
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GENERALIZABLE END-TO-END TOOL-USE RL
WITH SYNTHETIC CODEGYM

Anonymous authors
Paper under double-blind review

ABSTRACT

Tool-augmented large language models (LLMs), hereafter LLM agents, leverage
external tools to solve diverse tasks and interface with the real world. How-
ever, current training practices largely rely on supervised fine-tuning (SFT) over
static trajectories or reinforcement learning (RL) on narrow tasks, which gener-
alize poorly beyond development settings and lead to brittleness with new tools
and unseen workflows. Because code execution reflects many structures of real-
world workflows, we use coding problems as a structured substrate to build tool-
use agent training environments with diverse task configurations. To this end,
we introduce CodeGym, a scalable framework that synthesizes diverse, verifi-
able, and controllable multi-turn tool-use environments for agent RL, enabling
LLM agents to explore and master various workflows actively. CodeGym con-
verts static coding problems into interactive environments by extracting atomic
functions or logic into callable tools, yielding verifiable tasks that span various
tool-execution workflows. Models of varying sizes and chain-of-thought configu-
rations, trained in CodeGym, exhibit consistent out-of-distribution generalizabil-
ity; for example, Qwen2.5-32B-Instruct achieves an absolute accuracy gain of 8.7
points on the OOD benchmark τ -Bench. These results highlight CodeGym as a
step toward scalable general-purpose RL environments for training tool-use be-
haviors that align with real-world agent workflows.

1 INTRODUCTION

Large language models (LLMs) have exhibited remarkable capabilities in complex logical reason-
ing, code generation, and instruction following (Jaech et al., 2024; Liu et al., 2024a; Seed et al.,
2025; Yang et al., 2025; Seed, 2025b; Comanici et al., 2025), but their capabilities are limited
by static parametric memory (Gao et al., 2023b;a; Schick et al., 2023). A new paradigm, tool-
augmented LLM agents, overcomes these limits by granting LLM access to external resources, such
as databases (Liu et al., 2024b; Qian et al., 2024; Prabhakar et al., 2025), search engines (Parisi
et al., 2022; Lu et al., 2023), and code executors (Li et al., 2023; Wu et al., 2025), enabling them
to act with expanded problem solving abilities (Ma et al., 2024; Du et al., 2025) and interaction
capacities (Qin et al., 2023; Yao et al., 2024).

Standard pretraining corpora lack sufficient high-quality agent interaction data, such as tool-use and
workflow traces, leaving LLM agents brittle (Fu et al., 2025b). To mitigate this, previous work
has constructed agent tasks and generated agent trajectories for supervised fine-tuning (SFT) (Zhou
et al., 2023; Wang et al., 2024a). Although such construction can improve performance on designed
benchmarks, the resulting trajectories often follow hand-crafted patterns and explore limited envi-
ronments and task configurations, leading to poor generalization to distribution shifts, such as new
tools or unseen workflows (Huang et al., 2024; Guo et al., 2024; Li et al., 2024). This calls for train-
ing environments that better capture the diversity and complexity of real-world agent workflows.

Beyond SFT, reinforcement learning (RL) shows promise in improving generalization (Chu et al.,
2025). Through active exploration and interaction with external environments, RL enables LLM
agents to exploit feedback from tools and dynamic contexts, learning not only from correct trials but
also from failures, thereby gradually improving and adapting to novel scenarios, rather than relying
solely on static teacher trajectories (Zheng et al., 2025; Le et al., 2022). Recent work introduces
RL training environments tailored to specific agent domains, such as coding assistants (Pan et al.,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Retrieve

- Problem Description
- Coding Solution:
Atomic Functions
def fun1(params1):
[…]
def fun2(params2):
[…]
Main Procedure
def main(input):

x = fun1(input)
y = fun2(x)
return y

Action Space
Atomic Functions
Fun1(params1)
Fun2(params2)
… …
Basic Actions
Observe()
Done(answer)

• Action Feedback
• Error Message
• Reward Info

Task Configuration (Unit Test)

Verifiable Reward
 1, if answer is correct
 0, otherwise

Initialize Env

Done(answer)

LLM Agent

Prompt
- Task Description
- Action Docstrings
Multi-Turn Tool Use

Action 1: Observe()
Obs 1: [Success] Init State

Action 2: Fun1(params=Init State)
Obs 2: [Success] State: x

Action 3: Fun2(params=None)
Obs 3: [Failed] Wrong Arguments

Action 4: Fun2(params=x)
Obs 4: [Success] State: y

Action 5: Done(answer=y)
Obs 5: [Success] Reward=1

EnvironmentCoding Problem

Sanity Check
Compilation & Format

Running Time & Memory

Solution Existence

Form
alize

Action
O

bservation

Observation Space

Web Resource
R

ew
ard

Figure 1: Overview of CodeGym. We transform coding problems into interactive environments to
train LLM agents. (Left) We extract atomic and reusable functions or logic from coding solutions to
construct interactive environments. (Middle) CodeGym enables agents to solve tasks via multi-turn
tool calls, with environment correctness verified automatically. (Right) The resulting environments
support scalable RL training, improving robustness and generalization of LLM agents.

2024) and information search (Chen et al., 2025). However, these setups only focus on narrow
tasks, limiting the potential of RL to generalize (Cobbe et al., 2019). A scalable general-purpose RL
environment for improving LLM agentic capabilities remains absent.

To bridge these gaps, we introduce CodeGym, a framework for synthesizing large-scale, diverse,
and verifiable multi-turn tool-use environments from coding problems. Code inherently embodies
diverse and rigorous execution logic and naturally reflects many of the structures found in real-
world workflows, making coding problems a natural foundation for constructing rich tool-use envi-
ronments. Using this property, CodeGym ingests raw coding problems and exploits their inherent
execution semantics to synthesize interactive environments. Reusable atomic functions and logic
are abstracted into callable tools, which LLM agents invoke interactively to solve tasks instead of
directly writing the full code. CodeGym enables LLM agents to explore and adapt to unseen envi-
ronments interactively rather than relying on static demonstrations. Since code encodes diverse logic
and functionality, the resulting environments vary widely, not only in available tools and workflow
structures, but also in the forms of tool-based reasoning agents must employ to succeed.

Reinforcement learning in CodeGym exposes agents to a wide range of environments and task con-
figurations, fostering adaptation strategies for real-world agent applications. We apply CodeGym to
train language models of various sizes and chain-of-thought (CoT) styles, and the trained models
achieve competitive in-domain performance and, importantly, demonstrate notable generalization to
out-of-distribution (OOD) settings. For example, Qwen2.5-32B-Instruct improves accuracy by 8.7
points in τ -Bench (Yao et al., 2024). These findings suggest that CodeGym promotes transferable
interaction strategies, avoiding overfitting specific tasks. Our contributions are threefold:

• We introduce CodeGym, a scalable pipeline that transforms static coding problems into
explorable and verifiable multi-turn tool-use environments.

• CodeGym contains a large suite of tasks with various logic and tool sets, which ensures
that training covers a broad trajectory space while providing stable and rigorous feedback.

• We show that reinforcement learning on CodeGym significantly improves out-of-
distribution generalization for LLM agents, highlighting the value of CodeGym for gen-
eralizable agent training.

2 RELATED WORK

LLMs as Tool-Use Agents Equipped with external tools, LLMs extend their capabilities beyond
intrinsic language modeling, not only improving factual reasoning through knowledge search or re-
trieval (Qin et al., 2023) and program-aided computation (Gao et al., 2023a), but also enabling direct

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

interaction with the world in domains such as coding (Wang et al., 2024b), customized services (Yao
et al., 2024), robotic control (Ahn et al., 2022), and scientific discovery (M. Bran et al., 2024).

Synthetic Environments for LLM Agent Training For agent applications, LLMs often lack
domain-specific training data, leaving them insufficiently grounded and prone to erroneous ac-
tions (Qu et al., 2025). Synthetic environments have thus emerged as a promising means of pro-
viding controlled, domain-aligned supervision. Early efforts, such as TextWorld, ALFWorld, and
ScienceWorld (Côté et al., 2018; Shridhar et al., 2020; Wang et al., 2022), offered interactive text-
based environments for language models to enhance instruction following and multistep reasoning,
although their domain gap limits real-world transfer. More realistic benchmarks now include Web-
Shop (Yao et al., 2022) for online shopping, SWE-Gym (Pan et al., 2024) for code debugging, and
BrowseComp-Plus (Chen et al., 2025) for deep web search, etc. In parallel, resources such as Tool-
Bench and T-Eval (Qin et al., 2023; Chen et al., 2023) provide large-scale datasets and fine-grained
evaluations of tool use capacity, but lack the evolving states and long-horizon interactions of true
environments. Despite these advances, broadly applicable general-purpose tool-use environments
remain scarce.

Reinforcement Learning with Verifiable Reward (RLVR) Reinforcement learning has proven
effective for training LLMs when rewards are verifiable, such as mathematical reasoning and code
generation (Shao et al., 2024; Jaech et al., 2024; He et al., 2025). Based on PPO (Schulman et al.,
2017), variants such as GRPO and DAPO (Shao et al., 2024; Yu et al., 2025) improve stability and
efficiency during training. Tool-augmented RL further enables models to practice about when and
how to invoke external tools, such as for retrieval (Li et al., 2025) or numeric reasoning (Singh
et al., 2025; Feng et al., 2025). Nevertheless, scaling tool-supported RL and managing large training
environments remain open challenges (Jiang et al., 2025).

3 CODEGYM

We introduce CodeGym, a large-scale synthetic multi-turn tool-use environment dataset constructed
from extensive coding problems available online (Section 3.2). As shown in Figure 1, we synthesize
various agent tasks and interactive environments to support reinforcement learning for LLM agents,
exploring ways to improve agent capabilities and generalization. CodeGym encompasses thousands
of tools, various patterns of tool-use logic, a low-latency execution environment, and verifiable
reward mechanisms. Furthermore, CodeGym is designed for scalability: Our generation pipeline
(Section 3.3) can systematically convert a wide range of coding tasks into interactive environments
with a rigorous verification process, ensuring both the stability and correctness of environments.
Finally, a series of filters, such as difficulty and trajectory complexity, is applied to select high-
quality environments for LLM agent reinforcement training (Section 3.4).

3.1 INSIGHTS

The construction of CodeGym is motivated by a key insight: code inherently embodies rigorous
execution logic, which is similar to real-world workflows. For example, a loop that continues un-
til a condition is satisfied mirrors iterative approval rounds in complex decision-making workflows.
Taking advantage of this property, we transform coding problems into structured tool-use environ-
ments where agents use tools to solve tasks. This design bridges the gap between static datasets and
interactive training, offering the diversity of real-world workflows for reinforcement learning.

Figure 3 illustrates how an interactive task is transformed from a coding problem. The original
problem is ‘Finding the number closest to K in a sorted list of length N .’ From the corresponding
coding solution (see Appendix C.1), we extract three atomic actions: (1) observe, which returns
the array length N together with the target K; (2) look_up_pos, which returns the element at
index i; and (3) done, which submits the final answer. These actions form the tool set available to
the agent. The environment is initialized with a specific task configuration that is hidden from the
agent. The agent then interacts with the environment by invoking tools and ultimately produces an
answer, whose correctness is evaluated, and a binary reward is assigned.

More broadly, program execution can be reimagined as a structured action sequence in which agents
must not only master individual tool calls but also compose them into coherent workflows. This

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Coding
Problem

Env Solution
Functions

Coding
Solution

Unit Test
Outputs

Solution Function
Outputs

(3) Run Unit Test

Error-Prone Step
Stable Step

(1)

(4) CompareUnit Test Inputs

CodeGym Env CodeGym Env
Unverified Verified

Unit Tests

Served as Task
Configurations

Synthesis Verification

(2)

Figure 2: Pipeline for CodeGym Environment Generation. Coding problems are reformulated
into interactive environments by extracting tools, generating candidate solutions, and validating
them with unit tests. The environment is deemed valid if any candidate solution passes all tests,
and the resulting unit tests serve as task configurations for RL training.

compositional nature, coupled with the verifiable outcomes of coding tasks, makes CodeGym par-
ticularly well-suited for cultivating general-purpose tool-use capabilities and robust agent training.

3.2 RESOURCE COLLECTION

Problem Description:
Finding the number closest to K in a sorted list of length N.

Available Action List:
def observe() -> str
returns the array length n and the target K

def check(i: int) -> str
returns the element at index i

def done(ans: int) -> str
submit the answer

Example Workflow:
Task Configuration (hidden from agent):

Agent Trajectory:
observe() → "length=5, K=8"
check(2) → "Arr[2] = 9"
check(0) → "Arr[0] = 2"
check(1) → "Arr[1] = 5"
done(9) → ”submit answer 9 to the environment"

Array
Arr = [2, 5, 9, 14, 20], n = 5
Target
K = 8, ground_truth = 9

Reward Function:
1 for correct answers and 0 otherwise.

Figure 3: CodeGym Environment Example.
Given the problem description and the action list,
the agent interactively solves the task and receives
a binary reward after submitting the answer.

Coding tasks are widely available online, and
this work focuses primarily on collecting com-
petitive programming problems. We use the
KodCode dataset (Xu et al., 2025) and select
the category of Coding Assessment Questions
as our raw corpus. Each coding problem con-
tains a task description paired with its corre-
sponding solution code. Because code formats
vary, we utilize an LLM1 to standardize coding
solutions into a unified format.

3.3 CODEGYM GENERATION PIPELINE

Our generation pipeline (see Figure 2) consists
of two complementary stages: Gym Synthesis
and Gym Verification. In the synthesis stage, we
extract reusable code logic from programming
solutions and rewrite them into callable tools,
ensuring modularity and clarity. However, be-
cause large-scale generation is prone to errors,
we introduce a verification stage that systemati-
cally validates correctness and solvability. This
two-step design ensures that the resulting envi-
ronments are diverse and reliable.

3.3.1 GYM SYNTHESIS

We extract reusable, atomized code logic or functions from programming solutions and convert them
into a library of tools. A tool may be a standalone function, a calculation utility, or a frequently oc-
curring code fragment (e.g., a loop body). Extraction and rewriting are performed by prompting
an LLM, which asks the LLM to synthesize tools with precise documentation (functionality, pa-
rameters, and examples) conditioned on the source task and code solutions. Although examples are
generated in the synthesis step, these are withheld from the agent-facing documentation during the
training stage to encourage learning through interaction and acting based on feedback.

To support reinforcement learning, we synthesize environments in the OpenAI Gym format (Brock-
man et al., 2016). In detail, each CodeGym environment is defined as a POMDP:

E = ⟨S,A, T,R,O⟩,
1We use Seed-1.6-Thinking (Seed, 2025a) for the CodeGym environment generation pipeline.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where the state S encodes task-specific variables, the action space A consists of both generic func-
tion calls (e.g., Observe, Done) and domain-specific tools, transitions T execute the correspond-
ing functions, and rewards R are sparse, assigned only upon termination by comparing the submitted
answer to the ground truth. To discourage shortcut solutions, Observe reveals only a partial state
(e.g., some task inputs are not directly accessible). reset initializes the environment with a prede-
fined unit test input. The reward function returns 1 if the agent’s final answer matches the unit test
output, and 0 otherwise.

This unified design provides a flexible template for incorporating various coding tasks into RL train-
ing, ensuring consistency across environments while encouraging tool use and exploration. By
providing a one-shot example, the LLM can amazingly follow all the format instructions in most
CodeGym synthesis inferences. Details of the CodeGym environment template and the synthesis
prompt are provided in Appendix C.2 and Appendix C.3, respectively.

When used during the agent training stage, the environment exposes the task description and docu-
mentation of the available tools. Agents are expected to adapt their actions based on feedback from
environments (observations and error messages). Example agent prompts are listed in Appendix C.4.

3.3.2 GYM VERIFICATION

During the synthesis process, we identify two primary errors with respect to generated environments:
(1) Correctness Error, where the environment may encounter compilation failures, timeouts, or out-
of-memory issues; and (2) Solvability Error, where the set of actions provided by the environment
is insufficient for any agent to solve the task.

To filter out faulty environments and verify solvability, we first synthesize a collection of unit test
inputs that span multiple difficulty levels and corner cases (see Appendix D.2 for details). The
ground truth coding solution is then used to produce the corresponding unit test outputs. Next,
leveraging the detailed tool documentation provided by the CodeGym environment, plus example
outputs of tools to ensure correct grammar, we prompt an LLM to generate solution functions (i.e.,
writing code programs that call tools to solve the environment; refer to Appendix D.1). Although
the generation of solution functions is itself error-prone, we can employ the pass@K strategy: We
generate K = 10 candidate solution functions, and if any of them successfully passes all unit tests
within the specified time and memory limits, the CodeGym environment is considered solvable. In
this case, the unit tests are further used as task configurations for environment initialization at the RL
training stage. We then denote the solution function that passes all unit tests as the oracle solution.

3.4 QUALITY CONTROL

Ensuring data quality is essential for RL training. To select high-quality task configurations from the
large CodeGym dataset, we apply two filtering mechanisms: Tool-Use Complexity and Difficulty.

Tool-Use Complexity We require task configurations to exhibit non-trivial patterns of tool use,
where complexity reflects both the number and the variety of tool calls. Specifically, we use oracle
functions to calculate the number of tool calls needed to solve the task and filter out task configu-
rations with fewer than Tmin = 10 tool calls to avoid trivial solutions and more than Tmax = 256
to remove repetitive tool call patterns, thus improving the efficiency of RL training. Moreover,
to ensure that complexity does not degenerate into repeated use of a single tool, we also require
environments to contain at least 4 distinct tools.

Tool-Use Difficulty Task configurations should not be too easy for agents to solve. To measure
difficulty, we use the pass rate as a metric. Specifically, we evaluate each task configuration 4 times
with Qwen2.5-32B-Instruct and retain only those with accuracy no greater than 25%.

After filtering, we obtain a dataset of more than 80k task configurations with 13k environments.
Figure 4 presents statistics of the filtered dataset regarding the number of tools and steps. The
average numbers of tools and steps are 6.52 and 44.07, respectively. Table 3 shows a comparison
between CodeGym and previous agent training works, where CodeGym has the largest number of
environments and task configurations compared to other agent training works.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4 5 6 7 8 9 10 11 12 13 14 15
Tool Number

0

5000

10000

15000

20000

25000

Fr
eq

ue
nc

y

Histogram of Tool Numbers
Average Tool Number = 6.52

0 20 40 60 80 100 120 140 160 180 200 220 240 260
Step Number Range

0

5000

10000

15000

20000

25000

30000

Fr
eq

ue
nc

y

Histogram of Step Numbers (binned by 20)
Average Steps = 44.07

Figure 4: CodeGym Statistics. The average numbers of tools and steps to solve tasks are 6.52 and
44.07, respectively, indicating that CodeGym encompasses diverse tools and complex logic.

3.5 DIFFICULTY AUGMENTATION

Long-CoT models sometimes solve tasks by reasoning alone once they receive complete informa-
tion, bypassing tool calls. To discourage this behavior, we augment the task configurations used for
environment initialization to increase the difficulty of pure reasoning (see Appendix D.3 for details),
yielding a more challenging training set. In practice, we train long-CoT models on the augmented
training set and short-CoT models on the original set.

4 TRAINING FRAMEWORK

prompt

CodeGym
Database

Retrieve

Rollout Worker 1

Rollout Worker N

… …

R
ollout

C
ontroller

Initialize (Env ID, Configuration, ...)

Reward

Service Ports

trajectory Environment
Server

(CPU-bound)action

observation

R
eplay

B
uffer

prompt

trajectory

Rollout Pipeline

RL
Learner Training

Instances

action

observation

Figure 5: RL Training Pipeline for CodeGym. A server provides centralized control of environ-
ments, and each rollout process is allocated to a service port. The rollout workers send actions to
the corresponding service ports and receive observations. The rollout controller sends commands to
initialize the environments and receive reward signals to form the replay buffer.

CodeGym is designed for agent reinforcement learning. To enable high-throughput rollouts, we
implement a distributed rollout framework with a CPU-bound environment server (Fig. 5). At the
beginning of each training epoch, the environment server receives initialization commands that spec-
ify environment IDs and task configurations. Then it retrieves the corresponding environment from
the CodeGym database, launches it, and establishes a dedicated service port for communication.
Each rollout process is connected to one of these ports, and the tool calls generated during rollouts
are transmitted immediately to the server. The resulting responses are appended to the trajectory.
To avoid blocking caused by repeating tool calls, we allow tools to be called at most Tmax times in
each trajectory.

Upon completion of a rollout, the server computes the reward signal and returns it to the replay buffer
for aggregation. By decoupling the GPU-bound rollout process from the CPU-bound environment
server, the framework supports stable and highly concurrent RL training.

4.1 TRIAL-THEN-OVERWRITE MECHANISM

During training, the tool calls generated by LLMs can be unpredictable, particularly in the early
epochs. To prevent server crashes caused by erroneous calls and bound per-step latency, we adopt
a trial-then-overwrite mechanism: Upon receiving a tool call, the server first serializes (pickles)
the environment state, then executes the call in a subprocess against the serialized snapshot. If the
subprocess completes successfully within the time limit, we commit the resulting state back to the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

original environment. Otherwise, the original environment remains unchanged and returns an error
as the observation. This mechanism ensures robustness during training.

5 EXPERIMENTS

0 20 40 60 80 100
Training Step

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Re
wa

rd

Train Reward vs. Step

Qwen2.5-7B-Instruct
Qwen2.5-14B-Instruct
Qwen2.5-32B-Instruct
Qwen2.5-72B-Instruct

0 20 40 60 80 100
Training Step

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Re
wa

rd

In-Domain Validation Reward vs. Step

Qwen2.5-7B-Instruct
Qwen2.5-14B-Instruct
Qwen2.5-32B-Instruct
Qwen2.5-72B-Instruct

Figure 6: Training Curve. Average reward during training on both the training and in-domain vali-
dation environments. With binary rewards, the reward is equivalent to accuracy. The similar reward
trajectories on training and validation indicate minimal overfitting. Larger base models generally
achieve higher performance. For models smaller than 32B, three random seeds are run. The solid
lines denote the mean reward across multiple random seeds. The shaded regions represent the sam-
ple standard deviation (±1 std) across seeds.

Table 1: Main Results. We report the performance of CodeGym-trained models on held-out bench-
marks spanning tool-use (τ -bench and τ2-bench), multi-turn interactions (ALFWorld), and rea-
soning (ZebraLogic and MMLU-Pro). Models of varying sizes and CoT patterns are evaluated,
and training on CodeGym can improve overall performance across benchmarks. Experiments use
T = 0.7 and top-p = 0.95, and results are obtained by averaging 5 inference runs per model.

Categories Tool-Use Multi-Turn Reasoning
Benchmarks τ -airline τ -retail τ2-bench AW ZL MMLU-Pro Avg.

Short-CoT Models
Qwen2.5-7B-Instruct 12.8 4.5 14.9 43.6 11.3 57.9 24.2
Qwen2.5-7B-CodeGym 17.3(4.5↑) 7.6(3.1↑) 15.5(0.6↑) 51.3(7.7↑) 12.6(1.3↑) 57.6(0.3↓) 27.0(2.8↑)
Qwen2.5-14B-Instruct 17.6 32.0 20.9 59.2 19.6 66.3 35.9
Qwen2.5-14B-CodeGym 21.3(3.7↑) 39.2(7.2↑) 19.9(1.0↓) 72.8(13.6↑) 22.3(2.7↑) 67.2(0.9↑) 40.5(4.6↑)
Qwen2.5-32B-Instruct 26.8 41.4 24.7 66.8 24.2 70.0 42.3
Qwen2.5-32B-CodeGym 31.2(4.4↑) 54.4(13.0↑) 30.7(6.0↑) 80.8(14.0↑) 29.0(4.8↑) 71.2(1.2↑) 49.6(7.3↑)
Qwen2.5-72B-Instruct 25.2 49.2 22.6 80.4 27.6 72.2 46.2
Qwen2.5-72B-CodeGym 31.2(6.0↑) 57.0(7.8↑) 25.8(3.2↑) 82.8(2.4↑) 31.5(3.9↑) 73.3(1.1↑) 50.3(4.1↑)

Long-CoT Models
QwQ-32B 37.6 37.7 26.1 62.4 79.9 81.4 54.2
QwQ-32B-CodeGym 43.2(5.6↑) 43.0(5.3↑) 30.7(4.6↑) 64.4(2.0↑) 76.6(3.3↓) 81.4(0.0) 56.6(2.4↑)

5.1 SETUP

We utilize CodeGym to train a diverse range of language models. For short-CoT models, we eval-
uated the Qwen2.5 series (Qwen, 2025) with multiple model sizes (7B, 14B, 32B, and 72B). For
long-CoT models, QwQ-32B (Team, 2025) is tested. For the reinforcement learning algorithm, we
apply GRPO (Shao et al., 2024) to train our models with a batch size of 512× 8 (512 task configu-
rations per step with each sample 8 times). Training continues until the training reward approaches
saturation, which indicates diminishing returns from further updates. As shown in Figure 6, models
with no greater than 32B reach a performance plateau with 100 steps. In contrast, the 72B model
exhibits faster reward stabilization due to its stronger capacity, requiring only 50 steps to reach
saturation. For models smaller than 32B, we train with three different seeds to evaluate stability.
For larger models, we report results from a single seed due to computational limitations. Detailed
hyperparameter settings are provided in Appendix F.1.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5.2 TESTBEDS

We evaluated models on both the in-distribution validation set and the held-out (OOD) benchmarks.
This distinction allows us to measure both in-distribution performance and out-of-distribution ro-
bustness. For Held-in validation, we split the CodeGym dataset into a training set and a validation
set. The validation set comprises 500 CodeGym environments unseen during training, each with no
more than two task configurations, for a total of 972 evaluations. For Held-out (OOD) benchmarks,
we categorize the benchmarks along three distinct axes of generalization: (i) domain (tool use), (ii)
pattern (multi-turn interaction), and (iii) skill (reasoning). Models are evaluated on representative
benchmarks from each category listed below. Importantly, these OOD tasks are semantically dis-
tinct from CodeGym’s synthesized environments. Multi-turn tasks follow the standard ReAct (Yao
et al., 2023) protocol, while single-turn question answering uses CoT (Wei et al., 2022) prompts.

• Tool use: τ -bench (Yao et al., 2024) and τ2-bench (Barres et al., 2025), where LLM agents
interact with a set of tools and communicate with a user to satisfy its request while follow-
ing the system instructions for agents. We use GPT-4.1 as the user simulator.

• Multi-turn interaction: ALFWorld (Shridhar et al., 2020), which places agents in long-
horizon text-based embodied environments requiring sequences of actions to achieve goals.
We sample 50 problems from the ALFWorld evaluation dataset.

• Reasoning: ZebraLogic (Lin et al., 2025) and MMLU-pro (Wang et al., 2024c), to verify
that performance in standard logical and commonsense reasoning tasks does not degrade.
We sampled 200 puzzles from ZebraLogic and 1,000 problems from MMLU-pro.

5.3 RESULTS

0 20 40 60 80 100
Training Step

20

25

30

35

40

45

50

Av
g.

 To
ol

 C
al

l R
ou

nd

Avg. Tool Call Round vs. Step

(smooth=ma, window=9)
Avg. Oracle Solution Round: 43.63
Qwen2.5-7B-Instruct
Qwen2.5-14B-Instruct
Qwen2.5-32B-Instruct
Qwen2.5-72B-Instruct

Figure 7: Evolution of Tool Call Behavior Dur-
ing Training. The average tool call number keeps
increasing, suggesting improved identification of
agent workflows and closer adherence to them.

Figure 6 presents the training reward curves per
step and the in-domain validation results of the
Qwen-2.5 series models (since QwQ uses the
hard training set, the curves are not comparable
and the QwQ results are shown in Figure 15).
The reward metric is equivalent to accuracy be-
cause of its binary definition. In the training set,
all base models start with relatively low reward,
but improve steadily, with larger models consis-
tently outperforming smaller ones. Repetition
experiments in small models confirm the stabil-
ity of training during the initial 100 steps. In
the in-domain validation set, although the envi-
ronments differ from those used in training, we
observe similar trends, suggesting limited over-
fitting in training environments.

Table 1 summarizes the out-of-distribution (OOD) performance of trained models. For Short-CoT
models, we observe consistent gains across all categories: tool-use scenarios, multi-turn interac-
tions, and reasoning tasks. The gains in the first two categories are more pronounced because of the
similarity between the synthetic environment workflows and those of the target tasks. These find-
ings yield two takeaways: (i) training on CodeGym improves the generalizability of LLMs to unseen
agent workflows, and (ii) the intrinsic complexity of the workflow logic in CodeGym training envi-
ronments also yields gains in general reasoning ability. Moreover, we found that the larger models
benefit more from training in CodeGym compared to the smaller models on OOD benchmarks. For
example, Qwen2.5-32B-Instruct achieves an average improvement of +7.3, whereas Qwen2.5-7B-
Instruct achieves only +2.8. This gap suggests that larger models exhibit stronger generalizability
instead of memorization.

For long-CoT models, which are heavily tuned for reasoning tasks, RL on CodeGym slightly reduces
reasoning performance due to OOD training. However, these models show substantial gains in
tool-use scenarios and multi-turn interactions. These results motivate exploring ways to combine
reasoning objectives with CodeGym training, as this may provide complementary benefits to both
reasoning accuracy and agent abilities.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 7 summarizes how the average number of tool calls made by LLM agents evolves during
training. The count increases steadily over the first 100 steps, indicating that agents are learning to
execute longer and more structured procedures. At the same time, the gap between the LLMs and
the oracle in tool call counts narrows, suggesting better identification and adherence to multi-step
workflows. An additional analysis of trajectory length is provided in the Appendix E.3. Interest-
ingly, the smallest trained model, Qwen2.5-7B-Instruct, produces the highest number of tool calls.
Trajectory-level inspection shows that this arises from repetitive failure-recovery loops: the model
often re-invokes the same tool with identical arguments after unsatisfactory outputs instead of revis-
ing its plan or parameters. This behavior highlights the limited error diagnosis and recovery abilities
of smaller models.

5.4 ABLATION STUDY

In-domain Avg. OOD Tasks
10

20

30

40

50

60

70

80

90

Sc
or

e
30.1

42.3

65.6

41.3

75.0

47.9

81.0

49.6

Performance Comparison
Base Model
Oracle-SFT
Distillation
RL (Ours)

Figure 8: Performance of Models Trained by
Different Methods. Although SFT-based meth-
ods achieve reasonable in-domain performance,
they either degrade or provide limited gains on
out-of-domain tasks.

Reinforcement Learning vs. Supervised
Fine-Tuning To assess whether RL yields
better OOD generalization, we conducted a
controlled comparison. We compared our RL
training with two SFT data collection strate-
gies: (1) using ground-truth trajectories ob-
tained from oracle solutions (mentioned in Sec-
tion 3.3.2) (Oracle-SFT); and (2) distilling tra-
jectories judged correct from a stronger LLM,
seed-1.6-Thinking (Distillation). Specifically,
for both strategies, we collected 10, 000 train-
ing trajectories each and fine-tuned Qwen2.5-
32B-Instruct on these datasets (Detailed hyper-
parameters are listed in Appendix F.2). We
then evaluated the resulting models on both the
in-domain validation set and OOD tasks. As
shown in Figure 8, SFT approaches achieved
reasonable in-domain performance but exhib-
ited marked degradation in OOD tasks, high-
lighting the need for active learning to achieve generalizability. Detailed results for each method on
OOD tasks are listed in Appendix E.2.

Table 2: Ablation Study on Filters. The model
trained on the unfiltered dataset performs worse
compared to that trained on the filtered one, high-
lighting the importance of data quality.

Method In-domain Avg. OOD Tasks

Base Model 30.1 42.3

CodeGym-Full 75.0(44.9↑) 46.2(3.9↑)
CodeGym-Filter 81.0(50.9↑) 49.6(7.3↑)

Environment Filter To evaluate the effec-
tiveness of our quality filters, we compare the
performance of trained models on filtered and
unfiltered CodeGym under the same training
settings and hyperparameters, using the same
base model Qwen2.5-32B-Instruct. As shown
in Table 2, the unfiltered training set performs
worse than the filtered one on both the in-
domain validation set and the OOD tasks. This
highlights the importance of high-quality data
in RL training and shows that our environment
filters can improve training efficiency.

6 CONCLUSION

We propose CodeGym, a scalable synthetic reinforcement learning environment generation pipeline
for multi-turn tool-use agent training. By converting coding tasks into structured Gym environments,
CodeGym enables LLM agents to actively explore and adapt to diverse environments and workflows
with verifiable tasks. Empirically, models trained in these synthetic environments exhibit strong
agent generalizability, achieving consistent performance improvements in both in-domain validation
environments and out-of-distribution benchmarks such as τ -Bench. We hope that CodeGym can
serve as a foundation for developing more robust LLM agents capable of handling the diversity and
complexity of real-world tool-augmented workflows.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Ethics Statement This research does not involve human subjects, personally identifiable informa-
tion, or sensitive data. All experiments were based on publicly available datasets, accessible models,
and widely recognized benchmarks. We believe that our work does not raise ethical concerns.

Reproducibility Statement The supplementary material includes the complete CodeGym gener-
ation and verification pipeline, along with an example subset of the environments. Our experiments
use open-source models, with hyperparameters provided in Appendix F. To control randomness, as
shown in Section 5.1 and Table 1, we report results averaged over multiple training and evaluation
seeds.

REFERENCES

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

Victor Barres, Honghua Dong, Soham Ray, Xujie Si, and Karthik Narasimhan. tau2-bench: Eval-
uating conversational agents in a dual-control environment. arXiv preprint arXiv:2506.07982,
2025.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Zehui Chen, Weihua Du, Wenwei Zhang, Kuikun Liu, Jiangning Liu, Miao Zheng, Jingming Zhuo,
Songyang Zhang, Dahua Lin, Kai Chen, et al. T-eval: Evaluating the tool utilization capability of
large language models step by step. arXiv preprint arXiv:2312.14033, 2023.

Zehui Chen, Kuikun Liu, Qiuchen Wang, Wenwei Zhang, Jiangning Liu, Dahua Lin, Kai Chen, and
Feng Zhao. Agent-flan: Designing data and methods of effective agent tuning for large language
models. arXiv preprint arXiv:2403.12881, 2024.

Zijian Chen, Xueguang Ma, Shengyao Zhuang, Ping Nie, Kai Zou, Andrew Liu, Joshua Green,
Kshama Patel, Ruoxi Meng, Mingyi Su, et al. Browsecomp-plus: A more fair and transparent
evaluation benchmark of deep-research agent. arXiv preprint arXiv:2508.06600, 2025.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. Babyai: A platform to study the sample efficiency of
grounded language learning. arXiv preprint arXiv:1810.08272, 2018.

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V
Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of foundation
model post-training. arXiv preprint arXiv:2501.17161, 2025.

Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John Schulman. Quantifying generaliza-
tion in reinforcement learning. In International conference on machine learning, pp. 1282–1289.
PMLR, 2019.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

Marc-Alexandre Côté, Akos Kádár, Xingdi Yuan, Ben Kybartas, Tavian Barnes, Emery Fine, James
Moore, Matthew Hausknecht, Layla El Asri, Mahmoud Adada, et al. Textworld: A learning
environment for text-based games. In Workshop on Computer Games, pp. 41–75. Springer, 2018.

Weihua Du, Pranjal Aggarwal, Sean Welleck, and Yiming Yang. Agentic-r1: Distilled dual-strategy
reasoning. arXiv preprint arXiv:2507.05707, 2025.

Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan Jiang,
Jinxin Chi, and Wanjun Zhong. Retool: Reinforcement learning for strategic tool use in llms.
arXiv preprint arXiv:2504.11536, 2025.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Dayuan Fu, Keqing He, Yejie Wang, Wentao Hong, Zhuoma Gongque, Weihao Zeng, Wei Wang,
Jingang Wang, Xunliang Cai, and Weiran Xu. Agentrefine: Enhancing agent generalization
through refinement tuning. arXiv preprint arXiv:2501.01702, 2025a.

Dayuan Fu, Keqing He, Yejie Wang, Wentao Hong, Zhuoma GongQue, Weihao Zeng, Wei Wang,
Jingang Wang, Xunliang Cai, and Weiran Xu. Agentrefine: Enhancing agent generalization
through refinement tuning. In The Thirteenth International Conference on Learning Representa-
tions, 2025b.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. In International Conference on Machine
Learning, pp. 10764–10799. PMLR, 2023a.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yixin Dai, Jiawei Sun,
Haofen Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A
survey. arXiv preprint arXiv:2312.10997, 2(1), 2023b.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, N. Chawla, Olaf Wiest,
and Xiangliang Zhang. Large language model based multi-agents: A survey of progress and
challenges. In International Joint Conference on Artificial Intelligence, 2024. URL https:
//api.semanticscholar.org/CorpusID:267412980.

Matthew Hausknecht, Prithviraj Ammanabrolu, Marc-Alexandre Côté, and Xingdi Yuan. Interac-
tive fiction games: A colossal adventure. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pp. 7903–7910, 2020.

Jujie He, Jiacai Liu, Chris Yuhao Liu, Rui Yan, Chaojie Wang, Peng Cheng, Xiaoyu Zhang, Fuxiang
Zhang, Jiacheng Xu, Wei Shen, et al. Skywork open reasoner 1 technical report. arXiv preprint
arXiv:2505.22312, 2025.

Mengkang Hu, Pu Zhao, Can Xu, Qingfeng Sun, Jian-Guang Lou, Qingwei Lin, Ping Luo, and
Saravan Rajmohan. Agentgen: Enhancing planning abilities for large language model based
agent via environment and task generation. In Proceedings of the 31st ACM SIGKDD Conference
on Knowledge Discovery and Data Mining V. 1, pp. 496–507, 2025.

Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei Wang, Hao Wang, Defu Lian, Yasheng
Wang, Ruiming Tang, and Enhong Chen. Understanding the planning of llm agents: A
survey. ArXiv, abs/2402.02716, 2024. URL https://api.semanticscholar.org/
CorpusID:267411892.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv
preprint arXiv:2412.16720, 2024.

Dongfu Jiang, Yi Lu, Zhuofeng Li, Zhiheng Lyu, Ping Nie, Haozhe Wang, Alex Su, Hui Chen, Kai
Zou, Chao Du, Tianyu Pang, and Wenhu Chen. Verltool: Towards holistic agentic reinforcement
learning with tool use, 2025. URL https://arxiv.org/abs/2509.01055.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven Chu Hong Hoi. Coderl:
Mastering code generation through pretrained models and deep reinforcement learning. Advances
in Neural Information Processing Systems, 35:21314–21328, 2022.

Chengshu Li, Jacky Liang, Andy Zeng, Xinyun Chen, Karol Hausman, Dorsa Sadigh, Sergey
Levine, Li Fei-Fei, Fei Xia, and Brian Ichter. Chain of code: Reasoning with a language model-
augmented code emulator. arXiv preprint arXiv:2312.04474, 2023.

Kuan Li, Zhongwang Zhang, Huifeng Yin, Liwen Zhang, Litu Ou, Jialong Wu, Wenbiao Yin, Baix-
uan Li, Zhengwei Tao, Xinyu Wang, et al. Websailor: Navigating super-human reasoning for web
agent. arXiv preprint arXiv:2507.02592, 2025.

11

https://api.semanticscholar.org/CorpusID:267412980
https://api.semanticscholar.org/CorpusID:267412980
https://api.semanticscholar.org/CorpusID:267411892
https://api.semanticscholar.org/CorpusID:267411892
https://arxiv.org/abs/2509.01055

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xinyi Li, Sai Wang, Siqi Zeng, Yu Wu, and Yi Yang. A survey on llm-based multi-agent sys-
tems: workflow, infrastructure, and challenges. Vicinagearth, 2024. URL https://api.
semanticscholar.org/CorpusID:273218743.

Bill Yuchen Lin, Ronan Le Bras, Kyle Richardson, Ashish Sabharwal, Radha Poovendran, Peter
Clark, and Yejin Choi. Zebralogic: On the scaling limits of llms for logical reasoning. arXiv
preprint arXiv:2502.01100, 2025.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu, Tian Lan, Juntao Tan, Weiran Yao, Zhiwei Liu,
Yihao Feng, Rithesh RN, et al. Apigen: Automated pipeline for generating verifiable and diverse
function-calling datasets. Advances in Neural Information Processing Systems, 37:54463–54482,
2024b.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu,
and Jianfeng Gao. Chameleon: Plug-and-play compositional reasoning with large language mod-
els. Advances in Neural Information Processing Systems, 36:43447–43478, 2023.

Andres M. Bran, Sam Cox, Oliver Schilter, Carlo Baldassari, Andrew D White, and Philippe
Schwaller. Augmenting large language models with chemistry tools. Nature Machine Intelli-
gence, 6(5):525–535, 2024.

Yubo Ma, Zhibin Gou, Junheng Hao, Ruochen Xu, Shuohang Wang, Liangming Pan, Yujiu Yang,
Yixin Cao, Aixin Sun, Hany Awadalla, et al. Sciagent: Tool-augmented language models for
scientific reasoning. arXiv preprint arXiv:2402.11451, 2024.

Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep Jaitly, Heng Ji, Alane Suhr, and Yizhe
Zhang. Training software engineering agents and verifiers with swe-gym. arXiv preprint
arXiv:2412.21139, 2024.

Aaron Parisi, Yao Zhao, and Noah Fiedel. Talm: Tool augmented language models. arXiv preprint
arXiv:2205.12255, 2022.

Akshara Prabhakar, Zuxin Liu, Ming Zhu, Jianguo Zhang, Tulika Awalgaonkar, Shiyu Wang, Zhiwei
Liu, Haolin Chen, Thai Hoang, Juan Carlos Niebles, et al. Apigen-mt: Agentic pipeline for multi-
turn data generation via simulated agent-human interplay. arXiv preprint arXiv:2504.03601,
2025.

Cheng Qian, Shihao Liang, Yujia Qin, Yining Ye, Xin Cong, Yankai Lin, Yesai Wu, Zhiyuan Liu,
and Maosong Sun. Investigate-consolidate-exploit: A general strategy for inter-task agent self-
evolution. arXiv preprint arXiv:2401.13996, 2024.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
apis. arXiv preprint arXiv:2307.16789, 2023.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, Shuaiqiang Wang, Dawei Yin, Jun Xu, and Ji-
Rong Wen. Tool learning with large language models: A survey. Frontiers of Computer Science,
19(8):198343, 2025.

Qwen. Qwen2.5 technical report, 2025. URL https://arxiv.org/abs/2412.15115.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. Advances in Neural Information Processing Systems, 36:68539–
68551, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

12

https://api.semanticscholar.org/CorpusID:273218743
https://api.semanticscholar.org/CorpusID:273218743
https://arxiv.org/abs/2412.15115

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

ByteDance Seed. Seed1.6 tech introduction. https://seed.bytedance.com/en/seed1_
6, June 2025a.

ByteDance Seed. Seed-oss open-source models. https://github.com/ByteDance-Seed/
seed-oss, 2025b.

ByteDance Seed, Jiaze Chen, Tiantian Fan, Xin Liu, Lingjun Liu, Zhiqi Lin, Mingxuan Wang,
Chengyi Wang, Xiangpeng Wei, Wenyuan Xu, et al. Seed1. 5-thinking: Advancing superb rea-
soning models with reinforcement learning. arXiv preprint arXiv:2504.13914, 2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. arXiv
preprint arXiv:2010.03768, 2020.

Joykirat Singh, Raghav Magazine, Yash Pandya, and Akshay Nambi. Agentic reasoning and tool
integration for llms via reinforcement learning. arXiv preprint arXiv:2505.01441, 2025.

Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL
https://qwenlm.github.io/blog/qwq-32b/.

Ruoyao Wang, Peter Jansen, Marc-Alexandre Côté, and Prithviraj Ammanabrolu. Scienceworld: Is
your agent smarter than a 5th grader? arXiv preprint arXiv:2203.07540, 2022.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji. Exe-
cutable code actions elicit better llm agents. In Forty-first International Conference on Machine
Learning, 2024a.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, et al. Openhands: An open platform for ai software
developers as generalist agents. arXiv preprint arXiv:2407.16741, 2024b.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-
task language understanding benchmark. Advances in Neural Information Processing Systems,
37:95266–95290, 2024c.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Junde Wu, Jiayuan Zhu, Yuyuan Liu, Min Xu, and Yueming Jin. Agentic reasoning: A streamlined
framework for enhancing llm reasoning with agentic tools. arXiv preprint arXiv:2502.04644,
2025.

Zhiheng Xi, Yiwen Ding, Wenxiang Chen, Boyang Hong, Honglin Guo, Junzhe Wang, Dingwen
Yang, Chenyang Liao, Xin Guo, Wei He, et al. Agentgym: Evolving large language model-based
agents across diverse environments. arXiv preprint arXiv:2406.04151, 2024.

Zhangchen Xu, Yang Liu, Yueqin Yin, Mingyuan Zhou, and Radha Poovendran. Kodcode: A
diverse, challenging, and verifiable synthetic dataset for coding. 2025. URL https://arxiv.
org/abs/2503.02951.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information Pro-
cessing Systems, 35:20744–20757, 2022.

13

https://seed.bytedance.com/en/seed1_6
https://seed.bytedance.com/en/seed1_6
https://github.com/ByteDance-Seed/seed-oss
https://github.com/ByteDance-Seed/seed-oss
https://qwenlm.github.io/blog/qwq-32b/
https://arxiv.org/abs/2503.02951
https://arxiv.org/abs/2503.02951

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. τ -bench: A benchmark for
tool-agent-user interaction in real-world domains. arXiv preprint arXiv:2406.12045, 2024.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
at scale. arXiv preprint arXiv:2503.14476, 2025.

Yuxiang Zheng, Dayuan Fu, Xiangkun Hu, Xiaojie Cai, Lyumanshan Ye, Pengrui Lu, and Pengfei
Liu. Deepresearcher: Scaling deep research via reinforcement learning in real-world environ-
ments. arXiv preprint arXiv:2504.03160, 2025.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for build-
ing autonomous agents. arXiv preprint arXiv:2307.13854, 2023.

A SUPPLEMENTARY MATERIAL

The supplementary material contains the synthesis and verification pipeline for CodeGym environ-
ments, as well as example CodeGym environments and task configurations. Please refer to the
README in the supplementary material for details.

B CODEGYM STATISTICS

Table 3: Environment Comparison. We present a comparison between different agent training
frameworks on environment and task configuration quantities. CodeGym offers the largest number
of environments and task configurations.

Environment #
Environment

Task Con-
figurations

Support RL
Training?

Construction
Type

BabyAI (Chevalier-Boisvert et al., 2018) 19 N/A1 ✓ Manual
ALFWorld (Shridhar et al., 2020) 4 3,553 ✓ Manual
Jericho (Hausknecht et al., 2020) 57 N/A1 ✓ Manual
ScienceWorld (Wang et al., 2022) 10 30 ✓ Manual

AgentGym (Xi et al., 2024) 14 14,485 ✗ Manual
AgentRefine (Fu et al., 2025a) N/A2 64,000 ✗ Synthetic

AgentGen (Hu et al., 2025) 592 7,246 ✗ Synthetic
AgentFLAN (Chen et al., 2024) 7 34,440 ✗ Manual

CodeGym (Ours) 13,116 86,165 ✓ Synthetic

We present the CodeGym statistics in Figure 4 and Table 3. As shown in Table 3, CodeGym of-
fers significantly more environments and task configurations than prior agent training benchmarks,
enabling large-scale reinforcement learning. Each environment is equipped with a distinct toolset,
with an average toolkit size of 6.52.

C CODEGYM ENVIRONMENT DESIGN DETAILS

1Task configurations are not pre-defined and controlled by random seeds.
2The authors did not report the exact number of environments.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Problem Description:
Finding the number closest to K in a sorted list of length N.

Coding Solution:
def findClosestNumber(arr, K):
 left = 0
 right = len(arr) - 1

 while left <= right:
 mid = (left + right) // 2

 if arr[mid] == K:
 return arr[mid]

 if arr[mid] < K:
 left = mid + 1
 else:
 right = mid - 1

 if left >= len(arr):
 return arr[right]
 if right < 0:
 return arr[left]

 if abs(arr[left] - K) < abs(arr[right] - K):
 return arr[left]
 else:
 return arr[right]

Available Action List:
def observe() -> str
returns the array length n and the target K

def look_up_pos(i: int) -> str
returns the element at index i

def done(ans: int) -> None
submit the answer

Example Environment Workflow:
Task Configuration:

Agent Trajectory:
observe() → "length=5, K=8"
look_up_pos(2) → "A[2] = 9"
look_up_pos(0) → "A[0] = 2"
look_up_pos(1) → "A[1] = 5"
done(9) # submit answer 9 to the environment

Hidden Array
A = [2, 5, 9, 14, 20], n = 5
Target
K = 8

Figure 9: Transformation Example. Transformation of a coding problem (‘find the number closest
to K’) into the CodeGym environment with atomic actions.

C.1 AN EXAMPLE OF TRANSFORMATION

Figure 9 illustrates how a coding problem can be rewritten into a CodeGym environment. The
original problem is ‘Finding the number closest to K in a sorted list of length N ’, whose coding
solution is based on binary search. From this solution, we distill three atomic actions: (1) observe,
which returns the array length N together with the target K; (2) look_up_pos, which returns the
element at index i; and (3) done, which submits the final answer. These actions constitute the
tools available to the agent. The environment is first initialized with a specific task configuration
(corresponding to the input of the original coding problem). After initialization, the agent interacts
with the environment by invoking the available tools and ultimately produces the answer.

C.2 ENVIRONMENT DESIGN AND PROTOCOL

To allow a wide range of coding tasks to be incorporated into a reinforcement learning framework,
we design an environment template for CodeGym environments borrowed from OpenAI Gym.
This design provides a flexible abstraction for the LLM generator to synthesize.

Formally, an environment instance is defined by a POMDP:

E = ⟨S,A, T,R,O⟩,
where (i) the state space S contains task-specific variables (e.g., strings, arrays, or data structures),
which may be only partially observed by the agents (ii) the action space A is instantiated from
a generic set of function calls such as Observe and Done, together with task-specific actions,
(iii) the transition function T is implemented by executing the corresponding function of the en-
vironment, (iv) the reward function R is sparse, assigned only upon termination by comparing the
submitted answer with the reference solution, (v) the observation function O returns textual descrip-
tions of action results.

Our template exposes a unified API consisting of:

• reset(options): initializes the domain state from input task configurations;
• step(action json): executes a JSON-encoded function call with arguments, return-

ing the result;
• Observe(): provides interpretable state descriptions;
• Done(answer): verifies the submitted solution and assigns terminal reward;

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

CodeGym Synthesis Prompt (Part 1)

System:
You are an expert at transforming code-related problems into interactive environments.

Task Description
Your task is to convert the given “code problem” and its “code answer” into a subclass of
gymnasium.Env, making it an environment where an Agent can interact, explore, and complete
the task.
Please output:

* A clear and easy-to-understand task description (task), including input → output examples;
* A complete runnable Gym environment implementation code;
* A clear definition for each action, including its name, input parameters, and functionality descrip-

tion.

Design Requirements
Task description (task):

* The task must be simple and easy to understand, describing the agent’s goal;
* Do not include wording like “please implement code,” and do not imply coding behavior;
* Do not provide any hints or solution approaches, only describe the task objective;
* Must include at least one input → output example;
* This is an agent task. The agent interacts with the environment by calling actions, not by writing

code.
—
Environment Implementation:

* The environment class must be a subclass of gymnasium.Env;
* All code should be runnable independently without external modules or implementations;
* Must implement the following methods:

* reset(self, options: dict): reset the environment. options is a dictionary
where keys are variable names and values are variable values;

* from_env_str(s: str): support initialization from a string in the format ‘”En-
vName@...”‘, where ‘...‘ is a stringified dictionary;

* get_ref_answer(self) -> Any: return the reference answer (based on the original
code answer logic);

* finished: whether the environment is finished, directly use the implementation from the
example code;

* reward: the environment reward, directly use the implementation from the example code;
* solve: simulate the agent completing the task by calling ‘step()‘ with actions, without directly

calling internal variables or reference answer functions.
—
Action Design:

* Each action should have the following characteristics:
* An intuitive, reusable, and atomic name (e.g., ‘IncrementCounter‘, ‘SelectItemByIndex‘);
* Explicit input parameters, no implicit dependency on the environment state;
* Return key state-change information as a string, useful for debugging but without hints or

guidance;
* If structured data (e.g., list, dict) must be returned, use ‘json.dumps()‘ to convert it to a string.

* The following special actions must be implemented:
* Observe(): for the agent to get the current state;
* Done(answer): the agent submits the final answer, which is compared with the reference

answer. Return ‘reward = 1‘ if correct, or ‘reward = 0‘ if incorrect. No intermediate rewards allowed.

Figure 10: CodeGym Synthesis Prompt (Part 1). The prompt for synthesizing CodeGym environ-
ments.

• get ref answer(): computes the task’s reference answer from ground truth coding
solution;

• solve(): (optional) implements a reference oracle solution using only the action API.

This abstraction enables the instantiation of new environments by specifying the state variables
and extending the action set with domain-specific functions, while preserving the overall interface.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

CodeGym Synthesis Prompt (Part 2)

Other Constraints and Requirements:
* Must implement the static method from_env_str() for initializing the environment from a

string. If complex structures (e.g., trees) are involved, implement the corresponding encoding and
decoding logic;

* Use from_env_str inside the __init__ method to initialize;
* Add a self.func_mapping in __init__, mapping action names (strings) to their corre-

sponding methods;
* Must include a solve() method to simulate the agent completing the process by calling

step() with actions, without directly calling internal variables or the reference answer function;
* All inputs to step() must be a JSON string in the format:

{"name": action_name, "parameters": {...}}

* Do not set self.action_space or self.observation_space;
* All action names must follow PascalCase (e.g., CountOccurrences, GetModes) for naming

consistency;
* The environment class name must follow the format {{TaskName}}Env, e.g.,

ModeFindingEnv, for unified management.

Example
Input:
<problem>[example coding problem] </problem>
<code>[example coding solution] </code>
Output:
<task>[example synthesis task] </task>
<env>[example synthesis environment] </env>

[... Repeat Task Description ...]

For transformation of the following problem and code:
Input:
<problem>[coding problem] </problem>
<code>[coding solution] </code>
Your Output:

Figure 11: CodeGym Synthesis Prompt (Part 2). The prompt for synthesizing CodeGym environ-
ments.

For example, in EditDistanceEnv, whose original coding task is to calculate the minimal editing
distance of two strings, the environment state consists of two strings and a dynamic programming
table, the action set includes operations such as GetStringLength, SetDPTableCell, and
CompareCharacters, and the reference solver implements the standard dynamic programming
algorithm for edit distance.

Through this design, diverse algorithmic problems can be formalized under a consistent environ-
ment framework, facilitating both supervised imitation (via the reference solver) and reinforcement
learning (via the action interface).

C.3 GYM SYNTHESIS PROMPT

We designed an elaborate prompt for CodeGym environment synthesis, as shown in Figure 10 and
Figure 11. The prompt instructs the LLM to generate both the environment task description and
the corresponding environment simultaneously, with detailed rules provided for each. Since the
synthesized environments must adhere to a fixed set of interfaces to support reinforcement training,
we include a one-shot example to guide the formatting. However, we observed that after reading the
long example, the LLM sometimes overlooks earlier instructions. To address this, we repeat the key
instructions after the example. Some prompts have been slightly modified for readability, while the
raw version is available in our released code. Additionally, to support multilingual training, some

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

examples are written in Chinese, resulting in CodeGym environments that include both Chinese and
English tasks.

C.4 AGENT PROMPT

Agent Prompt

System:
Function:

def Observe():
r"""
Obtain the height list of the current histogram and the current index.
Args:

None
Returns:

str: Information containing the height list of the histogram and the current
index.

"""

Function:

def PushToStack(index: int):
r"""
Push the specified index onto the stack.
Args:

index (int): The index value to be pushed onto the stack.
Returns:

str: The operation result and the current state of the stack.
"""

... More functions are omitted ...

User:
Please answer the following question step by step according to the requirements below!

1. Do not write code to answer the user’s question — you may only call the provided functions,
and you may call at most one function per step.

2. After you call a function, wait for the tool to return the result — do not assume what the result
will be.

3. If the tool’s description is unclear, you can try using it first, and then adjust your function call
based on the returned result.

4. Function calls should be wrapped with

<|FunctionCallBegin|>...<|FunctionCallEnd|>

and contain a JSON-formatted list. The list should include one dictionary, where each dictionary
contains two parameters:

* ‘name’: the function name
* ‘parameters’: a dictionary of key-value pairs for the arguments

Here’s an example of a function call:

<|FunctionCallBegin|>[{"name":"function_name",
"parameters":{"key1":"value1","key2":"value2"}}]<|FunctionCallEnd|>

Extra requirements:
* Do not overthink; think briefly, then decide how to call the function.
* Since you have many chances to call functions, you do not need to plan all steps in advance.
* Do not try to solve the problem without using the tools.

Question:
In the field of data visualization, a bar chart is a commonly used type of chart. Each bar in the bar chart
has a specific height, and the width of each bar is 1 unit. Your task is to calculate the maximum area
of the rectangle that can be formed by these consecutively arranged bars. For example, if the given list
of bar heights is [2, 1, 5, 6, 2, 3], the maximum rectangular area that can be formed is 10 (composed
of two adjacent bars with heights 5 and 6).

Figure 12: Agent Prompt. An example of the prompt for the agent, including the available tools,
task instructions, and the problem definition.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

As shown in Figure 12, the prompt of the CodeGym environment for LLM agents includes: (1)
the description of all available tools with their functionality and the descriptions of arguments and
returns; (2) the instruction of how to properly interact with the CodeGym environment; (3) the
description of the task with an example.

D CODEGYM ENVIRONMENT VERIFICATION

D.1 SOLUTION FUNCTION GENERATION

Solution Function Prompt

System:
Task Description
Given a problem scenario and its corresponding environment, you will write a solve(self) func-
tion. This environment will run in a pre-packaged Gym environment. The environment exposes some
callable actions (i.e., function) to you; you can only invoke them via self.step() and thereby
complete the task for the problem scenario.
Notes:

* What is passed into self.step() is a stringified JSON, which has two keywords: name and param-
eters:

* The name keyword is a string whose content is the function’s name;
* The parameters keyword is a dictionary whose content is the function’s arguments;

* Please wrap the solve function with <answer>and </answer>;
* The solve function does not require additional indentation.

Example Problem and Answer
Input:
<Task Description>[Example Task Description] </Task Description>
<Env>[Example List of Callable Tools] </Env>
Output:
<answer>

def solve(self):
r"""
Automatically call all actions in the environment to complete the full process
and submit the answer for verification.

returns:
str: The result information of the final answer verification.

"""
frequency_list = []
for i in range(11):

call CountOccurrences
frequency_list.append(int(self.step(json.dumps({’name’: ’CountOccurrences’,
’parameters’: {’number’: i}}))[1]))

call GetMaxFrequency
max_freq = int(self.step(json.dumps({’name’: ’GetMaxFrequency’, ’parameters’:
{’frequency_list’: frequency_list}}))[1])
call GetModes
modes = ast.literal_eval(self.step(json.dumps({’name’: ’GetModes’, ’parameters’:
{’frequency_list’: frequency_list, ’max_freq’: max_freq}}))[1])
call Done
return self.step(json.dumps({’name’: ’Done’, ’parameters’: {’answer’:
modes}}))[1]

</answer>

Problem
Input:
<Task Description>[Task Description] </Task Description>
<Env>[List of Callable Tools] </Env>
Output:

Figure 13: Solution Function Prompt.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

To verify the solvability of a given CodeGym environment, we prompt the LLM to generate solution
functions. As illustrated in Figure 13, the model is provided with the task description and a list
of callable tools and asked to produce a corresponding solution function. To prevent leakage of
internal environment states, only the documentation of the tools, added with example usages, is
exposed to the LLM. The primary goal of these solution functions is to assess the correctness of the
environment. Since a set of unit tests is available, we adopt the pass@K strategy: Multiple solution
functions are generated, and the environment is deemed solvable if any of them passes all unit tests.
In our implementation, we set K = 10.

D.2 STANDARD UNIT TEST GENERATION

Standard Unit Test Prompt

System:
Task Description
You are an intelligent assistant responsible for generating unit test cases for Python functions based
on a problem description and a gym environment. You will be given a problem description and a gym
environment, and your task is to generate 15 test cases for that environment.
Please ensure that all test cases follow these requirements:

* The input must be a valid JSON string:
* No Python expressions are allowed (such as [1]*5 or [i%11 for i in range(100)])
* Comments, calculation expressions, or Python syntactic sugar are not permitted

* Each test case must follow the a@b format, where:
* a is the name of the environment class
* b is the dictionary of arguments, written in valid JSON format (e.g., {"arg1": [...]})
* Example:

ModeFindingEnv@{"scores": [1, 2, 9, 6, 10, 4, 1, 5, 8, 8, 2, 10, 1, 3, 8, 0, 0,
5, 3, 5]}

* Test cases must cover a variety of situations, including typical cases and edge cases:
* Different sizes, diverse structures, varying numerical distributions, etc.

* Arrange test cases in increasing order of difficulty:
* The first 5 are easy
* The middle 5 are medium
* The last 5 are hard (must include extreme or boundary cases)

Problem Description
<problem description>[Problem Description] </problem description>
Gym Environment
<gym env>[Gym Environment] </gym env>

In the main function of the environment, there may exist some unit tests. They do not follow the format
of the unit tests that I want to generate. You may refer to these unit tests, but be sure not to completely
copy them.
Please output one unit test per line. To reiterate, the format of the test is a@b, where a is the name of
the environment class, and b is the dictionary of input parameters, written in valid JSON format (for
example: {"arg1": [...]}).

Figure 14: Standard Unit Test Prompt.

Unit tests are used both to evaluate the solvability of the environment and to provide initialization
seeds during training. Because most web resources do not supply unit tests, we synthesize them
using LLMs. As illustrated in Figure 14, the prompt specifies in detail the unit test format. Mean-
while, to ensure comprehensive coverage, the unit tests generated for CodeGym environments span
both easy and hard scenarios, as well as boundary cases. For each environment, we sample unit tests
twice, with each sample containing 15 cases, resulting in a total of 30 tests. We avoid generating all
30 tests in a single pass, as LLMs often produce duplicate cases when asked for too many at once.
After generation, the validity of the tests is verified using the ground-truth coding solution, and any
invalid tests (Runtime Error or Time Limit Exceeded) are discarded.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

D.3 HARD UNIT TEST GENERATION

As discussed in Section 3.5, long-CoT models can sometimes bypass the intended tool-call workflow
by relying solely on reasoning to produce the final answer. To mitigate this issue, we constructed
a hard version of the unit tests. These hard tests are designed along two dimensions: (1) parameter
values in the test cases are scaled to large magnitudes, such as long array lengths or large numerical
values; and (2) solving the problem requires more intricate environment logic, such as invoking
multiple functions or handling complex calling dependencies. To generate such tests, we prompt
the LLM with these two difficulty dimensions to create more training instances and filter out all
instances where Qwen2.5-32B-Instruct has an accuracy greater than 1/8. Meanwhile, the maximum
allowed number of tool calls increases to Tmax = 512, thus augmenting standard unit tests with
harder variants.

E ADDITIONAL RESULTS

E.1 QWQ RESULTS

Due to differences in training data, we report the results of the QwQ model separately. As shown
in Figure 15, QwQ trained in the hard version of CodeGym shows strong performance gains on
both the training set and the in-domain validation set, similar to the improvements observed with the
Qwen2.5 series (Figure 6). An interesting observation is the trend in average trajectory length: it
initially increases but declines in later stages of training. This may be attributed to the limited context
window during RL training (24K), which encourages QwQ to be more conservative in generating
longer content. Another notable finding is the significant gap between the number of tool calls made
by QwQ and those used in oracle solutions, even when training on the hard version of CodeGym.
Developing methods to synthesize large-scale environments with theoretical guarantees that prevent
LLMs from exploiting shortcuts remains an important direction for future work.

0 20 40 60 80 100
Training Step

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Re
wa

rd

Train Reward vs. Step
QwQ-32B (hard)

0 20 40 60 80 100
Training Step

0.4

0.5

0.6

0.7

0.8

0.9

Re
wa

rd

In-Domain Validation Reward vs. Step
QwQ-32B (hard)

0 20 40 60 80 100
Training Step

7000

7200

7400

7600

7800

8000

8200

8400

8600

Av
g.

 Tr
aj

ec
to

ry
 L

en
gt

h

Avg. Trajectory Length vs. Step
(smooth=ma, window=9)

QwQ-32B (hard)

0 20 40 60 80 100
Training Step

10

20

30

40

50

60

Av
g.

 To
ol

 C
al

l R
ou

nd

Avg. Tool Call Round vs. Step

(smooth=ma, window=9)
Avg. Oracle Solution Round: 57.77
QwQ-32B (hard)

Figure 15: QwQ Training Statistics. We report the average training reward (hard version of the
training set), in-domain validation reward, average trajectory length, and Avg. Tool-Call Count (per
trajectory) for the QwQ model.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 4: Ablation Study Results. We present the performance of different training methods and
datasets in CodeGym, including supervised fine-tuning on correct trajectories generated by ora-
cle solutions (Qwen2.5-32B-CG-SFT) or Seed-1.6-Thinking (Qwen2.5-32B-CG-Distill), as well as
training on the unfiltered environment set (Qwen2.5-32B-CG-UF). The evaluation settings are the
same as those in Table 1.

Categories Tool-Use Multi-Turn Reasoning
Benchmarks τ -airline τ -retail τ2-bench AW ZL MMLU-Pro Avg.

Qwen2.5-32B-Instruct 26.8 41.4 24.7 66.8 24.2 70.0 42.3
Qwen2.5-32B-CG-SFT 39.6(2.8↑) 30.1(11.3↓) 23.2(1.5↓) 70.0(3.2↑) 24.6(0.4↑) 70.6(0.6↑) 41.3(1.0↓)
Qwen2.5-32B-CG-Distill 44.8(18.0↑) 48.2(6.8↑) 23.2(1.5↓) 72.8(6.0↑) 27.4(3.2↑) 71.3(1.3↑) 47.9(5.6↑)
Qwen2.5-32B-CG-UF 28.4(1.6↑) 49.0(7.7↑) 23.5(1.2↓) 78.4(11.6↑) 27.6(3.4↑) 70.5(0.5↑) 46.2(3.9↑)
Qwen2.5-32B-CG (Ours) 31.2(4.4↑) 54.4(13.0↑) 30.7(6.0↑) 80.8(14.0↑) 29.0(4.8↑) 71.2(1.2↑) 49.6(7.3↑)

E.2 ABLATION STUDY RESULTS

Table 4 shows the results of the ablation studies on training methods and data filtering strategy.
The ablation studies highlight two key findings. First, our RL-based training method (Qwen2.5-
32B-CG) demonstrates stronger generalization than SFT-based methods (Qwen2.5-32B-CG-SFT
and Qwen2.5-32B-CG-Distill), even when the supervised data are of high quality, such as being
distilled from large teacher models. This suggests that reinforcement learning enables models to
adapt more flexibly on diverse benchmarks. Second, the results of training on the unfiltered dataset
(Qwen2.5-32B-CG-UF) show that quality control in synthetic environments is crucial. Although
unfiltered data can bring about some gains in specific benchmarks, careful curation of the filtering
strategy yields more consistent and superior improvements across tasks.

E.3 AVERAGE TRAJECTORY LENGTH

0 20 40 60 80 100
Training Step

1500

2000

2500

3000

3500

4000

4500

Av
g.

 Tr
aj

ec
to

ry
 L

en
gt

h

Avg. Trajectory Length vs. Step

(smooth=ma, window=9)
Qwen2.5-7B-Instruct
Qwen2.5-14B-Instruct
Qwen2.5-32B-Instruct
Qwen2.5-72B-Instruct

Figure 16: Evolution of Trajectory Length.
Increasing trajectory length shows LLM agents
learn to spend more compute and reasoning to
solve CodeGym.

Figure 16 illustrates how the average agent tra-
jectory length evolves during training on the
Qwen2.5 series models. The steadily increas-
ing trajectory length suggests that LLM agents
learn to spend more compute time on reason-
ing or interaction to solve CodeGym. This
trend aligns with the findings in RL for rea-
soning tasks such as mathematics, where addi-
tional computation in self-reflection or verifica-
tion leads to stronger performance (Guo et al.,
2025).

F TRAINING HYPERPARAMETER

F.1 RL HYPERPARAMETER

We used the same reinforcement learning hyperparameters in all models. The actor learning rate
was set to 1 × 10−6 with a linear warm-up of 5 training steps. The KL coefficient was fixed at 0.
The maximum prompt and response lengths were 5,120 and 24,576 tokens, respectively. The opti-
mization was performed using the Adam algorithm with β1 = 0.9, β2 = 0.95, and a weight decay
of 0.1. We adopted the GRPO algorithm with a global batch size of 512× 8 (512 training instances,
each sampled 8 times), a clip ratio of 0.2, and a gradient clip of 1.0. For training rollout, we set the
inference temperature at 1.0 without any decoding constraints. For the in-domain validation rollout,
we set the inference temperature to 1.0 with top-p = 0.7.

F.2 SFT HYPERPARAMETER

For the SFT experiments mentioned in Section 5.4, the number of training trajectories is 10, 000,
and we set the batch size to 16 and a total training step to 625. The optimization is performed with
the AdamW optimizer, using a learning rate of 10−4 with β1 = 0.9, β2 = 0.95, and a weight decay

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

of 0.1. To stabilize early training, we employ a warm-up ratio of 10% of the total steps, after which
the learning rate follows a cosine decay schedule to encourage smoother convergence. Finally, we
apply gradient clipping with a maximum norm of 1.0.

G DATASET USAGE AND ATTRIBUTION

This work makes use of the following open-source dataset(s):

• Dataset Name: KodCode
Source: https://huggingface.co/datasets/KodCode/KodCode-V1
License: Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC
4.0)

The dataset is used solely for non-commercial, academic research purposes. Proper credit has been
given in accordance with the license requirements.

In addition, our open-source dataset, CodeGym, will be released under the same license (CC BY-NC
4.0).

H LLM USAGE

In this project, we use LLMs as a tool to translate coding tasks into interactive environments. Since
the resources are derived from coding problems, the risk of generating sensitive or inappropriate
content is low. For the paper writing process, LLMs were only used at the wording level.

23

https://huggingface.co/datasets/KodCode/KodCode-V1
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

	Introduction
	Related Work
	CodeGym
	Insights
	Resource Collection
	CodeGym Generation Pipeline
	Gym Synthesis
	Gym Verification

	Quality Control
	Difficulty Augmentation

	Training Framework
	Trial-then-Overwrite Mechanism

	Experiments
	Setup
	Testbeds
	Results
	Ablation Study

	Conclusion
	Supplementary Material
	CodeGym Statistics
	CodeGym Environment Design Details
	An Example of Transformation
	Environment Design and Protocol
	Gym Synthesis Prompt
	Agent Prompt

	CodeGym Environment Verification
	Solution Function Generation
	Standard Unit Test Generation
	Hard Unit Test Generation

	Additional Results
	QwQ Results
	Ablation Study Results
	Average Trajectory Length

	Training Hyperparameter
	RL Hyperparameter
	SFT Hyperparameter

	Dataset Usage and Attribution
	LLM Usage

