

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 GENERALIZABLE END-TO-END TOOL-USE RL WITH SYNTHETIC CODEGYM

Anonymous authors

Paper under double-blind review

ABSTRACT

Tool-augmented large language models (LLMs), hereafter LLM agents, leverage external tools to solve diverse tasks and interface with the real world. However, current training practices largely rely on supervised fine-tuning (SFT) over static trajectories or reinforcement learning (RL) on narrow tasks, which generalize poorly beyond development settings and lead to brittleness with new tools and unseen workflows. Because code execution reflects many structures of real-world workflows, we use coding problems as a structured substrate to build tool-use agent training environments with diverse task configurations. To this end, we introduce **CodeGym**, a scalable framework that synthesizes diverse, verifiable, and controllable multi-turn tool-use environments for agent RL, enabling LLM agents to explore and master various workflows actively. CodeGym converts static coding problems into interactive environments by extracting atomic functions or logic into callable tools, yielding verifiable tasks that span various tool-execution workflows. Models of varying sizes and chain-of-thought configurations, trained in CodeGym, exhibit consistent out-of-distribution generalizability; for example, Qwen2.5-32B-Instruct achieves an absolute accuracy gain of 8.7 points on the OOD benchmark τ -Bench. These results highlight CodeGym as a step toward scalable general-purpose RL environments for training tool-use behaviors that align with real-world agent workflows.

1 INTRODUCTION

Large language models (LLMs) have exhibited remarkable capabilities in complex logical reasoning, code generation, and instruction following (Jaech et al., 2024; Liu et al., 2024a; Seed et al., 2025; Yang et al., 2025; Seed, 2025b; Comanici et al., 2025), but their capabilities are limited by static parametric memory (Gao et al., 2023b;a; Schick et al., 2023). A new paradigm, tool-augmented LLM agents, overcomes these limits by granting LLM access to external resources, such as databases (Liu et al., 2024b; Qian et al., 2024; Prabhakar et al., 2025), search engines (Parisi et al., 2022; Lu et al., 2023), and code executors (Li et al., 2023; Wu et al., 2025), enabling them to act with expanded problem solving abilities (Ma et al., 2024; Du et al., 2025) and interaction capacities (Qin et al., 2023; Yao et al., 2024).

Standard pretraining corpora lack sufficient high-quality agent interaction data, such as tool-use and workflow traces, leaving LLM agents brittle (Fu et al., 2025b). To mitigate this, previous work has constructed agent tasks and generated agent trajectories for supervised fine-tuning (SFT) (Zhou et al., 2023; Wang et al., 2024a). Although such construction can improve performance on designed benchmarks, the resulting trajectories often follow hand-crafted patterns and explore limited environments and task configurations, leading to poor generalization to distribution shifts, such as new tools or unseen workflows (Huang et al., 2024; Guo et al., 2024; Li et al., 2024). This calls for training environments that better capture the diversity and complexity of real-world agent workflows.

Beyond SFT, reinforcement learning (RL) shows promise in improving generalization (Chu et al., 2025). Through active exploration and interaction with external environments, RL enables LLM agents to exploit feedback from tools and dynamic contexts, learning not only from correct trials but also from failures, thereby gradually improving and adapting to novel scenarios, rather than relying solely on static teacher trajectories (Zheng et al., 2025; Le et al., 2022). Recent work introduces RL training environments tailored to specific agent domains, such as coding assistants (Pan et al.,

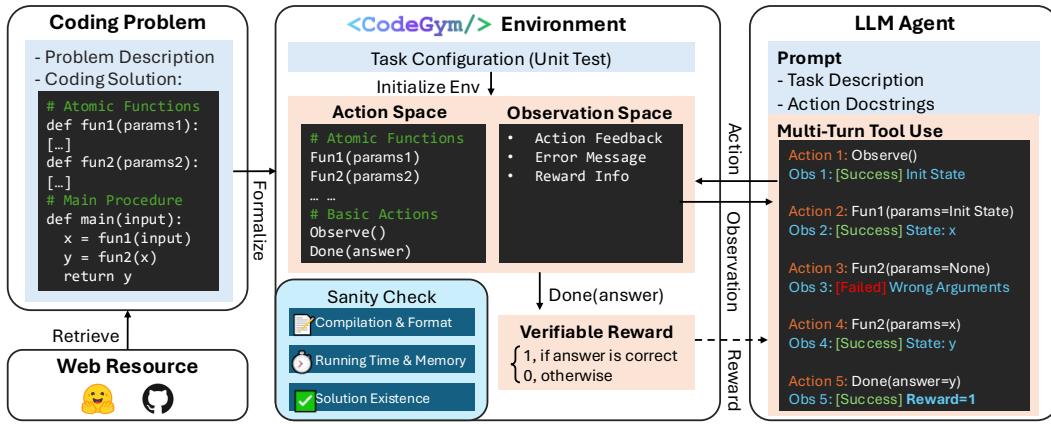


Figure 1: **Overview of CodeGym.** We transform coding problems into interactive environments to train LLM agents. **(Left)** We extract atomic and reusable functions or logic from coding solutions to construct interactive environments. **(Middle)** CodeGym enables agents to solve tasks via multi-turn tool calls, with environment correctness verified automatically. **(Right)** The resulting environments support scalable RL training, improving robustness and generalization of LLM agents.

2024) and information search (Chen et al., 2025). However, these setups only focus on narrow tasks, limiting the potential of RL to generalize (Cobbe et al., 2019). A scalable general-purpose RL environment for improving LLM agentic capabilities remains absent.

To bridge these gaps, we introduce **CodeGym**, a framework for synthesizing large-scale, diverse, and verifiable **multi-turn tool-use environments** from coding problems. Code inherently embodies diverse and rigorous execution logic and naturally reflects many of the structures found in real-world workflows, making coding problems a natural foundation for constructing rich tool-use environments. Using this property, CodeGym ingests raw coding problems and exploits their inherent execution semantics to synthesize interactive environments. Reusable atomic functions and logic are abstracted into callable tools, which LLM agents invoke interactively to solve tasks instead of directly writing the full code. CodeGym enables LLM agents to explore and adapt to unseen environments interactively rather than relying on static demonstrations. Since code encodes diverse logic and functionality, the resulting environments vary widely, not only in available tools and workflow structures, but also in the forms of tool-based reasoning agents must employ to succeed.

Reinforcement learning in CodeGym exposes agents to a wide range of environments and task configurations, fostering adaptation strategies for real-world agent applications. We apply CodeGym to train language models of various sizes and chain-of-thought (CoT) styles, and the trained models achieve competitive in-domain performance and, importantly, demonstrate notable generalization to out-of-distribution (OOD) settings. For example, Qwen2.5-32B-Instruct improves accuracy by 8.7 points in τ -Bench (Yao et al., 2024). These findings suggest that CodeGym promotes transferable interaction strategies, avoiding overfitting specific tasks. Our contributions are threefold:

- We introduce **CodeGym**, a scalable pipeline that transforms static coding problems into explorable and verifiable multi-turn tool-use environments.
- CodeGym contains a large suite of tasks with various logic and tool sets, which ensures that training covers a broad trajectory space while providing stable and rigorous feedback.
- We show that reinforcement learning on CodeGym significantly improves out-of-distribution generalization for LLM agents, highlighting the value of CodeGym for generalizable agent training.

2 RELATED WORK

LLMs as Tool-Use Agents Equipped with external tools, LLMs extend their capabilities beyond intrinsic language modeling, not only improving factual reasoning through knowledge search or retrieval (Qin et al., 2023) and program-aided computation (Gao et al., 2023a), but also enabling direct

108 interaction with the world in domains such as coding (Wang et al., 2024b), customized services (Yao
 109 et al., 2024), robotic control (Ahn et al., 2022), and scientific discovery (M. Bran et al., 2024).
 110

111 **Synthetic Environments for LLM Agent Training** For agent applications, LLMs often lack
 112 domain-specific training data, leaving them insufficiently grounded and prone to erroneous ac-
 113 tions (Qu et al., 2025). Synthetic environments have thus emerged as a promising means of pro-
 114 viding controlled, domain-aligned supervision. Early efforts, such as TextWorld, ALFWorld, and
 115 ScienceWorld (Côté et al., 2018; Shridhar et al., 2020; Wang et al., 2022), offered interactive text-
 116 based environments for language models to enhance instruction following and multistep reasoning,
 117 although their domain gap limits real-world transfer. More realistic benchmarks now include Web-
 118 Shop (Yao et al., 2022) for online shopping, SWE-Gym (Pan et al., 2024) for code debugging, and
 119 BrowseComp-Plus (Chen et al., 2025) for deep web search, etc. In parallel, resources such as Tool-
 120 Bench and T-Eval (Qin et al., 2023; Chen et al., 2023) provide large-scale datasets and fine-grained
 121 evaluations of tool use capacity, but lack the evolving states and long-horizon interactions of true
 122 environments. Despite these advances, broadly applicable general-purpose tool-use environments
 123 remain scarce.

124 **Reinforcement Learning with Verifiable Reward (RLVR)** Reinforcement learning has proven
 125 effective for training LLMs when rewards are verifiable, such as mathematical reasoning and code
 126 generation (Shao et al., 2024; Jaech et al., 2024; He et al., 2025). Based on PPO (Schulman et al.,
 127 2017), variants such as GRPO and DAPO (Shao et al., 2024; Yu et al., 2025) improve stability and
 128 efficiency during training. Tool-augmented RL further enables models to practice about when and
 129 how to invoke external tools, such as for retrieval (Li et al., 2025) or numeric reasoning (Singh
 130 et al., 2025; Feng et al., 2025). Nevertheless, scaling tool-supported RL and managing large training
 131 environments remain open challenges (Jiang et al., 2025).

132 3 CODEGYM

133 We introduce **CodeGym**, a large-scale synthetic multi-turn tool-use environment dataset constructed
 134 from extensive coding problems available online (Section 3.2). As shown in Figure 1, we synthesize
 135 various agent tasks and interactive environments to support reinforcement learning for LLM agents,
 136 exploring ways to improve agent capabilities and generalization. CodeGym encompasses thousands
 137 of tools, various patterns of tool-use logic, a low-latency execution environment, and verifiable
 138 reward mechanisms. Furthermore, CodeGym is designed for scalability: Our generation pipeline
 139 (Section 3.3) can systematically convert a wide range of coding tasks into interactive environments
 140 with a rigorous verification process, ensuring both the stability and correctness of environments.
 141 Finally, a series of filters, such as difficulty and trajectory complexity, is applied to select high-
 142 quality environments for LLM agent reinforcement training (Section 3.4).

143 3.1 INSIGHTS

144 The construction of CodeGym is motivated by a key insight: **code inherently embodies rigorous**
 145 **execution logic, which is similar to real-world workflows.** *For example, a loop that continues un-
 146 til a condition is satisfied mirrors iterative approval rounds in complex decision-making workflows.*
 147 Taking advantage of this property, we transform coding problems into structured tool-use environ-
 148 ments where agents use tools to solve tasks. This design bridges the gap between static datasets and
 149 interactive training, offering the diversity of real-world workflows for reinforcement learning.

150 Figure 3 illustrates how an interactive task is transformed from a coding problem. The original
 151 problem is ‘*Finding the number closest to K in a sorted list of length N.*’ From the corresponding
 152 coding solution (see Appendix C.1), we extract three atomic actions: (1) `observe`, which returns
 153 the array length N together with the target K ; (2) `look_up_pos`, which returns the element at
 154 index i ; and (3) `done`, which submits the final answer. These actions form the tool set available to
 155 the agent. The environment is initialized with a specific task configuration that is hidden from the
 156 agent. The agent then interacts with the environment by invoking tools and ultimately produces an
 157 answer, whose correctness is evaluated, and a binary reward is assigned.

158 More broadly, program execution can be reimaged as a structured action sequence in which agents
 159 must not only master individual tool calls but also compose them into coherent workflows. This

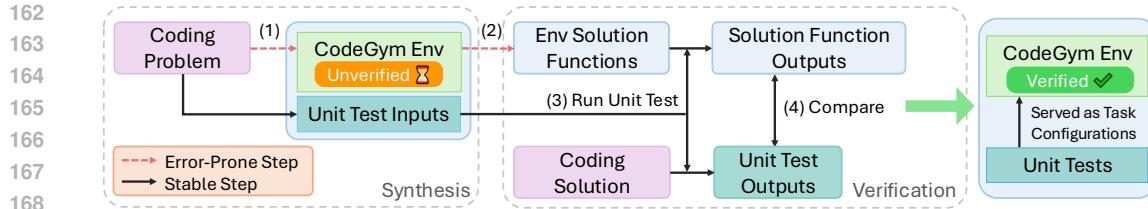


Figure 2: **Pipeline for CodeGym Environment Generation.** Coding problems are reformulated into interactive environments by extracting tools, generating candidate solutions, and validating them with unit tests. The environment is deemed valid if any candidate solution passes all tests, and the resulting unit tests serve as task configurations for RL training.

compositional nature, coupled with the verifiable outcomes of coding tasks, makes CodeGym particularly well-suited for cultivating general-purpose tool-use capabilities and robust agent training.

3.2 RESOURCE COLLECTION

Coding tasks are widely available online, and this work focuses primarily on collecting competitive programming problems. We use the KodCode dataset (Xu et al., 2025) and select the category of Coding Assessment Questions as our raw corpus. Each coding problem contains a task description paired with its corresponding solution code. Because code formats vary, we utilize an LLM¹ to standardize coding solutions into a unified format.

3.3 CODEGYM GENERATION PIPELINE

Our generation pipeline (see Figure 2) consists of two complementary stages: *Gym Synthesis* and *Gym Verification*. In the synthesis stage, we extract reusable code logic from programming solutions and rewrite them into callable tools, ensuring modularity and clarity. However, because large-scale generation is prone to errors, we introduce a verification stage that systematically validates correctness and solvability. This two-step design ensures that the resulting environments are diverse and reliable.

3.3.1 GYM SYNTHESIS

We extract reusable, atomized code logic or functions from programming solutions and convert them into a library of tools. A tool may be a standalone function, a calculation utility, or a frequently occurring code fragment (e.g., a loop body). Extraction and rewriting are performed by prompting an LLM, which asks the LLM to synthesize tools with precise documentation (functionality, parameters, and examples) conditioned on the source task and code solutions. Although examples are generated in the synthesis step, these are withheld from the agent-facing documentation during the training stage to encourage learning through interaction and acting based on feedback.

To support reinforcement learning, we synthesize environments in the OpenAI Gym format (Brockman et al., 2016). In detail, each CodeGym environment is defined as a POMDP:

$$\mathcal{E} = \langle \mathcal{S}, \mathcal{A}, \mathcal{T}, \mathcal{R}, \mathcal{O} \rangle,$$

¹We use Seed-1.6-Thinking (Seed, 2025a) for the CodeGym environment generation pipeline.

216 where the state \mathcal{S} encodes task-specific variables, the action space \mathcal{A} consists of both generic function calls (e.g., `Observe`, `Done`) and domain-specific tools, transitions \mathcal{T} execute the corresponding functions, and rewards R are sparse, assigned only upon termination by comparing the submitted answer to the ground truth. To discourage shortcut solutions, `Observe` reveals only a partial state (e.g., some task inputs are not directly accessible). `reset` initializes the environment with a predefined unit test input. The reward function returns 1 if the agent’s final answer matches the unit test output, and 0 otherwise.

223 This unified design provides a flexible template for incorporating various coding tasks into RL training, ensuring consistency across environments while encouraging tool use and exploration. By 224 providing a one-shot example, the LLM can amazingly follow all the format instructions in most 225 CodeGym synthesis inferences. Details of the CodeGym environment template and the synthesis 226 prompt are provided in Appendix C.2 and Appendix C.3, respectively.

227 When used during the agent training stage, the environment exposes the task description and 228 documentation of the available tools. Agents are expected to adapt their actions based on feedback from 229 environments (observations and error messages). Example agent prompts are listed in Appendix C.4.

232 3.3.2 GYM VERIFICATION

234 During the synthesis process, we identify two primary errors with respect to generated environments: 235 (1) *Correctness Error*, where the environment may encounter compilation failures, timeouts, or out- 236 of-memory issues; and (2) *Solvability Error*, where the set of actions provided by the environment 237 is insufficient for any agent to solve the task.

238 To filter out faulty environments and verify solvability, we first synthesize a collection of unit test 239 inputs that span multiple difficulty levels and corner cases (see Appendix D.2 for details). The 240 ground truth coding solution is then used to produce the corresponding unit test outputs. Next, 241 leveraging the detailed tool documentation provided by the CodeGym environment, plus example 242 outputs of tools to ensure correct grammar, we prompt an LLM to generate solution functions (i.e., 243 writing code programs that call tools to solve the environment; refer to Appendix D.1). Although 244 the generation of solution functions is itself error-prone, we can employ the $\text{pass}@K$ strategy: We 245 generate $K = 10$ candidate solution functions, and if any of them successfully passes all unit tests 246 within the specified time and memory limits, the CodeGym environment is considered solvable. In 247 this case, the unit tests are further used as task configurations for environment initialization at the RL 248 training stage. We then denote the solution function that passes all unit tests as the oracle solution.

249 3.4 QUALITY CONTROL

252 Ensuring data quality is essential for RL training. To select high-quality task configurations from the 253 large CodeGym dataset, we apply two filtering mechanisms: *Tool-Use Complexity* and *Difficulty*.

255 **Tool-Use Complexity** We require task configurations to exhibit non-trivial patterns of tool use, 256 where complexity reflects both the number and the variety of tool calls. Specifically, we use oracle 257 functions to calculate the number of tool calls needed to solve the task and filter out task configu- 258 rations with fewer than $T_{\min} = 10$ tool calls to avoid trivial solutions and more than $T_{\max} = 256$ 259 to remove repetitive tool call patterns, thus improving the efficiency of RL training. Moreover, 260 to ensure that complexity does not degenerate into repeated use of a single tool, we also require 261 environments to contain at least 4 distinct tools.

262 **Tool-Use Difficulty** Task configurations should not be too easy for agents to solve. To measure 263 difficulty, we use the pass rate as a metric. Specifically, we evaluate each task configuration 4 times 264 with Qwen2.5-32B-Instruct and retain only those with accuracy no greater than 25%.

266 After filtering, we obtain a dataset of more than 80k task configurations with 13k environments. 267 Figure 4 presents statistics of the filtered dataset regarding the number of tools and steps. The 268 average numbers of tools and steps are 6.52 and 44.07, respectively. Table 3 shows a comparison 269 between CodeGym and previous agent training works, where CodeGym has the largest number of environments and task configurations compared to other agent training works.

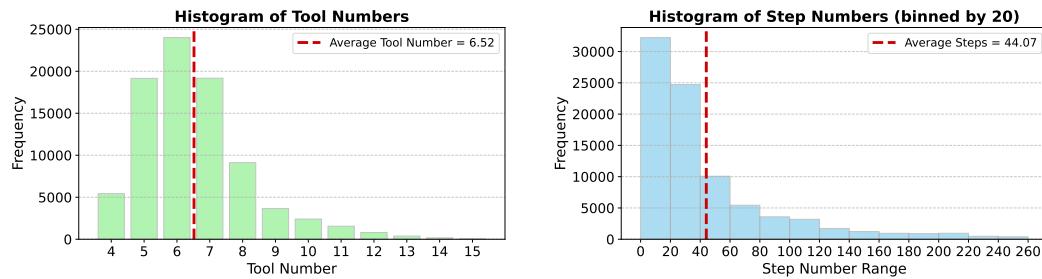


Figure 4: **CodeGym Statistics.** The average numbers of tools and steps to solve tasks are 6.52 and 44.07, respectively, indicating that CodeGym encompasses diverse tools and complex logic.

3.5 DIFFICULTY AUGMENTATION

Long-CoT models sometimes solve tasks by reasoning alone once they receive complete information, bypassing tool calls. To discourage this behavior, we augment the task configurations used for environment initialization to increase the difficulty of pure reasoning (see Appendix D.3 for details), yielding a more challenging training set. In practice, we train long-CoT models on the augmented training set and short-CoT models on the original set.

4 TRAINING FRAMEWORK

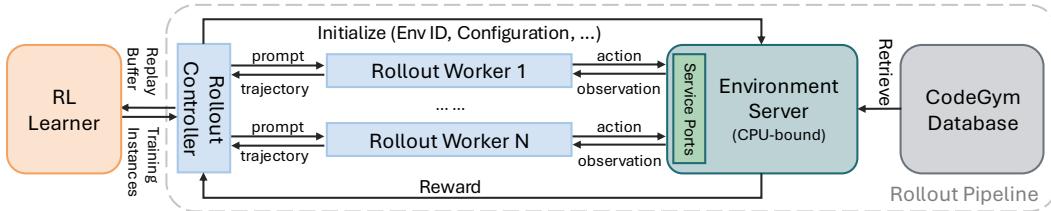


Figure 5: **RL Training Pipeline for CodeGym.** A server provides centralized control of environments, and each rollout process is allocated to a service port. The rollout workers send actions to the corresponding service ports and receive observations. The rollout controller sends commands to initialize the environments and receive reward signals to form the replay buffer.

CodeGym is designed for agent reinforcement learning. To enable high-throughput rollouts, we implement a distributed rollout framework with a CPU-bound environment server (Fig. 5). At the beginning of each training epoch, the environment server receives initialization commands that specify environment IDs and task configurations. Then it retrieves the corresponding environment from the CodeGym database, launches it, and establishes a dedicated service port for communication. Each rollout process is connected to one of these ports, and the tool calls generated during rollouts are transmitted immediately to the server. The resulting responses are appended to the trajectory. To avoid blocking caused by repeating tool calls, we allow tools to be called at most T_{\max} times in each trajectory.

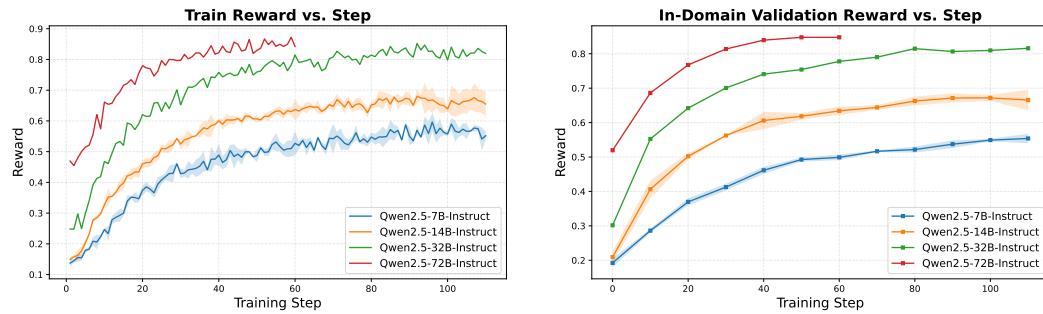
Upon completion of a rollout, the server computes the reward signal and returns it to the replay buffer for aggregation. By decoupling the GPU-bound rollout process from the CPU-bound environment server, the framework supports stable and highly concurrent RL training.

4.1 TRIAL-THEN-OVERWRITE MECHANISM

During training, the tool calls generated by LLMs can be unpredictable, particularly in the early epochs. To prevent server crashes caused by erroneous calls and bound per-step latency, we adopt a *trial-then-overwrite mechanism*: Upon receiving a tool call, the server first serializes (pickles) the environment state, then executes the call in a subprocess against the serialized snapshot. If the subprocess completes successfully within the time limit, we commit the resulting state back to the

324 original environment. Otherwise, the original environment remains unchanged and returns an error
 325 as the observation. This mechanism ensures robustness during training.
 326

328 5 EXPERIMENTS



341 **Figure 6: Training Curve.** Average reward during training on both the training and in-domain validation
 342 environments. With binary rewards, the reward is equivalent to accuracy. The similar reward
 343 trajectories on training and validation indicate minimal overfitting. Larger base models generally
 344 achieve higher performance. For models smaller than 32B, three random seeds are run. The solid
 345 lines denote the mean reward across multiple random seeds. The shaded regions represent the sam-
 346 ple standard deviation (± 1 std) across seeds.

347
 348 **Table 1: Main Results.** We report the performance of CodeGym-trained models on held-out bench-
 349 marks spanning tool-use (τ -bench and τ^2 -bench), multi-turn interactions (ALFWorld), and rea-
 350 soning (ZebraLogic and MMLU-Pro). Models of varying sizes and CoT patterns are evaluated,
 351 and training on CodeGym can improve overall performance across benchmarks. Experiments use
 352 $T = 0.7$ and top- $p = 0.95$, and results are obtained by averaging 5 inference runs per model.

354 Categories	355 Benchmarks	356 τ -airline	357 Tool-Use	358 τ -retail	359 τ^2 -bench	360 Multi-Turn	361 AW	362 ZL	363 Reasoning	364 MMLU-Pro	365 Avg.
Short-CoT Models											
357 Qwen2.5-7B-Instruct	358	359 12.8	360 4.5	361 14.9	362 43.6	363 11.3	364 57.9	365 24.2	366	367	368
358 Qwen2.5-7B-CodeGym	359	360 17.3(4.5↑)	361 7.6(3.1↑)	362 15.5(0.6↑)	363 51.3(7.7↑)	364 12.6(1.3↑)	365 57.6(0.3↓)	366 27.0(2.8↑)	367	368	369
359 Qwen2.5-14B-Instruct	360	361 17.6	362 32.0	363 20.9	364 59.2	365 19.6	366 66.3	367 35.9	368	369	370
360 Qwen2.5-14B-CodeGym	361	362 21.3(3.7↑)	363 39.2(7.2↑)	364 19.9(1.0↓)	365 72.8(13.6↑)	366 22.3(2.7↑)	367 67.2(0.9↑)	368 40.5(4.6↑)	369	370	371
361 Qwen2.5-32B-Instruct	362	363 26.8	364 41.4	365 24.7	366 66.8	367 24.2	368 70.0	369 42.3	370	371	372
362 Qwen2.5-32B-CodeGym	363	364 31.2(4.4↑)	365 54.4(13.0↑)	366 30.7(6.0↑)	367 80.8(14.0↑)	368 29.0(4.8↑)	369 71.2(1.2↑)	370 49.6(7.3↑)	371	372	373
363 Qwen2.5-72B-Instruct	364	365 25.2	366 49.2	367 22.6	368 80.4	369 27.6	370 72.2	371 46.2	372	373	374
364 Qwen2.5-72B-CodeGym	365	366 31.2(6.0↑)	367 57.0(7.8↑)	368 25.8(3.2↑)	369 82.8(2.4↑)	370 31.5(3.9↑)	371 73.3(1.1↑)	372 50.3(4.1↑)	373	374	375
Long-CoT Models											
365 QwQ-32B	366	367 37.6	368 37.7	369 26.1	370 62.4	371 79.9	372 81.4	373 54.2	374	375	376
366 QwQ-32B-CodeGym	367	368 43.2(5.6↑)	369 43.0(5.3↑)	370 30.7(4.6↑)	371 64.4(2.0↑)	372 76.6(3.3↓)	373 81.4(0.0)	374 56.6(2.4↑)	375	376	377

366 5.1 SETUP

368 We utilize CodeGym to train a diverse range of language models. For short-CoT models, we eval-
 369 uated the Qwen2.5 series (Qwen, 2025) with multiple model sizes (7B, 14B, 32B, and 72B). For
 370 long-CoT models, QwQ-32B (Team, 2025) is tested. For the reinforcement learning algorithm, we
 371 apply GRPO (Shao et al., 2024) to train our models with a batch size of 512×8 (512 task config-
 372 urations per step with each sample 8 times). Training continues until the training reward approaches
 373 saturation, which indicates diminishing returns from further updates. As shown in Figure 6, models
 374 with no greater than 32B reach a performance plateau with 100 steps. In contrast, the 72B model
 375 exhibits faster reward stabilization due to its stronger capacity, requiring only 50 steps to reach
 376 saturation. For models smaller than 32B, we train with three different seeds to evaluate stability.
 377 For larger models, we report results from a single seed due to computational limitations. Detailed
 378 hyperparameter settings are provided in Appendix F.1.

378
379

5.2 TESTBEDS

380
381
382
383
384
385
386
387
388
389

We evaluated models on both the in-distribution validation set and the held-out (OOD) benchmarks. This distinction allows us to measure both in-distribution performance and out-of-distribution robustness. For **Held-in validation**, we split the CodeGym dataset into a training set and a validation set. The validation set comprises 500 CodeGym environments unseen during training, each with no more than two task configurations, for a total of 972 evaluations. For **Held-out (OOD) benchmarks**, we categorize the benchmarks along three distinct axes of generalization: (i) domain (tool use), (ii) pattern (multi-turn interaction), and (iii) skill (reasoning). Models are evaluated on representative benchmarks from each category listed below. Importantly, *these OOD tasks are semantically distinct from CodeGym’s synthesized environments*. Multi-turn tasks follow the standard ReAct (Yao et al., 2023) protocol, while single-turn question answering uses CoT (Wei et al., 2022) prompts.

390
391
392
393
394
395
396
397
398
399

- **Tool use:** τ -bench (Yao et al., 2024) and τ^2 -bench (Barres et al., 2025), where LLM agents interact with a set of tools and communicate with a user to satisfy its request while following the system instructions for agents. We use GPT-4.1 as the user simulator.
- **Multi-turn interaction:** ALFWORLD (Shridhar et al., 2020), which places agents in long-horizon text-based embodied environments requiring sequences of actions to achieve goals. We sample 50 problems from the ALFWORLD evaluation dataset.
- **Reasoning:** ZebraLogic (Lin et al., 2025) and MMLU-pro (Wang et al., 2024c), to verify that performance in standard logical and commonsense reasoning tasks does not degrade. We sampled 200 puzzles from ZebraLogic and 1,000 problems from MMLU-pro.

400
401

5.3 RESULTS

402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417

Figure 6 presents the training reward curves per step and the in-domain validation results of the Qwen-2.5 series models (since QwQ uses the hard training set, the curves are not comparable and the QwQ results are shown in Figure 15). The reward metric is equivalent to accuracy because of its binary definition. In the training set, all base models start with relatively low reward, but improve steadily, with larger models consistently outperforming smaller ones. Repetition experiments in small models confirm the stability of training during the initial 100 steps. In the in-domain validation set, although the environments differ from those used in training, we observe similar trends, suggesting limited overfitting in training environments.

418
419
420
421
422
423
424
425
426
427

Table 1 summarizes the out-of-distribution (OOD) performance of trained models. For Short-CoT models, we observe consistent gains across all categories: tool-use scenarios, multi-turn interactions, and reasoning tasks. The gains in the first two categories are more pronounced because of the similarity between the synthetic environment workflows and those of the target tasks. These findings yield two takeaways: (i) training on CodeGym improves the generalizability of LLMs to unseen agent workflows, and (ii) the intrinsic complexity of the workflow logic in CodeGym training environments also yields gains in general reasoning ability. Moreover, we found that the larger models benefit more from training in CodeGym compared to the smaller models on OOD benchmarks. For example, Qwen2.5-32B-Instruct achieves an average improvement of +7.3, whereas Qwen2.5-7B-Instruct achieves only +2.8. This gap suggests that larger models exhibit stronger generalizability instead of memorization.

428
429
430
431

For long-CoT models, which are heavily tuned for reasoning tasks, RL on CodeGym slightly reduces reasoning performance due to OOD training. However, these models show substantial gains in tool-use scenarios and multi-turn interactions. These results motivate exploring ways to combine reasoning objectives with CodeGym training, as this may provide complementary benefits to both reasoning accuracy and agent abilities.

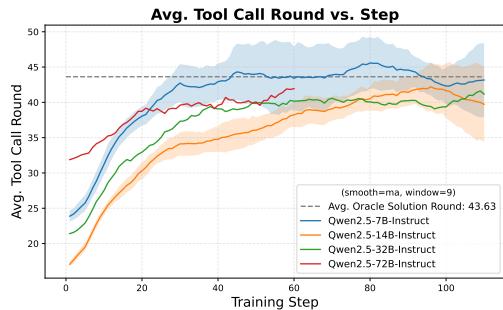


Figure 7: **Evolution of Tool Call Behavior During Training.** The average tool call number keeps increasing, suggesting improved identification of agent workflows and closer adherence to them.

432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 Figure 7 summarizes how the average number of tool calls made by LLM agents evolves during training. The count increases steadily over the first 100 steps, indicating that agents are learning to execute longer and more structured procedures. At the same time, the gap between the LLMs and the oracle in tool call counts narrows, suggesting better identification and adherence to multi-step workflows. An additional analysis of trajectory length is provided in the Appendix E.3. Interestingly, the smallest trained model, Qwen2.5-7B-Instruct, produces the highest number of tool calls. Trajectory-level inspection shows that this arises from repetitive failure-recovery loops: the model often re-invokes the same tool with identical arguments after unsatisfactory outputs instead of revising its plan or parameters. This behavior highlights the limited error diagnosis and recovery abilities of smaller models.

5.4 ABLATION STUDY

444
 445
Reinforcement Learning vs. Supervised
Fine-Tuning To assess whether RL yields
 446 better OOD generalization, we conducted a
 447 controlled comparison. We compared our RL
 448 training with two SFT data collection strate-
 449 gies: (1) using ground-truth trajectories ob-
 450 tained from oracle solutions (mentioned in Sec-
 451 tion 3.3.2) (Oracle-SFT); and (2) distilling tra-
 452 jectories judged correct from a stronger LLM,
 453 seed-1.6-Thinking (Distillation). Specifically,
 454 for both strategies, we collected 10,000 training
 455 trajectories each and fine-tuned Qwen2.5-
 456 32B-Instruct on these datasets (Detailed hyper-
 457 parameters are listed in Appendix F.2). We
 458 then evaluated the resulting models on both the
 459 in-domain validation set and OOD tasks. As
 460 shown in Figure 8, SFT approaches achieved
 461 reasonable in-domain performance but exhib-
 462 ited marked degradation in OOD tasks, high-
 463 lighting the need for active learning to achieve generalizability. Detailed results for each method on
 464 OOD tasks are listed in Appendix E.2.

465
 466
Environment Filter To evaluate the effec-
 467 tiveness of our quality filters, we compare the
 468 performance of trained models on filtered and
 469 unfiltered CodeGym under the same training
 470 settings and hyperparameters, using the same
 471 base model Qwen2.5-32B-Instruct. As shown
 472 in Table 2, the unfiltered training set performs
 473 worse than the filtered one on both the in-
 474 domain validation set and the OOD tasks. This
 475 highlights the importance of high-quality data
 476 in RL training and shows that our environment
 477 filters can improve training efficiency.

6 CONCLUSION

478
 479 We propose **CodeGym**, a scalable synthetic reinforcement learning environment generation pipeline
 480 for multi-turn tool-use agent training. By converting coding tasks into structured Gym environments,
 481 CodeGym enables LLM agents to actively explore and adapt to diverse environments and workflows
 482 with verifiable tasks. Empirically, models trained in these synthetic environments exhibit strong
 483 agent generalizability, achieving consistent performance improvements in both in-domain validation
 484 environments and out-of-distribution benchmarks such as τ -Bench. We hope that CodeGym can
 485 serve as a foundation for developing more robust LLM agents capable of handling the diversity and
 complexity of real-world tool-augmented workflows.

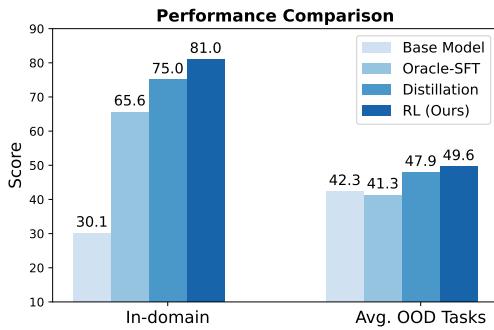


Figure 8: **Performance of Models Trained by Different Methods.** Although SFT-based methods achieve reasonable in-domain performance, they either degrade or provide limited gains on out-of-domain tasks.

Table 2: **Ablation Study on Filters.** The model trained on the unfiltered dataset performs worse compared to that trained on the filtered one, highlighting the importance of data quality.

Method	In-domain	Avg. OOD Tasks
Base Model	30.1	42.3
CodeGym-Full	75.0 (44.9↑)	46.2 (3.9↑)
CodeGym-Filter	81.0 (50.9↑)	49.6 (7.3↑)

486 **Ethics Statement** This research does not involve human subjects, personally identifiable information,
 487 or sensitive data. All experiments were based on publicly available datasets, accessible models,
 488 and widely recognized benchmarks. We believe that our work does not raise ethical concerns.
 489

490 **Reproducibility Statement** The supplementary material includes the complete CodeGym genera-
 491 tion and verification pipeline, along with an example subset of the environments. Our experiments
 492 use open-source models, with hyperparameters provided in Appendix F. To control randomness, as
 493 shown in Section 5.1 and Table 1, we report results averaged over multiple training and evaluation
 494 seeds.

495 **REFERENCES**

498 Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
 499 Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say:
 500 Grounding language in robotic affordances. *arXiv preprint arXiv:2204.01691*, 2022.

501 Victor Barres, Honghua Dong, Soham Ray, Xujie Si, and Karthik Narasimhan. τau^2 -bench: Eval-
 502 uating conversational agents in a dual-control environment. *arXiv preprint arXiv:2506.07982*,
 503 2025.

504 Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
 505 Wojciech Zaremba. Openai gym. *arXiv preprint arXiv:1606.01540*, 2016.

507 Zehui Chen, Weihua Du, Wenwei Zhang, Kuikun Liu, Jiangning Liu, Miao Zheng, Jingming Zhuo,
 508 Songyang Zhang, Dahua Lin, Kai Chen, et al. T-eval: Evaluating the tool utilization capability of
 509 large language models step by step. *arXiv preprint arXiv:2312.14033*, 2023.

510 Zehui Chen, Kuikun Liu, Qiuchen Wang, Wenwei Zhang, Jiangning Liu, Dahua Lin, Kai Chen, and
 511 Feng Zhao. Agent-flan: Designing data and methods of effective agent tuning for large language
 512 models. *arXiv preprint arXiv:2403.12881*, 2024.

514 Zijian Chen, Xueguang Ma, Shengyao Zhuang, Ping Nie, Kai Zou, Andrew Liu, Joshua Green,
 515 Kshama Patel, Ruoxi Meng, Mingyi Su, et al. Browsecmp-plus: A more fair and transparent
 516 evaluation benchmark of deep-research agent. *arXiv preprint arXiv:2508.06600*, 2025.

517 Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
 518 Thien Huu Nguyen, and Yoshua Bengio. Babyai: A platform to study the sample efficiency of
 519 grounded language learning. *arXiv preprint arXiv:1810.08272*, 2018.

521 Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V
 522 Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of foundation
 523 model post-training. *arXiv preprint arXiv:2501.17161*, 2025.

524 Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John Schulman. Quantifying generaliza-
 525 tion in reinforcement learning. In *International conference on machine learning*, pp. 1282–1289.
 526 PMLR, 2019.

528 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
 529 Dhillon, Marcel Blstein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
 530 frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
 531 bilities. *arXiv preprint arXiv:2507.06261*, 2025.

532 Marc-Alexandre Côté, Akos Kádár, Xingdi Yuan, Ben Kybartas, Tavian Barnes, Emery Fine, James
 533 Moore, Matthew Hausknecht, Layla El Asri, Mahmoud Adada, et al. Textworld: A learning
 534 environment for text-based games. In *Workshop on Computer Games*, pp. 41–75. Springer, 2018.

535 Weihua Du, Pranjal Aggarwal, Sean Welleck, and Yiming Yang. Agentic-r1: Distilled dual-strategy
 536 reasoning. *arXiv preprint arXiv:2507.05707*, 2025.

538 Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan Jiang,
 539 Jinxin Chi, and Wanjun Zhong. Retool: Reinforcement learning for strategic tool use in llms.
 540 *arXiv preprint arXiv:2504.11536*, 2025.

540 Dayuan Fu, Keqing He, Yejie Wang, Wentao Hong, Zhuoma Gongque, Weihao Zeng, Wei Wang,
 541 Jingang Wang, Xunliang Cai, and Weiran Xu. Agentrefine: Enhancing agent generalization
 542 through refinement tuning. *arXiv preprint arXiv:2501.01702*, 2025a.

543

544 Dayuan Fu, Keqing He, Yejie Wang, Wentao Hong, Zhuoma GongQue, Weihao Zeng, Wei Wang,
 545 Jingang Wang, Xunliang Cai, and Weiran Xu. Agentrefine: Enhancing agent generalization
 546 through refinement tuning. In *The Thirteenth International Conference on Learning Representa-*
 547 *tions*, 2025b.

548 Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
 549 Graham Neubig. Pal: Program-aided language models. In *International Conference on Machine*
 550 *Learning*, pp. 10764–10799. PMLR, 2023a.

551 Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yixin Dai, Jiawei Sun,
 552 Haofen Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A
 553 survey. *arXiv preprint arXiv:2312.10997*, 2(1), 2023b.

554

555 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 556 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 557 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

558

559 Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, N. Chawla, Olaf Wiest,
 560 and Xiangliang Zhang. Large language model based multi-agents: A survey of progress and
 561 challenges. In *International Joint Conference on Artificial Intelligence*, 2024. URL <https://api.semanticscholar.org/CorpusID:267412980>.

562

563 Matthew Hausknecht, Prithviraj Ammanabrolu, Marc-Alexandre Côté, and Xingdi Yuan. Interac-
 564 tive fiction games: A colossal adventure. In *Proceedings of the AAAI Conference on Artificial*
 565 *Intelligence*, volume 34, pp. 7903–7910, 2020.

566

567 Jujie He, Jiacai Liu, Chris Yuhao Liu, Rui Yan, Chaojie Wang, Peng Cheng, Xiaoyu Zhang, Fuxiang
 568 Zhang, Jiacheng Xu, Wei Shen, et al. Skywork open reasoner 1 technical report. *arXiv preprint*
arXiv:2505.22312, 2025.

569

570 Mengkang Hu, Pu Zhao, Can Xu, Qingfeng Sun, Jian-Guang Lou, Qingwei Lin, Ping Luo, and
 571 Saravan Rajmohan. Agentgen: Enhancing planning abilities for large language model based
 572 agent via environment and task generation. In *Proceedings of the 31st ACM SIGKDD Conference*
on Knowledge Discovery and Data Mining V. 1, pp. 496–507, 2025.

573

574 Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei Wang, Hao Wang, Defu Lian, Yasheng
 575 Wang, Ruiming Tang, and Enhong Chen. Understanding the planning of llm agents: A
 576 survey. *ArXiv*, abs/2402.02716, 2024. URL <https://api.semanticscholar.org/CorpusID:267411892>.

577

578 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 579 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv*
preprint arXiv:2412.16720, 2024.

580

581 Dongfu Jiang, Yi Lu, Zhuofeng Li, Zhiheng Lyu, Ping Nie, Haozhe Wang, Alex Su, Hui Chen, Kai
 582 Zou, Chao Du, Tianyu Pang, and Wenhui Chen. Verltool: Towards holistic agentic reinforcement
 583 learning with tool use, 2025. URL <https://arxiv.org/abs/2509.01055>.

584

585 Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven Chu Hong Hoi. Coderl:
 586 Mastering code generation through pretrained models and deep reinforcement learning. *Advances*
 587 *in Neural Information Processing Systems*, 35:21314–21328, 2022.

588

589 Chengshu Li, Jacky Liang, Andy Zeng, Xinyun Chen, Karol Hausman, Dorsa Sadigh, Sergey
 590 Levine, Li Fei-Fei, Fei Xia, and Brian Ichter. Chain of code: Reasoning with a language model-
 591 augmented code emulator. *arXiv preprint arXiv:2312.04474*, 2023.

592

593 Kuan Li, Zhongwang Zhang, Hufeng Yin, Liwen Zhang, Litu Ou, Jialong Wu, Wenbiao Yin, Baix-
 594 uan Li, Zhengwei Tao, Xinyu Wang, et al. Websailor: Navigating super-human reasoning for web
 595 agent. *arXiv preprint arXiv:2507.02592*, 2025.

594 Xinyi Li, Sai Wang, Siqi Zeng, Yu Wu, and Yi Yang. A survey on llm-based multi-agent sys-
 595 tems: workflow, infrastructure, and challenges. *Vicinagearth*, 2024. URL <https://api.semanticscholar.org/CorpusID:273218743>.

596

597 Bill Yuchen Lin, Ronan Le Bras, Kyle Richardson, Ashish Sabharwal, Radha Poovendran, Peter
 598 Clark, and Yejin Choi. Zebralogic: On the scaling limits of llms for logical reasoning. *arXiv*
 599 *preprint arXiv:2502.01100*, 2025.

600

601 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 602 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
 603 *arXiv:2412.19437*, 2024a.

604

605 Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu, Tian Lan, Juntao Tan, Weiran Yao, Zhiwei Liu,
 606 Yihao Feng, Rithesh RN, et al. Apigen: Automated pipeline for generating verifiable and diverse
 607 function-calling datasets. *Advances in Neural Information Processing Systems*, 37:54463–54482,
 608 2024b.

609

610 Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu,
 611 and Jianfeng Gao. Chameleon: Plug-and-play compositional reasoning with large language mod-
 612 els. *Advances in Neural Information Processing Systems*, 36:43447–43478, 2023.

613

614 Andres M. Bran, Sam Cox, Oliver Schilter, Carlo Baldassari, Andrew D White, and Philippe
 615 Schwaller. Augmenting large language models with chemistry tools. *Nature Machine Intelli-
 616 gence*, 6(5):525–535, 2024.

617

618 Yubo Ma, Zhibin Gou, Junheng Hao, Ruochen Xu, Shuohang Wang, Liangming Pan, Yujiu Yang,
 619 Yixin Cao, Aixin Sun, Hany Awadalla, et al. Sciagent: Tool-augmented language models for
 620 scientific reasoning. *arXiv preprint arXiv:2402.11451*, 2024.

621

622 Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep Jaitly, Heng Ji, Alane Suhr, and Yizhe
 623 Zhang. Training software engineering agents and verifiers with swe-gym. *arXiv preprint*
 624 *arXiv:2412.21139*, 2024.

625

626 Aaron Parisi, Yao Zhao, and Noah Fiedel. Talm: Tool augmented language models. *arXiv preprint*
 627 *arXiv:2205.12255*, 2022.

628

629 Akshara Prabhakar, Zuxin Liu, Ming Zhu, Jianguo Zhang, Tulika Awalgaonkar, Shiyu Wang, Zhiwei
 630 Liu, Haolin Chen, Thai Hoang, Juan Carlos Niebles, et al. Apigen-mt: Agentic pipeline for multi-
 631 turn data generation via simulated agent-human interplay. *arXiv preprint arXiv:2504.03601*,
 632 2025.

633

634 Cheng Qian, Shihao Liang, Yujia Qin, Yining Ye, Xin Cong, Yankai Lin, Yesai Wu, Zhiyuan Liu,
 635 and Maosong Sun. Investigate-consolidate-exploit: A general strategy for inter-task agent self-
 636 evolution. *arXiv preprint arXiv:2401.13996*, 2024.

637

638 Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
 639 Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
 640 apis. *arXiv preprint arXiv:2307.16789*, 2023.

641

642 Change Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, Shuaiqiang Wang, Dawei Yin, Jun Xu, and Ji-
 643 Rong Wen. Tool learning with large language models: A survey. *Frontiers of Computer Science*,
 644 19(8):198343, 2025.

645

646 Qwen. Qwen2.5 technical report, 2025. URL <https://arxiv.org/abs/2412.15115>.

647

648 Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Eric Hambro,
 649 Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
 650 teach themselves to use tools. *Advances in Neural Information Processing Systems*, 36:68539–
 651 68551, 2023.

652

653 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 654 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

648 ByteDance Seed. Seed1.6 tech introduction. [https://seed/bytedance.com/en/seed1_](https://seed/bytedance.com/en/seed1_6)
 649 6, June 2025a.
 650

651 ByteDance Seed. Seed-oss open-source models. [https://github.com/ByteDance-Seed/](https://github.com/ByteDance-Seed/seed-oss)
 652 seed-oss, 2025b.

653 ByteDance Seed, Jiaze Chen, Tiantian Fan, Xin Liu, Lingjun Liu, Zhiqi Lin, Mingxuan Wang,
 654 Chengyi Wang, Xiangpeng Wei, Wenyuan Xu, et al. Seed1. 5-thinking: Advancing superb rea-
 655 soning models with reinforcement learning. *arXiv preprint arXiv:2504.13914*, 2025.

656 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 657 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
 658 cal reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

659 Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew
 660 Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. *arXiv*
 661 *preprint arXiv:2010.03768*, 2020.

662 Joykirat Singh, Raghav Magazine, Yash Pandya, and Akshay Nambi. Agentic reasoning and tool
 663 integration for llms via reinforcement learning. *arXiv preprint arXiv:2505.01441*, 2025.

664 Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL
 665 <https://qwenlm.github.io/blog/qwq-32b/>.

666 Ruoyao Wang, Peter Jansen, Marc-Alexandre Côté, and Prithviraj Ammanabrolu. Scienceworld: Is
 667 your agent smarter than a 5th grader? *arXiv preprint arXiv:2203.07540*, 2022.

668 Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji. Exe-
 669 cutable code actions elicit better llm agents. In *Forty-first International Conference on Machine*
 670 *Learning*, 2024a.

671 Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
 672 Yueqi Song, Bowen Li, Jaskirat Singh, et al. Openhands: An open platform for ai software
 673 developers as generalist agents. *arXiv preprint arXiv:2407.16741*, 2024b.

674 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
 675 Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-
 676 task language understanding benchmark. *Advances in Neural Information Processing Systems*,
 677 37:95266–95290, 2024c.

678 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 679 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*
 680 *neural information processing systems*, 35:24824–24837, 2022.

681 Junde Wu, Jiayuan Zhu, Yuyuan Liu, Min Xu, and Yueming Jin. Agentic reasoning: A streamlined
 682 framework for enhancing llm reasoning with agentic tools. *arXiv preprint arXiv:2502.04644*,
 683 2025.

684 Zhiheng Xi, Yiwen Ding, Wenxiang Chen, Boyang Hong, Honglin Guo, Junzhe Wang, Dingwen
 685 Yang, Chenyang Liao, Xin Guo, Wei He, et al. Agentgym: Evolving large language model-based
 686 agents across diverse environments. *arXiv preprint arXiv:2406.04151*, 2024.

687 Zhangchen Xu, Yang Liu, Yueqin Yin, Mingyuan Zhou, and Radha Poovendran. Kodcode: A
 688 diverse, challenging, and verifiable synthetic dataset for coding. 2025. URL <https://arxiv.org/abs/2503.02951>.

689 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 690 Chang Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint*
 691 *arXiv:2505.09388*, 2025.

692 Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
 693 real-world web interaction with grounded language agents. *Advances in Neural Information Pro-
 694 cessing Systems*, 35:20744–20757, 2022.

702 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 703 React: Synergizing reasoning and acting in language models. In *International Conference on*
 704 *Learning Representations (ICLR)*, 2023.

705

706 Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. τ -bench: A benchmark for
 707 tool-agent-user interaction in real-world domains. *arXiv preprint arXiv:2406.12045*, 2024.

708

709 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
 710 Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
 711 at scale. *arXiv preprint arXiv:2503.14476*, 2025.

712

713 Yuxiang Zheng, Dayuan Fu, Xiangkun Hu, Xiaojie Cai, Lyumanshan Ye, Pengrui Lu, and Pengfei
 714 Liu. Deepresearcher: Scaling deep research via reinforcement learning in real-world environ-
 715 ments. *arXiv preprint arXiv:2504.03160*, 2025.

716

717 Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
 718 Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for build-
 719 ing autonomous agents. *arXiv preprint arXiv:2307.13854*, 2023.

720

721

A SUPPLEMENTARY MATERIAL

724 The supplementary material contains the synthesis and verification pipeline for CodeGym environ-
 725 ments, as well as example CodeGym environments and task configurations. Please refer to the
 726 README in the supplementary material for details.

B CODEGYM STATISTICS

731 **Table 3: Environment Comparison.** We present a comparison between different agent training
 732 frameworks on environment and task configuration quantities. CodeGym offers the largest number
 733 of environments and task configurations.

Environment	# Environment	# Task Configurations	Support RL Training?	Construction Type
BabyAI (Chevalier-Boisvert et al., 2018)	19	N/A ¹	✓	Manual
ALFWorld (Shridhar et al., 2020)	4	3,553	✓	Manual
Jericho (Hausknecht et al., 2020)	57	N/A ¹	✓	Manual
ScienceWorld (Wang et al., 2022)	10	30	✓	Manual
AgentGym (Xi et al., 2024)	14	14,485	✗	Manual
AgentRefine (Fu et al., 2025a)	N/A ²	64,000	✗	Synthetic
AgentGen (Hu et al., 2025)	592	7,246	✗	Synthetic
AgentFLAN (Chen et al., 2024)	7	34,440	✗	Manual
CodeGym (Ours)	13,116	86,165	✓	Synthetic

746 We present the CodeGym statistics in Figure 4 and Table 3. As shown in Table 3, CodeGym of-
 747 fers significantly more environments and task configurations than prior agent training benchmarks,
 748 enabling large-scale reinforcement learning. Each environment is equipped with a distinct toolset,
 749 with an average toolkit size of 6.52.

C CODEGYM ENVIRONMENT DESIGN DETAILS

754 ¹Task configurations are not pre-defined and controlled by random seeds.

755 ²The authors did not report the exact number of environments.

<p>756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773</p>	<p>Problem Description: Finding the number closest to K in a sorted list of length N.</p> <p>Coding Solution:</p> <pre>def findClosestNumber(arr, K): left = 0 right = len(arr) - 1 while left <= right: mid = (left + right) // 2 if arr[mid] == K: return arr[mid] if arr[mid] < K: left = mid + 1 else: right = mid - 1 if left >= len(arr): return arr[right] if right < 0: return arr[left] if abs(arr[left] - K) < abs(arr[right] - K): return arr[left] else: return arr[right]</pre>	<p>Available Action List:</p> <pre>def observe() -> str # returns the array length n and the target K def look_up_pos(i: int) -> str # returns the element at index i def done(ans: int) -> None # submit the answer</pre> <p>Example Environment Workflow: Task Configuration:</p> <pre># Hidden Array A = [2, 5, 9, 14, 20], n = 5 # Target K = 8</pre> <p>Agent Trajectory:</p> <pre>observe() -> "length=5, K=8" look_up_pos(2) -> "A[2] = 9" look_up_pos(0) -> "A[0] = 2" look_up_pos(1) -> "A[1] = 5" done(9) # submit answer 9 to the environment</pre>
--	--	---

Figure 9: **Transformation Example.** Transformation of a coding problem ('*find the number closest to K*') into the CodeGym environment with atomic actions.

C.1 AN EXAMPLE OF TRANSFORMATION

Figure 9 illustrates how a coding problem can be rewritten into a CodeGym environment. The original problem is ‘*Finding the number closest to K in a sorted list of length N*’, whose coding solution is based on binary search. From this solution, we distill three atomic actions: (1) `observe`, which returns the array length N together with the target K ; (2) `look_up_pos`, which returns the element at index i ; and (3) `done`, which submits the final answer. These actions constitute the tools available to the agent. The environment is first initialized with a specific task configuration (corresponding to the input of the original coding problem). After initialization, the agent interacts with the environment by invoking the available tools and ultimately produces the answer.

C.2 ENVIRONMENT DESIGN AND PROTOCOL

To allow a wide range of coding tasks to be incorporated into a reinforcement learning framework, we design an **environment template** for CodeGym environments borrowed from OpenAI Gym. This design provides a flexible abstraction for the LLM generator to synthesize.

Formally, an environment instance is defined by a POMDP:

$$\mathcal{E} = \langle S, A, T, R, \mathcal{O} \rangle.$$

where (i) the state space S contains task-specific variables (e.g., strings, arrays, or data structures), which may be only partially observed by the agents (ii) the action space \mathcal{A} is instantiated from a generic set of **function calls** such as `Observe` and `Done`, together with task-specific actions, (iii) the transition function T is implemented by executing the corresponding function of the environment, (iv) the reward function R is sparse, assigned only upon termination by comparing the submitted answer with the reference solution, (v) the observation function \mathcal{O} returns textual descriptions of action results.

Our template exposes a **unified API** consisting of:

- `reset(options)`: initializes the domain state from input task configurations;
- `step(action-json)`: executes a JSON-encoded function call with arguments, returning the result;
- `Observe()`: provides interpretable state descriptions;
- `Done(answer)`: verifies the submitted solution and assigns terminal reward;

CodeGym Synthesis Prompt (Part 1)

Figure 10: **CodeGym Synthesis Prompt (Part 1)**. The prompt for synthesizing CodeGym environments.

- `get_ref_answer()`: computes the task's reference answer from ground truth coding solution;
- `solve()`: (optional) implements a reference oracle solution using only the action API.

This abstraction enables the instantiation of new environments by specifying the state variables and extending the action set with domain-specific functions, while preserving the overall interface.

CodeGym Synthesis Prompt (Part 2)

866 Other Constraints and Requirements:

867 * Must implement the static method `from_env_str()` for initializing the environment from a
868 string. If complex structures (e.g., trees) are involved, implement the corresponding encoding and
869 decoding logic;

870 * Use `from_env_str` inside the `__init__` method to initialize;

871 * Add a `self.func_mapping` in `__init__`, mapping action names (strings) to their corre-
872 sponding methods;

873 * Must include a `solve()` method to simulate the agent completing the process by calling
874 `step()` with actions, without directly calling internal variables or the reference answer function;

875 * All inputs to `step()` must be a JSON string in the format:

```
{ "name": action_name, "parameters": {...} }
```

876 * Do not set `self.action_space` or `self.observation_space`;

877 * All action names must follow PascalCase (e.g., `CountOccurrences`, `GetModes`) for naming
878 consistency;

879 * The environment class name must follow the format `{ {TaskName} }Env`, e.g.,
880 `ModeFindingEnv`, for unified management.

881 Example

882 Input:

```
<problem>[example coding problem] </problem>
```

```
<code>[example coding solution] </code>
```

883 Output:

```
<task>[example synthesis task] </task>
```

```
<env>[example synthesis environment] </env>
```

884 [... Repeat Task Description ...]

885 For transformation of the following problem and code:

886 Input:

```
<problem>[coding problem] </problem>
```

```
<code>[coding solution] </code>
```

887 Your Output:

Figure 11: **CodeGym Synthesis Prompt (Part 2)**. The prompt for synthesizing CodeGym environments.

For example, in **EditDistanceEnv**, whose original coding task is to calculate the minimal editing distance of two strings, the environment state consists of two strings and a dynamic programming table, the action set includes operations such as `GetStringLength`, `SetDPTableCell`, and `CompareCharacters`, and the reference solver implements the standard dynamic programming algorithm for edit distance.

Through this design, diverse algorithmic problems can be formalized under a consistent environment framework, facilitating both supervised imitation (via the reference solver) and reinforcement learning (via the action interface).

C.3 GYM SYNTHESIS PROMPT

We designed an elaborate prompt for CodeGym environment synthesis, as shown in Figure 10 and Figure 11. The prompt instructs the LLM to generate both the environment task description and the corresponding environment simultaneously, with detailed rules provided for each. Since the synthesized environments must adhere to a fixed set of interfaces to support reinforcement training, we include a one-shot example to guide the formatting. However, we observed that after reading the long example, the LLM sometimes overlooks earlier instructions. To address this, we repeat the key instructions after the example. Some prompts have been slightly modified for readability, while the raw version is available in our released code. Additionally, to support multilingual training, some

918 examples are written in Chinese, resulting in CodeGym environments that include both Chinese and
 919 English tasks.
 920

921

922 C.4 AGENT PROMPT

923

924

925 Agent Prompt

926

927

System:

Function:

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

System:

Function:

```
def Observe():
    """
    Obtain the height list of the current histogram and the current index.
    Args:
        None
    Returns:
        str: Information containing the height list of the histogram and the current
        index.
    """

```

Function:

```
def PushToStack(index: int):
    """
    Push the specified index onto the stack.
    Args:
        index (int): The index value to be pushed onto the stack.
    Returns:
        str: The operation result and the current state of the stack.
    """

```

... More functions are omitted ...

User:

Please answer the following question step by step according to the requirements below!

1. **Do not** write code to answer the user's question — you may only call the provided functions, and you may call at most **one function per step**.

2. After you call a function, wait for the tool to return the result — do not assume what the result will be.

3. If the tool's description is unclear, you can try using it first, and then adjust your function call based on the returned result.

4. Function calls should be wrapped with

<|FunctionCallBegin|>...<|FunctionCallEnd|>

and contain a JSON-formatted list. The list should include **one dictionary**, where each dictionary contains two parameters:

- * 'name': the function name
- * 'parameters': a dictionary of key-value pairs for the arguments

Here's an example of a function call:

<|FunctionCallBegin|>[{"name": "function_name", "parameters": {"key1": "value1", "key2": "value2"}}]<|FunctionCallEnd|>

Extra requirements:

- * Do not overthink; think briefly, then decide how to call the function.
- * Since you have many chances to call functions, you do not need to plan all steps in advance.
- * Do not try to solve the problem without using the tools.

Question:

In the field of data visualization, a bar chart is a commonly used type of chart. Each bar in the bar chart has a specific height, and the width of each bar is 1 unit. Your task is to calculate the maximum area of the rectangle that can be formed by these consecutively arranged bars. For example, if the given list of bar heights is [2, 1, 5, 6, 2, 3], the maximum rectangular area that can be formed is 10 (composed of two adjacent bars with heights 5 and 6).

Figure 12: **Agent Prompt**. An example of the prompt for the agent, including the available tools, task instructions, and the problem definition.

972 As shown in Figure 12, the prompt of the CodeGym environment for LLM agents includes: (1)
 973 the description of all available tools with their functionality and the descriptions of arguments and
 974 returns; (2) the instruction of how to properly interact with the CodeGym environment; (3) the
 975 description of the task with an example.
 976
 977

978 D CODEGYM ENVIRONMENT VERIFICATION

980 D.1 SOLUTION FUNCTION GENERATION

983
 984 **Solution Function Prompt**

985 **System:**
 986 **Task Description**
 987 Given a problem scenario and its corresponding environment, you will write a `solve(self)` function.
 988 This environment will run in a pre-packaged Gym environment. The environment exposes **some**
 989 **callable actions** (i.e., function) to you; you can only invoke them via `self.step()` and thereby
 990 complete the task for the problem scenario.
 991 Notes:
 992 * What is passed into `self.step()` is a stringified JSON, which has two keywords: name and parameters:
 993 * The name keyword is a string whose content is the function's name;
 994 * The parameters keyword is a dictionary whose content is the function's arguments;
 995 * Please wrap the `solve` function with `<answer>` and `</answer>`;
 996 * The `solve` function **does not** require additional indentation.

997 **Example Problem and Answer**
 998 Input:
 999 `<Task Description>[Example Task Description] </Task Description>`
 1000 `<Env>[Example List of Callable Tools] </Env>`
 1001 Output:
 1002 `<answer>`

1003 `def solve(self):`
 1004 `r"""`
 1005 `Automatically call all actions in the environment to complete the full process`
 1006 `and submit the answer for verification.`
 1007 `"""`
 1008 `frequency_list = []`
 1009 `for i in range(11):`
 1010 `# call CountOccurrences`
 1011 `frequency_list.append(int(self.step(json.dumps({'name': 'CountOccurrences',`
 1012 `'parameters': {'number': i}}))[1]))`
 1013 `# call GetMaxFrequency`
 1014 `max_freq = int(self.step(json.dumps({'name': 'GetMaxFrequency', 'parameters':`
 1015 `'frequency_list': frequency_list}))[1])`
 1016 `# call GetModes`
 1017 `modes = ast.literal_eval(self.step(json.dumps({'name': 'GetModes', 'parameters':`
 1018 `'frequency_list': frequency_list, 'max_freq': max_freq}))[1])`
 1019 `# call Done`
 1020 `return self.step(json.dumps({'name': 'Done', 'parameters': {'answer':`
 1021 `modes}}))[1]`
 1022 `</answer>`

1023 **Problem**
 1024 Input:
 1025 `<Task Description>[Task Description] </Task Description>`
 1026 `<Env>[List of Callable Tools] </Env>`
 1027 Output:

Figure 13: **Solution Function Prompt.**

1026 To verify the solvability of a given CodeGym environment, we prompt the LLM to generate solution
 1027 functions. As illustrated in Figure 13, the model is provided with the task description and a list
 1028 of callable tools and asked to produce a corresponding solution function. To prevent leakage of
 1029 internal environment states, only the documentation of the tools, added with example usages, is
 1030 exposed to the LLM. The primary goal of these solution functions is to assess the correctness of the
 1031 environment. Since a set of unit tests is available, we adopt the pass@K strategy: Multiple solution
 1032 functions are generated, and the environment is deemed solvable if *any* of them passes all unit tests.
 1033 In our implementation, we set $K = 10$.

1034

1035 **D.2 STANDARD UNIT TEST GENERATION**

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Standard Unit Test Prompt

System:

Task Description

You are an intelligent assistant responsible for generating unit test cases for Python functions based on a problem description and a gym environment. You will be given a problem description and a gym environment, and your task is to generate 15 test cases for that environment.

Please ensure that all test cases follow these requirements:

- * The input must be a valid JSON string:
 - * No Python expressions are allowed (such as `[1] * 5` or `[i%11 for i in range(100)]`)
 - * Comments, calculation expressions, or Python syntactic sugar are not permitted
- * Each test case must follow the `a@b` format, where:
 - * `a` is the name of the environment class
 - * `b` is the dictionary of arguments, written in valid JSON format (e.g., `{"arg1": [...]}`)
 - * Example:


```
ModeFindingEnv@{"scores": [1, 2, 9, 6, 10, 4, 1, 5, 8, 8, 2, 10, 1, 3, 8, 0, 0, 5, 3, 5]}
```
- * Test cases must cover a variety of situations, including typical cases and edge cases:
 - * Different sizes, diverse structures, varying numerical distributions, etc.
- * Arrange test cases in increasing order of difficulty:
 - * The first 5 are easy
 - * The middle 5 are medium
 - * The last 5 are hard (must include extreme or boundary cases)

Problem Description

`<problem_description>[Problem Description] </problem_description>`

Gym Environment

`<gym.env>[Gym Environment] </gym.env>`

In the main function of the environment, there may exist some unit tests. They do not follow the format of the unit tests that I want to generate. You may refer to these unit tests, but be sure not to completely copy them.

Please output one unit test per line. To reiterate, the format of the test is `a@b`, where `a` is the name of the environment class, and `b` is the dictionary of input parameters, written in valid JSON format (for example: `{"arg1": [...]}`).

Figure 14: **Standard Unit Test Prompt.**

Unit tests are used both to evaluate the solvability of the environment and to provide initialization seeds during training. Because most web resources do not supply unit tests, we synthesize them using LLMs. As illustrated in Figure 14, the prompt specifies in detail the unit test format. Meanwhile, to ensure comprehensive coverage, the unit tests generated for CodeGym environments span both easy and hard scenarios, as well as boundary cases. For each environment, we sample unit tests twice, with each sample containing 15 cases, resulting in a total of 30 tests. We avoid generating all 30 tests in a single pass, as LLMs often produce duplicate cases when asked for too many at once. After generation, the validity of the tests is verified using the ground-truth coding solution, and any invalid tests (Runtime Error or Time Limit Exceeded) are discarded.

1080 D.3 HARD UNIT TEST GENERATION
1081

1082 As discussed in Section 3.5, long-CoT models can sometimes bypass the intended tool-call workflow
1083 by relying solely on reasoning to produce the final answer. To mitigate this issue, we constructed
1084 a hard version of the unit tests. These hard tests are designed along two dimensions: (1) parameter
1085 values in the test cases are scaled to large magnitudes, such as long array lengths or large numerical
1086 values; and (2) solving the problem requires more intricate environment logic, such as invoking
1087 multiple functions or handling complex calling dependencies. To generate such tests, we prompt
1088 the LLM with these two difficulty dimensions to create more training instances and filter out all
1089 instances where Qwen2.5-32B-Instruct has an accuracy greater than 1/8. Meanwhile, the maximum
1090 allowed number of tool calls increases to $T_{\max} = 512$, thus augmenting standard unit tests with
1091 harder variants.

1092

1093

E ADDITIONAL RESULTS

1094

1095

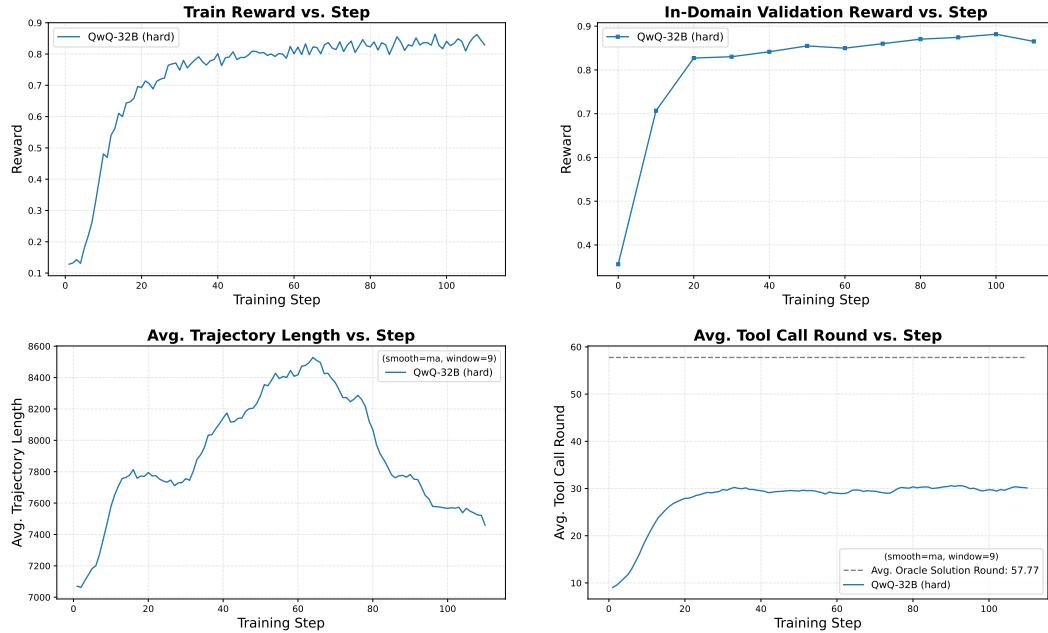
E.1 QwQ RESULTS

1096

1097

1098 Due to differences in training data, we report the results of the QwQ model separately. As shown
1099 in Figure 15, QwQ trained in the hard version of CodeGym shows strong performance gains on
1100 both the training set and the in-domain validation set, similar to the improvements observed with the
1101 Qwen2.5 series (Figure 6). An interesting observation is the trend in average trajectory length: it
1102 initially increases but declines in later stages of training. This may be attributed to the limited context
1103 window during RL training (24K), which encourages QwQ to be more conservative in generating
1104 longer content. Another notable finding is the significant gap between the number of tool calls made
1105 by QwQ and those used in oracle solutions, even when training on the hard version of CodeGym.
1106 Developing methods to synthesize large-scale environments with theoretical guarantees that prevent
1107 LLMs from exploiting shortcuts remains an important direction for future work.

1108



1130

1131

1132

1133 **Figure 15: QwQ Training Statistics.** We report the average training reward (hard version of the
1134 training set), in-domain validation reward, average trajectory length, and Avg. Tool-Call Count (per
1135 trajectory) for the QwQ model.

1136

1134 **Table 4: Ablation Study Results.** We present the performance of different training methods and
 1135 datasets in CodeGym, including supervised fine-tuning on correct trajectories generated by or-
 1136 acle solutions (Qwen2.5-32B-CG-SFT) or Seed-1.6-Thinking (Qwen2.5-32B-CG-Distill), as well as
 1137 training on the unfiltered environment set (Qwen2.5-32B-CG-UF). The evaluation settings are the
 1138 same as those in Table 1.

1139	Categories	Tool-Use	Multi-Turn	Reasoning	Avg.		
1140	Benchmarks	τ -airline	τ -retail	τ^2 -bench	AW	ZL	MMLU-Pro
1142	Qwen2.5-32B-Instruct	26.8	41.4	24.7	66.8	24.2	70.0
1143	Qwen2.5-32B-CG-SFT	39.6(2.8↑)	30.1(11.3↓)	23.2(1.5↓)	70.0(3.2↑)	24.6(0.4↑)	70.6(0.6↑)
1144	Qwen2.5-32B-CG-Distill	44.8(18.0↑)	48.2(6.8↑)	23.2(1.5↓)	72.8(6.0↑)	27.4(3.2↑)	71.3(1.3↑)
1145	Qwen2.5-32B-CG-UF	28.4(1.6↑)	49.0(7.7↑)	23.5(1.2↓)	78.4(11.6↑)	27.6(3.4↑)	70.5(0.5↑)
1146	Qwen2.5-32B-CG (Ours)	31.2(4.4↑)	54.4(13.0↑)	30.7(6.0↑)	80.8(14.0↑)	29.0(4.8↑)	71.2(1.2↑)
1147							49.6(7.3↑)

E.2 ABLATION STUDY RESULTS

1149 Table 4 shows the results of the ablation studies on training methods and data filtering strategy.
 1150 The ablation studies highlight two key findings. First, our RL-based training method (Qwen2.5-
 1151 32B-CG) demonstrates stronger generalization than SFT-based methods (Qwen2.5-32B-CG-SFT
 1152 and Qwen2.5-32B-CG-Distill), even when the supervised data are of high quality, such as being
 1153 distilled from large teacher models. This suggests that reinforcement learning enables models to
 1154 adapt more flexibly on diverse benchmarks. Second, the results of training on the unfiltered dataset
 1155 (Qwen2.5-32B-CG-UF) show that quality control in synthetic environments is crucial. Although
 1156 unfiltered data can bring about some gains in specific benchmarks, careful curation of the filtering
 1157 strategy yields more consistent and superior improvements across tasks.

E.3 AVERAGE TRAJECTORY LENGTH

1160 Figure 16 illustrates how the average agent trajectory length evolves during training on the
 1161 Qwen2.5 series models. The steadily increasing
 1162 trajectory length suggests that LLM agents
 1163 learn to spend more compute time on reason-
 1164 ing or interaction to solve CodeGym. This
 1165 trend aligns with the findings in RL for rea-
 1166 soning tasks such as mathematics, where addi-
 1167 tional computation in self-reflection or verifica-
 1168 tion leads to stronger performance (Guo et al.,
 1169 2025).

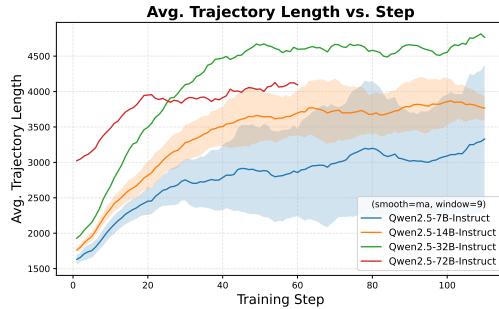
F TRAINING HYPERPARAMETER

F.1 RL HYPERPARAMETER

1175 We used the same reinforcement learning hyperparameters in all models. The actor learning rate
 1176 was set to 1×10^{-6} with a linear warm-up of 5 training steps. The KL coefficient was fixed at 0.
 1177 The maximum prompt and response lengths were 5,120 and 24,576 tokens, respectively. The opti-
 1178 mization was performed using the Adam algorithm with $\beta_1 = 0.9$, $\beta_2 = 0.95$, and a weight decay
 1179 of 0.1. We adopted the GRPO algorithm with a global batch size of 512×8 (512 training instances,
 1180 each sampled 8 times), a clip ratio of 0.2, and a gradient clip of 1.0. For training rollout, we set the
 1181 inference temperature at 1.0 without any decoding constraints. For the in-domain validation rollout,
 1182 we set the inference temperature to 1.0 with top- $p = 0.7$.

F.2 SFT HYPERPARAMETER

1184 For the SFT experiments mentioned in Section 5.4, the number of training trajectories is 10,000,
 1185 and we set the batch size to 16 and a total training step to 625. The optimization is performed with
 1186 the AdamW optimizer, using a learning rate of 10^{-4} with $\beta_1 = 0.9$, $\beta_2 = 0.95$, and a weight decay



1187 **Figure 16: Evolution of Trajectory Length.** Increasing trajectory length shows LLM agents
 1188 learn to spend more compute and reasoning to
 1189 solve CodeGym.

1188 of 0.1. To stabilize early training, we employ a warm-up ratio of 10% of the total steps, after which
1189 the learning rate follows a cosine decay schedule to encourage smoother convergence. Finally, we
1190 apply gradient clipping with a maximum norm of 1.0.
1191

1192 G DATASET USAGE AND ATTRIBUTION 1193

1194 This work makes use of the following open-source dataset(s):
1195

1196 • **Dataset Name:** KodCode
1197 **Source:** <https://huggingface.co/datasets/KodCode/KodCode-v1>
1198 **License:** Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC
1199 4.0)

1200 The dataset is used solely for non-commercial, academic research purposes. Proper credit has been
1201 given in accordance with the license requirements.
1202

1203 In addition, our open-source dataset, CodeGym, will be released under the same license (CC BY-NC
1204 4.0).
1205

1206 H LLM USAGE 1207

1208 In this project, we use LLMs as a tool to translate coding tasks into interactive environments. Since
1209 the resources are derived from coding problems, the risk of generating sensitive or inappropriate
1210 content is low. For the paper writing process, LLMs were only used at the wording level.
1211

1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241