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Abstract

Neural networks learn effective feature representations, which can be transferred to
new tasks without additional training. While larger datasets are known to improve
feature transfer, the theoretical conditions for the success of such transfer remain
unclear. This work investigates feature transfer in networks trained for classification
to identify the conditions that enable effective clustering in unseen classes. We
first reveal that higher similarity between training and unseen distributions leads
to improved Cohesion and Separability. We then show that feature expressiveness
is enhanced when inputs are similar to the training classes, while the features of
irrelevant inputs remain indistinguishable. We validate our analysis on synthetic
and benchmark datasets, including CAR, CUB, SOP, ISC, and ImageNet. Our
analysis highlights the importance of the similarity between training classes and
the input distribution for successful feature transfer.

1 Introduction

Neural networks have demonstrated remarkable success through their ability to learn hidden represen-
tations, which are crucial for generalization [Damian et al., 2022]. These learned features, especially
those extracted from the penultimate layers, are semantically meaningful and transferable across tasks
[Yosinski et al., 2014, Kornblith et al., 2019]. A wide range of techniques, from open-set clustering
[Roth et al., 2020] to vision-language models [Li et al., 2023] and language models [Kojima et al.,
2023], leverage feature transfer for downstream tasks. Recent successes in feature transfer have
been largely attributed to the increasing volume of available data [Brown et al., 2020, Radford et al.,
2021, An et al., 2023]. However, the underlying conditions under which features can be effectively
transferred remain underexplored.
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Among various applications, classification-based visual open-set clustering [Musgrave et al., 2020] is
a fundamental benchmark for evaluating feature transferability on unseen data. The task typically
involves training a classifier on one set of classes and then testing it on a disjoint set of unseen classes
to assess whether the extracted features form cohesive and separable class-wise clusters in unseen
data [Wang et al., 2018, Seidenschwarz et al., 2021, Deng et al., 2022]. Given this context, we aim to
investigate feature transfer through open-set clustering with the following research questions:

Can we capture the presence of feature learning in classification and identify the conditions
under which features cluster effectively in new distributions?

To address this, we consider a two-layer nonlinear network trained with a single gradient descent
step on a mean-squared classification loss in the proportional regime (in Section 2). Then, we
show that the dominant part of the trained feature function consists of random initialization and a
spike component (Def. 3.4) associated with the training data (in Section 3). Finally, leveraging the
dominant features, we identify conditions for effective clustering in unseen distributions (in Section 4).

Figure 1: Mapping input data (left) to
learned feature space (right); Training
classes are solid balls, unseen classes
a,b,p,n are dashed lines. Cohesion:
Strong Cohesion occurs for a,p,n, which
have high similarity to the training data
compared to b. Separability of a,n: as-
signed to different training class, they
show high Separability. Separability of
a,p: assigned to the same training class,
they exhibit low Separability.

First, we assess the intra-class Cohesion and inter-class
Separability of trained features through numerical and
analytical analysis, as standard measures of clustering
performance [Clémençcon, 2011, Papa et al., 2015, Liu
et al., 2017, Li and Liu, 2021]. As a result, we find that
Cohesion increases as the train-unseen similarity grows.
Meanwhile, for Separability, if classes are assigned to
different training classes, it also increases with the train-
unseen similarity; otherwise, it decreases, as shown in
Figure 1.

Second, we analyze the “spike component,” the predomi-
nant element of the feature function in multi-class settings.
We show that the inner product between the spike compo-
nent and a new input governs the feature’s expressiveness.
Specifically, the spike component maps new inputs using a
linear combination of randomly initialized classifier-head
weights. Therefore, we find that the spike direction con-
tributes to feature extraction only when it aligns with the
input data, as illustrated in Figure 3.

Empirically, we evaluate train-unseen similarity, Cohe-
sion, Separability under our theoretical assumptions using
synthetic datasets. As predicted by our analysis, Cohesion and Separability follow the expected
trends with respect to train-unseen similarity. We further study open-set clustering in realistic set-
tings and demonstrate the practical implications of our theoretical results. In most cases, clustering
performance is higher when the unseen classes belong to the same semantic domain as the training
classes (Expr. IV). Moreover, adding dissimilar classes does not enhance performance (Expr. V),
whereas incorporating semantically related training classes does (Expr. VI)—consistent with our
theoretical claims.

This work provides new insights showing that effective feature transfer depends on the train-unseen
similarity, further implying that features can be learned in a data-efficient manner without relying on
large-scale data. Our contributions are summarized as follows:

• We analyze the classifier’s feature representation, providing insights into how feature extractors
operate:

– Higher train-unseen similarity increases Cohesion.
– Higher train-unseen similarity increases Separability between data assigned to different

classes but reduces it otherwise.
– Feature expressiveness improves as more spike directions become non-orthogonal to the input.

• We validate the theoretical results through experiments and show that they hold in practical settings.
• We generalize the distribution assumption of prior works to non-centered sub-Gaussian distributions

and present novel proof techniques for classifier analysis (refer to Assumption 2.2).
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1.1 Related Works

Deep Metric Learning and Open-Set Clustering Metric learning has been proposed to cluster
visually similar unseen classes using classification or triplet losses [Movshovitz-Attias et al., 2017,
Zhai and Wu, 2019, Boudiaf et al., 2021]. Several recent approaches have focused on increasing the
number of training classes to improve clustering performance. One line of work introduces virtual
classes [Chen et al., 2018, Qian et al., 2020, Gu et al., 2021]. Another approach leverages a large
number of classes induced from the dataset of Schuhmann et al. [2021] to achieve state-of-the-art
performance [An et al., 2023]. This empirical trend aligns with our analysis, which suggests that
performance improves as the number of relevant classes for clustering increases. However, to the
best of our knowledge, theoretical analyses of feature transfer—particularly within metric-learning
frameworks without additional training—remain unexplored.

Neural Collapse (NC) and the Unconstrained Layer-Peeled Model (ULPM) Recent studies
have introduced the concept of Neural Collapse [Papyan et al., 2020] to explain the emergence of
intra-class feature compactness and feature-weight alignment in trained neural networks. To analyze
these phenomena, several studies propose the ULPM which treats understand the training dynamics
of NC treating features and classifier weights as unconstrained free variables [Fang et al., 2021, Zhu
et al., 2021, Ji et al., 2022, Tirer and Bruna, 2022]. Unlike the two-layer network model adopted in
our study, ULPM assumes free variable features, which limits the analyzability of input distribution
and, consequently, prevents the study of feature transferability.

Feature Learning in Two-Layer Networks The Conjugate Kernel (CK) has been widely used
to analyze feature learning in two-layer networks [Louart et al., 2017, Goldt et al., 2020, Hu and
Lu, 2022]. More recently, Ba et al. [2022], Moniri et al. [2024] have shown that feature learning
can reduce population risk in teacher-student regression settings. In contrast, our work investigates
feature transfer in classifier-trained networks, particularly in scenarios resembling metric learning,
which remain theoretically underexplored. To this end, we extend CK-based regression analyses to
accommodate non-centered sub-Gaussian inputs with Hermite-expandable activations (Sections I,
H), enabling classifier-based training with arbitrary labels and distributions. Moreover, Table 1 in
Appendix C compares our framework with contemporary studies on feature learning in shallow
networks.

Additional related work on shallow-network feature learning, feature transferability, and classifier-
based feature analysis is provided in Appendix C.

2 Problem Statement

Notations We denote by ∥·∥ either the L2 or operator norm. Let ⊙ be the Hadamard product and
A◦k be the Hadamard power. Constants C, c > 0 and κ ∈ R may vary from line to line. Define
JdK ≜ {1, 2, · · · , d}. For o,O,Θ notations regarding complexity, we follow Moniri et al. [2024].

Training Data We consider a one-vs-one classification problem with K classes that constructs
P ≜

(
K
2

)
problems. Let c1, . . . ,cK denote the class-conditional distributions of the training data,

and the training dataset be D = (X,Y ), where X ∈ Rn×d and Y ∈ JKKn. Here, X =
⋃K
k=1

(
{x ∼

ck} ×m
)
, where m is the number of instances per class and Km = n 2.

Network Structure in the Proportional Regime We consider two-layer networks in the propor-
tional regime [Ba et al., 2022], which represents a scenario where the network width and the size
of the dataset are of similar scales. Let n, d, and N be sample size, data, and feature dimension,
respectively. We perform our analysis under d/n,N/n→ c as n,d,N→∞. Concretely, the initial
weights of the first layer and the second layer are W0 ∈ Rd×N and aij ∈ RN for i, j ∈ JKK s.t. i < j,
respectively. These are initialized as W0[i] ∼ Unif(Sd−1) for i ∈ JNK and aij follows a Gaussian
distribution N(0, 1

NI). Denote W as the first-layer weights after a single gradient step. Accord-
ingly, we define F0(x) ≜ σ(W⊤

0 x) and F (x) ≜ σ(W⊤x) as the initialized and trained features,
respectively.

2Our theorem also holds in imbalanced settings, but we use balanced settings here for simplicity.
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Optimization Problem Denote the set of all network parameters as θ = {W,a12, · · · , aK−1,K}.
Let Xij be a matrix in R2m×d, where the first m rows contain samples x ∼ ci and the last m rows
contain samples x ∼ cj . Let y ≜ [1, 1, . . . , 1,−1, . . . ,−1]⊤ ∈ R2m be a vector consisting of m
ones followed by m negative ones. To classify the given data, we use the Mean Squared Error,

L(x, y; θ) =
1

2n

∑
i<j∥y − σ(XijW )aij∥2. (1)

The weight update for the first layer is given by W = W0 +G, where G ≜ − ∂L
∂w =

∑
i<j Gij , s.t.

Gij = −
1

n

[
X⊤
ij [(σ(XijW )aij − y)a⊤ij ⊙ σ′(XijW )]

]
. (2)

We then introduce the assumptions for the theoretical analysis. We omit the learning rate for simplicity,
but it may be explicitly included as η = Θ(1) without affecting the proof.
Assumption 2.1 (Activation Function). Let σ(x) be an element-wise activation s.t. σ′, σ′′, σ′′′ is
bounded by λσ almost surely. It admits a Hermite decomposition i.e. σ(z) =

∑∞
k=0 ckHk(z), where

ck = 1
k!E[σ(z)Hk(z)] for a standard Gaussian z. We assume c0 = 0, c1 > 0 and c2kk! ≤ Ck−3/2−w,

for constants C,w > 0 e.g., the Shifted ReLU, defined as max(x, 0)− 1√
2π

.

Assumption 2.2 (Training Data). We assume the class-conditional distributions ci are non-centered
Sub-Gaussians [Vershynin, 2018, Cao et al., 2021, Cole and Lu, 2024], a necessary generalization for
classification tasks involving non-identical distributions with bounded support. This extends common
assumptions such as Gaussians and Gaussian mixtures (see Appendix Table 1 for comparison).

To accommodate non-centered Sub-Gaussian distributions, we generalize Hermite expectation tech-
niques from centered Gaussians to non-centered Sub-Gaussians (Lemma F.5, Appendix H), extending
prior work on centered Gaussian cases [O’Donnell, 2021, Moniri et al., 2024]. We also adapt key
results for centered Sub-Gaussians [Vershynin, 2010, 2018] to the non-centered setting (Appendix I).
Please refer to Appendix D for preliminary information on Hermite polynomials and for additional
notations used in the proofs.

3 Feature Decomposition

This section analyzes the one-step trained feature extractor in the proportional regime. As a first step,
we linearize the gradient G in the proportional regime to approximate the trained feature.
Theorem 3.1 (Gradient Approximation). Let Aij ≜ c1

nX
⊤
ijya

⊤
ij , a rank-one structure for each ij-th

classification problem. Under Assumptions 2.1 and 2.2, and for sufficiently large n,

∥G−
∑
i<j

Aij∥ ≤ κ
log2 n

n
, w.p. 1− o(1). (3)

For the proof, please refer to Appendix E. Theorem 3.1 shows that the gradient G with respect to W0

exhibits an almost Rank-P structure and can be expressed as
∑
i<j Aij . Next, leveraging

∑
i<j Aij

and the Hermite decomposition of the activation σ, we deterministically decompose the one-step
trained feature F (x) = σ((W0 + G)⊤x) into its dominant and residual components, in order to
analyze the feature structure for new inputs based on its deterministic and dominant terms.
Definition 3.2 (Spike Direction). The spike direction is defined as βij = 1

nX
⊤
ijy ∈ Rd. If the

distinction between i and j is not essential, we omit the subscripts.
Theorem 3.3 (Feature Decomposition). Under Assumptions 2.1 and 2.2, let X̃ ∈ Rn×d follow
Sub-Gaussian, L ≜ log n, F0,L ≜

∑L
k=1 ckHk(X̃W0), and, sL ≜

∑L
k=1 c

k
1ck(X̃

∑
i<j βija

⊤
ij)

ok.

F = F0,L + sL +∆, w.p. 1− o(1), (4)
where ∥sL∥ = Ω(

√
n), ∥F0,L∥ = Θ(

√
n), and ∥∆∥ = o(

√
n).

Please refer to Appendix F for the proof. Theorem 3.3 represents that the learned features are mainly
composed of the spike component—which maps new inputs via inner products with the data-label
covariance βij—and F0,L, inherited from the random initialization. Under Theorems 3.1 and 3.3, it
follows that for sufficiently large n, the one-step trained feature is primarily described by the term
F0,L + sL. Therefore, we introduce the deterministic Dominant Feature FL(x) below, which serves
as the foundation for our subsequent analysis.

4



Definition 3.4 (Dominant Feature FL(x)). For sufficiently large n, w.h.p and retaining only compo-
nents of F larger than o(

√
n), we define the dominant feature FL as follows.

FL(x) ≜
L∑
k=1

ckHk(W
⊤
0 x)︸ ︷︷ ︸

F0,L(x)

+

L∑
k=1

ck1ck(
∑
i<j

(β⊤
ijx)a

⊤
ij)

◦k

︸ ︷︷ ︸
sL(x)

, (5)

where F0,L is the approximated randomly initialized feature, and sL is the trained Spike Component.

FL(x) defined in Definition 3.4 represents the dominant part of the feature decomposition using the
Hermite expansion for sufficiently large n. This approximation is expressed through linear operations
and polynomials, facilitating an explicit closed-form representation of the clustering criteria.

4 Feature Analysis

4.1 Clustering Criteria Analysis

We analyze two key criteria—Cohesion and Separability—which capture intra-class compactness
and inter-class distinction of features to identify the conditions under which features from unseen
classes form coherent and separable clusters. We suggest that these quantities are governed by the
train (β)-unseen (µ) similarity under Condition 4.2 in binary classification. Specifically, we express
both Cohesion and Separability (Definition 4.3) as closed-form polynomials of β⊤µ.

Definition 4.1 (Train-Unseen Similarity). Given the spike direction β in Definition 3.2 and the mean
of the unseen distribution µ, the Train-Unseen Similarity is defined as β⊤µ.

Condition 4.2. Suppose n,d,N are fixed and sufficiently large. Under Assumptions 2.1, 2.2, let
ci = N(µi, Id) for i ∈ J2K be the class conditional distributions. Define ρk,k′,r,r′ > 0 to depend
only on N and d, and to be independent of µ and β, as in Definition G.1.

Definition 4.3 (Cohesion and Separability). We define two clustering performance criteria as func-
tionals based on the inner product similarity between features, for given any feature G:

C(G) ≜ Eθ[Ex∼cG(x)⊤Ex′∼cG(x′)], S(G) ≜ −Eθ[Ex∼c1G(x)⊤Ex′∼c2G(x′)].

Cohesion C(G) quantifies the expected inner product similarity between i.i.d. features belonging to
the same class c, with the expectation taken over network parameters θ. Separability S(G) quantifies
the expected dissimilarity between independent features from different classes c1 and c2, again with
the expectation taken over θ.

Since ∥F0,L∥/∥sL∥→ 0 as n→∞ by Theorem 3.3, we focus on presenting C(sL) and S(sL)
3.

Proposition 4.4 (Cohesion of sL). Following Condition 4.2, the Cohesion C(sL) for c, is given by:

C(sL) =

L∑
k=1
k′=1

ckck′

[
k∑
r=0

k′∑
r′=0

ρk,k′,r,r′ |β⊤µ|k+k
′−r−r′∥β∥r+r

′

]
. (6)

Proposition 4.5 (Separability of sL). Under Condition 4.2, the Separability S(sL) for c1,c2 yields:

S(sL) = −
L∑
k=1
k′=1

ckck′

[
k∑
r=0

k′∑
r′=0

ρk,k′,r,r′(β
⊤µ1)

k−r(β⊤µ2)
k′−r′∥β∥r+r

′

]
. (7)

The proofs of Propositions 4.4 and 4.5 are in Appendix G. In the above Propositions, C(sL) and S(sL)
are computed in closed-form expressions and expressed as polynomials of Train-Unseen Similarity.
Also, C(FL) and S(FL), which include the F0,L term, are polynomials of the train-unseen similarity,
as shown in Propositions G.2 and G.3. With the polynomial from, to identify conditions that improve
the clustering criteria, we numerically evaluate C(FL) and S(FL) by varying µ⊤

1 β and µ⊤
2 β.

3Empirical support for the dominance of sL in C(FL) and S(FL) is presented in Appendix K.
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As illustrated in Figure 2, we find that Cohesion increases with |µ⊤β|, i.e., as the “unseen” data
becomes more aligned with the Spike Direction β. Also, Separability rises when the magnitudes of
µ⊤
1 β and µ⊤

2 β grow with opposite signs and decreases when they grow with the same sign i.e., it
increases when the two “unseen” classes are assigned to different classes as explained below:
Note 4.6 (Explanation of assignment and β⊤µ). β represents the normal vector of the linear decision
boundary in binary classification within the data space before training, i.e. the direction that
determines class assignment based on the sign of its inner product with the data. Therefore, the sign
of β⊤µ indicates the class assignment of unseen data with mean µ.

1000 0 1000
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125
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n

(a) Cohesion C(FL)

1000 500 0 500 1000
1
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500

0

500
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2

-111
-89
-66
-44
-22
0
22
44
66
89

(b) Separability S(FL)

Figure 2: F by adjusting β⊤µ1 and β⊤µ2. We set n =
320000, µ1 = −µ2 ∈ Rn and ∥µ1∥, ∥µ2∥, ∥β∥ = 1.

These two phenomena can be interpreted
based on the property of the leading term
sL in FL. The phenomena follow the ex-
pressions inside the brackets of Eqs. (6)
and (7). Furthermore, if the Shifted ReLU
is used as the activation function, the anal-
ysis in Appendix D.1 shows that the first
Hermite coefficient c1 takes a significantly
positive value, while the subsequent coef-
ficients oscillate and gradually diminish in
magnitude. This suggests that the positive
contribution may dominate the summation∑

ckck′ , which is consistent with our em-
pirical observations. However, further investigation is required to validate this hypothesis rigorously.
Additionally, in Appendix K, we show that our theory tends to hold over a wider range as n increases,
and in Note G.6, we discuss the ∥β∥ term.

4.2 Spike Component Analysis
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(a) Dominant Feature FL
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(b) Two-layer Network F

β4

x1

x2 β1

β2

β3

a4
O

a3
O

a2
O

a1
O

β⊤
i x1 β⊤

i x2

(c) Illustration of β1, β2, β3, and β4

Figure 3: Expressibility of FL and F trained with combinations of β2, β3, and β4 (a, b): While
including β2 and β3 allow FL and F to extract distinct features as x1 and x2 vary, β4 yields less
informative representations. (c): Including β1 and β4 does not contribute to distinguish x1 and x2.

This section examines the impact of the spike component sL on FL = F0,L + sL, specifically how
the learned component sL contributes to feature extraction for unseen inputs.

Corollary 4.7 (Corollary of Theorem 3.3). Let the inputs x1, x2 ∈ Rd and remark Dominant Feature
FL(x) = F0,L(x) + sL(x) in Definition 3.4. If |β⊤x1 − β⊤x2| → 0 (e.g., when x1, x2 ⊥ β). Then,

∥sL(x1)− sL(x2)∥ → 0 and ∥FL(x1)− FL(x2)∥ → ∥F0,L(x1)− F0,L(x2)∥.

Corollary 4.7 shows how the dominant feature FL behaves under different conditions. Specifically, if
the direction of x is not orthogonal to βij , then spike of βij involve feature extraction. Conversely,
when x is orthogonal to βij , the impact of spike βij is eliminated, indicating that the training becomes
irrelevant and the feature extractor relies solely on the random features.

To demonstrate this, we define four β directions based on two test inputs x1, x2 ∈ Sd−1(
√
d) as

Midpoint β1 = x1+x2

2 , Interpolation β2 = x1+3x2

4 , Extrapolation β3 = −x1+5x2

4 , and Orthogonal
β4, a random unit vector orthogonal to both x1 and x2 s.t. ∥βi∥ =

√
d, ∀i ∈ J4K. By construction,

β1 and β4 cannot contribute to distinguishing the two inputs via inner product, while β2 and β3 can
distinguish the two inputs. See Figure 3 (c) for an illustration.
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We evaluate both the approximated features FL and the trained two-layer neural network F on four
binary classification tasks, where each task involves Gaussian distributions with means βi and −βi
to form given βi, and covariance 0.1I with n = d = N = 211. For all non-empty combinations
of βi, the L2 distances between F (x1) and F (x2), and between FL(x1) and FL(x2), are measured
by varying the angle between x1 and x2 from 0 to π

2 radians. The results are summarized using
Expressibility, defined as the maximum L2 distance between two feature vectors for a given class
combination, normalized by the global maximum distance observed across all combinations. This
metric quantifies how well a representation distinguishes structural variations in the input space.

As shown in Figure 3 (a,b), features derived from β4 exhibit limited Expressibility. In contrast,
features from β2 and β3 are more responsive to input variations, capturing meaningful structural
differences. When multiple expressive βs (e.g., β2 and β3) are combined, the resulting features are
even more sensitive to input changes, reflecting improved representational capacity. These results
suggest that training with structurally relevant training classes enhances feature Expressibility, while
incorporating unrelated classes as β4 has minimal impact.

Additional experimental results are presented in Appendix L, including analyses of β1 and experi-
ments isolating the contributions of the F0,L and sL components. We also provide the original data
used in the Expressibility computation of Figure 3. In summary, Consistent with β4, β1 also shows
limited expressiveness. In addition, the sL component from β1 and β4 maps x1 and x2 to nearly
identical feature vectors. In contrast, the F0,L component introduces some separability, suggesting
that FL and F calculated from less expressive β can still extract weakly distinguishable features.

5 Experiments

We conduct seven experimental setups to validate our analysis and explore practical implications of
the above analysis for open-set clustering, using feasible clustering criteria Recall@1 (Remark 5.1).

Remark 5.1. Recall@1 ≜ Exi,yi1yi=ŷi,1-NN . ŷi,1-NN denotes the class of the nearest feature to xi. This
serves as a practical metric for evaluating whether new unseen test classes form coherent clusters.

The choice of recall@1 is motivated by its ability to reflect clustering quality: when both Cohesion
and Separability are high, the nearest neighbor is more likely to belong to the same class, leading
to a higher recall@1. First, in Experiments I, II and III, we examine the relationship between train-
unseen similarity (i.e. β⊤µ) and Cohesion, Separability—as discussed in Section 4.1—and Recall@1
within theoretical assumptions. Second, to demonstrate how our theoretical explanations can provide
intuition in practical settings, we conduct the Experiments IV, V, VI, and VII. For this purpose, we
employ the open-set clustering problem using fine-grained real image datasets. For all experiments,
we repeat each experiment with three repetitions, except for VII, where we perform five runs.

5.1 Setup for Theory Vaildation: Expr. I, II, III

Synthetic Data Design Based on Assumptions 2.1 and 2.2, and Condition 4.2, we construct three
types of non-centered sub-Gaussian training datasets—uniform ball, truncated Gaussian, and uniform
sphere (Data 1, 2, and 3). All distributions are origin-symmetric. For evaluation, we introduce two
Gaussian test distributions—Eval 1 and Eval 2—parameterized by a translation vector e and a rotation
matrix R ∈ SO(n) which control the train-unseen similarity. Specifically, as e increases from 0 to 1,
β⊤µ increases due to mean shift; similarly, as R approaches the identity matrix I , β⊤µ also increases
due to rotational alignment. Refer to Figure 24 and Appendix M.1 for illustrations and details.

Experiment Design For each experiment, we utilize Data 1, 2, and 3, with each dataset paired
with a distinct evaluation dataset. Expr. I uses two Eval 1 distributions with translation parameter
e1 ∈ [−0.9, 0.9] and e2 = −e1, so they are assigned to opposite training classes. Experiments II
and III are based on two Eval 2 distributions, each parameterized by a small-angle random rotation
matrix R generated as described in Appendix P. In Expr. II, considering the case where the datasets
are assigned to opposite classes, the first distribution uses R, and the second distribution uses −R.
In Expr. III, considering the situation where the datasets are assigned to the same class, the first
distribution uses R and the second uses R⊤.
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(c) Recall@1(IP): Expr II

60 40 20 0

300

400

500

600

Co
he

sio
n

(d) Cohesion: Expr III
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(e) Separability: Expr III
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Figure 4: Upper row: In Expr II, all metrics increase as |β⊤µ| increases. Lower row: In Expr III,
where two test classes are assigned to a single train class, Recall@1 and Separability tend to decrease
as |β⊤µ| increases. This aligns with our predictions. In all cases, results using Data 1 are reported.
The red line represents the values after one step of training, i.e., F . The blue line represents
the values from initialization, i.e., F0.
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Figure 5: Summary of the synthetic data experiments: The large and dark circles represent low
train-unseen similarity, while the small and light circles indicate high train-unseen similarity. The
datasets D1, D2, and D3 correspond to synthetic Data 1, 2, and 3, respectively. C denotes Cohesion,
and S denotes Separability. We scale all measurements using the absolute value at the 85th percentile.

5.2 Results of Theory Vaildation: Expr. I, II, III

In Figure 4, we present the results of Expr. II and III using Data 1; uniform ball. These results show
that as the train-unseen similarity increases, the Cohesion consistently increases. On the case of
Separability, in Expr. II, the two unseen classes are assigned to different training classes. As the
train-unseen similarity increases, the Separability also increases accordingly. In contrast, in Expr. III,
where the two unseen classes are assigned to the same training class, we observe that Separability
decreases as the train–unseen similarity increases. A similar trend is observed for Recall@1, which
follows the behavior of Separability.

Figure 5 summarizes the results across all cases. For individual plots, refer to Appendix M.2. Except
for the Separability in Expr. III, both Cohesion and Separability generally increase with train-unseen
similarity (from big dark points to small light ones), with the drop in Expr. III attributed to duplicated
training class assignment. These observations align with our analysis. On top of that, Appendix M.3
provides empirical evidence that the relationship between the clustering criteria and train-unseen
similarity holds in both multi-step and multi-layer settings. These findings suggest that our theoretical
framework remains valid, at least to some extent, beyond the two-layer, one-step setting.
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5.3 Setup for Practical Vaildation: Expr. IV, V, VI, VII

Building on our analysis, which identified conditions for effective feature clustering under unseen
distributions, we conduct experiments to examine whether the theoretical insights hold in practical
settings. First, we examine if the positive relationship between train-unseen similarity and clustering
criteria also holds for semantic similarity and Recall@1 (Expr. IV). Second, we evaluate whether the
theoretical result—that feature expressiveness improves only with a larger number of non-orthogonal
spike directions—holds in practice, by examining whether increasing the number of semantically
similar training classes enhances clustering performance (Expr. V, VI). Finally, we test if removing
redundantly assigned unseen classes improves performance more than random removal (Expr. VII).

We use the datasets CAR (Vehicle, Krause et al. [2013]), CUB (Bird, Wah et al. [2011]), SOP
(Product, Song et al. [2015]), and ISC (Clothing, Liu et al. [2016]), referred as Domain. We define
ImageNet [Deng et al., 2009] subsets for the Vehicle, Bird, Product, and Clothing domains, denoted
as I(V), I(B), I(P), and I(C), and refer to them as sub In1k. The classes are manually selected and
listed in Appendix O. We also define a dataset called subsampled whole In1k, which includes all
classes. To balance the number of samples per class with those in Domain data, we subsample 82,
58, 5, and 6 samples per class in ImageNet variants, respectively. Most experimental configurations
follow the approach of Zhai and Wu [2019], a seminal baseline. We utilize ResNet-18 and 50 [He
et al., 2015] with random initialization and ImageNet pre-trained weights.

5.4 Results of Practical Vaildation: Expr. IV, V, VI, VII
CAR CUB SOP ISC

Test

CAR

CUB

SOP

ISC

Tr
ai

n

26.97 8.92 27.65 19.75

14.13 12.54 29.93 18.68

17.51 9.81 36.63 30.84

14.17 8.34 31.40 47.88

ResNet18 (init)

CAR CUB SOP ISC
Test

CAR

CUB

SOP

ISC

Tr
ai

n

20.96 6.75 25.95 14.86

7.33 6.59 19.21 10.01

18.17 9.80 37.55 29.77

11.77 6.76 28.63 47.36

ResNet50 (init)

Figure 6: Expr. IV, Recall@1
measurements. In most cases,
the highest performance is ob-
served when the domains of
the training and test datasets
correspond.

For Expr. IV, we train with each Domain dataset (CAR, CUB, SOP,
and ISC train) and Domain+sub In1k dataset (CAR+I(V), CUB+I(B),
SOP+I(P), and ISC+I(C)), and then measured how well each model
clusters across all test datasets (CAR, CUB, SOP, and ISC test).
Figure 6 demonstrates that clustering test data semantically related
to training classes is more effective than using classes from unrelated
domains. This observation aligns with our theoretical prediction that
clustering performance increases as train-unseen similarity increases,
provided under limited redundant assignments. The trend held in 29
out of 32 experiments. Refer to Appendix N.1 for comprehensive
results, which also include additional experiments demonstrating
the correspondence between train-unseen similarity and semantic
similarity, as well as between clustering criteria and Recall@1.

In Expr. V, after learning the Domain, Domain+sub In1k, and Do-
main+subsampled whole In1k, we measure Recall@1 for corre-
sponding testsets. Including all ImageNet classes to Domain offers
no clear advantage over including only related ImageNet classes
(Figure 7a). Meanwhile, clustering on CAR and CUB with random
initialization improved with Domain+sub In1k compared to Domain.
This supports our results that feature extraction is driven by sim-
ilar training classes with the input forming non-orthogonal spike
directions. See Figure 35 and Table 9 for additional results.

In Expr. VI, we investigate how gradually increasing the number of
semantically related training classes affects clustering performance
on each Domain test dataset. Each Domain training datasets is
divided into four stages, introducing 25%, 50%, 75%, and 100%
of its classes at Steps 0 through 3, respectively. The classes are
randomly sampled. As shown in Figure 7b, increasing the number of
semantically related training classes improves performance. Refer
to Figure 36 for more results.

For Expr. VII, during the evaluation phase, removing redundantly assigned unseen classes resulted in
a 2.31 percentage point improvement in Recall@1 compared to random removal of the same number
of unseen classes, with a maximum improvement of 12.71 percentage points, amaximum drop of
-6.04 percentage points, and a success rate of 82.81%. This suggests that duplicate assignments hinder
clustering, corroborating our analysis of Separability. We refer to more details in Appendix N.2.
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(b) Expr VI, Recall@1 values for the CAR, CUB,
SOP, and ISC datasets are shown with dashed lines

for ResNet18 and solid lines for ResNet50.

Figure 7: Key results of (a) Expr. V and (b) Expr. VI. (a) Adding all ImageNet classes (Domain +
subsampled whole In1k) yields similar performance gains to adding only domain-relevant classes
(Domain + sub In1k). (b) Using more classes within the Domain improves performance.

6 Conclusion

In this study, we investigate the feature learning dynamics of a two-layer classifier in the proportional
regime by extending the conventional regression setting and introducing novel technical lemmas,
thereby providing a deeper understanding of the mechanisms underlying feature transferability. To
our knowledge, this is the first work to quantitatively connect train-unseen alignment with open-set
clustering performance, rather than relying solely on hypothesis-level arguments. Our analyses reveal
that Cohesion increases with higher similarity between training and unseen data, while Separability
depends not only on this similarity but also on avoiding redundant class assignments. Furthermore,
our framework characterizes how feature expressiveness for unseen classes depends on the number of
semantically related training classes, showing that only spike directions non-orthogonal to the input
contribute meaningfully to feature extraction. Beyond validation on synthetic datasets, our theoretical
insights also hold for real-world datasets, where we observe improved clustering performance when
training classes are semantically aligned with the target domain.

6.1 Limitations and Future Works

While our study provides valuable insights into feature learning and transferability, several important
directions remain for future research. First, while the Hermite approximation was helpful for our
feature analysis, it introduced challenges due to discrepancies between nonlinear neural networks and
the polynomial functions used to approximate them. Specifically, we observed that our theoretical
predictions tend to align better as the dimensionality increases (Figure 2). In finite dimensions,
while a similar trend could be identified in the unnormalized results shown in Figure 3, a precise
scaling alignment was lacking. Moreover, in Section 4.1, we hypothesized that the influence of
Hermite approximation coefficients would be positive and confirmed this experimentally, although
a theoretical verification remains an open avenue for future work. These observations suggest
promising directions for future research exploring alternative approximation techniques or more
refined analytical methods. Second, an important direction for future research is to extend the
concepts of Cohesion and Separability to multi-step, multi-layer and multi-class softmax, integrating
techniques like normalization and temperature scaling. This could help align our analysis more closely
with practical settings, particularly in the context of Neural Collapse research under arbitrary input
distributions. Finally, in contrast to prior work that emphasizes large-scale datasets on broad domains
[Brown et al., 2020, An et al., 2023], our arguments highlight the importance of domain-relevant
datasets for effective feature transfer. This perspective aligns with recent research on constructing
efficient training coresets [Mirzasoleiman et al., 2020, Paul et al., 2023, Xia et al., 2023, Zhang
et al., 2023, Jain et al., 2022] and suggests a potential new direction for representation-aware coreset
selection. For instance, reducing the number of training classes or excluding training data that do not
contribute to relevant directions can lower computational complexity while still enabling successful
clustering and feature transfer.
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Justification: The paper provide the full set of assumptions in Assumption 2.1 and Assump-
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-
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by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully disclose all the information needed to reproduce the main
experimental results in Section 5, Appendix M.1, Appendix O, and Appendix P.
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• The answer NA means that the paper does not include experiments.
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to make their results reproducible or verifiable.
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
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the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The paper focuses on theoretical analysis and validation based on publicly
available datasets and existing code. Therefore, no additional code is provided. However,
sufficient information is included to allow for faithful reproduction of the results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specify all the training and test details in Section 5, Appendix M.1,
and Appendix O.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper report error bars suitably. We repeat experiment at least three times.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The computer resources is noted in Appendix A
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper discuss both potential positive societal impacts and negative societal
impacts of the work performed in Appendix B
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We answered [NA] because our work does not involve generative models, lan-
guage models, or any components with high risk of misuse. We only use benchmark datasets
that are widely adopted in metric learning research and commonly used in demonstrations.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We used four retrieval datasets proposed in previous computer vision research
as well as the ImageNet dataset for research purposes, and we have included proper citations.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Since our work focuses on analyzing existing models, we do not introduce any
new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not conduct crowdsourcing experiments and research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We answered [NA] because LLMs are not used as important, original, or
non-standard components in the core methods of this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Computational Resources

For all experiments, we use one NVIDIA GeForce RTX 3090, Intel(R) Xeon(R) Gold 5218 CPU @
2.30GHz and 128GB CPU memory.

B Broader impacts

This paper presents work aimed at advancing the field of Machine Learning. In this research, we
analyze the potential for clustering performance improvement through the classification training
of many classes. Such an approach may reduce the level of personal data masking required for
fine-grained data differentiation, which could trigger new ethical discussions regarding privacy
protection. Additionally, to effectively implement this approach, there may be a tendency to collect
more data, which can have significant implications for the scale and scope of data collection and data
management practices.

C Additional Related Works

Table 1: Comparison of Data and Target Settings Between Our Work and Other Feature Learning
Studies: We use a non-centered Sub-Gaussian distribution as the data distribution, encompassing
all existing studies below. Moreover, the classification problem requires multiple non-identical
distributions, so we adopt a non-centered assumption. Unlike these works that assume a teacher
structure and study whether the feature extractor can learn it, we analyze what structure the feature
extractor learns when trained on arbitrarily labeled targets. This enables us to characterize the criteria
when transferring features to a clustering task, making our setting more aligned with real-world
applications.

Data Distribution Key Target Function Miscellaneous
Ba et al. [2022] x ∼ N(0, I) f(w⊤x) + ϵ ϵ ∼ N(0, σ2)
Dandi et al. [2023] x ∼ N(0, I) f(w⊤

1 x, · · · , w⊤
r x)

Cui et al. [2024] x ∼ N(0, I) f(w
⊤x√
d
)

Dandi et al. [2024] x ∼ N(0, I) f(w⊤x)
Moniri et al. [2024] x ∼ N(0, I) f(w⊤x)
Demir and Dogan [2025] x ∼

∑
ρN(µ,Σ) f(w⊤x|c) c is GMM component assign

Ba et al. [2023] x ∼ N(0, I + dβµµ⊤) f( 1√
1+dβ

w⊤x) β ∈ [0, 1)

Mousavi-Hosseini et al. [2023] x ∼ N(0, I+κθθ
⊤

κ+1 ) f( w⊤x

∥Σ
1
2w∥

) + ϵ ∥θ∥ = 1, ϵ ∼ N(0, σ2)

Damian et al. [2022] x ∼ N(0, I) f(Ax)
Nichani et al. [2023] x ∼ centered SG f(x⊤Ax) SG denotes Sub-Gaussian
Wang et al. [2023] x ∼ N(0, I) f(x⊤Ax)
Fu et al. [2025] x ∼ Unif(Sd−1) f(x⊤A1x, · · · , x⊤Arx)

ours x ∼ non-centered SG {1,−1} The target is an arbitrary label

Additional Works on Feature Learning in Shallow Networks Dandi et al. [2023] studied how
neural networks can learn feature structure step-by-step during gradient descent. To demonstrate
that neural networks can effectively learn low-dimensional structures, Ba et al. [2023] and Mousavi-
Hosseini et al. [2023] analyzed the dynamics of learning when both the teacher and the data contain
low-dimensional structures such as spikes.

Demir and Dogan [2025] assumed a Gaussian mixture model for the data, proposed Conditional
Gaussian Equivalence, and stochastically approximated a 2-layer network. While this approach
might appear similar to our Theorem 3.3, our proof does not require conditional approximations or
constructing a stochastically equivalent model, as we rely solely on the Sub-Gaussian property. This
provides a more straightforward approach to analyzing the features of new data.
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Building on the work of Damian et al. [2022], several studies analyze the sample complexity of
neural networks in learning internal representations while performing regression tasks. These studies
consider progressively more complex forms of teacher, e.g., g(x⊤Ax), where the data comes from a
centered distribution, as discussed in Nichani et al. [2023], Wang et al. [2023], and Fu et al. [2025].
These works primarily focus on regression problems with a teacher, whereas we assume arbitrarily
assigned classification labels without using a teacher function. Furthermore, the transfer learning
aspect in these studies examines sample complexity when the function head, e.g., g, is changed, but
the internal structure, e.g., x⊤x, is preserved. In contrast, our work investigates feature transfer in
classification settings where new input distributions are introduced without additional learning.

Extending the heuristic results of Cui et al. [2024], Dandi et al. [2024] analyzed the learned feature
extractor using an equivalent model to characterize the test error in regression problems and analyze
the spectral tail behavior of the feature extractor’s covariance matrix. Their study explored the
phenomenon of spikes in the spectrum, resulting in heavy-tailed distributions. Similarly, we derive
an equivalent model suited to our classification setup and examine the characteristics of clustering
errors for unseen distributions (see Section 4.1). We then investigate the behavior of the spike term in
the feature extractor (see Section 4.2).

Feature Transferability in Deep Metric Learning The explanation for how Deep Metric Learning
learns transferable features towards unseen data remains insufficient. Chopra et al. [2005] suggested
that CNNs’ robustness to geometric distortions enables the creation of generalizable features. This
explanation has been replaced in transformer-based research by the idea that, without the inductive
biases of CNNs, transformers are less constrained and thus capable of extracting generalizable
features [El-Nouby et al., 2021, Caron et al., 2021].

Following the manifold hypothesis [Chang et al., 2003, Lee et al., 2003, Talwalkar et al., 2008,
Goodfellow et al., 2016], Liu et al. [2018], Ermolov et al. [2022] explained that normalized softmax
for metric learning works well because the hyperspherical/hyperbolic feature space and the data
lie on a manifold. However, these studies do not adequately analyze how features are learned and
transferred through classification.

There are empirical studies on classifier transfer learning (not feature transfer like ours, which doesn’t
require learning) (Li et al. [2024]) and theoretical studies (Lampinen and Ganguli [2019], Tripuraneni
et al. [2020]).

Neural Collapse (NC) and Features Learned by Classifiers Studies exist exploring Neural
Collapse (NC) and features learned by classifiers under the free variable assumption. Hui et al. [2022]
argue that NC does not manifest on test data. Sohoni et al. [2020], Yang et al. [2023] claim that even
on training data, NC is not fully realized, with critical fine-grained structures concealed. Notably,
Yang et al. [2023] utilized a two-layer network to analyze training data features. Regarding NC on
novel data, Galanti et al. [2022] statistically analyzes NC in transfer learning, suggesting that NC
generalizes to new samples within training classes and unseen classes with empirical observations.
However, their analysis is constrained by focusing on general function spaces rather than specific
neural network architectures.

Also, there are papers addressing the alignment phenomenon between the network and the training
data in neural network classification tasks (Min et al. [2024]), studies on the increased separability and
cohesion of training data features in classification settings (Zarka et al. [2021], Das and Chaudhuri
[2019]), and research showing that classifier networks outperform linear classifiers through feature
learning (Shi et al. [2022], Frei et al. [2023], Refinetti et al. [2021]).

Furthermore, there are theoretical papers studying optimization properties like implicit margin
maximization (Lyu et al. [2021], Wu et al. [2023]) and interpolation (Chatterji et al. [2021], George
et al. [2023]).

MSE for Classification Utilizing MSE in classification is as well-established as using softmax-
cross entropy, especially in theoretical analyses of classification problems [Han et al., 2022, Zhou
et al., 2022].

26



Generalization Bound for Metric Learning Research on the generalization bounds of metric
learning related to the U-process we use is also ongoing [Bellet and Habrard, 2015, Huai et al., 2019,
Zhou et al., 2024]. However, these studies do not analyze the exact feature learning structure.

D Additional Notations

The operator diag(·) creates a matrix with the input vector elements placed along the diagonal. Let
1condition be 1 if the condition is true and 0 otherwise. Let m! be factorials of m. Let n!! be double
factorial. We define (−1)!! = 0!! = 1. For oP, OP,ΘP notations, we follow Moniri et al. [2024] ∥·∥F
is the Frobenius norm. ∥·∥∞ is the infinity norm. ∥·∥ψ2

is orlicz-2 norm e(i) Standard basis vector
with 1 at position i. ⌊n/2⌋ denotes the floor of n/2. Γ(z) is the Gamma function.

Additional information on Hermite Polynomials We employ the probabilist’s Hermite poly-
nomials [Szegő, 1975, Bienstman, 2023, Moniri et al., 2024]. We denote Hk(x) as k-th Hermite
polynomial.

The n-th Hermite polynomials, Hn(·), are defined by the recurrence relation: Hn+1(x) = xHn(x)−
nHn−1(x), for n ≥ 1, with the initial conditions H0(x) = 1, H1(x) = x. Using this recurrence, we
have H2(x) = x2 − 1, H3(x) = x3 − 3x, · · · .
Hermite polynomials can be represented in the following explicit form:

Hn(x) = (−1)ne x2

2
dn

dxn
e−

x2

2 .

for n ∈ N0. Lastly, there is another expression:

Hn(x) = n!

⌊n
2 ⌋∑

m=0

(−1)m

m!(n− 2m)!

xn−2m

2m
(8)

The probabilist’s Hermite polynomials form an orthogonal set with respect to the standard normal
weight function ϕ(x) = 1√

2π
e−

x2

2 on the interval (−∞,∞). Their orthogonality condition is given
by: ∫ ∞

−∞
Hm(x)Hn(x)

1√
2π

e−
x2

2 dx = n!1m=n.

D.1 Hermite Coefficients of shifted ReLU

One of the activation functions that satisfy our condition 2.1 is shifted ReLU,

σ(x) = max(0, x)− 1√
2π

. (9)

This enables a Hermite decomposition with coefficients given by

cn =
1

n!
Ez[σ(z)Hn(z)]. (10)

Then the zeroth coefficient is calculated as

c0 = Ez[σ(z)× 1] = Ez[max(0, x)]− 1√
2π

=

∫ ∞

0

xϕ(x)dx− 1√
2π

= 0

(11)

By the way, if n ̸= 0, E[ 1√
2π
×Hn] =

1√
2π

E[1 ×Hn] =
1√
2π

E[H0 ×Hn] = 0 by orthogonality.
Thus, the shift only affects n = 0.
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The coefficient cn of the expansion of Shifted-ReLU is defined as:

cn =

0, if n = 0,∑⌊n/2⌋
m=0

(−1)m·2
n−2m

2
−m·Γ(n−2m+2

2 )
m!·(n−2m)!·

√
2π

, otherwise.
(12)

We directly calculate Equation (12) and obtain the following result in Figure 8.
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n
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0.3
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c n

Figure 8: Hermite coefficient of shifted ReLU

E Proof of Theorem 3.1

This section builds upon the proof structure introduced by Ba et al. [2022], adapting and extending
their technique to our classification learning framework. Unlike their assumption of centered Gaussian
training data, we consider non-centered Sub-Gaussian data distributions. In this process, we apply a
novel approach involving the concentration of the operator norm on a random matrix. Also, since our
framework is not in a teacher-student setting, we use class labels instead of a teacher function.

Gradient Decomposition We decompose the gradient (Equation (2)) using Hermite decomposition,
which allows us to extract the essential rank-one matrix structure for each ij-th classification problem.
Denote σ′ = c1 + σ′

⊥ for the Hermite decomposition result.

Gij =
c1
n
X⊤
ijya

⊤
ij +

1

n
X⊤
ijya

⊤
ij ⊙ σ′

⊥(XijW0)−
1

n
X⊤
ijσ(XijW0)(aija

⊤
ij)⊙ σ′(XijW0). (13)

Denote

Aij ≜
c1
n
X⊤
ijya

⊤
ij

Bij ≜
1

n
X⊤
ijya

⊤
ij ⊙ σ′

⊥(XijW0)

Cij ≜ −
1

n
X⊤
ijσ(XijW0)(aija

⊤
ij)⊙ σ′(XijW0).

(14)

We derive the norm bound for the terms Aij , Bij , and Cij in Lemma E.1. We establish the following
Theorem 3.1 using these bounds.

We will omit the subscript ij since it does not cause any confusion in Lemma E.1, Remark E.2, and
Proof of Lemma E.1. The following statements hold for ∀ij. For the aforementioned A, B, and C,
we obtain bounds for each operator norm as follows.
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Lemma E.1 (Probabilistic Bounds on Gradient Decomposition Components).

P
(
∥A∥ ≤ C(

1√
N
− C

√
d√
nN

)

)
≤ 2
(
e−cN + e−cn

)
P
(
∥B∥ ≥ C

n
√
Nd

(
√
n+
√
d)(
√
n+
√
N) logN

)
≤ C

(
e−cN + e−cd +Ne−c log

2 n + e−(
√
n+

√
d)2
)

P
(
∥C∥ ≥ C√

nN
(2
√
d+
√
n) logn logN

)
≤ 2
(
ne−cd + ne−c log

2 n +Ne−c log
2 n
)
.

(15)
Remark E.2 (Reformulated Lemma E.1). In the proportional regime, these quantities can be inter-
changed to a constant as n,d,N→∞. Thus, Lemma E.1 is reformulated as follows

P(∥A∥ ≤ κ/
√
n) ≤ Ce−cn)

P
(
∥B∥ ≥ C logN

n

)
≤ C(e−cn + ne−c log

2 n)

P
(
∥C∥ ≥ C log2 N

n

)
≤ C(ne−cn + ne−c log

2 n)

(16)

Also, for the gradient, we have

∥G∥ = ∥A+ B+ C∥ ≤ ∥A∥+ ∥B∥+ ∥C∥ = OP(
1√
n
+

logn

n
+

log2 n

n
) = OP(

1√
n
) (17)

Proof of Theorem 3.1. Using ∥Gij − Aij∥ = ∥Bij + Cij∥ ≤ ∥Bij∥+ ∥Cij∥ and Remark E.2

P
(
∥Gij − Aij∥ ≥ C

log2 n

n

)
≤ P

(
∥Gij − Aij∥ ≥ C(

logn

n
+

log2 n

n
)

)
≤ Cne−c log

2 n. (18)

Therefore, almost surely, in the proportional limit,

∥Gij − Aij∥ ≤ C
log2 n

n
=

κ√
n

C

κ

log2 n√
n
≤ ∥Aij∥

C

κ

log2 n√
n
≤ κ′ log

2 n√
n

(
∥Gij∥+ ∥Gij − Aij∥

)
.

(19)
We get (1− κ′ log2n√

n
)∥Gij − A∥ ≤ κ′ log2n√

n
∥Gij∥. For large enough n for 1− κ′ log2n√

n
≥ 1

2 ,

∥Gij − Aij∥ ≤ κ′ log
2 n√
n
∥Gij∥ ≤ C

log2 n

n
(20)

Sum up for ∀ij,

∥G−
∑
i<j

Aij∥ = ∥
∑
i<j

Gij − Aij∥ ≤
∑
i<j

∥Gij − Aij∥ ≤ C
log2 n

n
(21)

with probability 1− C(ne−c log
2 n + e−cn).

E.1 Proof of Lemma E.1

Use the norm bound of sub-Gaussian vectors and the spectral bound of sub-Gaussian matrices as the
main idea of the proof.

Proof of Lemma E.1 (A). We obtain

A =
c1

n
√
N

X⊤ya⊤. (22)

Then, we can find an explicit notation of the norm as

∥A∥ = c1

n
√
N
∥X⊤ya⊤∥ = c1

n
√
N
∥X⊤y∥2∥a∥2 =

c1

n
√
N

(
y⊤XX⊤y

)1/2∥a∥2 (23)

We probabilistically bound the two components of Equation (23) in the following two paragraphs,
respectively.
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∥a∥2 study By definition, a ∼ N(0, 1
N ), so

√
Na[i] is a Sub-Gaussian. Use Thm 3.1.1 in Vershynin

[2018],

P

(∣∣∣∣∥√Na∥ −
√
N

∣∣∣∣ ≥ t

)
≤ 2e−ct

2

let t =
√
N

P(∥a∥2 ≤ 1) ≤ 2e−cN

(24)

(
y⊤XX⊤y

)1/2 study Note that the U, V matrices resulting from the SVD belong to the O-group,
so there is no length transformation.

y⊤XX⊤y = ∥X⊤y∥22 = ∥UΣV ⊤y∥22 = ∥ΣV ⊤y1∥

=
∑
i

σ2
i |V ⊤yi|2 ≥ σ2

min

∑
i

|V ⊤yi|2 = σ2
min∥y∥22 = nσ2

min
(25)

We get
(
y⊤XX⊤y

)1/2 ≥ √nσmin. σmin is the singular value of X which is an anistropic Sub-
Gaussian matrix. With the result of Remark 1.2 in Liaw et al. [2016],

Pσmin ≤ (
√
n− c

√
d)) ≤ e−n. (26)

Therefore, P(∥A∥ ≤ C( 1√
N
− C

√
d√

nN
)) ≤ 2(e−cN + e−cn).

Proof of Lemma E.1 (B). Remark on the definition of B.

B =
1

n
√
N

X⊤ya⊤ ⊙ σ′
⊥(XW0). (27)

∥B∥ ≤ 1

n
√
N
∥X∥ ∥ya⊤ ⊙ σ′

⊥(XW0)∥ (by Property of Operator Norm)

≤ 1

n
√
N
∥X∥∥y∥∞ ∥σ′

⊥(XW0)∥ ∥a∥∞ (by Fact J.2)

=
1

n
√
N
∥X∥ ∥σ′

⊥(XW0)∥∥a∥∞ (∥y∥∞ = 1)

(28)

We probabilistically bound the three components in the last line of Equation (28) in the following
paragraphs, respectively.

∥σ′
⊥(XW0)∥ study Use the result of D.4 in Fan and Wang [2020], which is held for orthogonal

columns. X is sampled from continuous support distribution c1, c2. The first vector is linearly
independent with probability one due to the continuous support of its distribution. For the second
vector, which is drawn independently, the probability that it lies in the span of the first vector is 0,
as it also has a continuous density. This reasoning extends to n vectors, implying that, with high
probability, they are orthogonal or nearly orthogonal because no vector falls into the span of the
others. Thus, ∀B > 0, the following holds.

P({∥σ′
⊥∥ ≥ C(

√
n+
√
N)λσB},AB) ≤ 2e−cN

AB = {{∥W0∥ ≤ B} ∪ {
N∑
i=1

(∥W0,i∥2 − 1)2 ≤ B2}}.
(29)

Therefore,
P(∥σ′

⊥∥ ≥ C(
√
n+
√
N)λσB) ≤ 2e−cN + P(Ac

B) (30)

P(AB) study We choose t = C
√

d
N , B = C

√
d
N .

case of ∥W0,i∥ ≤ B By Lemma I.3,

P(∥
√
NW0∥ ≥ 2

√
N+

√
d) ≤ 2e−cN ⇒ P(∥W0∥ ≥ C

√
d

N
) ≤ 2e−cN (31)

Therefore, ∥W0∥ ≤ B at least w.p. 1− 2e−cN
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case of
∑N
i=1(∥W0,i∥2 − 1)2 ≤ B2 By definition, ∥W0,i∥2 = 1, so 0 ≤ B2, trivially.

We know P(Ac
B) ≤ 2e−cN.

P(∥σ′
⊥∥ ≥ C(

√
n+
√
N)

√
d

N
) ≤ 2e−cN (32)

Studies of the remaining components Use Lemma J.6, and I.3,

∥σ′
⊥∥ ≤ C

(√
nN

d
+

√
N2

d

)
w.p. 1− C(e−cN + e−cd) (33)

∥a∥∞ ≤
t√
N

w.p. 1− 2Ne−ct
2

(34)

∥X∥ ≤
√
n+
√
d+ t′ w.p. 1− 2e−ct

′2
. (35)

In summary, we get

∥B∥ ≤ C

n
√
N

(
√
n+
√
d+ t′)

(√
nN

d
+

√
N2

d

)
t√
N

let t = logn, t′ =
√
n+
√
d

P(∥B∥ ≥ C

n
√
Nd

(√
n+
√
d)(
√
n+
√
N) logN

)
≤ C

(
e−cN + e−cd +Ne−c log

2 n + e−(
√
n+

√
d)2
)
.

(36)

Proof of Lemma E.1 (C). Remark on the definition of C,

C = − 1

nN
X⊤σ(XW0)

(
aa⊤

)
⊙ σ′(XW0). (37)

We can bound the norm as follows,

∥C∥ ≤ 1

nN
∥X∥∥σaa⊤ ⊙ σ′∥ (by Property of Operator Norm)

≤ 1

nN
∥X∥∥σa∥∞∥a∥∞∥σ′∥F (by Fact J.2)

≤ λσ√
nN
∥X∥∥σa∥∞∥a∥∞ (σ′ is bounded, so ∥σ′∥F ≤ λσ

√
nN).

(38)

We probabilistically bound the ∥σa∥∞ to finish the proof.

Control of ∥σa∥∞ Let t =
√
d. Given X s.t. P(

∣∣Xi −
√
d
∣∣ ≥ √d) ≤ 2e−ct

2

, consider one
element σ

(
X⊤
j W0

)
a =

∑N
i aiσ

(
X⊤
j W0[i]

)
.

We know ai,
√
nW0,i is an independent centered Sub-Gaussian, and use Fact J.3,

then σ
(X⊤

j√
N

√
NW0

)
a is sub-exponential and mean is zero, since ∥aσ(x⊤

j W0,i)∥ψ1 ≤
∥a∥ψ2

∥σ(x⊤
j W0,i)∥ψ2

<∞. Apply the Bernstein inequality for the sub-exponential,

P(|σ(X⊤
j a)| ≥ logn given {

∣∣Xj −
√
d
∣∣ ≥ √d}) ≤ 2e−c log

2 n. (39)

For every element ∥σ(XW0)a∥∞ ≤ logn w.p. 1− [2ne−c log
2 n+2ne−cd

]

By Lemma J.6 P(∥a∥∞ ≤ t/
√
N) ≥ 1− 2Ne−ct

2

, and Lemma I.3 with t =
√
d

P
(
∥C∥ ≥ C√

nN
(2
√
d+
√
n) logn logN

)
≤ 2
(
ne−cd + ne−c log

2 n +Ne−c log
2 n
)
. (40)
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F Proof of Theorem 3.3

Corollary F.1 (Corollary of Theorem 3.1). By Lemma J.4, we have w.p. 1− o(1),

∥XG− c1X
∑
i<j

βija
⊤
ij∥ = O(

log2 n

n
·
√
n) = O(

log2 n√
n

) (41)

Remark F.2 (Updata Rule). W1 = W0 +G, so X̃W1 = X̃W0 + X̃G. X̃ ∈ Rn×d is sub-Gaussian
random matrix

We generalize Corollary F.1, which provides a monomial approximation of the data-gradient product
in polynomial form, into Lemma F.3. This result approximates the Hadamard power of the data-
gradient product, enabling the decomposition of the dominant feature.

Lemma F.3 (Polynomial Approximation of Data-Gradient Product). For any k ∈ N, sufficiently
large n, and w.p. 1 - o(1),

∥(X̃G)ok − ck1(X̃
∑
i<j

βija
⊤
ij)

ok∥ = O(n− k
2 log2k n) (42)

Lemma F.4 below provides norm bounds for a single Hermite polynomial, enabling the Hermite
decomposition of the activation function to be bounded in the proof of Theorem 3.3.

Lemma F.4 (Operator Norm Bound of H(X̃W0)). Following condition in Section 2, Assume event
Ω = supk≥1∥(W0W

⊤
0 )ok∥op ≤ C occurs, the following statement holds.

∥Hj(X̃W0)∥op = OP(
√
n log

3
2 n
√

j!) (43)

We introduce the following lemma to prove Lemma F.4.

Lemma F.5 (Bound on E[∥H(X̃W0)H(X̃W0)
⊤∥]). Following condition of Lemma F.4,

E∥Hj(X̃W0)Hj(X̃W0)
⊤∥op ≤ Cj! (44)

The proofs of the lemmas above can be found in Section F.1.

Finally, we prove Theorem 3.3.

Proof of Theorem 3.3. Let L = O(logn).

Denote σL(z) =
∑L
k=1 ckHk(z), FL = σL(X̃W ) and FL,0 = σL(X̃W0), then,

F = FL + (σ − σL)(X̃W ). (45)

Bound (σ − σL)(X̃W ) term Using Lemma F.5, w in assumption 2.1, w.p. 1− o(1)

∥E[(σ − σL)(X̃W0)(σ − σL)(X̃W0)
⊤]∥

≤ C

∞∑
k=L+1

k!c2k ≤ C

∞∑
k=L+1

k−3−w ≤ C

∫ ∞

L

k−
3
2−wdk ≤ CL−2−w.

(46)

Therefore, following same proof technique as Lemma F.4, F.5, and J.7 one can obtain follows:

∥(σ − σL)(X̃W0)∥op = oP(

√
n log3 n · L−2−w) = oP(

√
n) (47)

Also, because ∥W∥op = O(1),

∥(σ − σL)(X̃W )∥op = o(

√
n log3 n · L−2−w) = oP(

√
n) (48)
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Bound FL term We write FL + F0,L = FL + FL0 , then

FL = FL,0 +

L∑
k=1

ck(Hk(X̃W )−Hk(X̃W0)). (49)

Thus, We have to study Hk(X̃W )−Hk(X̃W0) term.

Hk(X̃W )−Hk(X̃W0)

= Hk(X̃W⊤
0 + X̃G⊤)−Hk(X̃W0)

= (X̃G)ok +

k−1∑
j=1

(
k

j

)
Hk−j(X̃W0)⊙ (X̃G)oj . (by Lemma J.1)

(50)

Substituting Equation (50) into Equation (49), we expand the resulting expression and complete the
proof by bounding ∆1, ∆2, and ∆3, making use of the facts that ∥F0,L∥ = Θ(

√
n) (as shown by

Moniri et al. [2024]) and that
∥∥∥∥∑L

k=1 c
k
1ck

(
X̃
∑
i<j βija

⊤
ij

)ok∥∥∥∥ = Ω(
√
n).

FL = FL0 +

L∑
k=1

ck(X̃G)ok +

L∑
k=1

k−1∑
j=1

ck

(
k

j

)
Hk−j(X̃W0) ◦ (X̃G)◦j

= FL0 +

L∑
k=1

ck1ck(X̃
∑
i<j

βija
⊤
ij)

ok

∆1


−

L∑
k=1

ck1ck(X̃
∑
i<j

βija
⊤
ij)

ok

+

L∑
k=1

ck(X̃G)ok

∆2


+

L∑
k=1

k−1∑
j=1

ck

(
k

j

)
Hk−j(X̃W0)⊙ (X̃G)◦j

−
L∑
k=1

k−1∑
j=1

cj1ck

(
k

j

)
Hk−j(X̃W0)⊙ [X̃

∑
i<j

βija
⊤
ij ]

◦j

∆3

[
+

L∑
k=1

k−1∑
j=1

cj1ck

(
k

j

)
Hk−j(X̃W0)⊙ [X̃

∑
i<j

βija
⊤
ij ]

◦j

(51)

For ∆1,∆2,∆3, it is derived as follows:

∥∆1∥ ≤
L∑
k=1

ck∥(X̃G)ok − ck1(X̃
∑
i<j

βija
⊤
ij)

ok∥ (by Triangle Inequality)

≤ C

L∑
K=1

log2k n · n− k
2 = O(

log2 n√
n

) = o(1) (by Lemma F.3)

(52)
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∥∆2∥ ≤
L∑
k=1

k−1∑
j=1

ck

(
k

j

)
∥Hk−j(X̃W⊤

0 )⊙ [(X̃G⊤)◦j − cj1[X̃
∑
i<j

βija
⊤
ij ]

◦j ]∥ (by Triangle Inequality)

≤ C

L∑
k=1

k−1∑
j=1

∥Hk−j(X̃W⊤
0 )∥∥(X̃G⊤)◦j − cj1(X̃

∑
i<j

βija
⊤
ij)

◦j∥ (by Fact J.5)

≤ C

L∑
k=1

k−1∑
j=1

√
n log

3
2 n
√
j! · n− j

2 log2j n (by Lemma F.4 and Lemma F.3)

≤ C

L∑
k=1

k−1∑
j=1

√
n
√
j! log

3
2+2j n

√
n
j

= O(log
7
2 n)

(53)

∥∆3∥ ≤ C

L∑
k=1

k−1∑
j=1

∥Hk−j(X̃W0)⊙ [X̃
∑
i<j

βija
⊤
ij ]

◦j∥ (by Triangle Inequality)

≤ C

L∑
k=1

k−1∑
j=1

∥diag(X̃β)◦j∥∥Hk−j(X̃W0)∥∥diag(a)◦j∥ (by Fact J.2)

≤ C

L∑
k=1

k−1∑
j=1

(MaMb)
j∥Hk−j(X̃W0)∥ (by Lemma J.4)

≤ C

L∑
k=1

k−1∑
j=1

n− 1
2 j logj n

√
n log

3
2 = O(log

5
2 n) (by Lemma F.4)

(54)

Therefore, we conclude the proof.

F.1 Proofs of Lemma F.3, F.4, and F.5.

Proof of Lemma F.3. k = 1 is trivial Corollary F.1. For k ≥ 2, we need to show ∃C > 0, w.p. 1-o(1),

∥(X̃G)ok − ck1(X̃
∑
i<j

βija
⊤
ij)

ok∥ ≤ Cn− k
2 log2k n. (55)

We use Binomial Expansion.

(X̃G)ok = (X̃G− c1X̃
∑
i<j

βija
⊤
ij + c1X̃

∑
i<j

βija
⊤
ij)

ok

=

k∑
j=1

(

(
k

j

)
)(X̃G− c1X̃

∑
i<j

βija
⊤
ij)

oj ⊙ (c1X̃
∑
i<j

βija
⊤
ij)

o(k−j) + ck1(X̃
∑
i<j

βija
⊤
ij)

ok

(56)

Thus,
(X̃G)ok − ck1(X̃

∑
i<j

βija
⊤
ij)

ok

=

k∑
j=1

(
k

j

)
(X̃G− c1X̃

∑
i<j

βija
⊤
ij)

oj ⊙ ck−j1 (
∑
i<j

(X̃βija
⊤
ij))

o(k−j)
(57)

Now we will show

∥(X̃G− c1X̃
∑
i<j

βija
⊤
ij)

oj ⊙ ck−j1 (
∑
i<j

(X̃βija
⊤
ij))

o(k−j)∥ = OP(log
k+j n · n− 1

2k). (58)
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∥(X̃G− c1X̃
∑
i<j

βija
⊤
ij)

oj ⊙ ck−j1 (
∑
i<j

(X̃βija
⊤
ij))

o(k−j)∥

≤ C∥(X̃G− c1X̃
∑
i<j

βija
⊤)oj ⊙ (X̃βa⊤)o(k−j)∥ (by triangle inequality)

≤ C∥diag(X̃β)ok−j∥op∥(X̃G⊤ − c1X̃
∑
i<j

βija
⊤)oj∥op∥diag(a)ok−j∥ (by Fact J.2)

≤ C(MaMb)
k−j∥(X̃G− c1X̃

∑
i<j

βija
⊤)oj∥j (by Lemma J.4)

≤ C(n− 1
2 (k−j) logk−j n) log2j n · n− 1

2 j (by Lemma F.3)

= OP(n
− 1

2k logk+j n)

(59)

Therefore,
∥(X̃G)ok − ck1(X̃

∑
i<j

βija
⊤
ij)

ok∥ = OP(n
− k

2 log2k n) (60)

Proof of Lemma F.4. Let A = Hj(X̃W0), then

P(∥A∥op ≥ t) ≤ P
(
∥ 1
n
AA⊤ − EAA⊤∥op ≥

t2

n
− ∥EAA⊤∥op

)
(by Lemma J.7)

≤ 1
t2

n − ∥EAA⊤∥op
E
[
∥ 1
n
AA⊤ − EAA⊤∥op

]
(by Markov’s inequality)

≤
[
t2

n
− E

[
∥AA⊤∥op

]]−1

δmax

(√
∥EAA⊤∥op, δ

)
(by Theorem 5.48 in Vershynin [2010])

≤
[
t2

n
− E

[
∥AA⊤∥op

]]−1

δmax

(√
E [∥AA⊤∥op], δ

)
(by Jensen’s inequality).

Let M = Emaxi∥Hj(W0X̃i)∥2 and δ = C
√

M logn
N . Moreover, we note that ∥X̃i∥2j

N is a sub-
Weibull random variable, and the bound of Kuchibhotla and Chakrabortty [2022] proposition A.6 can
be applied.

Use property of ∥X̃i∥2j

N , W0 and Hermite polynomials, we have

M ≤ cjEmax
i
∥(W0X̃i)

◦j∥22 ≤ cjEmax
i
∥X̃i∥2j ≤ cjN(logn)

1
2 . (61)

Therefore, δ ≤ C log n. Let t2 = n ·QnE∥AA⊤∥op s.t. Qn is positive and increasing. Building on
the result derived above, we can continue expanding the expression as follows:[

t2

n
− E

[
∥AA⊤∥op

]]−1

δmax

(√
E [∥AA⊤∥op], δ

)
≤ [

t2

n
− E∥AA⊤∥op]−1C lognmax(

√
E∥AA⊤∥op, logn)

= [E∥AA⊤∥op(Qn − 1)]−1C lognmax(
√
E∥AA⊤∥op, logn)

≤ C
lognmax(

√
E∥AA⊤∥op, logn)

E∥AA⊤∥opQn

(62)

Choosing Qn = log3 n, and using Lemma F.5, we conclude the proof.
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Proof of Lemma F.5. For this proof, we apply the proof techniques from Lemma H.1 for Gaussian
random variables to Sub-Gaussian random variables and extend the non-centered technique from
Theorem H.7.

For non-centered Sub-Gaussian random variable X with mean µ, the following inequalities hold with
t ∈ R:

E(e(X−µ)t) ≤ e
k2

2 t
2

(63)

Building on the inequalities above, we first prove the case where µ = 0 with s, t ∈ R. For centered
Sub-Gaussian vector g, let z = g⊤u, z′ = g⊤v, ρ-correlated. s.t. ∥u∥2 = ∥v∥2 = 1, u⊤v = ρ, then
by Equation (63)

E exp(sz + tz′) ≤ exp(
k2

2
∥u∥2s2 + k2u⊤vst+

k2

2
∥v∥2t2)

≤ exp
(k2
2
(s2 + 2ρst+ t2)

)
Dividing by exp(k

2

2 (s2 + t2)), then

E
[
exp(sz − k2

2
s2) exp(tz′ − k2

2
t2)
]
≤ exp(ρst) =

∞∑
j=0

ρj

j!
sjtj

By applying proof techniques analogous to those in Lemma H.1, one can derive the following:

EHj(u
⊤g)Hk(v

⊤g) ≤ j!ρj1j=k (64)

For the µ ̸= 0 case, considering a non-centered Sub-Gaussian Random vector g with mean µ and a
centered Sub-Gaussian Random vector ξ s.t. g = ξ + µ. We apply proof techniques analogous to
those in Theorem H.7.

Denote ν = min(j, k). Considering u⊤g, v⊤g,

E[Hj(u
⊤µ+ u⊤ξ)Hk(v

⊤µ+ v⊤ξ)]

= E[{
j∑
i=0

(
j

i

)
(u⊤µ)iHj−i(u

⊤ξ)} · {
k∑
h=0

(
k

h

)
(v⊤µ)hHk−h(v

⊤ξ)}]

= E[
ν∑
q=0

(
ν

q

)2

(u⊤µ)j−q(v⊤µ)k−qHq(u
⊤ξ)Hq(v

⊤ξ)] by Equation (64)

≤
ν∑
q=0

(
ν

q

)2

(u⊤µ)j−q(v⊤µ)k−q · ν!ρν

≤ Cmin(j, k)!

(65)

G Proof of Clustering Criteria Analysis

To reduce redundancy and complexity, we first introduce the following notation.
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Definition G.1. Given fixed N, d ∈ R, e1 s.t. the first standard basis of euclidean space, µ1, µ2 ∈ Rd,
µ̂ is normalized vector to unit length and let

S
(1)
d,k = Ew∼Unif(Sd−1)[(w

⊤e1)
k] ∈ R+

S
(2)
d,k,k′ = Ew[(w

⊤µ̂1)
k(w⊤µ̂2)

k′ ]

ρ
(1)
k,k′ = NS

(1)
d,k+k′1k+k′ is even ∈ R+

ρ
(2)
k,k′(cos(µ1, µ2)) = NS

(2)
d,k,k′1k+k′ is even ∈ R+

ρ
(3)
k,k′,r =

ck1S
(1)
d,k′

N
k
2−1

(
k

r

)
(r − 1)!!(k − 1)!!1k,k′,r is even ∈ R+

ρk,k′,r,r′ =
2ck+k

′

1 S
(1)
d,k

N
k+k′

2 −1

(
k′

r′

)
(r′ − 1)!!(k′ − 1)!!1k,k′,r′ is even ∈ R+

(66)

We note that ρ(1)k,k′ , ρ
(3)
k,k′,r > 0. For S(2)

d,k,k′ , it depends on cos(µ1, µ2). As cos(µ1, µ2) increases,

S
(2)
d,k,k′ grows, while it decreases as cos(µ1, µ2) decreases. e.g. when µ1 = µ2, S(2)

d,k,k′ = S
(1)
d,k+k′ ,

and when µ1 = −µ2 = −S(1)
d,k+k′ .

We introduce Propositions G.2 and G.3, which serve as extensions of the main results presented
in Propositions 4.4 and 4.5. These extended versions incorporate the complete expansion of the
dominant feature representation.

In the following, we provide detailed proofs of Propositions G.2 and G.3. Note that if we exclude the
contribution from the component F0,L in the computation, the resulting expressions reduce to those
in Propositions 4.4 and 4.5.
Proposition G.2 (Cohesion of FL, extension of Proposition 4.4). Following condition 4.2, the
Cohesion of FL for ci, i ∈ J2K is given by:

C(FL) =

L∑
k=1
k′=1

ckck′

 ρ
(1)
k,k′∥µ∥k+k

′

+2
∑k′

r′=0 ρ
(3)
k,k′,r′ |µ⊤β|k′−r′∥β∥r′∥µ∥k

+
∑k
r=0

∑k′

r′=0 ρk,k′,r,r′ |µ⊤β|k+k′−r−r′∥β∥r+r′ .

 (67)

Proposition G.3 (Separability of FL, extension of Proposition 4.5). Following condition 4.2, the
Separability of FL for c1,c2 is given by:

S(FL) = −
L∑
k=1
k′=1


ρ
(2)
k,k′(cos(µ1, µ2))∥µ1∥k∥µ2∥k

′

+
∑k
r=0 ρ

(3)
k,k′,r|µ⊤

1 β|k−r∥β∥r
′∥µ2∥k

′

+
∑k′

r′=0 ρ
(3)
k,k′,r′ |µ⊤

2 β|k
′−r′∥β∥r′∥µ1∥k

+
∑k
r=0

∑k′

r′=0 ρk,k′,r,r′(µ
⊤
1 β)

k−r(µ⊤
2 β)

k′−r′∥β∥r+r′ .

 (68)

We use the following Lemma to prove Proposition G.2 and Proposition G.3. The role of each Lemma
is as follows: Lemma G.4 is a foundational result in deriving the expected value associated with the
initialized weights of the first layer and the corresponding input data distribution. Lemma G.5 forms
the basis of the computation of the expected value of the spike component with the data distribution.
Lemma G.4 (Expectation of the Inner Product Between Uniform Sphere Sample and Given Vector).
Let Cd,k ≜ Eω[(ω⊤e1)

k] s.t. ω ∼ Unif(Sd−1), then

Eω[(ω⊤µ)k] = ∥µ∥kS(1)
d,k1k is even (69)

Proof of G.4. The uniform distribution on the sphere is origin-symmetric. Therefore, when k is odd,
the Expectation is zero. In the other case, also use the isotropic property of a uniform sphere,

Eω[(ω⊤µ)k] = ∥µ∥kEω[(ω⊤e1)
k] = ∥µ∥kS(1)

d,k (70)
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Lemma G.5 (Moment of the Product of Gaussian Random Vectors). Given vector a ∈ RN β ∈ Rd

and Gaussian Random vector x ∼ N(µ, I). Let b = x⊤β ∼ N(µ⊤β, ∥β∥2), then

Ex(x⊤βa⊤)◦k =

k∑
r=0

(
k

r

)
(µ⊤β)k−r∥β∥r(r − 1)!!1r is evena

◦k⊤

Eaa◦k =
(k − 1)!!1k is even

N
k
2

1

Eaa◦k⊤a◦k
′
=

(k + k′ − 1)!!1k+k′ is even

N
k+k′

2 −1

(71)

Proof. This follows directly from Corollary J.11.

In the proof below, we utilize the results of Corollary J.11, Corollary J.12, and Lemma G.4.

Proof of Proposition G.2. Let the Cohesion of the initialized feature be

C(F0,L) = EW0
[Ex∼c1F0,L(x)

⊤Ex′∼c1F0,L(x
′)] (72)

Let the Cohesion of the feature after training be

C(FL) = EW0,a[Ex∼c1FL(x)⊤Ex′∼c1FL(x
′)] (73)

Calculate C(F0,L) By Lemma G.4,

C(F0,L) = EW0
[Ex∼c1 [

L∑
k=1

ckHk(W
⊤
0 x)]⊤Ex′∼c1 [

L∑
k′=1

ck′Hk′(W
⊤
0 x)]]

=

L∑
k=1
k′=1

ckck′EW0 [

N∑
q=1

(W0[q]
⊤µ1)

k+k′ ]

= N

L∑
k=1
k′=1

ckck′(∥µ1∥k+k
′
S
(1)
d,k+k′)1(k+k′)even

=

L∑
k=1
k′=1

ckck′ρ
(1)
k,k′∥µ∥

k+k′

(74)
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Calculate C(FL)

C(FL) = EW0,a[Ex∼c1 [
L∑
k=1

(ckHk(W
⊤
0 x) + ckc

k
1(x

⊤βa)ok]⊤Ex′∼c1 [

L∑
k′=1

(ck′Hk′(W
⊤
0 x) + ck1(x

⊤βa)◦k]]

= EW0,a[

L∑
k=1
k′=1

ckck′ [ExHk(W
⊤
0 x)⊤Ex′Hk′(W

⊤
0 x′)

+ 2ExHk(W
⊤
0 x)⊤Ex′ck

′

1 (x⊤βa)◦k
′
+ ck+k

′

1 Ex(x⊤βa)◦k⊤Ex′(x′⊤βa)◦k
′
]]

= C(F0,L) + 2

L∑
k=1
k′=1

ckck′c
k′

1 EW0ExHk(W
⊤
0 x)⊤EaEx′(x′⊤βa)◦k

′

+

L∑
k=1
k′=1

ckck′c
k+k′

1 Ea[Ex(x⊤βa)ok
⊤Ex′(x′⊤βa)ok]

= C(F0,L) + 2N

L∑
k,k′=1

ckck′c
k′

1 (∥µ1∥kS(1)
d,k)(

1

N
k′
2

k′∑
r′=0

(
k′

r′

)
(µ⊤

1 β)
k′−r′∥β∥r

′
(r′ − 1)!!(k′ − 1)!!1k,k′,r′is even

+

L∑
k=1
k′=1

ckck′c
k+k′

1

N
k+k′

2 − 1

k∑
r=0

k′∑
r′=0

(
k

r

)(
k′

r′

)
(µ⊤

1 β)
k+k′−r−r′∥β∥r+r

′
(r − 1)!!(r′ − 1)!!1k+k′,r,r′is even

Proof of Proposition G.3. Let the Separability of the initialized feature be

S(F0,L) = −EW0
[Ex∼c1F0,L(x)

⊤Ex′∼c2F0,L(x
′)] (75)

Let the Separability of the feature after training be

S(FL) = −EW0,a[Ex∼c1FL(x)⊤Ex′∼c2FL(x
′)] (76)

Calculate S(F0,L) By Lemma G.4,

S(F0,L) = −
L∑
k=1
k′=1

ckck′EW0 [

N∑
q=1

(W0[q]
⊤µ1)

k(W0[q]
⊤µ2)

k′ ]

= −N
L∑
k=1
k′=1

ckck′Ew∼Unif(Sd−1)[(w
⊤µ1)

k(w⊤µ2)
k′ ]

= −N
L∑
k=1
k′=1

ckck′∥µ1∥k∥µ2∥k
′
Ew[(w

⊤µ̂1)
k(w⊤µ̂2)

k′ ]

= −N
L∑
k=1
k′=1

ckck′∥µ1∥k∥µ2∥k
′
S
(2)
d,k,k′1k+k′ is even

= −
L∑
k=1
k′=1

ckck′∥µ1∥k∥µ2∥k
′
ρ
(1)
k,k′

(77)
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Calculate S(FL)

S(FL)

= −
L∑
k=1
k′=1

ckck′EW0,a


Ex∼c1Hk(W

⊤
0 x)⊤Ex′∼c2Hk′(W

⊤
0 x′)

+ Ex∼c1Hk(W
⊤
0 x)⊤Ex′∼c2c

k′

1 (x′⊤βa)◦k
′

+ Ex∼c1ck1(x⊤βa)ok
⊤Ex′∼c2Hk′(W

⊤
0 x)

+ ck+k
′

1 Ex∼c1(x⊤βa)ok
⊤Ex′∼c2(x

′⊤βa)◦k
′



= S(F0,L)−
L∑
k=1
k′=1

ckck′



ck
′

1 (∥µ1∥kS(1)
d,k)

1

N
k′
2 −1

k′∑
r′=0

(
k′

r′

)
(µ⊤

2 β)
k′−r′∥β∥r

′
(r′ − 1)!!(k′ − 1)!!1k,k′,r′ is even

+ ck1(∥µ2∥k
′
S
(1)
d,k′)

1

N
k
2−1

k∑
r=0

(
k

r

)
(µ⊤

1 β)
k−r∥β∥r(r − 1)!!(k − 1)!!1k,r,k′ is even

+ ck+k
′

1

k∑
r=0

k∑
r′=0

(
k

r

)(
k′

r′

)
(µ⊤

1 β)
k−r(µ⊤

2 β)
k′−r′∥β∥r+r

′
(r − 1)!!(r′ − 1)!!

1

N
k+k′

2 −1
(k + k′ − 1)!!1k+k′,r,r′ is even



Note G.6 (Discussion on the ∥β∥ term). We note that when ∥β∥ decreases, it reduces magnitude of
term inside the brackets of Eqs. (6) and (7). This aligns with the intuitive notion that noisier training
data leads to less transferable features. To illustrate, suppose the training data consists of two classes
drawn from c1 ∼ N(µ, I) and c2 ∼ N(Rµ, I), where R is a rotation matrix. Then the spike direction
converges (under large n) to β → 1

2 (µ−Rµ) by law of large numbers

β =
1

n
X⊤y =

1

n
Xiyi =

1

2
(
n

2

∑
c1

Xi −
n

2

∑
c2

Xj)→
1

2
(µ−Rµ).

In the extreme case where R = I , the classes are indistinguishable and β = 0, eliminating both
Cohesion and Separability. When R = −I , β = µ, which yields maximal separation.

H Additional Results of Expectation of Hermite Polynomials

The non-standard Gaussian expectation of the product of two Hermite polynomials is computed as
follows. It is a generalization of the results of standard Gaussian distributions in O’Donnell [2021],
Moniri et al. [2024] into a generalized multivariate Gaussian. These provide a useful analysis tool for
Hermite polynomials and may offer a foundation for broader applications in future works involving
nonlinear activations decomposable into Hermite polynomials under the assumption of a multivariate
Gaussian distribution. We start with previously known facts and derive our generalized results.

H.1 Expectation of a product of two Hermite polynomials

Here is the result of the expectation of the product of two Hermite polynomials, obtained by utilizing
the orthogonality of Hermite polynomials with bivariate centered unit-variance correlated random
variables.
Lemma H.1 (Gaussian Expectation of the Product of Two Hermite Polynomials from Lemma C.1
Moniri et al. [2024]). See also derivation in Chapter 11.2 O’Donnell [2021].

Let (Z1, Z2) be jointly Gaussian with E[Z1] = E[Z2] = 0, E[Z2
1 ] = E[Z2

2 ] = 1, and E[Z1Z2] = ρ.
Then for any k1, k2 ∈ {0, 1, · · · , }

E[Hk1(Z1)Hk2(Z2)] = k1!ρ
k11k1=k2

(78)

In the other form, for d ∈ N, Z ∼ N(0, Id), a, b ∈ Sd−1,

E[Hk1(Z
⊤a)Hk2(Z

⊤b)] = k1!(a
⊤b)k11k1=k2

(79)
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We extend Lemma H.1 to vector form for application in multiple dimensions.
Fact H.2 (Vector Form of Lemma H.1). Let W ∈ Rd×N s.t. ∀i W [i] ∈ Sd−1. For Z ∼ N(0, I),

EZ∼N(0,1)[Hj(W
⊤Z)Hk(W

⊤Z)⊤] = k!(W⊤W )◦j1j=k (80)

EZ∼N(0,1)[Hj(W
⊤Z)⊤Hk(W

⊤Z)] = k!
∑
∥W [i]∥2j1j=k = k!N1j=k (81)

Proof. We apply Hj element-wise. We can acquire the above result by Lemma H.1.

The following remark presents a modified condition of Lemma H.1 for the case where a, b /∈ Sd−1 in
Lemma H.1. In this case, the variances of Z⊤a and Z⊤b are not equal to 1, and the covariance may
exceed the bounds [−1, 1]. Under this condition, we will compute the expectation of the product of
two Hermite polynomials as in Lemma H.1.
Remark H.3 (the modified condition of Lemma H.1). For d ∈ N, u, v ∈ Rd, Z ∼ N(0, Id),

Z1 = ⟨u, Z⟩ ∼ N(0, ∥u∥22), Z2 = ⟨v, Z⟩ ∼ N(0, ∥v∥22).

Then, Z1, Z2 is ρ =≜ ⟨ u
∥u∥ ,

v
∥v∥ ⟩ - correlated

corr(Z1, Z2) =
EZ⟨u, Z⟩⟨v, Z⟩
∥u∥ ∥v∥

=
⟨u, v⟩
∥u∥ ∥v∥

(82)

Additionally, (
Z1

Z2

)
∼ N

((
0

0

)
,

(
∥u∥2 ⟨u, v⟩
⟨v, u⟩ ∥v∥2

))
(83)

Now, we generalize the unit variance distribution assumptions so that Lemma H.1 holds for arbitrary
vectors as in Remark H.3. This could allow the networks’ weights to become analyzable when they
go beyond the assumption of lying on the unit spheres.

Theorem H.4 (Generalization of Lemma H.1 for non unit variance Gaussian distribution as Remark
H.3). For d ∈ N, u, v ∈ Rd, g ∼ N(0, Id), ⟨u, g⟩ ∼ N(0, ∥u∥22), ⟨v, g⟩ ∼ N(0, ∥v∥22).

Eg[Hj(u
⊤g)Hk(v

⊤g)]

=
j!⟨u, v⟩j

∥u∥2∥v∥2
1j=k −

(∥u∥2 − 1)(∥v∥2 − 1)

∥u∥2∥v∥2
Eg[(v⊤g)k(u⊤g)j ]

+
(∥v∥2−1)
∥v∥2

Eg[Hj(u
⊤g)(v⊤g)k] +

(∥u∥2 − 1)

∥u∥2
Eg[Hk(v

⊤g)(u⊤g)j ]

(84)

Remark H.5 (Unit-variance case of Theorem H.4). The same results can be derived as in Lemma H.1
when the variance is 1 in Thm. H.4.

Proof of Theorem H.4. (Generalize Chapter 11.2 O’Donnell [2021]’s derivation to non-unit variance)

Ez∼N(0,σ2)[e
tz] study

First, we study about Eg∼N(0,σ2)[e
tg] in order to analysis non-unit variance case.

Eg∼N(0,σ2)[e
tg] =

1√
2πσ

∫
etge−

g2

2σ2 dg

=
1√
2πσ

e
1
2 t

2

∫
exp(− (g − σ2t)2

2σ2
) complete square

= e
1
2 t

2

(85)

EZ,Z′ [exp(sZ + tZ ′)] study

Studying EZ,Z′ [exp(sZ + tZ ′)], we can derive what we need to show.
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EZ,Z′

[
exp(sZ + tZ ′)

]
= Eg∼N(0,I)

[
exp

(
s⟨u, g⟩

)
+ exp

(
t⟨v, g⟩

)]

=
∏
i

Eg∼N(0,1)

[
exp

(
(sui + tvi)gi

)]
Use Equation (85)

=
∏
i

exp
(1
2
(sui + tvi)

2
)
=
∏
i

exp
(1
2
s2∥u∥2 + ⟨u, v⟩st+ 1

2
t2∥v∥2

)
(86)

Therefore,

exp
(
⟨u, v⟩st

)
= Eg

[
exp

(
su⊤g − 1

2
s2∥u∥2

)
exp

(
tv⊤g − 1

2
t2∥v∥2

)]
. (87)

Fact H.6 (Facts for the Proof of Lemma H.4). One can verify the propositions below with simple
calculations.
Let Pj(z) + zj = Hj(z), Cu = ∥u∥2 − 1, a > 0.
Let f(s) = exp(sz − 1

2s
2), f̄(s) = exp(sz − 1

2as
2), then

A. By Taylor expansion, exp(⟨u, v⟩st) =
∑∞
j=0

1
j! ⟨u, v⟩

jsjtj .

B. By Taylor expansion, f̄(s) =
∑∞
j=0

1
j! f̄

(n)(0)sj

C. f̄ (n)(0) = Hn(z) + CuPn(z)

By using the fact that exp
(
⟨u, v⟩st

)
= Eg

[
exp(su⊤g − 1

2s
2∥u∥2) exp(tv⊤g − 1

2 t
2∥v∥2)

]
, we can

eliminate the different orders of s t by a Taylor expansion and equating all monomials of the resulting
polynomials.

j!⟨u, v⟩j1j=k = Eg
[
(Hj(u

⊤g) + Pj(u
⊤g)Cu)(Hj(v

⊤g) + Pj(v
⊤g)Cv)

]
= Eg

[
(Hj(u

⊤g) + (Hj(u
⊤g)− (u⊤g)j)Cu)(Hj(v

⊤g) + (Hj(v
⊤g)− (v⊤g)j)Cv)

]
= ∥u∥2∥v∥2Eg

[
Hj(u

⊤g)Hj(v
⊤g)
]
+ (∥u∥2 − 1)(∥v∥2 − 1)Eg

[
(v⊤g)j(u⊤g)j

]
− ∥u∥2(∥v∥2 − 1)Eg

[
Hj(u

⊤g)(v⊤g)j
]
− ∥v∥2(∥u∥2 − 1)Eg

[
Hj(v

⊤g)(u⊤g)j
]

(88)

Therefore,

Eg
[
Hj(u

⊤g)Hj(v
⊤g)
]

=
j!⟨u, v⟩j

∥u∥2∥v∥2
1j=k −

(∥u∥2 − 1)(∥v∥2 − 1)

∥u∥2∥v∥2
Eg
[
(v⊤g)j(u⊤g)j

]
+

(∥v∥2 − 1)

∥v∥2
Eg
[
Hj(u

⊤g)(v⊤g)j
]
+

(∥u∥2 − 1)

∥u∥2
Eg
[
Hj(v

⊤g)(u⊤g)j
] (89)

Note that the result of Lemma J.9 can be applied for the concrete calculation of results in Theorem
H.4 and conclude the proof.

H.2 Expectation of a product of two Hermite polynomials—Generalization toward
non-centered Gaussian

We will change Theorem H.4 and Lemma J.9 to adopt a generalized Gaussian assumption with
non-centered mean.
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Theorem H.7 (Generalization of Thm. H.4 for any Gaussian distribution). For d ∈ N, u, v ∈ Rd,
ξ ∼ N(0, 1), g ∼ N(µ,Σ), Z1 = ⟨u, g⟩ ∼ N(µ⊤u, u⊤Σu), Z2 = ⟨v, g⟩ ∼ N(µ⊤v, v⊤Σv).

Eg[Hj(Z1)Hk(Z2)]

=

j∑
α=0

k∑
β=0

(
j

α

)(
k

β

)
(u⊤µ)α(v⊤µ)β

×

[
(j − α)!(u⊤Σv)j−α

u⊤Σuv⊤Σv
1j−α=k−β −

(u⊤Σu− 1)(v⊤Σv − 1)

u⊤Σuv⊤Σv
Eg[(
√
u⊤Σuξ)j−α(

√
v⊤Σvξ)k−β ]

+
(v⊤Σv − 1)

v⊤Σv
Eg[Hj−α(

√
u⊤Σuξ)(

√
v⊤Σvξ)k−β ] +

(u⊤Σu− 1)

u⊤Σu
Eg[(
√
u⊤Σuξ)j−αHk−β(

√
v⊤Σvξ)]

]
(90)

Proof of Theorem H.7. By reparametrization i.e. Z1 =
√
u⊤Σuξ + u⊤µ, Z2 =

√
v⊤Σvξ + v⊤µ,

and Lemma J.1,

Hj(
√
u⊤Σuξ + u⊤µ) =

j∑
α=0

(
j

α

)
(u⊤µ)αHj−α(

√
µ⊤Σuξ). (91)

Eg[Hj(u
⊤g)Hk(v

⊤g)] = Eξ[Hj(
√
u⊤Σuξ + u⊤µ)Hk(

√
v⊤Σvξ + v⊤µ)]

= Eξ
[ j∑
α=0

(
j

α

)
(u⊤µ)αHj−α(

√
µ⊤Σuξ)

][ k∑
β=0

(
k

β

)
(v⊤µ)βHk−β(

√
µ⊤Σvξ)

]
=

j∑
α=0

k∑
β=0

(
j

α

)(
k

β

)
(u⊤µ)α(v⊤µ)βEξ[Hj−α(

√
µ⊤Σuξ)Hk−β(

√
µ⊤Σvξ)]

(92)

Use the same proof technique as Theorem H.4, with
(√u⊤Σuξ√

v⊤Σvξ

)
∼ N

((
0
0

)
,

(
u⊤Σu u⊤Σv
v⊤Σu v⊤Σv

))

Eξ[Hj−α(
√
u⊤Σuξ)Hk−β(

√
v⊤Σvξ)]

=
(j − α)!(u⊤Σv)j−α

u⊤Σuv⊤Σv
1j−α=k−β −

(u⊤Σu− 1)(v⊤Σv − 1)

u⊤Σuv⊤Σv
Eg[(
√
u⊤Σuξ)j−α(

√
v⊤Σvξ)k−β ]

+
(v⊤Σv − 1)

v⊤Σv
Eg[Hj−α(

√
u⊤Σuξ)(

√
v⊤Σvξ)k−β ] +

(u⊤Σu− 1)

u⊤Σu
Eg[(
√
u⊤Σuξ)j−αHk−β(

√
v⊤Σvξ)]

(93)

In summary,

Eg[Hj(u
⊤g)Hk(v

⊤g)]

=

j∑
α=0

k∑
β=0

(
j

α

)(
k

β

)
(u⊤µ)α(v⊤µ)β

×

[
(j − α)!(u⊤Σv)j−α

u⊤Σuv⊤Σv
1j−α=k−β −

(u⊤Σu− 1)(v⊤Σv − 1)

u⊤Σuv⊤Σv
Eξ[(
√
u⊤Σuξ)j−α(

√
v⊤Σvξ)k−β ]

+
(v⊤Σv − 1)

v⊤Σv
Eξ[Hj−α(

√
u⊤Σuξ)(

√
v⊤Σvξ)k−β ] +

(u⊤Σu− 1)

u⊤Σu
Eξ[(
√
u⊤Σuξ)j−αHk−β(

√
v⊤Σvξ)]

]
(94)
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I Additional Lemmas of Sub-Gaussian Distribution

For a more detailed explanation and well-known results of the Sub-Gaussian we used, please refer
to Vershynin [2010, 2018]. We show below that the truncated Gaussian distribution utilized in our
synthetic data experiments is a Sub-Gaussian distribution.

The following lemmas serve distinct purposes in the overall paper: Lemma I.1 is employed to
verify the sub-Gaussianity of Data 2 in Expr. I, II and III Lemma I.2 establishes a key property
that is instrumental throughout the entirety of our proof. Lemmas I.3 and I.4 provide the necessary
extensions of the results by Ba et al. [2022] and Moniri et al. [2024] to settings involving non-centered
sub-Gaussian distributions.
Lemma I.1 (Sub-Gaussian Property of Truncated Gaussian). The truncated Gaussian distribution
has support on (a, b) s.t. a, b ∈ (−∞,∞) is Sub-Gaussian.

Proof. Denote N(a,b)(0, σ
2) is Truncated Gaussian distribution which have support on (a, b) s.t.

a, b ∈ (−∞,∞). We utilize sufficient conditions for Sub-Gaussian distributions based on their tail
structure. support (N(a,b)(0, σ

2)) ⊂ Rd. Therefore, P(|X| ≥ t) s.t. X ∼ N(a,b)(0, σ
2) has the same

tail behavior as Gaussian, and Gaussian is Sub-Gaussian.

I.1 Generalization of centered Sub-Gaussian results toward non-centered

We verify below that the results on centered Sub-Gaussian distributions from Vershynin [2018] can
be extended to non-centered Sub-Gaussian distributions.
Lemma I.2 (Sub-Gaussian Property of Sum of non-centered Sub-Gaussian). The sum of non-centered
Sub-Gaussian random variables is Sub-Gaussian.

Proof. If the Orlicz 2 norm is bounded ∥X∥ψ2
< ∞, then X is Sub-Gaussian. Also, ∥EX∥ψ2

≤
C∥X∥ψ2

, and the sum of the centered Sub-Gaussian random variable is Sub-Gaussian. We show
∥
∑

Xi∥ψ2
<∞, s.t. X is non-centered Sub-Gaussian.

∥
∑

Xi∥ψ2
≤ ∥
∑

(Xi − EXi)∥ψ2
+ ∥
∑

EXi∥ψ2

≤ ∥
∑

(Xi − EXi)∥ψ2 +
∑
∥EXi∥ψ2

≤ ∥
∑

(Xi − EXi)∥ψ2
+ C

∑
∥Xi∥ψ2

<∞

(95)

Lemma I.3 (Operator norm bound for non-centered Sub-Gaussian matrix, generalization of 4.4.5 in
Vershynin [2018]). let A ∈ Rm×n, A[i][j] is independent, non-centered Sub-Gaussian. ∀t > 0,

∥A∥ ≤ CK(
√
m+

√
n+ t) w.p. 1− exp(−t2)

Alternatively, ∥A∥ ≤ CK(
√
m+ n+ t) w.p. 1− exp(−t2)

(96)

K = maxi,j∥A[i][j]∥ψ2

Lemma I.4 (Expectation of operator norm for non-centered Sub-Gaussian matrix generalization of
4.4.6 in Vershynin [2018]).

E∥A∥ ≤ CK(
√
m+

√
n)

Alternatively, E∥A∥ ≤ CK(
√
m+ n), and, E∥A∥2 ≤ C(m+ n)

(97)

Proof of Lemma I.3 and Lemma I.4. Based on the result of Lemma I.2, one can follow the same
proof process of Vershynin [2018]

J Supplementary Lemmas

Lemma J.1 (Taylor expansion of Hermite polynomials from Lemma C.2 Moniri et al. [2024]). For
any k1, k2 ∈ {0, 1, · · · , } and x, y ∈ R,

Hk(x+ y) =

k∑
j=0

(
k

j

)
xjHk−j(y). (98)
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J.1 Lemmas for Norm Bounds

The proofs of the lemmas that require justification are provided in Section J.2.
Fact J.2 (Norm Bound for Hadamard Product from Ba et al. [2022]). For m ∈ Rl1 , n ∈ Rl2 ,M ∈
Rl1×l2 ,

mn⊤ ⊙M = diag(m)Mdiag(n)

∥mn⊤ ⊙M∥ ≤ ∥diag(m)∥ ∥M∥ ∥diag(n)∥ = ∥m∥∞∥M∥∥n∥∞
(99)

Using the sufficient conditions for Sub-Gaussianity via the Orlicz norm and bound assumptions on
activation, the following fact holds:
Fact J.3 (Sub-Gaussian Property of Random Variables after Activation). Let a Sub-Gaussian random
variable v s.t. ∥v∥ψ2

≤ k, and bounded function σ, then σ(v) is Sub-Gaussian, i.e.

∥σ(v)∥ψ2
≤ ∥λ∥ψ2

<∞. (100)

Lemma J.4 (Norm Bounds of Data, Gradient and Parameters). The following facts will be used in
subsequent proofs. Remark spike direction βij ≜ 1

nX
⊤
ijy in Definition 3.2.

A. ∥Xij∥ = OP(
√
n), ∥y∥ = OP(

√
n), ∥βij∥ = OP(1)

B. ∥Xijβijaij∥ = ∥Xβij∥2∥aij∥2 = OP(
√
n)

C. ∥W0∥ = OP(1), ∥W∥ = ∥W0 +G∥ ≤ ∥W0∥+ ∥G∥ = OP(1)

D. ∥XijG∥ = OP(
√
n)

E. Ma ≜ ∥aij∥∞ = max1≤k≤N |aij [k]| ≤ C log1/2 n√
n

w.p 1− 2ne−c logn

F. Mb ≜ ∥Xβ∥∞ = max1≤k≤n | < X[k], β > | ≤ C log1/2 n, w.p. 1− 2ne−c logn

G. MW0
≜ supk≥1∥(W0W

⊤
0 )◦k∥ ≤ C w.p. 1− o(1)

H. ∥A◦k∥ ≤ ∥A∥k

Fact J.5 (Bounds of Norms of Vectors and Matrices). For any vector u, v and any matrix A,B

A. ∥uv⊤∥op = ∥u∥2∥v∥2
B. ∥u∥∞ ≤ ∥u∥2 ≤

√
n∥u∥∞

C. ∥u◦k∥ ≤ ∥u∥k

D. ∥u◦k∥2 ≤
√
n∥u◦k∥∞ ≤

√
nmaxi(|uki |) =

√
n(maxi |ui|)k =

√
n∥u∥k∞

E. Schur Product Theorem

∥A ◦B∥op = sup
∥x∥=1

tr(A⊤diag(x)Bdiag(x)) ≤ ∥A∥op · ∥B∥op (101)

Lemma J.6 (Probabilistic Bound on the Inf Norm of Sub-Gaussian Random Vector). For Sub-
Gaussian R.V. a,

P(∥a∥∞ ≤ t/
√
N) ≥ 1− 2Ne−ct

2

(102)
Lemma J.7 (Operator Norm Bound of Random Matrices). Given random matrix A, Following
statement holds,

P(∥A∥op ≥ t) ≤ P(∥ 1
n
AA⊤ − EAA⊤∥op ≥

t2

n
− ∥EAA⊤∥op) (103)

J.2 Proofs of Lemma J.4, J.6, and J.7

proof of Lemma J.4. It is evident from Lemma I.3, Equation (24) in the proportional regime that A,
B, C, and D hold. We employ proof techniques adapted from Moniri et al. [2024] to prove E, F, and

G. For E, by Lemma J.6, with t = log
1
2 n, Ma ≤ C log

1
2 n√
n

, w.p. 1− o(1).
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For F,
P(C|x⊤β| ≥ t) = P(C|x⊤β − Ex⊤β + Ex⊤β| ≥ t)

≤ P(C|x⊤β − Ex⊤β| ≥ t− C|Ex⊤β|) ≤ 2 exp(−ct2).
(104)

Then, P(|x⊤β| ≥ t) ≤ 2 exp(−c(t− Ex⊤β)2) ≤ 2 exp(−ct2).

Therefore, Mb ≤ C log
1
2 n, w.p. 1− o(1) with t = log

1
2 n.

For G, refer Moniri et al. [2024]. For H, refer Bai and Silverstein [2010] Corollary A.21.

proof of Lemma J.6. We use the Hoeffding inequality such that

P(∥a∥∞ ≥
t√
N

) = P
(
max
i
|ai| ≥

t√
N

)
≤ P

(⋃
i

{|ai| ≥
t√
N
}
)
≤
∑
i

P
(
|ai| ≥

t√
N

)
i.i.d.
= NP

(
|ai| ≥

t√
N

)
= P(|

√
Nai| ≥ t) ≤ 2N exp(−ct2)

(105)

Proof of Lemma J.7. We use the properties of the norm.

P(∥A∥op ≥ t) = P(∥A∥2op ≥ t2) = P(∥ 1
n
AA⊤∥op ≥

t2

n
)

= P(∥ 1
n
AA⊤ − EAA⊤ + EAA⊤∥op ≥

t2

n
)

≤ P(∥ 1
n
AA⊤ − EAA⊤∥op + ∥EAA⊤∥op ≥

t2

n
)

= P(∥ 1
n
AA⊤ − E(AA⊤)∥op ≥

t2

n
− E∥AA⊤∥op)

(106)

J.3 Expectation of the Polynomial form of Two Gaussian Random Variables

We first introduce Isserlis’ theorem. This theorem allows the expectation of the product of centered
Gaussian random variables to be expressed as a product of covariances, making the computation
feasible.
Theorem J.8 (Isserlis’ Theorem [Isserlis, 1918, Vignat, 2011]). Let X = (X1, · · · , Xd) Gaussian
random vector s.t. E[X] = 0 , and let A = {α1, · · · , αN} be set of integers s.t. 1 ≤ αi ≤ d, ∀i.
Denote XA =

∏
αi∈AXαi , and X∅ = 1. Let

∏
(A) denote partitions of A into disjoint pairs, and

σ ∈
∏
(A) is a pair.

E[XA] =
∑

σ∈
∏

(A)

∏
(i,j)∈σ

E[Xαi
Xαj

]1d is even. (107)

Lemma J.9 (Moment of Centered Bivariate Gaussian Variables). For d ∈ N, u, v ∈ Rd, g ∼ N(0, Id),
Z̄1 = ⟨u, g⟩, Z̄2 = ⟨v, g⟩. (

Z̄1

Z̄2

)
∼ N

((
0

0

)
,

(
∥u∥2 ⟨u, v⟩
⟨v, u⟩ ∥v∥2

))
(108)

Xαi is defined at Thm. J.8

EZ̄1,Z̄2
[Hj(Z̄1)Z̄

k
2 ] = j!

⌊ j
2 ⌋∑

m=0

(−1)m

m!(j − 2m)!2m

∑
σ∈

∏
({{Z̄1}×j−2m}∪{{Z̄2}×k}})

∏
(p,q)∈σ

E[Xαp
Xαq

]1j+k−2m is even

EZ̄1,Z̄2
[Z̄j1Z̄

k
2 ] =

∑
σ∈

∏
({{Z̄1}×j}∪{{Z̄2}×k}})

∏
(p,q)∈σ

E[Xαp
Xαq

]1j+k is even

(109)

46



Proof. By the explicit formula of Hermite polynomials

EZ̄1,Z̄2
[Hj(Z̄1)(Z̄2)

k] = j!

⌊ j
2 ⌋∑

m=0

(−1)m

m!(j − 2m)!2m
EZ̄1,Z̄2

[Z̄j−2m
1 Z̄k2 ] (110)

Therefore, we need to figure out EZ̄1,Z̄2
[Z̄p1 Z̄

q
2 ]. We know Z̄1, Z̄2 is a mean-zero Gaus-

sian. Thus, we can apply Theorem J.8 with A = {{Z̄1} × p} ∪ {{Z̄2} × q}}, E[Z̄p1 Z̄
q
2 ] =∑

σ∈
∏

(A)

∏
(τ,υ)∈σ E[Xατ

Xαυ
].1p+q is even

Corollary J.10 (Corollary of Lemma J.9, Moment of Centered Univariate Gaussian Variables).
Remark Z1 ∼ N(0, ∥u∥2) For the case k = 0,

EZ̄1
[Z̄j1 ] = ∥u∥j(j − 1)!!1j is even (111)

Proof.

EZ̄1,Z̄2
[Z̄j1Z̄

k
2 ] = EZ̄1

[Z̄j1 ] =
∑

σ∈
∏

({Z̄1}×j})

∏
(p,q)∈σ

E[XαpXαq ]1j is even

=
∑

σ∈
∏

({Z̄1}×j})

∏
(p,q)∈σ

∥u∥21j is even =
∑

σ∈
∏

({Z̄1}×j})

∥u∥j1j is even = (j − 1)!!∥u∥j1j is even

(112)

The following Corollary, which calculates the Expectation of the Power of a Gaussian Random
Variable, can be derived using the binomial expansion with the reparametrization technique and
Corollary J.10. It corresponds to the case k = 0 in Lemma J.9.
Corollary J.11 (Corollary of Lemma J.9, Moments of Gaussian Variables). Given ω ∈ Rd, let
Gaussian Random Variable Z ∼ N(µ⊤ω, ∥ω∥2), then

EZ(Z)k =

k∑
t=0

(
k

t

)
(µ⊤ω)k−tEZ̄∼N(0,∥ω∥2)[Z̄

⊤]

=

k∑
t=0

(
k

t

)
(µ⊤ω)k−t(t− 1)!! · ∥ω∥⊤1t is even .

(113)

The following Corollary, which computes the Gaussian expectation of Hermite polynomials, is
derived from the explicit form of Hermite polynomials and Corollary J.10. It corresponds to the case
k = 0 in Theorem H.7.
Corollary J.12 (Corollary of Theorem H.7 Gaussian Expectation of Hermite Polynomials). Given
ω ∈ Sd−1, let Gaussian Random Variable Z ∼ N(µ⊤ω, 1), then

Ex[Hk(ω
⊤x)] = Eξ∼N(0,1)[Hk(ω

⊤µ+ ξ)]

=

k∑
j=0

(
k

j

)
(ω⊤µ)◦jE[Hk(ξ)H0(ξ)] = (ω⊤µ)k

(114)
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K Empirical Insights into High-Dimensional Asymptotics

In asymptotic analysis, n,d,N→∞ is crucial for observing the result. Please see Figure 9, Figure 10
for the Cohesion and Separability in R2000,R20000,R320000, respectively. As the dimension increases,
the range where Cohesion and Separability align with our expectations.

For component analysis, please refer to Figure 11, Figure 12, and Figure 13 for Cohesion, which
demonstrates progressively wider ranges, and Figure 14, Figure 15, and Figure 16 for Separability,
which exhibits a same ranges. We compare Cohesion and Separability from the predominant sL term
(Equation (6) and Equation (7)), with the suppressed contributions from other terms of Cohesion and
Separability of FL (Equation (67) and Equation (68)).

L Additional Observation of Multi Classes Feature Analysis

We conduct experiments using new input data points x1 and x2, and spike directions β2 and β3,
which are not orthogonal to x1 and x2, as well as β4, which is orthogonal to both in the main text.
Furthermore, we extended the experiment by incorporating the midpoint direction β1 ≜ x1+x2

2 . See
Figure 17. Consistent with our analysis, we observed that β1 also does not contribute significantly to
feature formation.

To isolate the source of this behavior, we decomposed the network function FL into F0,L and sL, and
conducted additional experiments. See Figure 18. This decomposition confirms that the observed
phenomenon primarily originates from sL.

We also provide the original (unprocessed) data used before expressibility computation. See Figure 19,
Figure 20, Figure 21, and Figure 22. Expressibility is the maximum feature distance achievable when
two data points are rotated to maximize their angular separation. This corresponds to the slope of the
original plot before scaling.

We summarize these slope values in Figure 23 to offer an alternative perspective. The results
demonstrate that including either midpoint or orthogonal directions during training leads to negligible
changes in slope.

These observations imply that training data aligned with the midpoint or orthogonal directions of new
input data do not contribute meaningfully to feature extraction.
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Figure 9: Cohesion in R2000,R20000,R320000 (left to right), with the computed range expanding from
top to bottom.
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Figure 10: Separability in R2000,R20000,R320000 (left to right), with the computed range expanding
from top to bottom.
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Figure 11: Component analysis of Cohesion in R2000,R20000,R320000 (left to right) in the range
[−100, 100]. Top: Cohesion of the dominant component sL i.e. Equation (6). Bottom: sum of the
other terms in Equation (67), which make only suppressed contributions.

Figure 12: Component analysis of Cohesion in R2000,R20000,R320000 (left to right) in the range
[−500, 500]. Top: Cohesion of the dominant component sL i.e. Equation (6). Bottom: sum of the
other terms in Equation (67), which make only suppressed contributions.
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Figure 13: Component analysis of Cohesion in R2000,R20000,R320000 (left to right) in the range
[−1000, 1000]. Top: Cohesion of the dominant component sL i.e. Equation (6). Bottom: sum of the
other terms in Equation (67), which make only suppressed contributions.

Figure 14: Component analysis of Separability in R2000,R20000,R320000 (left to right) in the range
[−500, 500]. Top: Separability of the dominant component sL i.e. Equation (7). Bottom: sum of the
other terms in Equation (68), which make only suppressed contributions.
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Figure 15: Component analysis of Separability in R2000,R20000,R320000 (left to right) in the range
[−500, 500]. Top: Separability of the dominant component sL i.e. Equation (7). Bottom: sum of the
other terms in Equation (68), which make only suppressed contributions.

Figure 16: Component analysis of Separability in R2000,R20000,R320000 (left to right) in the range
[−1000, 1000]. Top: Separability of the dominant component sL i.e. Equation (7). Bottom: sum of
the other terms in Equation (68), which make only suppressed contributions.
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(b) Two-layer Network

Figure 17: Expressibility measurement with F, FL of
∑
k

(
4
k

)
− 1 combinations of βis. All cases are

strongly influenced only by β2 and β3 directions. Thus when using only the β1 or β4 directions, the
two features are always mapped to the nearly same position.
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Figure 18: Expressibility measurement with F0,L, sL of
∑
k

(
4
k

)
− 1 combinations of βis. F0,L is not

influenced by trainind data and generates random features in all cases. sL is influenced only by β2

and β3. Thus when using only the β1 or β4, the two features are always mapped to the same position.
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Figure 21: Experiments for βi combinations. We vary angle between x1, x2 and measure L2 distance
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Figure 22: Experiments for βi combinations. We vary angle between x1, x2 and measure L2 distance
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Figure 23: Slope measurements summarized in the Venn diagram from Figure 19, Figure 20,
Figure 21, and Figure 22. Each intersection represents training with the corresponding combination
of βi directions. F0,L is not influenced by trainind data and generates random features in all cases.
F, FL and sL is influenced strongly by β2 and β3, so when using only the β1 or β4, the two features
are always mapped to the nearly same position.
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Train Data 1, 2, 3 Eval 1, 2

Figure 24: Examples of training datasets (Data 1, 2, 3) and evaluation data Eval 1, 2.

M Additional Observations of two-classes Experiments

M.1 Additional setup for Experiments I, II, III

We set d = n = N = 211 and use Shifted ReLU.

Training Datasets For illustration, see Figure 24. (Data 1) two uniform distributions over a radius-√
d ball, (Data 2) two multi-dimensional element-wise truncated Gaussian distributions, and (Data 3)

two uniform distributions over a radius-
√
d sphere, symmetric about the origin 4. The two means

of training class are denoted as v and −v, respectively. For Data 1, 3, we set v ≜ 2r · u, with
u ∼ Unif

(
Sd−1

)
. For Data 2, one class has support on [1,∞) across all dimensions, while the other

class has support on (−∞,−1].

Evaluation Datasets Eval 1 and 2 use the projected Gaussian distribution, which is projected onto
the mean direction of one training data v, as defined in Note M.1. For Eval 1, we translate the mean
of the projected Gaussian distribution with e; for Eval 2, we rotate the mean of the projected Gaussian
distribution with R ∈ R and fixed e. Note that we generate distinct rotation matrices R using the
process in Appendix P.
Note M.1 (Sampling projected Gaussian distribution). For Eval 1, let ν ≜ ev, c = 1 and for Eval
2, let ν ≜ Rev, c = 10−1 with e = 0.01 for Data 2 experiment and e = 0.008 for Data 1 and 3
experiments. Note R ∈ SO(d). The projected Gaussian distribution is sampled as follows,

z − z⊤νν

∥ν∥4
+ ν, where z ∼ N(0, cI). (115)

M.2 Comprehensive Results of All Experiments

The results of Expr. I are presented in linear scale in Figure 25 and logarithmic scale in Figure 26.
Additionally, as demonstrated in Figure 4, experiments for Expr. II and III settings are shown in
linear scale in Figure 27, with results for Cohesion, Separability, and Recall@1 (IP). Furthermore,
Recall@1 (cos) results are presented in linear scale in Figure 28. Recall@1 in both cosine and
inner product follows a similar trend to Separability. All observed results align with the theoretical
predictions.

M.3 Empirical Observations in Multi-Step and Multi-Layer Settings

To further examine the potential validity of our theory in multi-step and multi-layer settings, we
empirically observe that increasing β⊤µ generally leads to improvements in both Cohesion and
Separability, consistent with our theoretical predictions.

M.3.1 Setups

To avoid gradient explosion or vanishing issues, we set the learning rate to 0.001 for multi-step
experiments, and to 0.1 for multi-layer experiments. For the multi-step experiments, we performed
gradient descent on all parameters, including W and aij . For the multi-layer experiments, we

4The Sub-Gaussian property is proven for Data 1 and 3 in Vershynin [2018], and for Data 2 in Lemma I.1.
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constructed deep networks by repeatedly applying the feature structure defined in Section 2. For
example, in a three-layer setting, the network is defined as

F (x) ≜ σ
(
W⊤

2 σ(W⊤
1 x)

)
.

M.3.2 Results

Please refer Figures 29, 30, 31, and 32 for results. For Cohesion, we observe that as training
progresses or the network depth increases, Cohesion also increases with larger values of β⊤µ. For
Separability, although it generally tends to increase with larger β⊤µ as training proceeds or the
network deepens, we note two exceptions: when training is extensive, Separability decrease at small
β⊤µ, and when the network is deeper, Separability decline at high β⊤µ. These behaviors are likely
due to nonlinear learning dynamics and the nonlinearity of the model. This suggests an interesting
direction for future work: identifying a potential critical threshold of alignment strength in deep
models that balances directional consistency and proximity.

M.3.3 Insights

We discuss potential phenomena that may arise in multi-step training and deeper models, and consider
the possible extensions of our theoretical framework.

Multi-step training. Our findings suggest that extending the analysis beyond a single-step update
may provide additional insights. In particular, one possible hypothesis is that multi-step training
progressively refines the spike component by amplifying directions that enhance Cohesion and
Separability while suppressing others. Such a process could also facilitate more efficient information
compression for classification and improved transferability. The analytical framework of Dandi et al.
[2023], which characterizes the “staircase property” in multi-step dynamics, may offer a promising
starting point for developing such an extension.

Deeper models. Although our two-layer model captures key aspects of feature learning, extending
the framework to deeper architectures could shed further light on how transferable features emerge.
Previous studies Fan and Wang [2020], Nichani et al. [2023], Wang et al. [2023] have already
generalized conjugate kernel analysis to multi-layer settings, suggesting that a similar extension of
our approach might be feasible. Interestingly, our preliminary multi-layer experiments indicate that
when the depth increases, particularly in 3- and 4-layer models, improvements in Separability are
not always sustained. Exploring this potential threshold effect represents an intriguing direction for
future investigation.
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Figure 25: Expr. I: translation (e) variation case (linear scale). is after one step training. is
from initialization. As the train-unseen similarity increases, both Cohesion and Separability become
larger. Recall@1 follows in a similar trend to Separability.
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Figure 26: Expr. I: translation (e) variation (log scale). is after one step training. is from
initialization. As the train-unseen similarity increases, both Cohesion and Separability become larger.
Recall@1 follows in a similar trend to Separability.
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Figure 27: Expr. II and Expr. III; rotation(R) variation (linear scale). is after one step training.
is from initialization. In Expr. II, the two unseen classes are assigned to different classes, leading

to increased Cohesion and Separability as the train-unseen similarity increases, consistent with our
analysis. In contrast, in Expr. III, the two unseen classes are assigned to the same class, resulting in
increased Cohesion and decreased Separability as the train-unseen similarity increases, which is in
line with our analysis. Recall@1 follows in a similar trend to Separability.
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Figure 28: Recall@1 with cosine similarity of Expr. II and Expr. III; rotation(R) variation (linear
scale). is after one step training. is from initialization. Recall@1 follows in a similar trend to
corresponding Separability.

66



102 0 102

100

101

102

103

Co
he

sio
n

Data 1, Step 2

102 0 102

100

101

102

103

Co
he

sio
n

Data 2, Step 2

102 0 102

100

101

102

103

Co
he

sio
n

Data 3, Step 2

102 0 102

104

103

102

101

100
0

100

101

102

103

104

105

106

Co
he

sio
n

Data 1, Step 3

102 0 102

100

101

102

103
Co

he
sio

n

Data 2, Step 3

102 0 102

100

101

102

103

104

105

Co
he

sio
n

Data 3, Step 3

102 0 102

106

105

104

103

102

101

100
0

100

101

102

103

104

105

106

107

Co
he

sio
n

Data 1, Step 4

102 0 102

100

101

102

103

104

Co
he

sio
n

Data 2, Step 4

102 0 102
1010
109
108
107
106
105
104
103
102
101

1000
100

101
102
103
104
105
106
107
108
109

1010
1011

Co
he

sio
n

Data 3, Step 4

102 0 102

1021

1018

1015

1012

109

106

103

1000100

103

106

109

1012

1015

1018

1021

1024

Co
he

sio
n

Data 1, Step 5

102 0 102

105

104

103

102

101

100
0

100

101

102

103

104

105

106

Co
he

sio
n

Data 2, Step 5

102 0 102

1024

1021

1018

1015

1012

109

106

103

1000100

103

106

109

1012

1015

1018

1021

1024

Co
he

sio
n

Data 3, Step 5

Figure 29: Evolution of Cohesion in a two-layer network over multiple steps: as training progresses,
Cohesion gradually strengthens.
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Figure 30: Evolution of Separability in a two-layer network over multiple steps: as training progresses,
Separability gradually strengthens. Exceptionally, when a network is trained for many steps, there
are cases where Separability decreases if the train-unseen similarity is very low.
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Figure 31: Evolution of Cohesion in a multi-layer network over single steps: as training progresses,
Cohesion gradually strengthens.
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Figure 32: Evolution of Separability in a multi-layer network over single steps: as training progresses,
Separability gradually strengthens. Exceptionally, for a deeper network, there are cases where
Separability decreases if the train-unseen similarity is very high.
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N Additional Observations of Real-world dataset Experiments

N.1 Additional Results

Additional Results for Expr. IV is in Figure 33 and Figure 34. Figure 33 presents experimental results
using pretrained models with Domain datasets (CAR, CUB, SOP, ISC). Figure 34 shows results using
the Domain+sub In1k dataset across both initialized and pretrained models. In both cases, consistent
with the results in Figure 6 of the main text, models trained on a specific domain exhibit superior
performance on test data from the same domain.

Additional Results for Expr. V is in Figure 35. Figure 35 includes experimental results for initialized
ResNet18, pretrained ResNet18, and pretrained ResNet50, which are not discussed in the main text.
Across all settings, Domain+subsampled whole In1k does not outperform Domain or Domain+sub
In1k, despite having access to a larger number of classes (as shown in Figure 9).

Additional Results for Expr. VI is in Figure 36. We include a high-resolution version of Figure 7b and
additional results using pretrained models. In most cases, increasing the number of classes leads to
improved performance. We note that Table 10 shows the number of classes per step for each dataset.

Additional Results for Expr. VII is in Appendix N.2, Table 7, and Table 8.

Table 3, Table 4, Table 6, contain the original data prior to plotting.

N.1.1 Relationship between train-unseen similarity and semantic similarity

In real world validation of our feature transfer theory, we surrogate the theoretical quantity (train-
unseen similarity) using a semantic similarity of the dataset domain. This analogy is justified, as
datapoints in each dataset (CUB, CAR, SOP, ISC) exhibit consistent visual characteristics within the
dataset. Nevertheless, to strengthen our claim, we conducted the following additional experiment.

For each dataset (CUB, CAR, SOP, ISC) with three seeds, we trained a model and extracted the
class-wise mean embeddings from the training set as a surrogate for β. Similarly, we computed
class-wise mean embeddings from the test sets as a surrogate for µ. Then, for each test class, we
computed the maximum cosine similarity with any of the train class means as Listing 1.

As shown in Figures 37, 38, 39 and 40 for estimated kernel density, and Table 2 for statistics, the
maximum cosine similarity between unseen and train class means tends to be highest when the train
and test domains match. This supports our interpretation that semantic similarity across domains
serves as a valid proxy for theoretical train-unseen alignment.

N.1.2 Relationship between clustering criteria and Recall@1

To further validate the use of Recall@1 as a surrogate for clustering criteria, we evaluated Separability
as defined in Definition Definition 4.3 for Expr. IV. Following standard practice [Zhai and Wu, 2019],
all models were trained with unit-normalized features, and thus we report only Separability. Please
refer Table 5. The results indicate that models achieve the best Separability of test data when trained
on the corresponding domain (e.g., CAR test dataset trained on CAR training dataset), consistent
with the trends observed in Recall@1, thereby supporting the validity of Recall@1 as a surrogate.

N.2 Expr. VII: Removing Duplicately Assigned Eval Classes

In Expr. VII, as suggested by the theoretical results on Separability, we validated whether eliminating
duplicate in the assignments improves performance. To clarify, we will provide an example of
duplicate assignment at Note N.1.

Note N.1 (Example of duplicate assignment). For two train classes c(train)
1 ,c

(train)
2 and two test

classes c
(test)
1 ,c

(test)
2 , if most instances of c(test)

1 and c
(test)
2 are classified as c

(train)
1 , both test

classes are assigned to c
(train)
1 , resulting in duplication. Conversely, if c(test)

1 is classified as c(train)
2

and c
(test)
2 as c(train)

1 , they are assigned without duplication.

To validate, we introduce treatment and control groups. For the treatment group, we eliminate
duplicate in the assignments for the train classes, i.e., for each unseen class, the most frequently
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classified training class is aggregated, and the classes are randomly removed to ensure that the selected
training classes become unique (refer Algorithm Algorithm 2). For the control group, we randomly
selected the same number of classes as the treatment group (refer to Algorithm Algorithm 1). These
two groups are evaluated using Recall@1. This process is repeated five times, and the average is
reported. For the dataset, we used the following categories corresponding to each domain: Domain,
sub In1k, Domain+sub In1k, and subsampled whole In1k for Vehicle, Bird, Product, and Clothing.
In the case of the subsampled whole In1k dataset for this Experiment, we performed sampling by
selecting 100 instances per class. The experimental results are presented in Table 7 and 8. A total of
64 experiments are conducted, of which 51 demonstrated performance improvements; the estimated
success rate is 79%. There is a 1.73%± 2.87 average percentage point improvement in Recall@1,
with a maximum improvement of 13.65 percentage point and a minimum decrease of -3.28 percentage
point. These results suggest that the duplicate reduction treatment group outperforms the randomly
removed group with a binomial test p-value of 9.40× 10−7.

Listing 1: Observing train–unseen vs. semantic similarity
1 # same procedure for mean_embeddings_train
2 for test_dataset in [cub , car , sop , isc]:
3 embeddings , labels = extract_feature(model , test_dataset)
4 mean_embeddings_test = torch.zeros(num_unseen_classes , dim)
5 for uc in range(num_unseen_classes):
6 mean_embeddings_test[uc] =\
7 embeddings[labels == uc].mean(dim=0).normalize ()
8 # get statistics , sim: (num_unseen , num_seen)
9 sim = mean_embeddings_test @ mean_embeddings_train.T

10 max_values = sim.max(dim =1) # (num_unseen)
11 median(max_values), mean(max_values), std(max_values)

Algorithm 1 Random Sampling

Input: Number if unseen classes u, number of classes |L|
Output: Sampled class set Srandom
Set Srandom ← random.sample({0, 1, . . . , u− 1}, |L|)
return Srandom

Algorithm 2 Duplicated assignment reduction sampling

Input: Model f , unseen data loader D, number of train classes Ctrain, number of unseen classes
Cunseen
Output: Sampled class set Snondup

Initialize counter matrix counter← 0Cunseen×Ctrain

for (img, label) in D do
pred← f(img) Predicted class indices
Update counter: counter[label, pred] += 1

end for
top1_index← argsort(counter, dim = 1, descending = True)[..., 0]
unique_label← unique(top1_index)
Initialize Snondup ← ∅
for each label ℓ in unique_label do
Iℓ ← {i | top1_index[i] = ℓ} Indices corresponding to label ℓ
isample ← random.sample(Iℓ, 1) Select one random index
Snondup ← Snondup ∪ {isample}

end for
return Snondup
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Figure 33: Expr. IV on pretrained models with Domain datasets (CAR, CUB, SOP, ISC)
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Figure 34: Expr. IV on ResNet18, ResNet50 with Domain + In(S) e.g. CAR+I(V), CUB+I(B),
SOP+I(P), ISC+I(C)
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consistently.
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Figure 37: ResNet18 (Initialized): In most cases, the maximum cosine similarity is higher when the
test dataset belongs to the same domain as the training dataset.
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Figure 38: ResNet50 (Initialized): In most cases, the maximum cosine similarity is higher when the
test dataset belongs to the same domain as the training dataset.
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Figure 39: ResNet18 (Pretrained): In most cases, the maximum cosine similarity is higher when the
test dataset belongs to the same domain as the training dataset.
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Figure 40: ResNet50 (Pretrained): In most cases, the maximum cosine similarity is higher when the
test dataset belongs to the same domain as the training dataset.
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Table 2: Relationship between train–unseen similarity and semantic similarity, with the maximum
value highlighted in each row. In a model trained on a single domain, the train–unseen similarity is
mostly highest for the test data that is most semantically similar.

ResNet18 (Randomly Initialized)
Train↓\Test→ CAR CUB SOP ISC

median mean±std median mean±std median mean±std median mean±std
CAR 0.80 0.78±0.09 0.58 0.58±0.09 0.53 0.53±0.10 0.59 0.59±0.06
CUB 0.68 0.68±0.07 0.85 0.84±0.07 0.61 0.60±0.13 0.43 0.44±0.08
SOP 0.64 0.64±0.06 0.67 0.67±0.06 0.68 0.69±0.10 0.70 0.70±0.08
ISC 0.57 0.57±0.04 0.58 0.59±0.07 0.57 0.58±0.08 0.69 0.69±0.09

ResNet50 (Randomly Initialized)
Train↓\Test→ CAR CUB SOP ISC

median mean±std median mean±std median mean±std median mean±std
CAR 0.83 0.82±0.08 0.62 0.61±0.08 0.54 0.54±0.11 0.55 0.54±0.07
CUB 0.85 0.83±0.08 0.95 0.94±0.05 0.76 0.73±0.15 0.52 0.52±0.07
SOP 0.59 0.59±0.07 0.62 0.61±0.07 0.62 0.63±0.11 0.70 0.69±0.08
ISC 0.57 0.57±0.03 0.67 0.67±0.06 0.59 0.60±0.08 0.72 0.72±0.08

ResNet18 (ImageNet 1K Pretrained)
Train↓\Test→ CAR CUB SOP ISC

median mean±std median mean±std median mean±std median mean±std
CAR 0.51 0.53±0.13 0.33 0.33±0.04 0.35 0.35±0.06 0.32 0.32±0.04
CUB 0.23 0.23±0.04 0.67 0.67±0.12 0.30 0.31±0.06 0.34 0.35±0.05
SOP 0.31 0.32±0.04 0.39 0.39±0.05 0.36 0.39±0.11 0.31 0.31±0.05
ISC 0.38 0.39±0.04 0.40 0.41±0.06 0.38 0.39±0.07 0.53 0.54±0.11

ResNet50 (ImageNet 1K Pretrained)
Train↓\Test→ CAR CUB SOP ISC

median mean±std median mean±std median mean±std median mean±std
CAR 0.48 0.51±0.12 0.29 0.29±0.04 0.33 0.34±0.06 0.27 0.28±0.04
CUB 0.28 0.28±0.04 0.68 0.69±0.12 0.35 0.35±0.07 0.39 0.39±0.06
SOP 0.30 0.31±0.05 0.35 0.36±0.06 0.39 0.42±0.14 0.35 0.36±0.08
ISC 0.29 0.29±0.04 0.35 0.36±0.05 0.32 0.34±0.07 0.53 0.54±0.12
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Table 3: Table results for Expr. IV. In all cases, training with the corresponding domain data resulted
in the best test performance.

ResNet18 (Randomly Initialized)
Train↓\Test→ CAR CUB SOP ISC
CAR 26.9709±2.89 8.9242±1.85 27.6459±0.18 19.7552±0.17
CAR+I(V) 44.8653±5.00 11.1017±2.28 31.3428±0.09 20.9156±0.67
CUB 14.1270±0.17 12.5366±1.45 29.9312±1.62 18.6831±1.18
CUB+I(B) 14.1885±0.62 13.9433±1.76 30.3902±0.68 19.5329±1.00
SOP 17.5050±1.49 9.8132±0.93 36.6247±1.22 30.8448±2.27
SOP+I(P) 17.3082±1.02 9.4812±1.73 36.8302±1.28 32.1444±1.79
ISC 14.1680±1.43 8.3446±1.89 31.3990±2.66 47.8817±3.09
ISC+I(C) 14.1557±1.20 7.7538±1.43 31.1632±1.60 47.7550±3.13

ResNet50 (Randomly Initialized)
Train↓\Test→ CAR CUB SOP ISC
CAR 20.9609±4.26 6.7466±1.63 25.9485±1.99 14.8615±3.33
CAR+I(V) 31.6566±1.05 9.9201±1.11 30.9257±1.21 19.1651±1.04
CUB 7.3341±1.14 6.5946±2.31 19.2065±0.64 10.0050±0.93
CUB+I(B) 7.4120±0.12 6.6340±1.21 20.4285±2.26 10.8672±2.83
SOP 18.1732±1.03 9.8019±2.07 37.5448±0.33 29.7677±1.96
SOP+I(P) 17.4107±0.69 9.7738±1.38 38.2880±0.59 30.6237±1.23
ISC 11.7739±1.36 6.7578±1.50 28.6343±1.50 47.3624±1.34
ISC+I(C) 12.2576±1.20 7.3093±1.61 30.3984±0.97 49.9217±3.57

Table 4: Table results for Expr. IV. In the most cases, training with the corresponding domain data
resulted in the best test performance.

ResNet18 (ImageNet 1K Pretrained)
Train↓\Test→ CAR CUB SOP ISC
CAR 89.5421±2.37 15.0180±4.31 38.6362±0.96 21.0411±1.55
CAR+I(V) 89.1280±2.62 18.3772±6.12 40.7116±0.70 22.4612±1.42
CUB 44.4636±8.42 60.4096±5.84 49.2369±0.46 26.3188±1.09
CUB+I(B) 43.9511±8.04 60.1227±6.29 48.2089±0.66 24.4776±2.55
SOP 40.3640±2.06 19.6433±4.03 49.0204±0.65 31.7294±0.78
SOP+I(P) 40.6346±0.82 19.6264±3.60 48.8414±1.09 31.5741±2.91
ISC 22.3589±0.96 11.1467±2.37 43.6862±1.69 71.6921±0.49
ISC+I(C) 22.5065±2.90 11.3324±1.42 42.6812±3.22 70.4721±0.75

ResNet50 (ImageNet 1K Pretrained)
Train↓\Test→ CAR CUB SOP ISC
CAR 92.7069±1.68 19.8458±8.36 41.9793±2.20 22.4363±4.95
CAR+I(V) 92.5019±1.46 22.9856±8.93 43.8988±1.74 22.5407±4.13
CUB 43.8814±11.40 64.0558±5.57 48.4447±0.66 25.2143±2.87
CUB+I(B) 40.0853±10.21 63.2287±5.81 45.6481±0.15 21.6412±2.57
SOP 49.8955±2.81 28.6743±5.80 63.8398±0.97 36.6294±0.78
SOP+I(P) 51.0269±3.89 29.6309±6.06 63.9213±0.23 36.2244±0.76
ISC 24.5480±2.59 14.8042±1.82 54.5414±0.71 86.7164±0.63
ISC+I(C) 25.9419±2.90 14.4609±2.10 52.1762±1.38 87.3562±0.35
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Table 5: Table of Expr. IV Results with Separability Measurements. In all cases, training with the
corresponding domain data resulted in the best Separability.

ResNet18 (Randomly Initialized)
Train↓\Test→ CAR CUB SOP ISC

CAR -0.25±0.12 -0.63±0.12 -0.29±0.10 -0.82±0.07
CUB -0.75±0.12 -0.28±0.19 -0.14±0.11 -0.81±0.06
SOP -0.69±0.13 -0.42±0.13 -0.01±0.01 -0.47±0.09
ISC -0.86±0.08 -0.79±0.08 -0.28±0.10 -0.01±0.01

ResNet50 (Randomly Initialized)
Train↓\Test→ CAR CUB SOP ISC

CAR -0.28±0.12 -0.72±0.13 -0.29±0.10 -0.81±0.06
CUB -0.71±0.15 -0.36±0.27 -0.10±0.11 -0.88±0.06
SOP -0.67±0.12 -0.37±0.12 -0.01±0.01 -0.46±0.09
ISC -0.90±0.05 -0.83±0.07 -0.30±0.10 -0.01±0.01

ResNet18 (ImageNet 1K Pretrained)
Train↓\Test→ CAR CUB SOP ISC

CAR -0.09±0.05 -0.85±0.04 -0.36±0.06 -0.76±0.05
CUB -0.84±0.04 -0.21±0.13 -0.37±0.05 -0.67±0.06
SOP -0.64±0.08 -0.47±0.08 -0.01±0.01 -0.28±0.06
ISC -0.82±0.09 -0.75±0.07 -0.22±0.08 -0.01±0.01

ResNet50 (ImageNet 1K Pretrained)
Train↓\Test→ CAR CUB SOP ISC

CAR -0.10±0.05 -0.83±0.04 -0.34±0.06 -0.68±0.05
CUB -0.85±0.04 -0.28±0.12 -0.39±0.06 -0.73±0.05
SOP -0.71±0.09 -0.54±0.08 -0.01±0.00 -0.40±0.08
ISC -0.86±0.08 -0.77±0.05 -0.25±0.07 -0.01±0.00

Table 6: Table results of performance for Expr. V. The performance of D and D+I(Sub) is comparable
to that of D+I, despite D+I having a larger number of classes.

ResNet18 (Randomly Initialized)
Train↓\Test→ CAR CUB SOP ISC

D 26.97±2.89 12.54±1.45 36.62±1.22 47.88±3.09
D+I(Sub) 44.87±5.00 13.94±1.76 36.83±1.28 47.76±3.13

D+I 31.61±1.62 14.11±0.10 36.62±0.88 44.82±0.55

ResNet50 (Randomly Initialized)
Train↓\Test→ CAR CUB SOP ISC

D 20.96±4.26 6.59±2.31 37.54±0.33 47.36±1.34
D+I(Sub) 31.66±1.05 6.63±1.21 38.29±0.59 49.92±3.57

D+I 32.85±0.53 9.70±0.26 37.32±0.69 55.92±11.32

ResNet18 (ImageNet 1K Pretrained)
Train↓\Test→ CAR CUB SOP ISC

D 89.54±2.37 60.41±5.84 49.02±0.65 71.69±0.48
D+I(Sub) 89.13±2.62 60.12±6.29 48.84±1.09 70.47±0.75

D+I 76.02±0.42 53.69±0.52 47.35±0.93 68.30±1.17

ResNet50 (ImageNet 1K Pretrained)
Train↓\Test→ CAR CUB SOP ISC

D 92.71±1.68 64.06±5.57 63.84±0.97 86.72±0.63
D+I(Sub) 92.50±1.46 63.23±5.81 63.92±0.23 87.36±0.35

D+I 75.19±0.79 46.48±0.51 63.68±0.23 79.47±9.09
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Table 7: Expr. VII from (Randomly Initialized). Column Original indicates the Recall@1 performance
of the original trained model when neither treatment nor random removal is applied. Column ∆
indicates the difference between Treatement and Random Recall@1 score.

ResNet18 (Randomly Initialized)
Test Train Treatment Random ∆ Original

CAR Test

CAR 42.57 ± 1.59 40.42 ± 2.23 2.14 ± 2.74 23.83
I(V) 32.96 ± 1.23 27.93 ± 3.98 5.02 ± 4.17 11.17
CAR+I(V) 56.16 ± 1.60 56.67 ± 1.21 -0.51 ± 2.00 39.22
In 41.43 ± 0.88 38.65 ± 2.42 2.77 ± 2.57 25.70

CUB Test

CUB 24.56 ± 1.22 21.46 ± 2.57 3.10 ± 2.85 10.89
I(B) 21.56 ± 2.07 18.68 ± 1.33 2.88 ± 2.46 6.40
CUB+I(B) 19.97 ± 1.33 18.93 ± 2.09 1.04 ± 2.48 12.05
In 37.66 ± 0.87 32.92 ± 1.53 4.74 ± 1.76 21.49

SOP Test

SOP 41.63 ± 0.22 41.49 ± 0.21 0.15 ± 0.30 48.87
I(P) 50.70 ± 2.50 49.30 ± 2.25 1.40 ± 3.37 18.23
SOP+I(P) 44.59 ± 0.19 44.57 ± 0.46 0.02 ± 0.50 48.70
In 52.24 ± 0.24 52.71 ± 0.76 -0.48 ± 0.80 24.75

ISC Test

ISC 63.51 ± 0.47 62.37 ± 0.47 1.14 ± 0.67 37.90
I(C) 61.43 ± 3.65 52.54 ± 1.84 8.89 ± 4.09 31.29
ISC+I(C) 56.81 ± 0.59 56.10 ± 0.38 0.71 ± 0.70 37.20
In 45.25 ± 1.59 45.43 ± 1.56 -0.17 ± 2.23 38.82

Average Improvement 2.05
Success Rate 0.8125

ResNet50 (Randomly Initialized)
Test Train Treatment Random ∆ Original

CAR Test

CAR 33.62 ± 1.89 32.66 ± 1.01 0.97 ± 2.15 20.67
I(V) 24.07 ± 1.29 1.30 ± 0.97 2.77 ± 1.61 10.48
CAR+I(V) 48.11 ± 1.36 46.02 ± 1.96 2.09 ± 2.39 32.80
In 53.52 ± 0.98 46.75 ± 2.41 6.77 ± 2.60 30.06

CUB Test

CUB 25.10 ± 1.90 20.28 ± 2.52 4.82 ± 3.16 3.93
I(B) 26.96 ± 1.40 22.31 ± 2.20 4.64 ± 2.61 3.58
CUB+I(B) 17.43 ± 1.22 14.76 ± 1.60 2.67 ± 2.02 5.27
In 47.89 ± 1.15 39.48 ± 1.28 8.42 ± 1.72 28.06

SOP Test

SOP 45.53 ± 0.42 45.70 ± 0.51 -0.17 ± 0.66 45.81
I(P) 45.02 ± 2.24 45.55 ± 2.15 -0.53 ± 3.10 14.46
SOP+I(P) 44.33 ± 0.36 43.96 ± 0.50 0.37 ± 0.61 53.18
In 59.42 ± 0.85 58.11 ± 0.76 1.31 ± 1.14 22.85

ISC Test

ISC 64.90 ± 0.46 62.92 ± 0.57 1.98 ± 0.73 37.50
I(C) 55.21 ± 1.52 50.42 ± 4.59 4.78 ± 4.84 27.16
ISC+I(C) 65.22 ± 0.19 64.72 ± 0.66 0.50 ± 0.69 38.12
In 44.00 ± 0.91 43.56 ± 1.12 -0.44 ± 1.44 42.93

Average Improvement 2.56
Success Rate 0.8125
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Table 8: Expr. VII (ImageNet 1K Pretrained). Column Original indicates the Recall@1 performance
of the original trained model when neither treatment nor random removal is applied. Column ∆
indicates the difference between Treatement and Random Recall@1 score.

ResNet18 (ImageNet 1K Pretrained)
Test Train Treatment Random ∆ Original

CAR Test

CAR 90.30 ± 0.72 90.10 ± 0.55 0.20 ± 0.90 86.80
I(V) 64.40 ± 3.23 65.51 ± 2.93 -1.12 ± 4.37 42.10
CAR+I(V) 91.37 ± 0.52 90.38 ± 0.63 1.00 ± 0.82 86.10
In 74.96 ± 5.14 66.56 ± 4.02 8.40 ± 6.52 26.00

CUB Test

CUB 62.86 ± 1.53 63.36 ± 2.56 -0.50 ± 2.98 53.66
I(B) 61.21 ± 2.40 54.89 ± 1.32 6.32 ± 2.74 34.00
CUB+I(B) 71.03 ± 0.86 67.02 ± 1.08 4.01 ± 1.38 52.89
In 46.29 ± 1.05 40.73 ± 3.47 5.57 ± 3.63 30.32

SOP Test

SOP 51.65 ± 0.17 50.88 ± 0.43 0.77 ± 0.46 71.15
I(P) 69.91 ± 0.79 68.17 ± 0.93 1.74 ± 1.22 24.57
SOP+I(P) 52.58 ± 0.18 51.69 ± 0.29 0.89 ± 0.34 70.98
In 46.92 ± 0.63 45.41 ± 0.92 1.51 ± 1.12 13.85

ISC Test

ISC 76.63 ± 0.60 74.59 ± 0.62 2.04 ± 0.86 48.27
I(C) 71.72 ± 5.58 71.28 ± 4.24 0.45 ± 7.01 48.38
ISC+I(C) 78.21 ± 0.27 77.53 ± 0.49 0.69 ± 0.56 47.75
In 30.21 ± 1.13 36.25 ± 4.05 -6.04 ± 4.20 30.66

Average Improvement 1.62
Success Rate 0.8125

ResNet50 (ImageNet 1K Pretrained)
Test Train Treatment Random ∆ Original

CAR Test

CAR 95.32 ± 0.28 95.58 ± 0.70 -0.26 ± 0.76 90.77
I(V) 75.37 ± 3.98 72.97 ± 3.39 2.39 ± 5.23 40.13
CAR+I(V) 94.85 ± 0.93 94.82 ± 0.59 0.03 ± 1.10 90.81
In 80.45 ± 2.26 68.57 ± 5.35 11.88 ± 5.80 32.51

CUB Test

CUB 80.00 ± 1.45 76.05 ± 1.96 3.96 ± 2.44 57.78
I(B) 60.53 ± 2.72 58.16 ± 1.85 2.37 ± 3.30 33.37
CUB+I(B) 77.54 ± 0.54 72.83 ± 1.03 4.70 ± 1.16 56.56
In 69.53 ± 2.10 56.82 ± 3.50 12.71 ± 4.08 35.53

SOP Test

SOP 70.10 ± 0.20 69.59 ± 0.23 0.51 ± 0.31 87.10
I(P) 68.04 ± 0.92 65.75 ± 1.32 2.29 ± 1.61 24.13
SOP+I(P) 68.61 ± 0.09 68.06 ± 0.37 0.55 ± 0.38 87.18
In 55.81 ± 0.61 51.94 ± 1.44 3.87 ± 1.56 8.68

ISC Test

ISC 90.70 ± 0.13 89.85 ± 0.41 0.85 ± 0.43 62.75
I(C) 66.42 ± 4.51 67.06 ± 3.79 -0.64 ± 5.89 64.02
ISC+I(C) 90.85 ± 0.35 89.98 ± 0.47 0.87 ± 0.59 63.66
In 43.15 ± 3.53 40.84 ± 6.19 2.31 ± 7.12 28.87

Average Improvement 3.02
Success Rate 0.875
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O Additional Information of ImageNet subset used in Experiments

Table 9: Configuration of Expr. V
Vehicle Bird Product Clothing

D 98 100 11316 3985
D+I(Sub) 138 159 11568 4031

D+I 1098 1100 12316 4985

Table 10: Configuration of Expr. VI
Step 0 Step 1 Step 2 Step 3

Vehicle 25 50 75 98
Bird 25 50 75 100
Product 2829 5658 8487 11316
Clothing 996 1992 2989 3985

This section provides detailed information on the number of classes in the training datasets used in
Expr. V and VI (9, 10), along with a list of manually selected classes that constitute the ImageNet
subsets related to Vehicle, Bird, Product, and Clothing.

O.1 I(V): The Vehicle classes chosen in ImageNet

Total 40 classes.

ambulance, cab, convertible, fire engine, forklift, freight car, garbage truck, go-kart, golfcart, half
track, harvester, horse cart, jeep, jinrikisha, limousine, minibus, minivan, Model T, moped, motor
scooter, mountain bike, moving van, oxcart, passenger car, pickup, police van, racer, recreational
vehicle, school bus, snowmobile, snowplow, sports car, streetcar, tank, tow truck, tractor, trailer truck,
tricycle, trolleybus, unicycle

O.2 I(B): The Bird classes chosen in ImageNet

Total 59 classes.

cock, hen, ostrich, brambling, goldfinch, house finch, junco, indigo bunting, robin, bulbul, jay, magpie,
chickadee, water ouzel, bald eagle, vulture, great grey owl, black grouse, ptarmigan, ruffed grouse,
prairie chicken, peacock, quail, partridge, African grey, macaw, sulphur-crested cockatoo, lorikeet,
coucal, bee eater, hornbill, hummingbird, jacamar, toucan, drake, red-breasted merganser, goose,
black swan, tusker, white stork, black stork, spoonbill, flamingo, little blue heron, American egret,
bittern, crane, limpkin, European gallinule, American coot, bustard, ruddy turnstone, red-backed
sandpiper, redshank, dowitcher, oystercatcher, pelican, king penguin, albatross

O.3 I(P): The Product classes chosen in ImageNet

Total 353 classes.

abacus, accordion, acoustic guitar, altar, analog clock, apiary, ashcan, assault rifle, backpack, balance
beam, balloon, ballpoint, Band Aid, banjo, barbell, barber chair, barometer, barrel, barrow, baseball,
basketball, bassinet, bassoon, bathing cap, bath towel, bathtub, beach wagon, beacon, beaker, bearskin,
beer bottle, beer glass, bell cote, bib, bicycle-built-for-two, binder, binoculars, bobsled, bolo tie,
bonnet, bookcase, bottlecap, bow tie, brass, breakwater, broom, bucket, buckle, bulletproof vest,
caldron, candle, cannon, canoe, can opener, car mirror, carousel, carpenter’s kit, carton, car wheel,
cash machine, cassette, cassette player, CD player, cello, cellular telephone, chain, chain saw,
chest, chiffonier, chime, china cabinet, cleaver, clog, cocktail shaker, coffee mug, coffeepot, coil,
combination lock, computer keyboard, confectionery, corkscrew, cornet, cradle, crash helmet, crate,
crib, Crock Pot, croquet ball, crutch, dam, desk, desktop computer, dial telephone, digital clock, digital
watch, dining table, dishrag, dishwasher, disk brake, dogsled, doormat, drum, drumstick, dumbbell,
Dutch oven, electric fan, electric guitar, electric locomotive, envelope, espresso maker, face powder,
feather boa, file, fire screen, flagpole, flute, folding chair, football helmet, fountain pen, four-poster,
French horn, frying pan, gasmask, gas pump, goblet, golf ball, gondola, gong, grand piano, grille,
guillotine, hair slide, hair spray, hammer, hamper, hand blower, hand-held computer, handkerchief,
hard disc, harmonica, harp, hatchet, holster, honeycomb, hook, horizontal bar, hourglass, iPod, iron,
jack-o’-lantern, jigsaw puzzle, joystick, knot, ladle, lampshade, laptop, lawn mower, lens cap, letter
opener, lighter, lipstick, lotion, loudspeaker, loupe, magnetic compass, mailbox, maraca, marimba,
matchstick, maypole, measuring cup, medicine chest, microphone, microwave, milk can, mixing bowl,
modem, monitor, mountain tent, mousetrap, muzzle, nail, neck brace, necklace, nipple, notebook,
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oboe, ocarina, odometer, oil filter, organ, oscilloscope, oxygen mask, packet, paddle, paddlewheel,
padlock, paintbrush, paper towel, parachute, parallel bars, park bench, parking meter, pay-phone,
pedestal, pencil box, pencil sharpener, perfume, Petri dish, photocopier, pick, picket fence, piggy
bank, pill bottle, pillow, ping-pong ball, plastic bag, plate rack, plow, plunger, Polaroid camera, pole,
pool table, pop bottle, pot, potter’s wheel, power drill, prayer rug, printer, prison, projectile, projector,
puck, punching bag, purse, quill, quilt, racket, radiator, radio, radio telescope, rain barrel, reel, reflex
camera, refrigerator, remote control, revolver, rifle, rocking chair, rotisserie, rubber eraser, rugby ball,
rule, safe, safety pin, saltshaker, sax, scabbard, scale, scoreboard, screen, screw, screwdriver, seat
belt, sewing machine, shield, shopping basket, shopping cart, shovel, shower cap, shower curtain,
ski, sleeping bag, sliding door, slot, snorkel, soap dispenser, soccer ball, sock, solar dish, soup
bowl, space bar, space heater, spatula, spider web, spindle, spotlight, steel drum, stethoscope, stole,
stopwatch, stove, strainer, stretcher, studio couch, sunscreen, swab, switch, syringe, table lamp, tape
player, teapot, teddy, television, tennis ball, theater curtain, thimble, thresher, throne, tile roof, toaster,
tobacco shop, toilet seat, torch, totem pole, tray, tripod, trombone, tub, turnstile, typewriter keyboard,
umbrella, vacuum, vase, vault, velvet, vending machine, violin, volleyball, waffle iron, wall clock,
wallet, wardrobe, washbasin, washer, water bottle, water jug, water tower, whiskey jug, whistle,
window screen, window shade, wine bottle, wing, wok, wooden spoon, comic book, crossword
puzzle, street sign, traffic light, book jacket, menu, plate

O.4 I(C): The Clothing classes chosen in ImageNet

Total 46 classes.

abaya, academic gown, apron, bikini, brassiere, breastplate, cardigan, chain mail, Christmas stocking,
cloak, cowboy boot, cowboy hat, cuirass, diaper, fur coat, gown, hoopskirt, jean, jersey, kimono, knee
pad, lab coat, Loafer, mailbag, mask, military uniform, miniskirt, mitten, overskirt, pajama, poncho,
running shoe, sandal, sarong, ski mask, sombrero, suit, sunglass, sunglasses, sweatshirt, swimming
trunks, trench coat, vestment, wig, Windsor tie, wool

P Rotation Matrix Generation Process of Setup 2

To generate a set of rotation matrices with diverse magnitudes of rotation, we constructed an algorithm
that samples k = 300 random matrices, each formed by adding i.i.d. Gaussian noise matrix of varying
variance to the identity matrix I . The process ensures the generation of rotation matrices with varying
extents of rotation, from slight to more substantial deviations from the identity matrix.

The rotation matrices are generated as follows:

1. A matrix is initialized as I + ϵ ·M , where M is a i.i.d. standard random Gaussian matrix.
2. Using the QR decomposition, we orthogonalize this matrix to ensure it forms a valid rotation

matrix.
3. Finally, if the determinant of the resulting matrix is negative, we flip the sign of the first

column to maintain a determinant of +1, ensuring it is a valid rotation.

In summary, this method provides a collection of matrices that progressively deviate from I , allowing
us to observe and sample rotations of increasing magnitude. Please refer to Algorithm Algorithm 3.
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Algorithm 3 Gaussian-Sampled Random Rotation Matrix Generation

Input: Number of dimensions n, number of matrices k
Output: Stack of random rotation matrices
Initialize empty list Q
Set ϵ← 0.5
for i← 0 to k − 1 do

if i mod
(
k
16

)
= 0 and i ̸= 0 then

ϵ← ϵ× 0.22360679775
end if
Generate random matrix M : M ∼ N(0, 1)n×n

Compute perturbed matrix: A← In + ϵ×M
Compute QR decomposition: Q,R← QR(A)
if det(Q) < 0 then

Flip first column of Q: Q[:, 0]← −Q[:, 0]
end if
Add Q to Q

end for
return Q
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