hugo & Luigi ✓

Table 6: Caption

PoE in extracting accurate factual knowledge from955

retrieved documents compared to baseline ap-956

proaches.957

D Generation of Editing Facts958

As shown in Table 7, we first adopt template to gen-959

erate synthetic QA pairs tailored for the MEND,960

MALMEN, and FT-LoRA methods. Specifically,961

the template incorporates a structured instruction962

along with the retrieved passage, which is inserted963

into the placeholder "{paragraph}", and is then fed964

into a large language model "gpt4o-mini" (Ouyang965

et al., 2022; Achiam et al., 2023) to produce con-966

cise, exact-match question-answer pairs suitable967

for knowledge editing supervision.968

Building on these QA pairs, we further apply969

template of Table 8 to transform them into struc-970

tured (subject, relation, object), which are used as971

training instances for the MEMIT method (Meng972

et al., 2022b). To generate data suitable for973

MEMIT’s knowledge injection mechanism, the974

template places the generated question into the975

"{prompt}" placeholder, ensuring alignment with976

the required input format.977
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Prompt template for self-generating synthetic knowledge

You are an assistant who is good at organizing questions and answers from paragraphs. Here is an example.

Paragraph: "on death row in the United States on January 1, 2013. Since 1977, the states of Texas (464),
Virginia (108) and Oklahoma (94) have executed the most death row inmates. , California (683), Florida (390), Texas
(330) and Pennsylvania (218) housed more than half of all inmates pending on death row. , the longest-serving prisoner
on death row in the US who has been executed was Jack Alderman who served over 33 years. He was executed in
Georgia in 2008. However, Alderman only holds the distinction of being the longest-serving ëxecutedïnmate so far. A
Florida inmate, Gary Alvord, arrived"
1. Q: How many death row inmates did Texas execute since 1977?
A: 464
2. Q: Which state executed 108 death row inmates since 1977?
A: Virginia
3. Q: How many death row inmates did Oklahoma execute since 1977?
A: 94
4. Q: Which state housed 683 death row inmates as of January 1, 2013?
A: California
5. Q: How many inmates did Florida house on death row?
A: 390
6. Q: How many death row inmates did Texas have pending?
A: 330
7. Q: How many death row inmates did Pennsylvania house?
A: 218
8. Q: Who was the longest-serving prisoner on death row who was executed?
A: Jack Alderman
9. Q: How many years did Jack Alderman serve on death row?
A: over 33 years
10. Q: In which year was Jack Alderman executed?
A: 2008
11. Q: Which state executed Jack Alderman?
A: Georgia
12. Q: Who is noted as the longest-serving "executed" inmate?
A: Jack Alderman
13. Q: Which inmate arrived in Florida?
A: Gary Alvord
14. Q: What is the date referenced for death row statistics in the passage?
A: January 1, 2013
15. Q: Since when has the execution data been tracked in this passage?
A: 1977
16. Q: What constitutes more than half of all inmates pending on death row?
A: California, Florida, Texas, and Pennsylvania

Please follow the format of the example above to generate sixteen questions and corresponding answers for
the following Paragraph. The format of answers should be a very short phrase from paragraph, such as “464”, "2008",
"May 16th, 1931”, or “Jack Alderman”, to meet the criteria of exact match Paragraph.

Paragraph: "{paragraph}"

Table 7: This prompt template is designed to generate synthetic question-answer pairs from a passage. It includes
clear instructions outlining the requirements, along with an example paragraph and its corresponding question-
answer pairs. The model is then expected to create similar question-answer pairs for new paragraphs following this
format.
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Prompt template for generating subject extraction

Read the following prompt carefully. Identify the subject of the sentence. Output must be only the subject word ,
exactly as it appears in the ’prompt’ — preserving the original capitalization and formatting.

Here are some examples for guidance:

’prompt’: ”Which religion is noted as the fourth largest after Christianity, Islam, and Hinduism?’, ’subject’:
’religion’
’prompt’: ’Who was mainly responsible for the design of Abney Park Chapel?’, ’subject’: ’design of Abney Park
Chapel’
’prompt’: "What layer of skin is directly below the dermis and epidermis?", ’subject’: ’layer of skin’
’prompt’: "What mountain range is Aconcagua Provincial Park part of?", ’subject’: "mountain range"

Based on the examples, for ’prompt’: {prompt}, subject:

Table 8: This prompt template is used to extract subjects and generate (subject, relation, target) triples for editing
with the MEMIT method.
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