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ABSTRACT

With the development of deep learning models, there has been growing research
interest in spiking neural networks (SNNs) due to their energy efficiency resulting
from their multiplier-less nature. The existing methodologies for SNN develop-
ment include the conversion of artificial neural networks (ANNs) into equivalent
SNNs or the emulation of ANNs, with two crucial challenges yet remaining. The
first challenge involves preserving the accuracy of the original ANN models dur-
ing the conversion to SNNs. The second challenge is to run complex SNNs with
lower latencies. To solve the problem of high latency while maintaining high
accuracy, we proposed a parallel spike-generation (PSG) method to generate all
the spikes in a single timestep, while achieving a better model performance than
the standard Integrate-and-Fire model. Based on PSG, we propose OneSpike, a
highly effective framework that helps to convert any rate-encoded convolutional
SNN into one that uses only one timestep without accuracy loss. Our OneSpike
model achieves a state-of-the-art (for SNN) accuracy of 81.92% on the ImageNet
dataset using just a single time step. To the best of our knowledge, this study is
the first to explore converting multi-timestep SNNs into equivalent single-timestep
ones, while maintaining accuracy. These results highlight the potential of our ap-
proach in addressing the key challenges in SNN research, paving the way for more
efficient and accurate SNNs in practical applications.1

1 INTRODUCTION

Spiking neural networks (SNNs) have gained attention in the research community due to their po-
tential for energy efficiency. They can often emulate the architectures of advanced artificial neural
networks (ANNs). However, the non-differentiability and discontinuous nature of SNNs compli-
cate the use of standard back-propagation methods typically found in ANN training. Prior work
either directly trains SNNs (Fang et al., 2021; Zheng et al., 2021; Datta et al., 2022) or transfers
weights from trained surrogate ANNs to SNNs (Zhang et al., 2022; Bu et al., 2023; Ho & Chang,
2021). However, these existing works either suffer from lower accuracies or require functionalities
not found in SNNs that often erode their energy competitiveness. It is therefore critical to align with
the essential characteristics and prerequisites of SNNs to enhance compatibility with neuromorphic
hardware.

The energy efficiency advantage of SNNs is based on their ability to achieve accuracies that are
competitive with state-of-the-art ANNs as well as low latencies. Higher latencies translate directly
to longer inference time and hence higher energy cost. In rate-encoded SNNs(Rueckauer et al.,
2016), latency is equivalent to the time window size, denoted as T , which could be a constant for a
given model. Besides energy, the value of T is also crucial for real-time applications(Dethier et al.,
2013; Pearson et al., 2007). Thus, when developing SNNs, the two-fold challenge lies in improv-
ing accuracy and reducing T . Recent methods that achieved over 70% accuracy on the Imagenet
dataset(Deng et al., 2009) and their associated time window sizes are presented in Table 1. In direct
SNN training, the current best time window configuration is T = 4 for achieving comparable per-
formance. In the case of ANN-to-SNN conversion methods, larger time window sizes are required.

Existing methods have limitations, one of which is relying on T > 1, often causing significant
accuracy trade-offs. None, for example, has surpassed the 80% accuracy mark on the ImageNet

1Code available for review at: https://anonymous.4open.science/r/OneSpike
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Table 1: Time window sizes (T ) of the state-of-the-art SNN methods and the accuracies they
achieved on the ImageNet dataset.

Method T Accuracy

QCFS-SNN (Bu et al., 2023) 64 72.85
TCL-SNN (Ho & Chang, 2021) 35 70.75
Spikformer (Zhou et al., 2022) 4 74.81
Spikingformer (Zhou et al., 2023) 4 75.85

dataset. To address this, we introduce a novel approach for converting any SNN with T > 1 into an
equivalent one with T = 1 in such a way that accuracy is not compromised. In fact, in some cases,
it even enhances the model’s performance. Our method, OneSpike, incorporates a novel method we
call parallel spike generation (PSG). In the OneSpike model, all network layer operations can be
executed in a single timestep, resulting in significantly reduced latency. Furthermore, PSG produces
all the spikes in a single timestep in parallel, effectively harnessing global information across spikes.
This results in enhanced accuracy compared to conventional integrated-and-fire (IF) models in some
cases. Notably, we achieved a top-1 accuracy of 81.92% on the ImageNet dataset using a OneSpike
model with T = 1. This may bring to mind binary neural networks (BNN). However, BNNs operate
quite differently from SNNs. More importantly, as we will show in Section 6.1, the accuracies of
state-of-the-art BNNs are significantly lower than that of OneSpike.

In addition, we will also show the hardware feasibility of OneSpike, and explore the impact of
weight quantization. In particular, we will show that OneSpike shows good robustness and retains a
high accuracy even after weight quantization, enhancing its potential for further energy saving.

The contributions of this work can be summarized as follows:

1. We propose the parallel spike generation (PSG) method that generates all spikes for a
network layer within a single timestep. Models incorporating PSG exhibit superior perfor-
mance compared to those using the original IF model, especially when the time window
size reduces. Meanwhile, we thoroughly discuss the feasibility of hardware implementation
for the PSG method.

2. We introduce OneSpike, a framework that converts SNNs with T > 1 into SNNs with
T = 1. Utilizing multiple-timestep SNN models from the CIFAR-10 dataset(Krizhevsky
et al., 2009) as our reference points, we transitioned them into OneSpike configurations.
This conversion resulted in a marked accuracy surge for low-timestep models, surpassing
the original SNNs underpinned by the IF model. To the best of our knowledge, this is the
first work on converting an SNN to a lower latency SNN.

3. We present a series of high-accuracy, ultra-low-latency SNNs based on PSG as OneSpike
models. We achieved 81.92% SNN accuracy on the complex ImageNet dataset within one
timestep. To the best of our knowledge, this is the first SNN model achieving 80% on the
ImageNet dataset.

The paper is organized as follows: Sections 2 and 3 introduce related works and SNNs, including
ANN pre-training and existing ANN-to-SNN conversion methods. In Section 4, we introduce our
Parallel Spike Generation(PSG) algorithms and present the OneSpike framework. Section 5 presents
the performance of our methods on the ImageNet dataset. Section 6 discusses binary neural networks
(BNNs) and weight quantization to further reduce the model size, respectively. This is followed by
a conclusion.

2 RELATED WORKS

2.1 METHODS OF TRAINING SNNS

The two most common ways of developing SNN models are direct training and transferring from
ANNs to SNNs. In this paper, we shall focus on the more popular form, i.e. rate-encoded SNNs.
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In direct training, techniques such as backpropagation through time (BPTT) and surrogate gradient
(SG) are employed to handle the temporal properties and non-differentiability of SNNs (Fang et al.,
2021; Zheng et al., 2021; Datta et al., 2022; Zhou et al., 2023; Li et al., 2021b). This approach
can achieve lower latency, often using only a few time steps for complex tasks. However, direct
training faces challenges during the training phase, requiring significant computational resources as
well as issues with accurate gradient approximations. Moreover, direct training methods have not
yet achieved competitive accuracy compared to state-of-the-art ANNs.

ANN-to-SNN conversion methods (Hu et al., 2021; Li et al., 2021a; Ho & Chang, 2021; Bu et al.,
2023; Panda et al., 2020) focus on transferring the weights of an ANN model to an SNN model
without further training. The key is to estimate the spiking rate in an SNN by activations of an ANN.
Previously proposed approaches adopted techniques like weight normalization (Diehl et al., 2015)
and temporal switch coding (Han & Roy, 2020) to achieve higher accuracy. An existing ANN can
be easily converted to an SNN as long as it satisfies certain constraints. Given the abundance of tools
and packages available for building ANNs, this method facilitates the acquisition of SNNs without
requiring meticulous training. The shortcoming of existing ANN-to-SNN conversion methods is
that they require large time window sizes. Thus, this paper aims to investigate minimizing time
steps as well as high accuracy.

2.2 BINARY NEURAL NETWORKS (BNNS)

Binary neural networks (BNNs) (Courbariaux et al., 2016) constraining the weights and/or acti-
vations of neural network models to binary values (most using +1/ − 1). They have their own
training algorithms based on binarization. Recent studies (Liu et al., 2018; Bethge et al., 2019; Tu
et al., 2022) have also explored BNNs that are inspired by established architectures like ResNet and
DenseNet by incorporating shortcut connections to enhance performance.

SNN models with a time step of one outwardly resemble BNNs. However, BNNs and SNNs differ
in several aspects. BNNs use normal activation functions, quantized parameters, and traditional
forward and backward propagation algorithms, much like standard ANNs. In a way, they can be
viewed as extremely quantized ANNs. In contrast, SNNs utilize spike-based encoding and time-
dependent computations. The integrate-and-fire rule is unique to SNNs with no parallel in BNNs.
Both aim at energy efficiency and computational speed, making them suitable for low-power and
high-efficiency applications. Unlike BNNs, SNNs also do not use softmax, swish, or any complex
functions. While the use of softmax (Liu et al., 2022) or swish (Darabi et al., 2018) functions in
BNNs improves accuracy, they also lead to increased computational overhead and pose challenges
for hardware implementation commonly required for embedded settings.

3 PRELIMINARY

This section elucidates the foundational Integrate-and-Fire (IF) model utilized by SNN neurons for
spike generation and our adopted techniques for converting ANNs into SNNs.

3.1 INTEGRATE-AND-FIRE MODEL

The IF model is the most popular SNN model (Bu et al., 2023). It offers a simple representation
of how neurons accumulate membrane potential and fire spikes. In the IF model, the membrane
potential V of a neuron is treated as a capacitor that accumulates the influence of input currents over
time. It is described by the following differential equation:

τm
dV

dt
= Isyn(t)− V (t) + Vrest (1)

Here, τm represents the membrane time constant, Isyn(t) denotes the synaptic input current, and
Vrest signifies the resting potential. When the membrane potential V crosses a certain threshold θ,
the neuron generates an action potential(spike). In an SNN, for layer l, the output spike sl at timestep
t ∈ T can be calculated as:

sl(t) =

{
1, if Vl(t) ≥ θ

0, else
(2)
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where θ is the firing threshold and the membrane potential Vl(t) can be denoted as:

Vl(t) = Vl(t− 1) +Wlsl−1(t)− θ · sl(t) (3)

where Wl is the weight, sl−1 is the spike input from the previous layer and Vl is initialized as 0.

3.2 ANN-TO-SNN CONVERSION

To convert ANNs to SNNs in a near lossless way, we used the value-range (VR) encoding(Yan et al.,
2022) and clamp and quantize (CQ) (Yan et al., 2021) training. Specifically, we will clamp and
quantize the activation to a discrete set of values, {Tmin/Tq, Tmin +1/Tq, Tmin +2/Tq, ..., Tmax/Tq},
mimicking spike trains in SNNs. In this paper, we set Tmin to 0 for all cases as 0 holds significant
prominence in the distribution. We define Tc as the clamp level and Tq as the quantization level,
such that:

Tc =
Tmax

Tq
(4)

Consequently, all activations are clamped to the range [0, Tc], and the time window size becomes
T = Tq . The clamp operation also simulates the behavior of the ReLU function. The weights and
biases of the SNN model denoted as Ŵ and b̂ respectively, are related to those of the equivalent CNN
model, represented as W and b. The original lth layer of the ANN with ReLU activation function,
can be represented as:

xl+1 = ReLU(Wlxl + bl) (5)

After the weight and bias conversion, the lth layer of the SNN would be:

xl+1 = S(Ŵlxl + b̂l) = S(Tc

Tq
Wlxl + bl) (6)

where S refers to the spiking neuron that generates the spike. The specific clamp and quantization
levels for each model can be found in the appendix.

4 METHODOLOGY

In this section, we present the overview of the OneSpike model as well as the parallel spike gen-
eration (PSG) method. Our approach transforms any SNN with convolutional and fully connected
layers that require T > 1, into an SNN with T = 1.

4.1 OVERVIEW OF ONESPIKE

Figure 1 illustrates a spiking convolutional layer within OneSpike. Fully connected layers are im-
plemented in a similar way.

In converting the T > 1 SNN to OneSpike, we reuse channels as depicted in Figure 1. The channels
are grouped, with each group consisting of channels associated with distinct kernels, while the
weights are shared across the groups. In the case of a fully connected layer, the different groups
would each consist of a fully connected layer.

Each group is responsible for processing a specific subset of feature representations. The kth group
processes the spikes generated at t = k, t ∈ T in the original SNN. As each layer receives a set
of spike trains (T = 1) as input, we directly map spike trains from different groups to channels
within their respective groups for computation. This eliminates the need for slicing and simplifies
the allocation of subsets, streamlining the process.

For the original spiking convolutional layer l with an input size of [H,W,C, T ] where H and W
represent the height and width of the feature maps respectively, and C represents the number of
channels, while T denotes the time window size, the procedure is summarized as: The number of
channel groups denoted as g, is the original time window size T . For layer l with a channel group gl,
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Figure 1: A spiking convolutional layer of OneSpike.

the input sl−1 consists of gl groups of spike trains, each with a length of 1 and a size of [H,W,C].
The input for the ith channel group is represented by sl−1

i . Within layer l, the output feature map xl
i

for each channel group i is computed as:

xl
i =

n∑
j=0

W l
j · sl−1

i + bl (7)

where n is the number of channels in this group. Subsequently, we obtain the layer’s output sl by
taking the average of the feature maps as the output of layer l:

xl =

gl∑
i=0

xl
i/gl (8)

Now, gl can be merged into the weight of the previous convolutional layer, eliminating the need for
division operations as well as enhancing the feasibility of implementing our approach on hardware.
So we have:

xl =

gl∑
i=0

n∑
j=0

W l
j

gl
· sl−1

i +
bl

gl
(9)

sl−1 is a spike train composed of 0s and 1s. As T = 1 in our case, sl−1 is either 0 or 1. The mul-
tiplication of weights with sl−1 can be efficiently implemented as addition operations in hardware,
leading to reduced energy consumption.

4.2 PARALLEL SPIKE GENERATION (PSG)

We now introduce the PSG method to produce spikes from xl that serve as input for the subsequent
layer, l + 1. Let gl+1 be the count of channel groups in layer l + 1. From this, gl+1 spike trains
of dimensions [H,W,C, 1] are concurrently generated. For the ith group in layer l, the membrane
potential can be calculated as:

V l
i = ((i− 1)xl−1 mod θ) + xl−1 where θ ∈ {2n | n ∈ N} (10)

The input for group i is the ith spike in the train generated by the original SNN model. With the
IF model, the previous i − 1 input would be accumulated through time. Once the threshold is
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met, a spike is produced, and the threshold is subtracted from the membrane potential. Given our
consistent input across timesteps, the residual membrane potential after i− 1 steps is represented by
(i− 1)xl mod θ.

Then, the spikes generated by PSG would be:

sli =

{
1, if ((i− 1)xl−1 mod θ) + xl−1 ≥ θ

0, else
where θ ∈ {2n | n ∈ N} (11)

According to equation 11, given the previous layer’s output and group index, all spikes can be gener-
ated independently within their respective groups. This facilitates the calculation of the correspond-
ing membrane potential and the subsequent spike generation. To understand this better, consider
an example where the output of layer l has an element xl = 1.5, gl+1 = 4, and a spike threshold,
θ = 2. Consider i = 3, V l

3 in this case can be computed as follows: V l
3 = ((1.5 ∗ 2) mod 2) + 1.5.

All the values of V l
i are computed as [1.5, 3, 2.5, 2], resulting in sl+1

i values for groups ranging from
i = 0 to i = 3 being [0, 1, 1, 1].

Thus, at layer l, the gl groups of channels can directly compute the feature maps in a single step.
If the number of groups between two adjacent layers l and l + 1 is different, then the last output in
layer l needs to generate gl+1 parallel spike trains.

The workflow of a layer incorporating the PSG algorithm is detailed in Algorithm 1.

Algorithm 1 A Layer with Parallel Spike Generation Model

Require: The output groups of spike trains sl−1
i for i ∈ {1, 2, . . . , gl} from the (l − 1)th layer;

The spike threshold θ, θ ∈ {2n | n ∈ N};
The weight Wl and bias bl for layer l.

Step 1: Get the average output of layer l.
xl =

∑gl
i=1(Wls

l−1
i ) + bl)

xl
avg = xl/gl {gl can be merged into Wl to avoid division operations}

Step 2: Calculate gl+1 membrane potentials:
V l
i = ((i− 1)xl

avg mod θ) + xl
avg, i ∈ {1, 2, . . . , gl+1}, θ ∈ {2n | n ∈ N}

Step 3: Generate gl+1 spike trains in parallel:

sli =

{
1, if V l

i ≥ θ

0, otherwise
, i ∈ {1, 2, . . . , gl+1}

return sli for i ∈ {1, 2, . . . , gl+1} - input spikes of layer l + 1.

Performance Advantage. By leveraging the average of the output from the previous layer, our
PSG model is more accurate for preserving the information and more robust than the IF model
when the time window size reduces. As an illustration, consider an example with an element in
the output xl

avg = 1.5, gl+1 = 4, θ = 2, the spike train generated by our method is slPSG =
[0, 1, 1, 1], representing 1.5 accurately with three out of four spikes and a threshold θ = 2. However,
considering when the output before averaging as xl = [0.5, 1, 2, 2.5] whose average is also 1.5,
the spike train generated by the IF model would be slIF = [0, 0, 1, 1], which represents 1. slIF
loses information when generating spikes, especially at the end of the time window when remaining
potentials are dropped. The averaging operation is also used by (Yan et al., 2022) for SNNs with
T > 1. However, taking an average may be incompatible with the operations of SNNs. OneSpike
solves this problem and the resulting SNNs fully conform to all the working principles of SNNs.

5 EXPERIMENTS

5.1 EFFECT OF PARALLEL SPIKE GENERATION

We first contrast the performance between the PSG method and the IF model. For a spike generation
method, its objective is to closely approximate the scale value output by the corresponding ANN.
We conduct tests using the CIFAR-10 dataset on the VGG-11 and VGG-16 models(Simonyan &
Zisserman, 2014). We trained the VGG models and converted them into SNNs with the IF model
using the ANN-to-SNN conversion method mentioned in 3.2. Subsequently, we further covert this
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model into SNNs with the PSG method(e.g. a OneSpike model), ensuring that both models share
identical weights and structures.

(a) VGG-11 (b) VGG-16

Figure 2: PSG and IF comparison. Timesteps are 8, 16, 32, 64, 128 and 256

Figure 2 displays the accuracies of both SNNs. The graph reveals that at larger T , specifically
128 and 256, both the IF model and PSG demonstrate comparable performances. However, as the
timestep diminishes, the IF model struggles to accomplish the task, while the PSG consistently
preserves a superior accuracy rate. For low-latency SNNs, the PSG method offers a performance
advantage over the IF model.

5.2 EXPERIMENT SETUP

We evaluate OneSpike on the ImageNet dataset (Deng et al., 2009), one of the most complex image
classification datasets commonly used. OneSpike is compared against baselines from both ANN-to-
SNN conversion methods and direct training methods, which validate the effectiveness of OneSpike
and our model pruning efforts. To facilitate and standardize our training process, we adopt some of
the automated data augmentation methods utilized by RepVGG. Our experiments are performed on
NVIDIA A100 GPUs, based on Pytorch(Paszke et al., 2019) version 1.12.1, RepVGG(Ding et al.,
2021), and Timm(Wightman, 2019).

For ANN pre-training, we employ the model reparameterization technique from RepConv(Ding
et al., 2021), which is currently considered one of the leading training methods for plain convo-
lutional neural networks (CNNs). RepConv enables the combination of multiple computational
modules into a single module during inference, thereby enhancing accuracy. In line with RepConv,
we utilize a combination of one 3×3 convolution, one 1×1 convolution, and an identity connection
within a single convolutional layer to achieve higher accuracy.

5.3 MODEL STRUCTURE

To enhance baseline accuracy and simplify training, we utilize RepVGG-L2pse (Ding et al., 2021)
along with its number of blocks, and its pre-trained weights obtained using their proposed re-
parameterized training method. However, we exclude the squeeze and extract blocks from their
model as they are incompatible with the SNN architecture.

In the presented OneSpike model, there are five stages, excluding the output average pooling and
fully connected layers. The number of 3x3 convolutional layers of each stage is [1, 8, 14, 24, 1].
The architectures of OneSpike models are listed in Table 2.

Table 2: Model Architecture
Model Channel number

OneSpike-8 [160, 160, 320, 640, 2560] × 8
OneSpike-16 [160, 160, 320, 640, 2560] × 16
OneSpike-32 [160, 160, 320, 640, 2560] × 32
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Our models do not contain any operations incompatible with SNNs. Batch normalization and divi-
sion operations are folded into the model weights, and complex activation functions such as swish
and softmax are not used.

5.4 RESULT

Our experiment results are presented in Table 3. Our OneSpike-32 model achieves a top-1 accuracy
of 81.92% in T = 1. Using OneSpike-8, which is only one-quarter the size of OneSpike-32, an
accuracy of 75.92% can be achieved.

Table 3: OneSpike Evaluation on ImageNet.
Model Description Accuracy Timestep FLOPs(Billions)

OneSpike-8 8 groups, θ = 2 75.92 1 30.1
OneSpike-16(2) 16 groups, θ = 2 80.24 1 60.2
OneSpike-16(4) 16 groups, θ = 4 78.86 1 60.2
OneSpike-32 32 groups, θ = 4 81.92 1 120.4

Comparison with the state-of-the-art SNNs using ImageNet. Table 4 compares OneSpike with
the state-of-the-art methods on the ImageNet dataset, demonstrating superior performance in terms
of both accuracy and latency. Among these methods, ANN-to-SNN has traditionally used large time
steps, possibly exceeding 200, resulting in high latency and energy consumption, in exchange for
higher accuracy compared to direct training methods. Notably, in the works (Zheng et al., 2021;
Datta et al., 2022; Fang et al., 2021; Hu et al., 2021; Bu et al., 2023) that adopt ResNet for SNNs,
the accuracy is limited despite using small time window sizes. In particular, most previous works
have not considered deep networks. Although (Datta et al., 2022) also achieved single-timestep
classification on ImageNet, OneSpike achieved over 10% higher accuracy than their reported results.

Table 4: Comparison with various SNNs on ImageNet. ‘*’ denotes the use of complex attention
layers, making counting less straightforward.

Method Layers Accuracy Timestep Params (in millions)

Direct Training (Zheng et al., 2021) 34 67.05 6 21.80
Direct Training (Datta et al., 2022) 50 66.32 1 25.56

Hybrid(Chowdhury et al., 2021) 16 67.71 1 138.36
Direct Training (Datta et al., 2022) 16 68.00 1 138.36
Direct Training (Fang et al., 2021) 152 69.26 4 60.19
ANN-to-SNN(Ho & Chang, 2021) 16 70.75 35 138.36

ANN-to-SNN (Hu et al., 2021) 50 72.75 350 25.56
ANN-to-SNN(Bu et al., 2023) 34 73.37 256 21.80
ANN-to-SNN(Bu et al., 2023) 16 74.22 256 138.36

Direct Training (Zhou et al., 2022) * 74.81 4 66.34
Direct Training (Zhou et al., 2023) * 75.85 4 66.34

ANN-to-SNN (Li et al., 2021a) 23 77.50 256 22.1
ANN-to-SNN(Yan et al., 2022) 28 79.16 200 94.08

OneSpike-32 48 81.92 1 118.11

Model parameter and FLOPs. While our focus is on achieving high accuracy with the smallest
time step for SNNs, we also consider the size and computational demand of the model. All OneSpike
models have 118 million parameters, and their theoretical Floating Point Operations (FLOPs) values
are calculated and listed in Table 3. The spike rate on the ImageNet test set for OneSpike is 11.46%,
which is used for our calculations.

The parameter count and FLOPs of some popular models, calculated by a PyTorch toolkit called
OpCounter(Lyk), are compared with our model in Table 5. In Table 5, n represents the equivalence
of energy consumption between n additions and one multiplication. OneSpike has a parameter num-
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ber comparable to common CNN models, yet it exhibits a significant advantage in computational
complexity due to all the multiplications being replaced by additions.

Table 5: The number of parameters (in millions) and FLOPs (in billions) of the different models.
n is the number of additions considered computationally equivalent to 1 multiplication. The exact
ratio depends on many implementation details.

Model VGG-16 ResNet-152 RepVGG-B3 OneSpike-8

No. of Parameters 138.36 60.19 110.96 118.11
FLOPs 15.5n 11.58n 26.2n

}
FLOPs(n = 3) (Fog, 2022) 46.5 34.74 78.6 30.1
FLOPs(n = 4.1) (Horowitz, 2014) 63.55 47.48 107.42

6 DISCUSSION

6.1 COMPARISON WITH BINARY NEURAL NETWORKS

Given the similarity between the single-time step OneSpike and BNN, as both involve binary activa-
tion, we also compare OneSpike with the state-of-the-art BNNs on ImageNet in Table 6. Although
in terms of binary weights, BNNs exhibit relatively higher energy efficiency, OneSpike achieves
significantly higher accuracy, surpassing BNNs by over 10%.

Table 6: Comparison of OneSpike with BNN methods
Top-1 Accuracy (%)

Bi-real (Liu et al., 2018) 62.20
AdaBin (Tu et al., 2022) 66.40
Real-to-Bin (Martinez et al., 2020) 65.40
OneSpike 81.92

6.2 MODEL SIZE AND WEIGHT QUANTIZATION

To further improve efficiency, we quantized the weights of OnSpike models following the quan-
tization scheme in Yan et al. (2023) from FP32 to INT16. After quantization, OneSpike-8 and
OneSpike-16(2) still attained an accuracy of 73.92% and 80.12%, respectively, on ImageNet.

6.3 HARDWARE FEASIBILITY.

OneSpike is hardware-friendly in the following ways. Firstly, θ are constrained to be powers of 2.
Consequently, the modulo operation in binary can be efficiently accomplished by reading the least
significant bits. In particular, all OneSpike models used in this paper use thresholds that are either 1,
2, or 4. No impact on accuracy was observed. Secondly, we require obtaining i− 1 instances of xl,
given that i − 1 is an integer not exceeding the original window size T of the original SNN model.
This requires only at most log(T ) additions for each group.

7 CONCLUSION

In this paper, we introduced the parallel spike generation method (PSG) that generates spikes using
spike trains in a single timestep for both convolutional layers and fully connected layers. Building
upon PSG, we developed the OneSpike framework that transforms SNNs with T > 1 into equivalent
T = 1 SNNs. In addition to achieving the lowest possible latency, OneSpike outperforms the classic
IF model due to its ability to better conserve spike information, while retaining all the hardware-
friendly features of traditional SNNs. Our OneSpike model attained a top-1 accuracy of 81.92% on
the ImageNet dataset, which is the highest reported accuracy achieved on ImageNet for SNNs, as
well as significantly outperforming BNNs.
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