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ABSTRACT

We address the problem of spatially guided text-to-motion synthesis. While there
has been work to incorporate spatial constraints in text-to-motion diffusion mod-
els, existing methods still face significant challenges in generating motions that
align with the conditional controls. To this end, we propose Cycle Consistent Dif-
fusion, a novel approach that improves controllable generation by explicitly opti-
mizing frame-level cycle consistency between generated motions and conditional
controls. Specifically, for an input conditional control, we ensure that the output
motion and the input spatial constraint are forced to be consistent. A straightfor-
ward implementation though consistent with the input often does not match fine-
grained control signals. To this end, we introduce a novel test-time optimization
framework that directs our pre-trained cycle consistent diffusion model towards
user-defined sparse constraints. We demonstrate approximately 5 to 10 percent
improvement in controllability of motion synthesis on the HumanML3D dataset,
while significantly reducing foot skating artifacts.

1 INTRODUCTION

Controlled Human Motion synthesis is essential for several applications ranging from gaming to
robotics. The problem is challenging due to the immense space of possible human motions and the
cost of capturing high-quality data. Recently, the emergence and improvements of diffusion models
(Tevet et al., 2023b), along with the introduction of large-scale motion datasets such as AMASS
(Mahmood et al., 2019) and the concomitant text-labeled motion datasets (Guo et al., 2022b) have
lead to significant strides in text-to-motion generation. However, several commands cannot be en-
tirely provided using text descriptions, and thus the provision of only text as the control signal is
insufficient for several applications such as fine-grained human interaction synthesis. Often, an an-
imator wants to provide a sparse spatial control signal along with a text input (Starke et al., 2019;
Clavet, 2016). For example, an animator may wish for the precise end-effector of a character to
terminate a specific location or for the character to sit at a specific location in space. In this work,
we focus on the problem of incorporating spatial control signals over any joint at any given time into
text-conditioned human motion generation, as shown in Fig. 1.

This problem poses significantly more challenges. While text provides an abstract signal that may be
satisfied by multiple generated sequences, spatial signals provide more difficult constraints. For the
objective to be adequately satisfied, the synthesized motion must match the precise spatial constraint
provided by the animator, whereas such fine-grained alignment requirements are absent for text-
guided synthesis. While there have been studies on incorporating spatial constraints (Xie et al.,
2024; Karunratanakul et al., 2023a; Shafir et al., 2024) in diffusion-based motion synthesis methods,
they either rely on approximate guidance to guide diffusion models towards motions that satisfy
constraints or they require inpainting at every denoising step which in turn requires a very dense
control signal. As such, their performance for sparse spatial constraints remains unsatisfactory.

To this end, we propose a novel solution that casts the problem of motion synthesis as a simultaneous
sampling and optimization problem. We design a novel objective that directs spatially constrained
pre-trained diffusion motion models toward satisfying user-defined sparse joint constraints. Our
solution draws inspiration from ideas of test-time alignment introduced in research related to the
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Figure 1: Given sparse spatial constraints and a text command, our method can synthesize diverse
motions such as ‘sit,’ ‘grab,’ and ‘crawl’ and can synthesize walking in various styles while accu-
rately following sparse spatial constraints.

sampling of text-to-image diffusion models (Prabhudesai et al., 2023; Eyring et al., 2024; Tang
et al., 2024; Fan et al., 2023).

When used with existing motion diffusion architectures, such a test-time optimization often leads
to degenerate solutions. To address this problem, we design a novel, Cycle Consistent, Spatially
Constrained Diffusion Model that generates motions in accord with animator-provided spatial con-
straints. The idea is that if we translate motion from the control domain to the synthesized domain
and back, we should arrive where we started. We leverage this insight to explicitly design a loss that
encourages such consistency during the synthesis process.

A proper solution design adopting this idea is critical as a naive implementation typically ignores the
text prompt while fully satisfying the spatial constraint, i.e., the diffusion model satisfies the reward
- in our case, the spatial constraint - but ignores the original prompt. This is a common observation
in diffusion sampling, called ’reward hacking’ Tang et al. (2024). To address this, we introduce a
novel loss function in the context of human motion that penalizes motions in the low support region
of the original Gaussian noise and thus prevents reward-hacking.

Our full framework leads to 5 − 10 percentage point improvements in terms of foot-skate ratio
and control error over existing state-of-the-art spatially controlled motion synthesis methods on the
HumanML3D dataset. We further demonstrate that when coupled with path planning, our idea can
be used to generate long-term human motion in diverse 3D scenes. By using some user-provided
spatial locations in a 3d scene as key points to direct motion, we synthesize diverse motions such as
walking with raised hands and twirling chained together in 3D scenes. To the best of our knowledge,
our paper is the first to demonstrate the use of diffusion models for the synthesis of chained, diverse
motion with fine-grained control in 3D scenes.

To summarize, our contributions are 1) We propose a novel algorithm HuMouS for controlled motion
synthesis that leads to state-of-the-art results in spatially constrained text-to-motion synthesis. 2) We
introduce the idea of a cycle-consistent spatially constrained diffusion model for controlled motion
synthesis. 3) We demonstrate that when coupled with path-planning and incorporating some sparse
user-provided constraints, our framework allows for synthesizing chained diverse motions in large
3D scenes.
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2 RELATED WORK

Diffusion Models Diffusion-based probabilistic generative models (DPMs) are a class of generative
models learned by progressive denoising of the input data, (Ho et al., 2020; Sohl-Dickstein et al.,
2015; Song & Ermon, 2019; Song et al., 2021b). Diffusion models have been successfully shown
to produce state-of-the-art results in a range of diverse tasks: such as image generation (Ramesh
et al., 2022; Rombach et al., 2022; Saharia et al., 2022), image-conditioned editing (Meng et al.,
2022; Choi et al., 2021; Brooks et al., 2023; Hertz et al., 2022; Balaji et al., 2022), super-resolution
(Saharia et al., 2021; Li et al., 2022), 3D shape generation (Poole et al., 2022; Watson et al., 2022),
speech synthesis (Kong et al., 2021; Popov et al., 2021), video generation (Ho et al., 2022b;a),
controlled image synthesis (Zhang et al., 2023; Ju et al., 2023) depth estimation (Saxena et al.,
2023) and reinforcement learning (Janner et al., 2022). Our method is inspired by Controlnet++
(Li et al., 2024) which produces SoTA results for text-to-image synthesis by introducing the idea of
cycle consistency. In contrast, our method focuses on human motion synthesis.

Controlling Diffusion Models Several methods have been proposed to introduce conditioning fac-
tors into the denoising process of diffusion models such as inpainting, (Chung et al., 2022; Choi
et al., 2021; Meng et al., 2022), classifier-based guidance (Dhariwal & Nichol, 2021; Chung et al.,
2022), and classifier-free guidance (Rombach et al., 2022; Saharia et al., 2022; Ramesh et al., 2022;
Ho & Salimans, 2022). It has also been shown possible to embed images into the latent codes of the
diffusion model by hacking the denoising process (Meng et al., 2022), optimizing for latent codes
(Wallace et al., 2023) (Huberman-Spiegelglas et al., 2024). More recently, performing a sampling-
time operation has been shown to be a powerful paradigm for synthesizing better image samples
(Ben-Hamu et al., 2024; Novack et al., 2024; Tang et al., 2024).

Human Motion Prediction. Human Motion Prediction is a long-studied problem in vision and
graphics. Early works use Hidden Markov Chains (Brand & Hertzmann, 2000) and Gaussian Pro-
cesses (Wang et al., 2007), physics-based models (Liu et al., 2005) for predicting future motion.
Recurrent neural networks (Graves, 2013; Hochreiter & Schmidhuber, 1997) have been used for
motion prediction (Fragkiadaki et al., 2015; Martinez et al., 2017; Alahi et al., 2016) also in com-
bination with Graph Neural Networks (Kipf & Welling; Mao et al., 2019; Li et al., 2020b; Dang
et al., 2021), and variational Auto-encoders (Kingma & Welling, 2014; Habibie et al., 2017; Zhang
et al., 2021; Yuan & Kitani, 2020). Transformers have recently emerged as a powerful paradigm for
motion synthesis (Aksan et al., 2020; Li et al., 2021; 2020a; Petrovich et al., 2021; 2022). Motion
Inbetweening (Duan et al., 2021; Harvey et al., 2020; Oreshkin et al., 2022; Yuan et al., 2022; Aksan
et al., 2019; Kaufmann et al., 2020) is another classic paradigm for motion synthesis where the task
is to fill in frames between animator provided keyframes. However, unlike our method, they do not
focus on spatially constrained motion synthesis.

Human Motion Synthesis. Motion matching (Reitsma & Pollard, 2007), learned motion matching
(Clavet, 2016; Holden et al., 2020) and motion graphs (Lee et al., 2002; Fang & Pollard, 2003; Kovar
et al., 2008; Safonova et al., 2004; Safonova & Hodgins, 2007) are common methods employed in
the video-gaming industry for generating kinematic motion sequences.

Deep learning variants such as Holden et al. (Holden et al., 2017) introduce phase-conditioning in
an RNN to model the periodic nature of walking motion. In several works by Starke et al. (Starke
et al., 2019; 2021; 2020), the idea of motion phases is used for motion synthesis in various settings
such as a basketball game and synthetic objects. All these methods generate high-quality motion
but often require manual work for non-intuitive phase labeling of phases in motion sequences. More
recently (Tevet et al., 2023b), diffusion models have emerged as a powerful paradigm for human
motion synthesis. Several follow-up works introduce physics (Yuan et al., 2023), blended-positional
encoding (Barquero et al., 2024), field-based pose conditioning (Kulkarni et al., 2023) for improved
motion quality. However, unlike our paper, they do not focus on fine-grained spatial constraints
or do not condition on text. Closely related to our work, (Karunratanakul et al., 2023a) introduces
the idea of optimizing latent codes of motion diffusion models, but unlike us they focus on motion
editing and as our experiments indicate, their performance remains unsatisfactory for sparse-control
signals.

Humans in 3D Scenes. The relationship between humans, scenes, and objects is another long-
studied problem. Early works include methods based on 3D object detection (Gupta & Davis, 2007;
Gupta et al., 2011) and affordance prediction using human poses (Delaitre et al., 2012; Grabner
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Figure 2: We train a spatially constrained diffusion by enforcing cycle consistency between the input
constraint and the synthesized motion.

et al., 2011; Fouhey et al., 2014). Several recent works generate plausible static poses conditioned
on a 3D scene (Li et al., 2019; Zhang et al., 2021; Wang et al., 2017; Zhang et al., 2020; Hassan et al.,
2021b; Zhao et al., 2022) using recently captured human interaction datasets (Hassan et al., 2019;
Guzov* et al., 2021; Savva et al., 2016; Bhatnagar et al., 2022; Taheri et al., 2020; Cao et al., 2020).
Some works use reinforcement learning to synthesize walking in 3D scenes (Ling et al., 2020;
Zhang & Tang, 2022; Hassan et al., 2023). Other works focus on a single action, such as grabbing
or sitting (Taheri et al., 2022; Wu et al., 2022; Hassan et al., 2021a; Zhang et al., 2022) while others
use VAE or mixture-of-experts networks to generate short term motion in 3D scenes. (Wang et al.,
2022; 2021a; Cao et al., 2020; Wang et al., 2021b). Unlike our method, all these methods generate
repetitive walking motion and do not focus on text or spatial guidance in their synthesis process.

3 METHOD

We aim to synthesize human motion corresponding to user-provided sparse animation signals (such
as the location of the hand and the foot). To this end, we represent all motion parameters in relative
coordinates (Sec. 3.1). We first train a Spatially constrained Diffusion Model (Sec. 3.2) with Cycle
Consistency for Joints (Sec. 3.3. We then refine the output of this step using a novel test time
refinement step (Sec. 3.4). In Sec. 3.5 we further demonstrate that such motions can be chained for
the synthesis of chained diverse motions in large 3D scenes.

3.1 BACKGROUND

Motion generation with diffusion model. A diffusion probabilistic model is a generative denoising
model that learns to invert a forward diffusion process. A forward diffusion process is defined as
q(xt|x0) = N (

√
αtx0, (1− αt)I) where x0 is a clean motion and xt is a noisy motion at the level

of t defined by noise schedule αt. Due to the specific design of the diffusion process, the reverse
diffusion denoising process p(xt−1|xt,x0), which starts from pure Gaussian noise xT generates
human motion, can be approximated as.

p(xt−1|xt) = N (µt, (1− αt)I), (1)

where xt ∈ RN×D denotes the motion at the tth noising step and there are T diffusion denoising
steps in total. Following (Tevet et al., 2023b), the standard in motion synthesis is to represent motion
as an array of N poses stacked together, where each pose has a dimension equal to the number of
joints in the skeleton used D is the number of features corresponding to all joints in the frame.

The mean in each step is µt, which is an approximated neural network D that learns to predict
ground-truth motion from noisy motion. x̂0 = D(xt, t, ct; θ) conditioned on the timestep t and a
text input ct. The text condition is passed through a clip encoder (Tevet et al., 2023b) before being
concatenated with the motion sequence.
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The exact µt(θ) can be computed as:

µt =

√
ᾱt−1βt

1− ᾱt
x̂0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt (2)

where βt = 1− αt and ᾱt =
∏t

s=0 αs.

The model parameters θ are optimized to minimize the objective

Ltrain = ∥x̂0 − x0|22 (3)

where x0 is the ground-truth human motion sequence. We denote the whole function involving all
the denoising steps as G. In essence, at test time, we have a function G : RN×D 7→ RN×D that maps
Gaussian Noise XT to motion sequences.

While diffusion models are stochastic, there exist deterministic sampling processes that share the
same marginal distribution. These processes include those defined by probability flow ODE (Song
et al., 2021b) or by reformulating the diffusion process to be non-Markovian as in DDIM (Song
et al., 2021a).

Motion representation. Following (Tevet et al., 2023a) and Guo et al. (2022b), the relative-root
representation (Guo et al., 2022a) has been widely adopted for text-to-motion diffusion models.
This idea represents motions as a matrix of human joint features over the motion frames with shape
N × D, where D = 263 and N are the representation size and the number of motion frames,
respectively. Each motion frame represents root relative rotation and velocity, root height, joint
locations, velocities, rotations, and foot contact labels.

3.2 SPATIALLY CONSTRAINED DIFFUSION MODEL

Our goal is to train a spatially constrained diffusion model which synthesizes motion in accordance
with a user-provided spatial constraint cs and text-prompt ct. While the user is free to provide
spatial constraints corresponding to any frame in the motion sequence or to any joint in any of the
frames we ensure that these constraints are represented in a standard format cs ∈ RN×D to ensure
alignment with the motion representation 3.1.

In order to modify the diffusion approximation function for it it incorporates spatial constraints cs
as well D(xt, t, ct, cs; θ), we use a spatial module P which learns to parse the 3D sparse locations
provided by the user. Specifically, it is a trainable copy of the Transformer encoder in the motion
diffusion model that learns to enforce the spatial constraints. In addition to the spatial constraint cs,
this module also takes the text constraint ct as input.

The main transformer, instead of only using self-attention during the forward pass, unlike the orig-
inal MDM formulation, also incorporates a cross-attention layer. After every self-attention layer
that processes the noisy motion xt, we use a cross-attention block with the output of the spatial
block P (cs, ct). To effectively handle the sparse control signals in time, we mask out the features
at frames where there are no valid control signals,

Inspired by (Zhang et al., 2023; Xie et al., 2024), the spatial module is initialized with zeros, so that
at the beginning, it has numerically insignificant output. As the training goes on, the spatial module
learns the spatial constraints and adds the learned feature corrections to the corresponding layers in
the motion diffusion model to amend the generated motions implicitly.

3.3 CYCLE CONSISTENCY FOR JOINTS

Following (Xie et al., 2024), to reduce ambiguity inherent in the local pose representation (Sec. 3.1),
the spatial control signal cs is provided in the global 3D coordinates. However, this introduces a
discontinuity between the input-output spaces of the diffusion model (Sec. 3.1) We transform the
output of the diffusion model from local space using a function T that lifts the output of the diffusion
model G(cs, ct,xT , t) from local coordinates to global coordinates, where G(cs, ct, xT , t) denotes
the full function that the model performs to generate the motion x0 from random noise xT .

This operation ensures that the input constraint and the output of the diffusion model are in the same
space and allows us to quantify the output further. Once transformed into global coordinate T (G)
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Figure 3: We optimize for the latent code of our spatially constrained diffusion model. A naive im-
plementation often ignores the text and generates foot-skate. Hence, we use a specific initialization
and regularization.

can be sub-sampled using ms ∈ [0, 1]N×D- the mask of the user provided constraint to mask out
non-controlled joints. We minimize the consistency loss between the input condition cs and the
corresponding output condition (see. Fig. 3) ĉs of the generated motion T (G(cs, ct,xT , T ):

Lcycle = L(cs,ms ⊙ T (G(cs, ct,xT , T ) (4)

However, imposing a cycle-consistent loss involving the whole diffusion process is impractical be-
cause of the spatial requirements of a GPU. Instead of randomly sampling from noise, we add noise
to the training motion x0, using the forward process q(xt|x0) (Sec. 3.1), thereby explicitly disturb-
ing the consistency between the diffusion inputs x0 and their conditional spatial control cs.

When the added noise is small, the original motion can be predicted x0 by performing a single-step
sampling on the disturbed motion sequence xt and by directly using the denoised motion x̂0 =
D(cs, ct,xt, t) to impose the cycle consistency loss:

Lcycle = L(cs,ms ⊙ T (D(cs, ct,xt, t))). (5)

Essentially, the process of adding noise destroys the consistency between the input and its condition.
Then the cycle consistency loss in Eq. 4 instructs the diffusion model to generate motion that
can reconstruct the consistency, thus enhancing its ability to follow the spatial constraint during
generation. We find, following Li et al. (2024), that only when the timestep is less than a threshold
tthresh is there enough information in the reconstructed motion for it to be possible to impose a
cycle consistency constraint. Thus the loss is the combination of diffusion training loss and reward
loss:

Ltotal =

{
Ltrain + λ · Lcycle, if t ≤ tthre,

Ltrain , otherwise,
(6)

where tthre denotes the timestep threshold, which is a hyper-parameter used to determine whether a
noised motion xt should be utilized for reward fine-tuning.

3.4 RUNTIME REFINEMENT

The spatially constrained diffusion model allows us to inject 3D sparse spatial constraints into a
text-to-motion synthesis framework. However, we observe that when used as a stand-alone module,
the network fails to follow the exact spatial constraint. We find that the latent space of the learned
Spatially constrained diffusion model (Sec. 3.2) is smooth when the spatial constraint is fixed. This
motivates performing optimization on an expressive latent space z, which provides valid motion
samples when decoded (Fig. 3.4). A naive refinement task can be formulated by minimizing the
following loss:

Lreward = ||ms ⊙ T (G(z, cs, ct, T ))− cs||2) (7)
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It should also be noted here that when the optimization is performed with a naive text-to-motion
diffusion model without any spatial conditioning, the method produces significant foot-skating. We
hypothesize that the latent space of the spatial conditioned diffusion model is fundamentally different
from the latent space of a regular Motion Diffusion Model as it is significantly biased towards the
conditional path provided during training. trajectories when the motion covers a long spatial extent.
(See Sec. 4)

We find that when formulated as above, with random initializing, the optimization outputs motion
that satisfies the reward but ignores the text. This is a known problem in sampling from diffusion
models (Eyring et al., 2024; Tang et al., 2024) commonly called ‘reward-hacking’ where the model
satisfies the optimization constraint but ignores other inputs. To address this problem, we use two
key ideas:

Initialization. We use the output of G((cs, ct,xT , T ) embedded back into the latent space of G,
using DDIM Inversion Song et al. (2020) to initialize the refinement step. We find that setting the
text to an empty string leads to significant improvement in the optimization results and, as such, do
not use the original noise vector mapped xT but embed the synthesized motion back to the latent
code with the text-off diffusion model. Please note that without our spatially constrained diffusion,
it would be impossible to provide any dense initialization to the method, and without initialization,
the method produces significant foot-skate.

Probability Regularization. Although this strategy provides an initialization where the spatial
constraints are satisfied coarsely, the optimization still generates solutions where the input text is not
precisely followed and focuses more on satisfying the explicit test-time constraint. To address this,
we regularize noise vectors to remain within the high-probability region of the Gaussian distribution
as follows:

Lreg = EΠ [log p1(M1(Πz)) + log p2(M2(Πz))] , (8)

where Π is a permutation matrix and p1(M1()̇) and p2(M2()̇) are regularization functions used in
High-Dimensional Statsitics Wainwright (2019); Tang et al. (2024). We find this regularization to
be essential for alleviating reward hacking problems in spatially constrained motion synthesis.

The final refinement problem is thus:

z∗ = argmin
z

Lrefine = Lreward + γLreg. (9)

This optimization is iteratively solved using gradient descent. Starting from the initialized noise,
we arrive at a prediction x, and evaluate the criterion function Lrefine, then obtain the gradient
∇zLrefine by backpropagating through the diffusion function G s To obtain the desired motion, we
pass the optimized noise vector through the diffusion model xF = G(cs, ct, z∗). We denote the
entire algorithm detailed above using function F . Hence, xF = F(cs, ct).

3.5 CHAINED MOTION IN 3D SCENES

In this section, we demonstrate how HuMouS can also be used to synthesize human motion in large
3D scenes.

Input. We assume that the user provides P sets of action-points A = {ai}Pi=1, and action-texts
B = {bi}Pi=1. Each text command details what action is to be performed and the keypoint details
where the action is to be performed, such as “person walks while waving” or “a person sits”. The
actions-points are sparse - such as the location of the root (for example to indicate that the character
should sit at location) or the location of the right hand (for example to indicate that a person should
perform a waving action at that location).

Separate Synthesis. Corresponding to the P sets of instructions, we first synthesize P sets of
motion sequences. We do so by first computing an obstacle-free path between two different action-
points using the A-starHart et al. (1968) algorithm. If these paths are longer than a pre-determined
length, they are further broken into waypoints.

7
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Figure 4: Our method allows for the synthesis of chained diverse motions such as dancing in 3D
scenes.

These waypoints act as the sparse spatial constraint guiding the motion synthesis process. We create
a spatial control singal where the root location of frames 2 seconds apart are constrained to match
the waypoints. Thus corresponding to each of the P instructions we define a sparse spatial constraint
{cjs}Pj=1 and {cjt}Pj=1. Now we use these constraints with our function F to generate P separate
disjointed motion sequences - {sj = F(cjs, c

j
t )}Pj=1 that avoid obstacles in a 3D scene and follow

user-provided spatial and textual constraints.

Chained Synthesis. Next we describe how these disjointed motion sequences {sj}Pj=1 are joined
together to form a long chained coherent motion sequence. To join sequence j and j+1, we sample
the last Q frames from sj and the spatial constraint cjs along with the first Q frames from sj+1

and the sparse spatial constraint cj+1
s . We aim to synthesize J = N − (2Q) motion frames that

synthesize the transition between the two motion sequences. These two subsampled sparse spatial
constraints are joined together to form an N timeframe long sparse spatial constraint cjoin where
the middle J frames are left blank. Furthermore, since we use the SMPL parameters to represent
our motion, we can define a dense spatial constraint on the 2Q known frames. Please note that these
motion sequences are synthesized by the function F and hence all the SMPL, joint parameters are
known. The target ctar thus contains joint information for every joint in the first Q frames and
the last Q frames and is left blank for the middle J frames. Using this information, we perform a
refinement step that minimizes

Lreward = ||mtar ⊙ T (G(cjoin, z, T ))− ctar||2) (10)

The mask mtar is defined such it is blank for the middle J frames and full for the known Q frames.
In essence we aim to synthesize a motion sequence where the first Q and last Q frames match the
motion synthesized in the previous step but the diffusion prior is asked to inpaint the Q frames in
the middle.

The steps outlined above are repeated for all the P − 1 transitions to finally synthesize a long
chained motion sequence that respects the spatial, textual constraints defined by the user along with
the constraints of the 3D scene. Please note that we do not claim to generate SoTA human motion in
3D scenes but are trying to show that diffusion allows for the synthesis of diverse chained motions
in large 3d Scenes which to the best of our knowledge has not been shown before.

4 EXPERIMENTS

Implementation Details. All our experiments are done with pytorch on a single NVIDIA V100
GPU. For all experiments, we use the Adam optimizer with a decaying learning rate that starts from
10−5. For the refinement part, we use 400 steps. Our diffusion model is trained with T=1000 steps.
For the refinment step, we use a deterministic DDIM-Sampler for mapping noise to motion with
only 10 steps. There is a trade-off between quality and speed and we find 10 steps to be a reasonable
compromise in this regard.

8
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Joint R-Precision ↑ Diversity ↑ Foot-Skate ↓ Traj Err ↓ Loc. Error ↓ Avg Err. ↓

Ours 0.724 9.72 0.0596 0.0389 0.0081 0.034
Omnicontrol Pelvis 0.691 9.545 0.0571 0.0404 0.0085 0.0367
DNO 0.603 9.345 0.0672 0.0404 0.0085 0.0389

Ours 0.699 9.733 0.0662 0.0594 0.0094 0.0314
Omnicontrol Left Foot 0.696 9.553 0.0692 0.0594 0.0094 0.0314
DNO 0.603 9.345 0.0672 0.0404 0.0085 0.0389

Ours 0.721 9.56 0.0648 0.0646 0.0101 0.0314
Omnicontrol Right Foot 0.701 9.481 0.0668 0.0666 0.0120 0.0334
DNO 0.603 9.345 0.0672 0.0404 0.0085 0.0389

Ours 0.694 9.736 0.0523 0.0701 0.0114 0.0501
Omnicontrol Left Hand 0.680 9.436 0.0562 0.0801 0.0134 0.0529
DNO 0.712 9.048 0.069 0.078 0.0156 0.0558

Ours 0.701 9.690 0.0559 0.0792 0.0121 0.0463
Omnicontrol Right Hand 0.692 9.519 0.0601 0.0813 0.0127 0.0519
DNO 0.768 9.040 0.0676 0.819 0.0145 0.0489

Ours 0.723 9.233 0.0561 0.0597 0.0092 0.0371
Omnicontrol All 0.693 9.016 0.0608 0.0617 0.0107 0.0404
DNO 0.630 8.930 0.0793 0.0795 0.0011 0.0416

Table 1: Quantitative Results on the Human ML3D Dataset

Metrics. We adopt the evaluation protocol from (Xie et al., 2024). To evaluate and ablate our
method we use the following metrics:

R-Precision evaluates the relevancy of the generated motion to its text prompt, while Diversity mea-
sures the variability within the generated motion. In order to evaluate the controlling performance,
following (Karunratanakul et al., 2023b), we report foot skating ratio as a proxy for the incoher-
ence between trajectory and human motion and physical plausibility. We also report Trajectory
error, Location error, and Average error of the locations of the controlled joints in the keyframes to
measure the control accuracy.

Following (Xie et al., 2024), all evaluations are done to generate 196 frames and five sparsity levels
in the controlling signal, including 1, 2, 5, 49 (25% density), and 196 keyframes (100% density).
The time steps of keyframes are randomly sampled. We report the average performance over all
density levels.

Datasets. When applicable, we evaluate generated motions on the HumanML3D (Guo et al., 2022b)
dataset, which contains 44,970 motion annotations of 14,646 motion sequences from AMASS (Mah-
mood et al., 2019) and HumanAct12 (Guo et al., 2020) datasets.

Baselines. We compare our method with the two strongest current baselines - Omnicontrol (Xie
et al., 2024) and DNO (Karunratanakul et al., 2023a). Please note that as Xie et al. (2024) reports
numbers for Shafir et al. (2024) that are significantly worse tha Xie et al. (2024), we do not compare
with it. However, DNO focuses mainly on motion editing while we focus on controlled motion
synthesis, We modify the method slightly to ensure that the comparison is fair. For initialization,
we use a motion that is synthesized using MDM as there is no straightforward way to input spatial
constraints to DNO. All of these existing methods use the same pose representations and thus
inherit the limitations detailed in 3.1.

Our method also surpasses the previous state-of-the-art method Omnicontrol by reducing Avg. Con-
trol err. by 5 to 10%. In addition, our foot skating ratio is the lowest compared to all other methods.
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R-Precision ↑ Diversity ↑ Foot-Skate ↓ Traj Err ↓ Loc. Error ↓ Avg Err. ↓

w/o cycle 0.724 9.721 0.0603 0.0389 0.0099 0.0399
w/o spatial 0.691 9.545 0.0571 0.0502 0.0125 0.0467
w/o initialization 0.599 9.733 0.0662 0.0598 0.0094 0.0384
w/o regularization 0.644 8.542 0.0601 0.0594 0.0088 0.0364

Full 0.723 9.233 0.0621 0.0597 0.0092 0.0371

Table 2: Ablation Study regarding the various components of our method.

Figure 5: Text Prompt: A person walks while playing a violin. As the figure indicates, DNO often
fails to obey the precise user-provided trajectory and ignores the text prompt, while Omnicontrol
and DNO often produce significant foot skating artifacts. Overall, our method produces the most
natural poses and follows the input prompt more closely.

4.1 ABLATION STUDIES

In this section we ablate the various components of our method.

There are two main components of our method: the learning part and the refinement part. In this
experiment, we ablate the various components of the learning part of our method. The results of
these experiments are reported in Table. 2. We switch off the cycle, and spatial encoder and do not
perform any refinement. To analyze the components of our refinement step, in an experiment, we
don’t use any initialization, and in another one, we switch off the regularization loss. These results
are reported in lines 4 and 5 of the table. As Table 2, shows all component lead to incremental
improvements.

It should be noted that though the regularization and initialization increase Foot-Skate and slightly
degrade the quality of control over the motion, they significantly improve the motion’s fidelity to the
text prompt.

5 CONCLUSION

We have presented a novel method for spatially constrained text-to-motion synthesis. We introduce
the idea of cycle consistency in the context of human motion and show that it leads to improved per-
formance. We also introduce the idea of latent space manipulation with a novel test-time optimiza-
tion algorithm that directs pre-trained spatially constrained diffusion models toward user-defined
preferences. We have further demonstrated that when coupled with path planning and some user-
provided sparse key points, our framework can synthesize long-term human motion in 3D scenes.
We hope our work will inspire further research in the field of text-to-motion synthesis and contribute
to advancements in computer animation.
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