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Abstract
We propose a gray-box controller to optimize the
performance of a nonlinear system in an online
manner. This is motivated by the observation
that model-based and model-free approaches own
complementary benefits in sample efficiency and
optimality in the presence of inaccurate models.
To achieve the best of both worlds, our controller
incorporates approximate model information into
model-free updates via adaptive convex combina-
tions. Further, it leverages real-time outputs of the
system and iteratively adjusts control inputs. We
quantify conditions on the quality of approximate
models that render the gray-box approach prefer-
able to model-based or model-free approaches.
We characterize the performance of our controller
via dynamic regret in a constrained, time-varying
setting, and highlight how the regret scales with
the number of iterations, the problem dimension,
and the cumulative effect of inaccurate models.

1. Introduction
Online decision-making encompasses optimization, control,
and learning subject to changing, unknown performance
metrics and environments (Cesa-Bianchi & Lugosi, 2006;
Hazan, 2022), which has found broad applications in learn-
ing systems (e.g., classifiers and recommender systems) and
infrastructure networks (e.g., power grids and communica-
tion networks).

At the heart of online decision-making is an iterative feed-
back loop between the decision-maker and the environment
(or the adversary), whereby a decision-maker commits to a
decision at each iteration, incurs a loss selected by the envi-
ronment, and adjusts her decision accordingly. In general,
arbitrary variations of the loss are allowed from one itera-
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Tübingen 72076, Germany. Correspondence to: Zhiyu He
<zhiyhe@ethz.ch>.

Workshop on Foundations of Reinforcement Learning and Con-
trol at the 41 st International Conference on Machine Learning,
Vienna, Austria. Copyright 2024 by the author(s).

tion to the next, as long as the loss is bounded or a related
compactness assumption on decision variables is satisfied.
However, in many applications, there exist in vivo dynam-
ics with latent states that couple the loss over iterations or
specify the environmental feedback via an input-output rela-
tionship of a dynamical system. Dynamics bring the role of
system models to the forefront of online decision-making.

1.1. Related Work

Online optimization studies sequentially choosing decisions
in the face of unknown, streaming problems. Since the ob-
jective can be arbitrarily set at every time step, the realistic
goal is usually not achieving optimality, but instead minimiz-
ing the regret, i.e., the cumulative gap against the benchmark
sequence of decisions in hindsight (Hazan, 2022).

Online control focuses on regulating a dynamical system
while optimizing cumulative stage costs. In contrast to on-
line optimization, online control tackles the situation where
the costs are temporally dependent due to dynamics. In
the realm of linear systems, a plethora of online linear con-
trol policies have been developed to handle unknown dy-
namics (Dean et al., 2018; Simchowitz & Foster, 2020),
adversarial noises (Agarwal et al., 2019), as well as con-
vex, time-varying costs (Cassel et al., 2022). These policies
enjoy sublinear regrets against the optimal linear policy in
hindsight (Tsiamis et al., 2023). However, in the nonlinear
world, the studies of the structure and performance guar-
antee of online controllers are still nascent (Kakade et al.,
2020; Boffi et al., 2021).

Feedback optimization is an emerging paradigm for opti-
mizing the performance of nonlinear dynamical systems
(Hauswirth et al., 2024; Simonetto et al., 2020). In contrast
to online optimization, the streaming objective depends on
both the decision (i.e., the input) and the corresponding
output of the system, see Figure 1. Compared to online
control, feedback optimization directly searches for the op-
timal decision vector rather than being confined to the class
of linear policies. Moreover, the goal is achieving opti-
mal steady-state operations (i.e., when the state and the
output reach fixed values given a constant input) instead
of optimizing total costs that include transients. The core
insight is to implement optimization iterations as feedback
controllers, which measure outputs and iteratively adjust
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Figure 1. The block diagrams illustrate (a) online optimization, (b)
online control, and (c) feedback optimization. There are fundamen-
tal differences between online control and feedback optimization,
for instance in the way decisions are taken and the overall goal,
see also Section 1.1.

inputs to drive the dynamical system to an optimal steady
state. This closed-loop structure brings salient properties,
e.g., stability, constraint satisfaction, and adaption to non-
stationary environments. It also proves effective in the real
world (Ortmann et al., 2023).

Model-based and model-free feedback optimization. The
manifold benefits of feedback optimization rely on the
knowledge of the input-output sensitivity of the system,
which measures how a change in the input causes the corre-
sponding change in the output. This requirement stems from
using the chain rule to form the gradient-based adjustment
direction of the controller. In terms of complex, large-scale,
and poorly known systems, the lack of knowledge of ac-
curate sensitivities can result in sub-optimality, constraint
violation, or instability (Hauswirth et al., 2024). To address
this issue, two streams of strategies have been explored.

One stream is model-based, in that the key model infor-
mation (i.e., sensitivity) is learned from offline data (e.g.,
through data-driven representations in the behavioral frame-
work (Bianchin et al., 2024)) or online interactions (e.g.,
through recursive estimation based on streaming data (Pi-
callo et al., 2022)). Nonetheless, if the sensitivity is not
learned fast and accurately enough, the iterations may suffer
from considerable sub-optimality, see Section VI in (He
et al., 2024). Another stream is model-free (or black-box),
which avoids learning sensitivities altogether. To this end,
zeroth-order optimization schemes are employed to con-
struct stochastic gradient estimates from function evalua-
tions, thus circumventing the need for sensitivity informa-
tion (Chen et al., 2020; Tang et al., 2023; He et al., 2024).
Overall, the stochasticity of gradient estimates may affect
the convergence rate, thereby increasing the sample com-
plexity of model-free feedback optimization compared to
its model-based counterparts.

Gray-box pipelines. Model-based and model-free ap-
proaches own complementary benefits in sample efficiency
and provable optimality in the presence of inaccurate mod-
els. Thus, it is promising to develop gray-box approaches
to achieve the best of both worlds. The power of gray-box
pipelines has been showcased in various problems, e.g., re-

inforcement learning, predictive control, and stabilization.
Some methods rely on model-based pipelines and introduce
model-free, learning-based blocks for inference or improve-
ment (Achterhold et al., 2023; Ma et al., 2023). Others
augment model-free pipelines with model-based priors (e.g.,
prior mean or a model-based policy as a warm start (Qu
et al., 2021)) or utilize synthetic data generated from tran-
sition models to enhance model-free training (Janner et al.,
2019). Further, recent works on learning-augmented control
(Li et al., 2023) combine a model-based (albeit sub-optimal)
policy with a black-box, machined-learned policy. However,
it is unclear how gray-box approaches can be designed and
proven useful in the context of performance optimization of
nonlinear systems.

1.2. Motivations and Contributions

We aim to optimize the performance of a nonlinear system
subject to a time-varying objective. Given the complemen-
tary benefits of model-based and model-free pipelines (see
Section 1.1), we pursue a gray-box approach that utilizes
approximate model information, thereby achieving the best
of both worlds. In our context, such information refers to the
approximate input-output sensitivity of the system, which
can be obtained through prior knowledge, first-principle
models, or estimation (Ortmann et al., 2023; Ma et al., 2023).
Further, we are interested in the following questions related
to performance measures. How to quantify the conditions
favoring gray-box approaches over model-based or model-
free methods, and vice versa? How to establish provable
improvement using the same performance measure for all
approaches? All these questions call for a new algorithmic
design and analysis.

Our main contributions are summarized as follows.

• We propose a gray-box feedback optimization con-
troller to optimize the performance of a nonlinear sys-
tem subject to time-varying objectives and input con-
straints. When interconnected with the system, this
controller uses real-time outputs and iteratively adjusts
inputs by adaptively combining model-based inexact
gradients from approximate sensitivities and model-
free gradient estimates.

• We characterize the conditions on the quality of input-
output sensitivities that render the gray-box controller
preferable. These conditions endow the proposed con-
troller with flexibility, such that it can fully exploit
approximate models of different levels of accuracy by
adjusting combination coefficients.

• We quantify the overall performance through dynamic
regret, which focuses on the cumulative gap against
the optimal benchmark. The gray-box controller over-
comes the issue of sub-optimality, which is experienced
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by model-based controllers due to the error accumula-
tion of approximate models. The gray-box controller
can also exploit sensitivities of lower quality (e.g., with
bounded errors) to improve sample efficiency com-
pared to model-free approaches.

The rest of this article is organized as follows. In Section 2,
we provide the problem of interest. Section 3 presents the
design of the gray-box controller. The performance guaran-
tee in a time-varying and constrained setting is established
in Section 4. We perform numerical evaluations in Section 5.
Finally, Section 6 concludes this article.

2. Problem Formulation
Consider a system abstracted by its nonlinear steady-state
input-output map h : Rp × Rr → Rq

y = h(u, d), (1)

where u ∈ Rp is the input, y ∈ Rq is the output, and d ∈ Rr

is the unknown exogenous disturbance. We consider an
online setting with changing disturbances {dk}k∈N. At time
k, we aim to find an input u that optimizes the input-output
performance of the system (1) induced by u and dk, i.e.,

min
u∈Rp,y∈Rq

Φk(u, y)

s.t. y = h(u, dk),

u ∈ U .

(2)

In problem (2), Φk : Rp × Rq → R is the objective at time
k ∈ N, and U ⊂ Rp is the constraint set for u.

The constrained, time-varying problem (2) reflects the spec-
ifications of changing objectives, variable disturbances, and
input constraints. We will leverage feedback control by iter-
atively adjusting the input u after the output y encoding dk
is measured and the current objective Φk is revealed. Let
u∗
k ∈ Rp be an optimal point of problem (2) at time k. The

goal is to generate control inputs that are competitive with
the sequence of time-varying optimal solutions {u∗

k}k∈N.

Let Φ̃k(u) ≜ Φk(u, h(u, dk)) be the reduced objective at
time k. Some assumptions are as follows.

Assumption 2.1. The map h(u, d) is differentiable with
respect to u.

Assumption 2.2. The set U is a compact, convex set with
diameter D > 0, i.e., ∀u1, u2 ∈ U , ∥u1 − u2∥ ≤ D.

Assumption 2.3. The function Φ̃k(u) is convex, Lk-
smooth, and Mk-Lipschitz with respect to u. The function
Φk(u, y) is MΦ,k-Lipschitz with respect to y. Moreover,
{Lk}, {Mk}, and {MΦ,k} are bounded.

Let Uτ ≜ {u + τv|u ∈ U , v ∈ Bp} denote a set inflated
from U by a limited range τBp, where τ > 0 is an expan-

sion coefficient, and Bp is the closed unit ball in Rp. The
following assumption specifies the boundedness of Φ̃k.

Assumption 2.4. The function Φ̃k(u) is uniformly bounded,
i.e., ∃G ≥ 0,∃τ > 0,∀u ∈ Uτ ,∀k ∈ N, |Φ̃k(u)| ≤ G.

Assumptions 2.2-2.4 are typical in the literature, e.g., (Jad-
babaie et al., 2015; Zhao et al., 2021; Hazan, 2022). As-
sumption 2.2 also implies that the norm of any point in U is
bounded, i.e., ∃D ≥ 0,∀u ∈ U , ∥u∥ ≤ D. Assumption 2.4
is related to Assumptions 2.2 and 2.3, because a continuous
function defined on a compact set is bounded.

A tempting solution to problem (2) is to directly use nu-
merical optimization solvers. Nonetheless, solvers require
the explicit expression of the map h and the exact values of
the disturbances {dk}. These requirements can be hard to
satisfy when complex systems and unknown disturbances
are involved. Hence, we pursue a feedback optimization
controller that utilizes real-time output measurements to
optimize the dynamic behavior of (1).

Model-based feedback optimization controllers (Picallo
et al., 2022) learn and use the input-output sensitivity
∇uh(u, dk) of the system (1) and iteratively update inputs
by leveraging the gradient of Φ̃k(u). After invoking the
chain rule, their update rule reads as

uk+1 = ProjU

(
uk − η

(
∇uΦk(uk, yk)

+∇uh(uk, dk)
⊤∇yΦk(uk, yk)

))
,

(3)

where η > 0 is a step size, yk is the output of the system (1)
at time k ∈ N, and ProjU (·) denotes the projection to the
constraint set U . Model-free controllers (Chen et al., 2020;
Tang et al., 2023; He et al., 2024) bypass the information
on sensitivities and rely purely on stochastic exploration.
Their trade-offs in sample efficiency and solution accuracy
are discussed in Section 1.1. In contrast, we will merge
approximate sensitivities (obtained, among others, through
prior knowledge or recursive estimation) into model-free
updates, thus achieving the best of both worlds.

3. Design of the Running Gray-Box Controller
For a given input uk at time k ∈ N, suppose that we
have access to an approximate input-output sensitivity
Ĥk ∈ Rq×p of (1), which differs from the true sensitivity
Hk ≜ ∇uh(uk, dk). Note that Hk indicates how a change
in uk will cause the change in the output of (1). Such an
approximate Ĥk can be obtained through prior knowledge,
first-principle models (Ortmann et al., 2023; Ma et al., 2023),
or online learning and estimation (Picallo et al., 2022).

Our proposed feedback controller iteratively adjusts inputs
by using real-time output measurements. The update direc-
tion is constructed by adaptively fusing an inexact gradient
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from the approximate sensitivity Ĥk and a gradient estimate
based on stochastic exploration. The update rules are

wk+1 = ProjU (wk − ηϕ̂k), (4a)

ϕ̂k = αkϕ̂k,1 + (1− αk)ϕ̂k,2, (4b)

ϕ̂k,1 = ∇uΦk(uk, yk) + Ĥ⊤
k ∇yΦk(uk, yk), (4c)

ϕ̂k,2 =
pvk
δ

(
Φk(uk, yk)− Φk−1(uk−1, yk−1)

)
, (4d)

uk+1 = wk+1 + δvk+1, (4e)

where wk is a candidate solution, ProjU (·) denotes the
projection to the constraint set U , η > 0 is a step size,
αk ∈ [0, 1] is a convex combination coefficient, δ ∈ (0, τ)
is a smoothing parameter, p is the size of the input, and
v0, . . . , vk+1 ∼ U(Sp−1) are i.i.d. random variables sam-
pled from the unit sphere Sp−1.

In the iterative update our running gray-box controller (4)
merges two directions. The first one (i.e., ϕ̃k,1 in (4c))
is an inexact gradient constructed from Ĥk, whereas the
second (i.e., ϕ̃k,2 in (4d)) is a stochastic gradient estimate.
The controller subsequently performs a projection (see (4a))
to the constraint set U , thus ensuring that the candidate
solution wk+1 satisfies the constraint. Finally, the solution
is perturbed by δvk+1 to form the input uk+1 (see (4e)),
and this input is applied to (1). Our controller (4) uses the
latest information at time k (i.e., the partial gradients and
values of the current objective Φ̃k) to adapt to the variation
of problem (2).
Remark 3.1. While the candidate solution wk lies in U , the
input uk in the transient stage may violate the constraint. If
we need strict constraint satisfaction, we can project in (4a)
onto a deflated set (1− κ)U as (Zhao et al., 2021), where
κ > 0.

For problem (2), model-based controllers purely using
{Ĥk}k∈N (i.e., (4) with αk = 1,∀k ∈ N) are favorable
provided that Ĥk is a sufficiently accurate estimate of Hk,
or more specifically,

ϵH,k ≜ ∥Ĥk −Hk∥ ≤ ϵ′

(k + 1)θ
, θ ≥ 1

4
, k ∈ N, (5)

where ϵH,k is the error of Ĥk compared to Hk, and ϵ′ > 0
is a specified error bound. The intuition is that the resulting
cumulative error

∑T
k=1 ϵH,k will be of an order lower than

O(T
3
4 ), which leads to a salient guarantee in the sense of

dynamic regret (Hazan, 2022; Jadbabaie et al., 2015; Zhao
et al., 2021). A detailed explanation is referred to Section 4.
Nonetheless, (5) may not always hold due to various issues,
e.g., noisy measurements or nonlinear dynamics. In such
a case, our proposed gray-box approach (4) is favorable.
We analyze two cases of Ĥk and show how to select the
combination coefficient αk in (4b).

Case 1: Approximate Sensitivity with a Bounded Error

In many applications, we construct approximate sensitiv-
ities based on prior knowledge or first-principle models
(Ortmann et al., 2023; Ma et al., 2023), which are then fixed
during online operation. This practice corresponds to the
case where a bounded error exists between the approximate
sensitivity Ĥk and the ground-truth Hk, i.e.,

ϵH,k = ∥Ĥk −Hk∥ ≤ ϵ, k ∈ N, (6)

where ϵ > 0. In this case, we select a constant C > 0 and
use the following vanishing combination coefficient

αk = min
{ C

(k+1)
1
4

, 1
}
, k ∈ N. (7)

The rationale of (7) is to tune the scaled cumulative error∑T
k=1 αkϵH,k, thereby regulating the order of the dynamic

regret incurred by the proposed controller. Moreover, C is
concerned with the trade-off between the convergence rate
and the cumulative error. A large C implies more emphasis
on the model-based direction ϕ̂k,1 in the initial stage. While
this emphasis contributes to a fast response, it may cause an
increase in the magnitude of the cumulative error.

Case 2: Asymptotically Accurate Sensitivity

Online estimation techniques can be incorporated to gen-
erate increasingly accurate estimates of sensitivities based
on the trajectory of the system (1). However, we may not
always learn sensitivities sufficiently fast due to measure-
ment errors, lack of covariance data, nonlinear dynamics,
etc. For instance, the estimation error (5) of the sensitivity
may decrease as

ϵH,k = ∥Ĥk −Hk∥ ≤ ϵ′

(k + 1)θ
, θ ∈

(
0,

1

4

)
, k ∈ N,

(8)
where ϵ′ > 0. When (8) arises, we utilize the following
vanishing coefficient

αk = min
{ C ′

(k+1)
1
4−θ

, 1
}
, k ∈ N. (9)

Remark 3.2. In practice, we can establish bounds (6) and
(8) (with high probability) through finite-sample analysis
based on concentration inequalities (Tsiamis et al., 2023).

4. Performance Certificates
We analyze the interconnection of the system (1) with our
running gray-box controller (4). Such an interconnection
leads to a closed loop, in that the controller measures the
output and then generates the input.

We first introduce a lemma that gives an upper bound on the
expected distance between the direction ϕ̂k used by our gray-
box controller (4) and the true gradient ∇Φ̃k(wk). Recall
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that ϵH,k = ∥Ĥk − Hk∥ is the error of the approximate
sensitivity Ĥk compared to the true sensitivity Hk.

Lemma 4.1. Let Assumptions 2.1,2.2-2.4 hold. The update
rule (4) ensures that

Ev[k]
[∥ϕ̂k −∇Φ̃k(wk)∥]

≤ αkMΦ,kϵH,k+(1−αk)
2pG

δ
+Lkδ

(
αk+(1−αk)

p

2

)
.

Proof. See Appendix A.1.

We proceed to offer our performance certificate, i.e., dy-
namic regret (Hazan, 2022; Jadbabaie et al., 2015; Zhao
et al., 2021), which is a common measure for decision-
making in non-stationary environments. It fits our context
involving time-varying objectives and disturbances.

Specifically, we focus on the cumulative difference between
the objective values evaluated at the candidate solutions
{wk}Tk=1 and those at the optimal points {u∗

k}Tk=1. To
capture the variation of (2), we introduce the path length
CT ≜

∑T
k=1 ∥u∗

k−u∗
k−1∥, which accumulates the shifts

between two consecutive optimal points (Hazan, 2022). The
following theorem characterizes the dynamic regret incurred
by the closed-loop system.

Theorem 4.2. Suppose that Assumptions 2.1,2.2-2.4 hold.
Consider approximate sensitivities {Ĥk}Tk=1 that satisfy (5),
(6), or (8). Let η = 1/p

2
3T

3
4 and δ = min(p

1
3 /T

1
4 , τ).

The closed-loop interconnection of the system (1) and the
gray-box controller (4) incurs the following dynamic regret

RegdT ≜
T∑

k=1

(
Ev[T ]

[Φ̃k(wk)]−Φ̃k(u
∗
k)
)

= O

(
p

2
3T

3
4 (CT + 1)+

T∑
k=1

αkϵH,k

)
. (10)

Furthermore, given Ĥk that satisfies (6) (or (8)) and
{αk}k∈N are designed as in (7) (respectively, in (9)), this
closed-loop interconnection ensures that

RegdT = O
(
p

2
3T

3
4 (CT + 1)

)
. (11)

Proof. See Appendix A.2.

The order of the dynamic regret (10) is determined by
two major parts. The first part is proportional to the path
length CT , and the second part reflects the error accumu-
lation due to Ĥk. Recall that model-based controllers cor-
respond to (4) with αk = 1,∀k ∈ N and δ = 0. For
those controllers, when Ĥk satisfies (6) or (8), the second
part (i.e.,

∑T
k=1 αkϵH,k) will be of the orders of O(T )

or O
(
T 1−θ

)
, respectively, where 0 < θ < 1

4 . With

the same choice of η as in Theorem 4.2, the correspond-
ing orders of RegdT become O(p

2
3T

3
4 (CT + 1) + T ) and

O(p
2
3T

3
4 (CT + 1) + T 1−θ). In contrast, our gray-box con-

troller (4) allows tuning {αk}Tk=1 to arrive at (11). We will
further illustrate the difference in the magnitude of RegdT be-
tween the gray-box controller and the model-free controller
(i.e., (4) with αk = 0,∀k ∈ N) in Section 5.
Remark 4.3. If the path length CT is known in ad-
vance, then the order of RegdT in (10) can be refined to
O
(
p

2
3T

3
4

√
CT + 1+

∑T
k=1αkϵH,k

)
by choosing the step

size η =
√
CT + 1/p

2
3T

3
4 . For model-based controllers

using accurate Hk, we recover an expected regret bound of
the order of O(

√
T (CT + 1)) by selecting η = 1/

√
T .

Our controller perturbs the candidate solution wk with an
exploration noise δvk and applies the input uk to the sys-
tem, see (4e). The difference between the objective values
Φ̃k(uk) and Φ̃k(wk) can increase the magnitude of the dy-
namic regret when the inputs {uk}Tk=1 are compared with
the optimal points {u∗

k}Tk=1. The following corollary, how-
ever, states that the order of the dynamic regret is unchanged.

Corollary 4.4. Let the conditions of Theorem 4.2 hold. The
closed-loop interconnection incurs

T∑
k=1

(
Ev[T ]

[Φ̃k(uk)]−Φ̃k(u
∗
k)
)
= O

(
p

2
3T

3
4 (CT + 1)

)
.

Proof. See Appendix A.3.

5. Numerical Evaluations
We evaluate the performance of our proposed gray-box con-
troller (4) when applied to the following nonlinear dynami-
cal system

xk+1 = Axk +B1uk +B2 sin(uk) + Edx,

yk = Cxk +Ddy,
(12)

where x ∈ R20, u ∈ R10, and y ∈ R5 denote the state, input,
and output, respectively, and dx, dy ∈ R5 are disturbances.
We draw the elements of the system matrices in (12) from
the normal distribution. We further scale A to let its spectral
radius be 0.05, i.e., the dynamics are quickly contracting.
When the system (12) evolves to a steady state given uk =
u,∀k ∈ N, its input-output map is

y = h′(u, dx, dy)

≜ C(I −A)−1(B1 +B2 sin(u) + Edx) +Ddy.

The input-output sensitivity matrix H of (12) at u is

H = C(I −A)−1(B1 +B2 diag(cos(u))),
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where diag(cos(u)) is a diagonal matrix with its diagonal
entries given by cos(u).

We aim to optimize the steady-state input-output perfor-
mance of the system (12) as characterized by

min
u∈R10,y∈R5

Φ(u, y) = u⊤M1u+m⊤
2 u+ ∥y∥2

s.t. y = h′(u, dx, dy),

u ≤ u ≤ u,

(13)

where u ∈ R10 and u ∈ R10 denote the lower bound and
the upper bound on u, respectively, and they are generated
from the multivariate normal distribution. Moreover, the
equality constraint in (13) corresponds to the steady-state
map h′(u, dx, dy) of the system (12). Every 5× 103 itera-
tion, m2 and the positive definite M1 in the objective are
regenerated from normal distributions, and the disturbances
dx, dy are regenerated from uniform distributions.

Hence, problem (13) is time-varying with input constraints.
Though the objective in (13) is nonconvex in u because
of the nonlinear term sin(u) in the map h′, we obtain the
comparator sequence {u∗

k} by calling the fmincon function
of MATLAB.

We compare the closed-loop interconnection of the sys-
tem (12) with various controllers: model-based feedback
optimization controllers with projection (3) and using the
accurate sensitivity Hk or the inexact sensitivity Ĥ , the con-
troller with sensitivity learning based on Ĥ (Picallo et al.,
2022), the model-free controller in (He et al., 2024), and
our proposed gray-box controller (4) using Ĥ . Specifically,
the approximate sensitivity Ĥ is a perturbed version of
C(I − A)−1B, and the element-wise relative error is not
more than 30%. We set the corresponding step sizes as
η = 7.5× 10−5. The model-free controller (He et al., 2024)
experiences divergence with this step size, and, therefore,
we select η = 5× 10−5 in this case. The smoothing param-
eter is δ = 10−3. We set C = 1 in the rule (7) adopted by
the gray-box controller to tune αk.

Figure 2 illustrates the evolutions of the time-averaged dy-
namic regrets (i.e., RegdT /T ) incurred by such closed-loop
interconnections. The direct use of the approximate sensi-
tivity Ĥ diminishes solution accuracy. Nonetheless, by suit-
ably incorporating this information, the gray-box controller
achieves a better performance compared to the model-free
controller and the controller with sensitivity learning. Fur-
ther, for the considered iteration range it closely matches
the benchmark with the exact sensitivity.

6. Conclusion
We proposed a gray-box feedback optimization controller
to optimize the input-output performance of a nonlinear sys-
tem. This controller merges the approximate input-output

Figure 2. Comparison of different controllers when interconnected
with the system (12) to solve the time-varying problem (13). In
the legend “FO” and “SL” stand for “feedback optimization” and
“sensitivity learning”, respectively.

sensitivities of the system into model-free updates via an
adaptive convex combination. We quantified the accuracy
conditions of the sensitivities that render the gray-box ap-
proach preferable, and we provided design guidelines for
setting combination coefficients therein. We demonstrated
that the gray-box controller exploits approximate sensitiv-
ities for sample efficiency, and that it circumvents error
accumulation and ensures solution accuracy. Future direc-
tions include leveraging other forms of prior knowledge or
model information, tackling output constraints via dualiza-
tion, as well as analyzing the interplay between model-free
control and online identification.

References
Achterhold, J., Tobuschat, P., Ma, H., Buechler, D., Muehle-

bach, M., and Stueckler, J. Black-box vs. gray-box: A
case study on learning table tennis ball trajectory predic-
tion with spin and impacts. In Learning for Dynamics
and Control Conference, pp. 878–890, 2023.

Agarwal, N., Bullins, B., Hazan, E., Kakade, S., and Singh,
K. Online control with adversarial disturbances. In Inter-
national Conference on Machine Learning, pp. 111–119,
2019.

Bianchin, G., Vaquero, M., Cortés, J., and Dall’Anese, E.
Online stochastic optimization for unknown linear sys-
tems: Data-driven controller synthesis and analysis. IEEE
Transactions on Automatic Control, 69(7):4411–4426,
2024.

Boffi, N. M., Tu, S., and Slotine, J.-J. E. Regret bounds
for adaptive nonlinear control. In Learning for Dynamics
and Control Conference, pp. 471–483, 2021.

Cassel, A. B., Cohen, A., and Koren, T. Efficient online
linear control with stochastic convex costs and unknown

6



Online Performance Optimization of Nonlinear Systems: A Gray-Box Approach

dynamics. In Conference on Learning Theory, pp. 3589–
3604, 2022.

Cesa-Bianchi, N. and Lugosi, G. Prediction, learning, and
games. Cambridge University Press, New York, NY,
2006.

Chen, Y., Bernstein, A., Devraj, A., and Meyn, S. Model-
free primal-dual methods for network optimization with
application to real-time optimal power flow. In American
Control Conference, pp. 3140–3147, 2020.

Dean, S., Mania, H., Matni, N., Recht, B., and Tu, S. Regret
bounds for robust adaptive control of the linear quadratic
regulator. Advances in Neural Information Processing
Systems, 31, 2018.

Gao, X., Jiang, B., and Zhang, S. On the information-
adaptive variants of the ADMM: an iteration complexity
perspective. Journal of Scientific Computing, 76(1):327–
363, 2018.

Hauswirth, A., He, Z., Bolognani, S., Hug, G., and Dörfler,
F. Optimization algorithms as robust feedback controllers.
Annual Reviews in Control, 57, 2024. Art. no. 100941.

Hazan, E. Introduction to online convex optimization. MIT
Press, Princeton, NJ, 2022.

He, Z., Bolognani, S., He, J., Dörfler, F., and Guan, X.
Model-free nonlinear feedback optimization. IEEE Trans-
actions on Automatic Control, 69(7):4554–4569, 2024.

Jadbabaie, A., Rakhlin, A., Shahrampour, S., and Sridha-
ran, K. Online optimization: Competing with dynamic
comparators. In International Conference on Artificial
Intelligence and Statistics, pp. 398–406, 2015.

Janner, M., Fu, J., Zhang, M., and Levine, S. When to trust
your model: Model-based policy optimization. Advances
in Neural Information Processing Systems, 32, 2019.

Kakade, S., Krishnamurthy, A., Lowrey, K., Ohnishi, M.,
and Sun, W. Information theoretic regret bounds for
online nonlinear control. Advances in Neural Information
Processing Systems, 33:15312–15325, 2020.

Li, T., Yang, R., Qu, G., Lin, Y., Wierman, A., and Low, S. H.
Certifying black-box policies with stability for nonlinear
control. IEEE Open Journal of Control Systems, 2:49–62,
2023.
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A. Appendix
A.1. Proof of Lemma 4.1

An upper bound on the expected distance is

Ev[k]
[∥ϕ̂k −∇Φ̃k(wk)∥]

= Ev[k]
[∥αkϕ̂k,1 + (1− αk)ϕ̂k,2 −∇Φ̃k(wk)∥]

≤ αk Ev[k]
[∥ϕ̂k,1 −∇Φ̃k(wk)∥]︸ ︷︷ ︸

1

+ (1− αk)Ev[k]
[∥ϕ̂k,2 −∇Φ̃k(wk)∥]︸ ︷︷ ︸

2

, (14)

where we used the triangle inequality. For term 1 in (14),

1
(s.1)
≤ Ev[k]

[∥ϕ̂k,1 −∇Φ̃k(uk)∥]

+ Ev[k]
[∥∇Φ̃k(uk)−∇Φ̃k(wk)∥]

(s.2)
≤ Ev[k]

[∥ϵk∥] + Lkδ
(s.3)
≤ MΦ,kϵH,k + Lkδ, (15)

where (s.1) is obtained by adding and subtracting ∇Φ̃k(uk)
and using the triangle inequality; (s.2) utilizes the expression
ϵk = ϕ̂k,1 − ∇Φ̃k(uk), the assumption that Φ̃k(u) is Lk-
smooth, and (4e); (s.3) follows from

∥ϵk∥ = ∥(H ′
k − Ĥk)

⊤∇yΦk(uk, yk)∥ ≤ ϵH,kMΦ,k. (16)

Let Φ̃k,δ : Rp → R be the smooth approximation of the
objective Φ̃k at time k, see also (Gao et al., 2018). Term 2
in (14) satisfies

2 ≤ Ev[k]
[∥ϕ̂k,2 −∇Φ̃k,δ(wk)∥]

+ Ev[k]
[∥∇Φ̃k,δ(wk)−∇Φ̃k(wk)∥]

(s.1)
≤ Ev[k]

[∥ϕ̂k,2 −∇Φ̃k,δ(wk)∥]︸ ︷︷ ︸
3

+
Lkpδ

2
, (17)

where (s.1) follows from Lemma 4.1 in (Gao et al., 2018),
because Φ̃k is Lk-smooth. For term 3 in (17), we have

3
(s.1)
≤
√

Ev[k]
[∥ϕ̂k,2 −∇Φ̃k,δ(wk)∥2]

(s.2)
≤
√
Ev[k]

[∥ϕ̂k,2∥2],

where (s.1) uses the inequality ∀a ∈ Rp,E2[∥a∥] ≤
E[∥a∥2], and (s.2) holds since Ev[k]

[ϕ̂k,2] = ∇Φ̃k,δ(wk)

and the variance of ϕ̂k,2 is not greater than its second mo-
ment. The upper bound on Ev[k]

[∥ϕ̂k,2∥2] is

E[k][∥ϕ̂k,2∥2]
(s.1)
=

p2

δ2
Ev[k]

[|Φ̃k(wk+δvk)− Φ̃k−1(wk−1+δvk−1)|2]

≤ 2p2

δ2

(
Ev[k]

[
|Φ̃k(wk+δvk)|2+|Φ̃k−1(wk−1+δvk−1)|2

])

(s.2)
≤ 4p2G2

δ2
, (18)

where (s.1) holds since ∀vk ∼ U(Sp−1), ∥vk∥ = 1;
(s.2) uses the boundedness of Φ̃k, i.e., ∀u ∈ Uσ, k ∈
N, |Φ̃k(u)| ≤ G. Therefore, 3 ≤ 2pG

δ . We plug this
bound into (17). Then, we combine the upper bounds on
terms 1 and 2 with (14) and arrive at Lemma 4.1.

A.2. Proof of Theorem 4.2

Because the optimal point u∗
k lies in U , we know from (4a)

and the Pythagorean theorem that

∥wk+1 − u∗
k∥2 ≤ ∥wk − ηϕ̂k − u∗

k∥2

= ∥wk−u∗
k∥2 − 2ηϕ̂⊤

k (wk−u∗
k) + η2∥ϕ̂k∥2.

We rearrange terms and obtain

ϕ̂⊤
k (wk−u∗

k) ≤
η

2
∥ϕ̂k∥2 +

∥wk−u∗
k∥2−∥wk+1−u∗

k∥2

2η
.

(19)
Moreover, we know from (4b) that

Ev[k]
[ϕ̂⊤

k (wk−u∗
k)]

= αk Ev[k]
[ϕ̂⊤

k,1(wk−u∗
k)]︸ ︷︷ ︸

1

+(1−αk)Ev[k]
[ϕ̂⊤

k,2(wk−u∗
k)]︸ ︷︷ ︸

2

.

(20)

For term 1 in (20),

1 = Ev[k]
[∇Φ̃k(wk)

⊤(wk − u∗
k)]

+ Ev[k]
[(ϕ̂k,1 −∇Φ̃k(wk))

⊤(wk − u∗
k)]

(s.1)
≥ Ev[k]

[Φ̃k(wk)]−Φ̃k(u
∗
k)−D(MΦ,kϵH,k+Lkδ),

where (s.1) utilizes the convexity of Φ̃k, the Cauchy-
Schwarz inequality, the inequality ∥wk − u∗

k∥ ≤ D (see
Assumption 2.2), and the bound (15). For term 2 in (20),

2 (s.1)
= Ev[k−1]

[
Evk [ϕ̂

⊤
k,2(wk − u∗

k)|v[k−1]]
]

(s.2)
= Ev[k−1]

[
Evk [ϕ̂k,2|v[k−1]]

⊤(wk − u∗
k)
]

(s.3)
= Ev[k−1]

[
∇Φ̃k,δ(wk)

⊤(wk − u∗
k)
]

(s.4)
≥ Ev[k]

[
Φ̃k,δ(wk)− Φ̃k,δ(u

∗
k)
]

= Ev[k]

[
Φ̃k,δ(wk)−Φ̃k(wk)

]
+Ev[k]

[
Φ̃k(wk)−Φ̃k(u

∗
k)
]

+ Ev[k]

[
Φ̃k(u

∗
k)− Φ̃k,δ(u

∗
k)
]

(s.5)
≥ Ev[k]

[Φ̃k(wk)]− Φ̃k(u
∗
k)− Lδ2,

where (s.1) uses the tower rule; (s.2) holds since wk − u∗
k

is measurable with respect to v[k−1]; (s.3) follows from
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Lemma 4.1 in (Gao et al., 2018) and the independence of
Φk−1(uk−1, yk−1) and vk; (s.4) uses the convexity of Φ̃k,δ

and the independence of Φ̃k,δ(wk) and vk; (s.5) also follows
from (Gao et al., 2018). We incorporate the above lower
bounds into (20), combine it with (19), and telescope the
inequality to obtain

T∑
k=1

(
Ev[k]

[Φ̃k(wk)]− Φ̃k(u
∗
k)
)
≤ η

2

T∑
k=1

Ev[k]
[∥ϕ̂k∥2]︸ ︷︷ ︸

1

+
1

2η

T∑
k=1

(
Ev[k]

[∥wk−u∗
k∥2]− Ev[k]

[∥wk+1−u∗
k∥2]

)
︸ ︷︷ ︸

2

+D

T∑
k=1

αk(MΦ,kϵH,k+Lkδ) +

T∑
k=1

(1−αk)Lδ
2. (21)

For term 1 in (21), we have

1 ≤
T∑

k=1

(
2α2

k Ev[k]
[∥ϕ̂k,1∥2] + 2(1−αk)

2 Ev[k]
[∥ϕ̂k,2∥2]

)
(s.1)
≤

T∑
k=1

(
4α2

k(M
2
k+M2

Φ,kϵ
2
H,k)+8(1−αk)

2 p
2G2

δ2

)
.

In (s.1), we use (16) and ∥ϕ̂k,1∥2 = ∥∇Φ̃k(uk) − ϵk∥2 ≤
2M2

k + 2∥ϵk∥2. We also utilize the upper bound (18). Fur-
thermore, term 2 in (21) satisfies

2 ≤ Ev[k]
[∥w1∥2]− 2Ev[k]

[w⊤
1 u

∗
1] + 2Ev[k]

[w⊤
T+1u

∗
T ]

+ 2

T−1∑
k=1

Ev[k]
[w⊤

k+1(u
∗
k − u∗

k+1)]

(s.1)
≤ 5D2 + 2D

T−1∑
k=1

∥u∗
k − u∗

k+1∥,

where (s.1) uses the Cauchy-Schwarz inequality and the
fact that ∀u ∈ U , ∥u∥ ≤ D, see also the discussion below
Assumption 2.4. By incorporating the above bounds into
(21) and invoking the parametric conditions, we have

RegdT ≤ Dp
2
3T

3
4CT +D

T∑
k=1

αkϵH,kMΦ,k

+ 2η

T∑
k=1

α2
kM

2
k + 4η

T∑
k=1

(1− αk)
2 p

2G2

δ2
+

5D2

2η︸ ︷︷ ︸
∼O

(
p

2
3 T

3
4

)

+D

T∑
k=1

αkLkδ +

T∑
k=1

(1−αk)Lδ
2 + 2η

T∑
k=1

α2
kM

2
Φ,kϵ

2
H,k︸ ︷︷ ︸

∼o(p
2
3 T

3
4 )

.

Therefore, (10) holds. Furthermore, when Ĥk satisfies (6)
and {αk}Tk=1 are set by (7), we have

T∑
k=1

αkϵH,k ≤
T∑

k=1

Cϵ

(k + 1)
1
4

≤ Cϵ

∫ T

0

1

(x+ 1)
1
4

dx

=
4

3
Cϵ[(T + 1)

3
4 − 1].

We can perform a similar derivation when Ĥk satisfies (8)
and {αk}Tk=1 are given by (9). Hence, the order (11) of the
dynamic regret RegdT is proved.

A.3. Proof of Corollary 4.4

We leverage the following decomposition

Ev[k]
[Φ̃k(uk)]− Φ̃k(u

∗
k)

= Ev[k]
[Φ̃k(uk)]−Ev[k]

[Φ̃k(wk)]+Ev[T ]
[Φ̃k(wk)]−Φ̃(u∗

k)

(s.1)
≤ MΦ,kδ + Ev[k]

[Φ̃k(wk)]− Φ̃(u∗
k),

where (s.1) follows from the inequality ∀a ∈ R, a ≤ |a|, the
property that Φ̃k is MΦ,k-Lipschitz (see Assumption 2.3),
as well as ∥vk∥ = 1. Hence,

T∑
k=1

(
Ev[k]

[Φ̃k(uk)]− Φ̃k(u
∗
k)
)

≤ δ

T∑
k=1

MΦ,k +

T∑
k=1

(
Ev[k]

[Φ̃k(wk)]− Φ̃k(u
∗
k)
)
.

Since {MΦ,k} is bounded and δ ≤ p
1
3 /T

1
4 , the order of

δ
∑T

k=1 MΦ,k is O(p
1
3T

3
4 ). We combine this result with

(11) and prove the corollary.
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