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ABSTRACT

Many sequential classification tasks are affected by label noise that varies over time.
Such noise might arise from label quality improving, worsening, or periodically
changing over time. In this work, we formalize the problem of label noise in
sequential classification, where the labels are corrupted by a temporal, or time-
dependent, noise function. We call this novel problem setting temporal label
noise and develop a method to learn a sequential classifier that is robust to such
noise. Our method can estimate the temporal label noise function directly from
data, without a priori knowledge of the noise function. We first demonstrate
the importance of modelling the temporal label noise function and how existing
methods will consistently underperform. In experiments on both synthetic and
real-world sequential classification tasks, we show that our algorithm leads to state-
of-the-art performance in the presence of diverse temporal label noise functions.

1 INTRODUCTION

Many supervised learning datasets contain noisy observations of ground truth labels. Such label noise
can arise due to issues in annotation or data collection, including lack of expertise in human annotation
[22, 51], discrepancies in labelling difficulty [11, 21, 51], subjective labeling tasks [34, 39, 45], and
systematic issues in automatic annotation like measurement error [23, 36].

Label noise is a key vulnerability of modern supervised learning [14]. Intuitively, when training
a model on data with noisy labels, the model can learn to predict noise instead of true signals.
During testing, the model will drastically underperform on tasks that require accurately predicting the
ground-truth. This problem is exacerbated by deep learning methods, which have the representational
capacity to memorize all the noise in a dataset, leading to poor model performance [1, 12, 13, 26].

But existing label noise methods are all built for static, time-invariant data. In reality, practical
problems often involve time series data, which involve labels collected over time. Here, we pose that
label noise can follow temporal trends. And by accounting for such temporal label noise, we will
achieve more robust models. To the best of our knowledge, learning from temporal label noise is
unstudied, yet clearly exists in a range of tasks. For example:

Human Activity Recognition. Wearable device studies commonly ask participants to report their
activities over time. In this case, annotators may mislabel certain periods due to factors such as
recall bias or labelling at random to achieve a participation incentive [20, 44].

Longitudinal Self-Reporting for Mental Health: Mental health studies often collect self-reported
survey data over long periods of time. Such self-reporting is known to be biased [5, 37, 38, 48],
where participants may be more or less likely to report certain features. For example, the accuracy
of self-reported alcohol consumption is known to be seasonal [7].

Clinical Measurement Error: In machine learning for health, the labels used for learning come
from healthcare provider notes in an electronic health record. These providers may produce noisier
annotations in electronic health records during busier times or when a patient is deteriorating or
the bedside situation is more chaotic [50].

Classifying time series in the presence of temporal label noise is challenging. First, existing losses
that are robust to static label noise under-perform when facing temporal noise—as we show in our
experiments. This means that classifiers can still suffer, even when the temporal noise function is
known. Worse yet, the temporal label noise function is generally not known. Often times, all that is
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Figure 1: a) Temporal noise processes degrade label quality in sequential labeling tasks. b) Our method directly
models any temporal label function. Modeling this function allows us to train strong models in the face of noise.

available is a dataset with temporally noisy labels with no indication of which instances or time-steps
are more likely to be correct.

In this work, we propose two temporal loss functions that we prove are robust to temporal label noise
in the case where the temporal noise function is known. Motivated by this, we propose a novel time
series classification objective, TENOR, which learns the temporal noise function from the data, while
simultaneously leveraging our noise-robust loss. TENOR allows us to train accurate, noise-tolerant
time-series classifiers even in the case of unknown, temporal label noise.

Our contributions are as follows:

1. We formalize the problem of learning from noisy labels in temporal settings. We are the first to
study this important problem on which prior works under-perform.

2. We propose two loss functions for training models that are robust to temporal label noise. On their
own, each can be used to improve prior methods.

3. We propose TENOR, the first method for explicitly learning temporal noise functions. By pairing
a neural network with our proposed loss functions, TENOR can model any noise function and
thereby lead to better classifiers.

4. We perform an extensive empirical study on real data, and find that existing methods under-perform
in the presence of temporal noise. Meanwhile, our proposed methods lead to better classifiers,
highlighting the importance of accounting for temporal noise to achieve performant models.

2 RELATED WORK

Learning with noisy labels is a well-studied area of research [3, 28, 30, 46]. Many approaches
utilize heuristics for identifying correctly-labeled instances [18, 55], or regularization techniques to
minimize the impact of incorrect labels [19, 26].

Our work contributes to noise-robust loss functions [16, 25, 28, 33, 49], as these approaches allow
for leveraging arbitrarily complex model architectures while still retaining theoretical guarantees.
Consequential work in this area has shown that noise-robust loss functions can be created with
accurate knowledge of the underlying noise process [33, 35]. These methods have strong statistical
guarantees. In reality, the label noise function is not known a priori. Recent work has contributed
techniques to estimate this function from noisy data alone [24, 25, 35, 52, 54, 56]. These methods
make certain assumptions, as the noise function is generally unidentifiable otherwise [27, 52]. For
example. the anchor point assumption assumes that there are some extreme-probability instances that
determine the values of the transition matrix [35]. A softer assumption is made by Li et al. [25], who
assume instead that the clean posterior is sufficiently scattered [15]. However, unlike our work, they
do not consider temporally evolving noise functions.

Nearly all of these existing works have focused on the static noise setting, where the label noise does
not change over time. While a few methods have considered noise in time series data [2, 10], they
focus on heuristics rather than developing temporal-noise-robust methods. Crucially, these works
still do not consider temporally evolving noise.
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3 PROBLEM STATEMENT

In this section, we introduce and formalize the new problem of learning with noisy labels under
temporal noise for sequential classification tasks.

We consider a data generating function with random variables (x1:T ,y1:T , ỹ1:T ) ∼ Px1:T ,y1:T ,ỹ1:T
,

where x1:T ∈ X ⊂ Rd×T is a sequence of T feature vectors, y1:T ∈ Y = {1, . . . , C}T is a sequence
of T clean labels, and ỹ1:T ∈ Y = {1, . . . , C}T is a sequence of T noisy labels. When learning from
temporal label noise, we do not observe the true label sequence y1:T . Thus, we only have access to a
set of n instances D = {(x1:T , ỹ1:T )i}ni=1.

We make a standard conditional independence assumption [4, 9] that a label yt at time t only depends
on the prior history of feature vectors x1:t:

p(y1:T | x1:T ) =

T∏
t=1

p(yt|x1:t). (1)

In addition, we assume the sequence of noisy labels is independent of the features given the true
labels: ỹ1:t ⊥⊥ x1:t | y1:t for all t = 1, . . . , T . Thus, we can express the conditional probability of
observing noisy labels at time t as:

qt(ỹt|x1:t) =

C∑
c=1

qt(ỹt | yt = c)p(yt = c | x1:t), (2)

where qt is a time-dependent quantity that captures the probability that ỹt ̸= yt across time-steps t.
Together, the assumptions in Eq. (1) and Eq. (2) imply that p(ỹ1:T |x1:T ) =

∏T
t=1 qt(ỹt|x1:t).

Our goal is to use the dataset of noisy labels to learn a classification model hθ : X → ∆C−1 that
maximizes accuracy under the clean labels. We assume that the model has parameters θ where:

θ ∈ argmax
θ

Ey1:T |x1:T

[
p(y1:T = hθ(x1:T ) | x1:T )

]
Let hθ(x1:t) = ψ−1(gθ(x1:t)) : Rd×t → ∆C−1 be a sequence classifier model, such that
gθ(x1:t)) :→ Rd×t → RC is the pre-activation of output of the model and ψ : ∆C−1 → RC
is an invertible link function that maps the model’s output to a probability distribution [40]. For
example, when hθ is a neural network classifier, gθ is the final logits and ψ−1 is the softmax function.

4 LEARNING FROM NOISY LABELS IN TIME SERIES

In this section, we start by introducing a way to model temporal label noise, using a Temporal Label
Noise Function. We then prove that knowledge of this Temporal Label Noise Function allows for the
training of a sequential classifier hθ that can predict the clean labels given samples from a dataset D
with noisy labels. Finally, motivated by these proofs, we propose methods for effectively learning
temporal label noise functions from datasets with noisy labels.

4.1 MODELLING TEMPORAL LABEL NOISE

We encode the conditional probabilities of observing a noisy label at time t in matrixQt = [qt(ỹt =
i | yt = j)]i,j ∈ RC×C , and assume that Qt is the output of a Temporal Label Noise Function at
time t:1

Definition 1. The temporal label noise function is a matrix-valued function Q : R+ → [0, 1]c×c

specifies the label noise distribution over time. For any given time t > 0, Q(t) is a c × c positive,
row-stochastic, and diagonally dominant matrix whose entries encode the probability of flipping the
label observed at time t: Q(t)j,k := p(ỹt = k | yt = j).

1We deviate from standard nomenclature in the noisy labels literature to avoid confusion with t as time.
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The temporal label noise function can capture a wide variety of temporal noise as shown in Fig. 1. For
example, generating a smooth functionQ(t) that represents cyclic noise simply requires generating
a c × c matrix where each entry of Q(t) is parameterized by a periodic function f : R+ → [0, 1]
and the output matrices are row-stochastic. Another example is a scenario where a human annotator
generating labels learns to perform the task better over time. In this case, we expect label noise to
reduce over time, and entries ofQ(t) can be parameterized by an exponential decay function.

4.2 LOSS CORRECTION FOR TEMPORAL LABEL NOISE

In what follows, we introduce loss functions that we prove are tolerant to temporal label noise when
the true noise function is known. The proofs of our theoretical claims are given in Appendix A. To
begin, we first define the backward sequence loss , which extends the backward loss of Patrini et al.
[35] to a temporal setting.

Definition 2. The backward sequence loss is the function:

←−
ℓ seq(y1:T ,hθ(x1:T )) :=

T∑
t=1

←−
ℓ t(yt,hθ(x1:t))

where
←−
ℓ t(c,hθ(x1:t)) = [Q−1

t ]c,: · ℓ(hθ(x1:t)). Here, ℓ(hθ(x1:t)) := [ℓ(c, hθ(x1:t))]
⊤
c=1:C is a

vector containing the negative log-likelihood (NLL) loss of ℓ(c, hθ(x1:t)) for observed class c.

Intuitively, the backward sequence loss removes noise from noisy labels by inverting the noise
function prior to the backward pass of a deep learning algorithm [35]. An intriguing property of
backward sequence loss is shown in Theorem 1.

Theorem 1. Minimizing the expected backward sequence loss over noisy label sequences is
equivalent to maximizing the likelihood over clean label sequences.

argmax
θ

Ey1:T |x1:T
log

(
pθ(y1:T |x1:T )

)
= argmin

θ
Eỹ1:T |x1:T

←−
ℓ seq(hθ(x1:T ))

This means that we can train on the noisy distribution and still learn an optimal classifier for the
clean distribution.

A separate strategy is to consider the noisy posterior as the matrix-vector product of a noise transition
function and a clean posterior (Eq. (2)). To this effect, we also define the forward sequence loss :2

Definition 3. The forward sequence loss is the function:

−→
ℓ seq,ψ(y1:T , gθ(x1:T )) =

T∑
t=1

−→
ℓ t,ψ(yt, gθ(x1:t))

where
−→
ℓ t,ψ(yt, gθ(x1:t)) := ℓt(yt,Q

⊤
t ·ψ−1(gθ)) is a proper composite loss.

The proper composite loss statement refers to the fact that
−→
ℓ t,ψ(·, ·) is a loss that is well-calibrated

for probability estimation (e.g., NLL loss) that incorporates the link function ψ to map model outputs
into probability estimates (see [40] for more detail).

We show that forward sequence loss is a robust loss:

Theorem 2. A classifier that minimizes the empirical forward sequence loss over the noisy labels
maximizes the empirical likelihood of the data over the clean labels.

argmin
θ

Eỹ1:T ,x1:T

−→
ℓ seq,ψ(y1:T , gθ(x1:T )) = argmin

θ

T∑
t=1

Ey1:t,x1:t
ℓt,ϕ(y1:T , gθ(x1:T )).

2Note that the backward sequence loss and forward sequence loss differ from the Forward-Backward
algorithm used in Hidden Markov Model inference.
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The forward sequence loss can be intuitively understood as decomposing the noisy posterior
distribution into a product of a noise function and a clean posterior distribution. This operation takes
place during the forward pass of a deep learning algorithm.

Theorems 1 and 2 show that the sequential loss functions can learn accurate classifiers from sequences
of noisy labels when we know the temporal noise function Q(t). Given that Q(t) is not known in
most practical settings, methods should be able to estimateQ(t) without a priori knowledge of the
noise.

4.3 LEARNING THE TEMPORAL LABEL NOISE FUNCTION

It is well-known that noise transition matrices can only be identified under certain assumptions. One
general assumption proposed in recent work by Li et al. [25] is to assume that Q corresponds to a
minimum-volume simplex that contains the posterior distribution, p(y | x). In a static classification
task, this assumption implies that p(ỹ | x) = Q⊤p(y | x) – i.e., that the columns ofQ⊤ encloses the
noisy posterior for any x. Fu et al. [15] prove that a sufficient condition forQ to be identifiable in
this setting is if the posterior distribution is sufficiently scattered over the unit simplex (for details see
[15, 25]).

We propose a technique to model and learn the temporal label noise functionQ(t) under the minimum
volume simplex assumption [25] by minimizing the volume of Q̂t across time. Specifically, we
estimate the label noise matrixQ(t) for each time t = 1, . . . , T such that:

Q̂t ∈ argmin
Q

vol(Q) s.t. Q̂⊤
t hθ(x1:t) = p(ỹt | x1:t) for t = 1, . . . , T (3)

We assume that the Q̂t for each time t is generated by a temporal label noise function as defined in
Definition 1. We learn this function from data using a fully connected neural network with parameters
ω,Qω(·) : R→ [0, 1]c×c. With clever implementation, we can ensure that the outputs of this network
meet Definition 1 (see Appendix D.2).

In order to solve the equality-constrained optimization problem above, we employ the augmented
Lagrangian method [6]. Considering the equality-constraint is achieved when the loss is 0, we can
denote Rt(θ, ω) = 1

n

∑n
i=1 ℓt(yt,i,Qω(t)

⊤hθ(x1:t,i)) which re-formulates the constrained objective
into the following unconstrained objective:

L(θ, ω) = 1

T

[
T∑
t=1

∥Qω(t)∥F + λ

T∑
t=1

Rt(θ, ω) +
c

2
|
T∑
t=1

Rt(θ, ω)|2
]

where λ ∈ R is the Lagrange multiplier and c > 0 is the penalty parameter. Given the constraints
imposed in Definition 1, minimizing the Frobenius norm of Q, a convex function, amounts to
minimizing the volume of Q. The augmented Lagrangian method gradually increases the penalty
parameter until the constraint is eventually met, and λ converges to the Lagrangian multiplier of
Eq. (3) [6]. Further details of its implementation can be found in Appendix B.

We refer to this as the Temporal Noise Robust (TENOR) objective. The TENOR objective assumes
that label noise arises from a single matrix-valued function with parameters ω, which couples the
estimates ofQt across time periods t = 1, . . . , T .

4.4 TIME-SEPARABLE ESTIMATION

We pair our methods with two methods that estimate Q(t) at each time t. Each method makes
different assumptions surrounding the temporal noise function and its identifiability. The methods
may be useful in settings where these assumptions are plausible. For example, if Qω does not have
sufficient representational capacity to model the underlying noise function, it might be prudent to
estimate Q(t) independently at each timestep to avoid enforcing continuity between time steps.
Lastly, these methods serve as competitive baselines for our method described in Section 4.3, as no
existingQ-estimation technique is built to handle temporal noise. These techniques broadly show
how any static estimation technique can be extended to the temporal setting.
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AnchorTime One assumption to ensure identifiability ofQ is that a dataset contains anchor points
whose labels are known to be correct [27, 35, 52]. In a sequential setting, anchor points correspond
to instances that maximize the probability of belonging to a particular class at a particular time step:

x̄jt = argmax
xt

p(ỹt = j | x1:t) (4)

Assumption 1 (Existence of Anchor Points). For each class j and time t, there exists a non-empty
subset X̄ jt ⊂ X such that X̄ jt := {x̄ct | p(yt = j | x̄1:t) = 1}.

Since p(yt = j | x̄j1:t) = 1 for the clean label, we can express each entry of the label noise matrix as:

Q̂(t)j,k = p(ỹt = k | x̄j1:t). (5)

We can construct Q̂(t) using a two-step approach that is analogous to the approach of Patrini et al.
[35] for static prediction tasks:

1. Fit a probabilistic classifier to predict noisy labels from the observed data.

2. For each class j ∈ Y and time t ∈ [1 . . . T ]:

i Identify anchor points for class j: x̄jt = argmaxxt
p(ỹt = j | x1:t).

ii Set Q̂(t)j,k as the probability of classifier predicting class j at time t given x̄jt .

VolMinTime An alternative strategy to Section 4.3, is to assume that there is no temporal relation-
ship between Qt across time, and treat each time step independently. Using the minimum-volume
simplex described in Section 4.3, we can learn the model and the label noise matrix by simultaneously
optimizing the empirical forward sequence loss on noisy labels and the aggregate volume of Q̂t over
t ∈ [1 . . . T ]:

L(θ, Q̂1, . . . , Q̂T ) =
1

n

n∑
i=1

T∑
t=1

ℓt(yt,i, Q̂
⊤
t hθ(x1:t,i)) + λ · 1

T

T∑
t=1

log det(Q̂t) (6)

The objective in Eq. (6) minimizes the volume ofQ using the log det of a square matrix [25].

In Eq. (6), each Q̂t is parameterized with a separate set of trainable real-valued weights, which are
learned independently with the data from time t using a standard convex optimization algorithm
(e.g., gradient descent). This provides a direct time-series modification of a state-of-the-art technique
for noise transition matrix estimation in the static setting [25]. Intuitively, this method allows for
C × C × T weights representing the noise function at each time step to be learned independently, as
opposed to TENOR which explicitly learns a parametric representation of the noise function.

5 EXPERIMENTS

We evaluate our approach on synthetic and real-world classification tasks.3 We compare to state-of-
the-art approaches, using both their original formulation, and the augmented version for the temporal
setting that we derive in Section 4.2. Additional details and results are provided in the Appendix D.

5.1 EXPERIMENTAL SETUP

Datasets We use one synthetic (synth) and four real-world classification datasets (binary and
multiclass), consisting of sequential accelerometer data for human activity recognition (har [41],
har70 [29]) and continuous EEG signals for sleep detection (eeg_sleep [17]) and blink detection
(eeg_eye [42]). To validate our setup in an ideal setting, we generate our synthetic dataset according
to the exact data-generating assumptions in Eq. (1). By using synthetic data, we can be sure that
variance in model performance is due to characteristics of the data, not challenges of learning on real
data. For all datasets, in order to evaluate each model’s robustness to label noise, we consider labels
in the training data to be “ground-truth” clean labels and flip the labels using one of six temporal
noise functions. These functions are: Time Independent, Exponential decay, Linear decay, Sigmoid,
Sinusoidal, and Mixed (Exponential for one class and Sigmoid for the other). Further details and
visualizations of these noise functions are available in Appendix D.

3We include code to reproduce our results in an anonymized repository.
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Table 1: Comparison of clean test set accuracy (%) and Q̂(t) reconstruction error (MAE) across all datasets
and methods. We show results for static methods at the top and their temporal variants at the bottom. The noise
function is Mixed and fixed to 30%. ± is the st. dev. over 10 runs.

synth har har70 eeg_eye eeg_sleep

Accuracy ↑ MAE ↓ Accuracy ↑ MAE ↓ Accuracy ↑ MAE ↓ Accuracy ↑ MAE ↓ Accuracy ↑ MAE ↓

St
at

ic

Uncorrected 79.2±1.2 – 70.6±3.0 – 77.3±1.7 – 71.3±.8 – 68.2±2.0 –
Anchor 80.8±0.7 .16±.00 79.1±2.6 .13±.01 79.3±.01 .11±.01 75.1±1.1 .10±.01 65.9±2.3 .11±.00

VolMinNet 85.6±0.9 .10±.00 85.1±2.7 .11±.00 81.0±0.7 .11±.00 73.2±1.4 .13±.00 70.3±2.2 .11±.00

Te
m

po
ra

l

AnchorTime 85.3±0.8 .1±.01 80.0±1.8 .11±.01 81.2±1.1 .08±.00 79.5±1.8 .06±.01 70.4±2.8 .06±.00
VolMinTime 85.8±0.5 .08±.00 82.4±2.7 .10±.00 82.0±1.2 .08±.00 76.9±1.8 .08±.00 70.3±3.9 .09±.01

TENOR 94.4±1.0 .03±.01 95.8±2.2 .03±.01 89.0±0.3 .02±.00 83.7±0.5 .01±.00 70.4±2.3 .04±.01

Figure 2: Comparing performance of models trained with backward sequence loss and forward sequence loss
on synth with varying degrees of temporal label noise using either the true temporal noise function (Temporal)
or the average temporal noise function (Static). Error bars are st. dev. over 10 runs.
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Compared Methods We train a sequential classifier for each dataset and compare TENOR to five
alternatives from two groups: 1) Static. We consider an Uncorrected learning baseline (NLL loss),
which assumes no noise exists and two static methods: Anchor [27, 35, 52] and VolMinNet [25]. 2)
Temporal. We extend the static methods into our temporal setting, as described in Section 4.4. We
refer to these as AnchorTime, VolMinTime, respectively.4

Implementation Details We use a Recurrent Neural Network with Gated Recurrent Units (GRU)
[8] as our classifier for all experiments, since it can easily predict one class label per time step.
TENOR uses an additional fully-connected neural network with 10 hidden layers to estimateQ(t).
More details on how these networks are constructed can be found in Appendix D.2.

Evaluation We split each dataset into a noisy training sample (80%) and a clean test sample (20%).
We measure model accuracy using clean test-set accuracy and we also evaluate how well each method
learns the underlying temporal noise function, using the Mean Absolute Error (MAE) between the
trueQt and estimated Q̂t for all t.

5.2 RESULTS AND DISCUSSION

In this section we show through various experiments the importance of modelling the temporal noise
for learning models that are more robust to noise present in labels.

Modeling Temporal Noise Improves Classification Performance First, we show clear value
in accounting for temporal label noise. Table 1 shows the performance of each method on all five
datasets. We find that overall, the temporal methods are consistently more accurate than their non-
temporal counterparts highlighting the importance of modelling temporal noise in these settings.
Among the temporal methods, TENOR achieves best performance in comparison to AnchorTime

4VolMinTime can also be trained using the Frobenius norm of Q to minimize the volume, and it can also be
optimized with the augmented Lagrangian method. We include these experiments in Appendix E.5 but find they
make no difference empirically.
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Figure 3: Comparison of clean test set Accuracy (%) for har across varying degrees of temporal label noise
comparing Uncorrected Loss, Static Methods (Top Row), Temporal Methods (Bottom Row), and TENOR. Error
bars are st. dev. over 10 runs.
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and VolMinTime. TENOR’s superiority is even clearer when compared to the original non-temporal
versions of these methods. We also notice that TENOR achieves the best reconstruction error on all
datasets in terms of MAE. This is likely evidence for a direct correlation between learning the noise
function and classification accuracy on real data.

As demonstrated in Fig. 3, these benefits hold across different degrees of label noise and across
different functional forms of label noise. More importantly, the benefit of TENOR becomes more
evident as the amount of noise increases in the data. In all these cases, we observe that the temporal
methods are consistently more robust to both temporal and static label noise. We show in Fig. 2, in
situations where the temporal noise function is truly uniform in time, both approaches yield the same
performance – suggesting that there is nothing to lose by modeling temporal effects.

Overall, these findings suggest that we can improve performance by explicitly modeling how noise
varies across time – i.e., this performs better than assuming it is distributed uniformly in time.

Ignoring Temporal Noise Leads to Poor Performance We next demonstrate the limitations of
static approaches. As our theoretical results in Section 4.2 show, we expect that accurate knowledge
of the noise process can lead to noise-tolerant models. However, existingQ-estimators assume label
noise is static. We validate this experimentally by comparing our forward sequence loss method using
the true temporal noise function vs. a static approximation (average of noise over time). As shown
in Fig. 2, static approximation consistently leads to poor performance. These differences are more
pronounced in the Mixed noise function, suggesting that temporally-variable noise may exacerbate
this weakness. We also verify that the differences vanish when the underlying temporal noise process
is itself uniform—here, the static approximation and true temporal noise function are identical.

TENOR successfully learns temporal noise functions Our results suggest that performance gains
from our method are linked to how well we estimate the temporal label noise function. In Table 2, we
show that our method consistently estimates the noise function with lower mean absolute error across
different families of noise function. The results presented in this table are binary classification on
the har dataset, but results on all other datasets (including multiclass) are present in Appendix E.
Qualitatively, we can compare our estimated noise functions to the ground truth for TENOR and our
extended baselines as shown in Fig. 4.
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Figure 4: Comparison of the ground truth unseen temporal noise function Q(t) and its estimate Q̂(t) from each
Temporal method on synth. We only show the noise rate for the negative class for visual clarity.
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Table 2: Comparison of clean test Accuracy (%) of all methods with different temporal noise functions with
30% label noise on average. Dashed line separates Static and Temporal methods. ± is the st. dev. over 10 runs.

Time Independent Exponential Linear Sigmoidal Sinusoidal Mixed
Accuracy ↑ MAE ↓ Accuracy ↑ MAE ↓ Accuracy ↑ MAE ↓ Accuracy ↑ MAE ↓ Accuracy ↑ MAE ↓ Accuracy ↑ MAE ↓

St
at

ic

Uncorrected 75.5±2.2 – 70.0±3.2 – 72.9±3.3 – 74.0±2.3 – 76.0±5.1 – 70.6±3.0 –
Anchor 86.2±2.7 .04±.01 80.6±2.3 .08±.01 78.1±2.4 .12±.02 82.4±5.9 .16±.01 82.0±3.6 .15±.01 79.1±2.6 .13±.01
VolMinNet 88.3±2.1 .02±.01 81.3±2.0 .07±.01 81.9±3.4 .10±.02 81.6±2.5 .14±.00 86.5±6.0 .13±.01 85.1±2.7 .11±.00

Te
m

po
ra

l

AnchorTime 86.1±4.5 .06±.01 80.6±2.5 .08±.01 78.0±2.2 .11±.01 80.7±2.7 .14±.01 81.5±4.3 .14±.01 80.0±1.8 .11±.01
VolMinTime 86.7±1.6 .08±.00 79.5±3.3 .11±.01 81.8±4.2 .10±.02 83.1±3.0 .12±.01 85.3±5.7 .11±.01 82.4±2.7 .10±.00
TENOR 97.9±0.7 .01±.00 96.6±1.1 .03±.01 94.9±4.4 .03±.02 98.2±0.5 .02±.01 98.3±0.6 .03±.01 95.8±2.2 .03±.01

Comparing Forward and Backward Loss Correction for Temporal Noise Our results highlight
important differences between the forward sequence loss and backward sequence loss . Here we
assume we have perfect oracle knowledge of the noise function defined byQ(t). We notice that the
forward sequence loss technique significantly outperforms the backward sequence loss technique
across all types and amounts of label noise, despite both possessing similar statistical properties
Fig. 2. When the label noise function is truly time-independent, both methods perform equally
well. In settings with temporal label noise, we find consistent performance improvements using the
forward sequence loss technique. In contrast, we find inconsistent effects for the backward sequence
loss technique. For example, temporal modeling underperforms in the sinusoidal noise setting, but
overperforms in the mixed noise. These results may stem from gradient-related issues with the
backward sequence loss technique. Since the backward sequence loss technique requires an explicit
inversion of the noise matrix at each time, the inverse-determinant of the matrix will scale the loss
and therefore the gradients. We provide a more detailed analysis in Appendix D.

6 CONCLUSIONS

Noisy labels cause real problems for classification algorithms. Well-established methods exist to
construct noise-tolerant classifiers in the static setting. However, in the time series domain, where
labels are often observed sequentially, labels may be corrupted in a time-dependent fashion. For
example, label quality may improve or worsen over time). To the best of our knowledge, building
noise-tolerant classifiers in this setting has been unexplored. In order to remedy this, we first introduce
a novel problem setting: temporal label noise. We show how we can learn provably robust classifiers
from sequential data that have been corrupted with temporal label noise using knowledge of the
underlying noise function. Existing methods on static data are ill-equipped to handle temporal label
noise and as a result substantially under perform. In practice, however, the temporal noise function
is unknown, so we propose a novel learning objective, TENOR, which can learn robust sequential
classifiers with noisy labels without any prior assumptions about the unobserved temporal noise
function. Through an extensive empirical study on synthetic and real-world data, our method leads to
state-of-the-art performance in the presence of diverse, unseen temporal label noise functions.
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Appendix

A PROOFS

We make the following assumptions regarding the conditional time series distribution for the clean
labels p(y1:T | x1:T ) and noisy labels p(ỹ1:T | x1:T ):

We make the following assumptions about the clean data distribution:
Assumption 2. The clean labels yt at times t = 1, . . . , T are conditionally independent given the
features observed up to time t x1:t.

yt ⊥⊥ y1:t−1 | x1:t (7)

Assumption 3. The clean labels yt at time t is conditionally independent from xt+1 given x1:t:

p(y1:T | x1:T ) =

⊤∏
t=1

p(yt | x1:t). (8)

Assumption 4. The noisy labels at time t ỹt are conditionally independent of x1:t given the clean
labels yt at time t.

p(ỹt | x1:t) =

C∑
c=1

qt(ỹt | yt = c)p(yt = c | x1:t) (9)

Note that the following property follows from the above assumptions:

p(ỹ1:T | x1:T ) =

⊤∏
t=1

qt(ỹt | x1:t). (10)

Definitions We start by defining some of the quantities that will be important for our forward and
backward proofs:

p(yt | x1:t) := [p(yt = c | x1:t)]
⊤
c=1:C ,∈ RC×1 (Vector of probabilities for each label value, for the

clean label distribution)

p(ỹt | x1:t) := [p(yt = c | x1:t)]
⊤
c=1:C ∈ RC×1 (Vector of probabilities for each possible label

value, for the noisy label distribution)

hθ(x1:t) = pθ(yt | x1:t = x1:t) : Rd×t → RC (Classifier that predicts label distribution at t given
preceding observations)

hθ(x1:t) = ψ
−1(gθ(x1:t)) (When hθ is a deep network, gθ is the final logits and ψ : ∆C−1 → RC

represents an invertible link function whose inverse maps the logits to a valid probability; i.e. a
softmax function). We thus assume that

Qt := [qt(ỹt = k | yt = j)]j,k ∈ RC×C (The temporal noise matrix at time t)

ℓt(yt,hθ(x1:t)) = − log pθ(yt = yt | x1:t = x1:t) : Y × RC → R (loss at t)

ℓψ,t(yt,hθ(x1:t)) = ℓt(yt,ψ
−1hθ(x1:t)) (A composite loss function is a loss function that uses the

aid of a link function: ψ)

ℓt(hθ(x1:t)) = [ℓt(c,hθ(x1:t)]
⊤
c=1:C : RC → RC (vector of NLL losses, for each possible value of

the ground truth)
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←−
ℓ t(hθ(x1:t)) = Q−1

t ℓ(hθ(x1:t)) = [
←−
ℓ t(c,hθ(x1:t))]

⊤
c=1:C : RC → RC (vector of

←−
ℓ t(·, ·)

losses, for each possible value of the ground truth)

←−
ℓ t(c,hθ(x1:t)) = [Q−1

t ]c,: · ℓ(hθ(x1:t))

−→
ℓ t,ψ(c,hθ(x1:t)) = ℓt(c,Q

⊤
t ·ψ−1(gθ))

−→
ℓ seq,ψ(y1:T ,hθ(x1:t)) =

∑T
t=1

−→
ℓ t,ψ(c,hθ(x1:t))

Lemma 1. Ey1:T |x1:T
log p(yt | x1:T ) = Eyt|x1:t

log p(yt | x1:t)

Proof.

Ey1:T |x1:T
log(p(yt | xt:T )) =

∑
c1

∑
c2

. . .
∑
cT

p(y1 = c1, y2 = c2, . . . yT = cT | x1:T )

log(p(yt = ct | xt:T ))

=
∑
c

∑
c1

. . .
∑
cT

p(y1 = c1, y2 = c2, . . . , yt−1 = ct−1 | x1:T )

∗p(yt+1 = ct+1, . . . , yT = cT | x1:T ) ∗ p(yt = ct | x1:T )

∗ log(p(yt = ct | xt:T ))

=
∑
c1

∑
c2

. . .
∑
cT

p(y1 = c1, y2 = c2, . . . , yt−1 = ct−1 | x1:t−1)

∗p(yt+1 = ct+1, . . . , yT = cT | xt+1:T ) ∗ p(yt = ct | x1:t)

∗ log(p(yt = ct | x1:t))

=Ey1:t−1|x1:t−1
Eyt+1:T |xt+1:T

p(yt = ct | x1:t) log(p(yt = ct | x1:t))

=Ey1:t−1|x1:t−1
Eyt+1:T |xt+1:T

[
Eyt|x1:t

log(p(yt | x1:t))]

(Note that
[
Ep(yt|x1:T ) log(p(yt | x1:t))] is constant )

=Ep(yt|x1:t) log(p(yt | x1:t))

(From property that E[C] = C for constant C

Lemma 2. argmaxθ Ey1:T |x1:T
log

(
pθ(y1:T | x1:T )

)
= argminθ

∑T
t=1 Eỹt|x1:t

←−
ℓ t(ỹt,hθ(x1:t))
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Proof.

argmax
θ

Ey1:T |x1:T
log

(
pθ(y1:T | x1:T )

)
=argmax

θ
Ey1:T |x1:T

log
( T∏
t=1

pθ(yt | x1:t)
)

(by Assumption 2)

=argmax
θ

Ey1:T |x1:T

T∑
t=1

log
(
pθ(yt | x1:t)

)
=argmax

θ

T∑
t=1

Ey1:T |x1:T
log

(
pθ(yt | x1:t)

)
(due to linearity of E)

=argmax
θ

T∑
t=1

Eyt|x1:t
log

(
pθ(yt | x1:t)

)
(by Lemma 1)

=argmin
θ

T∑
t=1

Eyt|x1:t
ℓt(yt,hθ(x1:t)) (by definition of ℓt)

=argmin
θ

T∑
t=1

p(yt | x1:t)
⊤ℓt(hθ(x1:t))

= argmin
θ

T∑
t=1

p(ỹt | x1:t)
⊤Q−1

t ℓt(hθ(x1:t))

= argmin
θ

T∑
t=1

p(ỹt | x1:t)
⊤←−ℓ t(hθ(x1:t))

= argmin
θ

T∑
t=1

Eỹt|x1:t
[
←−
ℓ t(ỹt,hθ(x1:t))]

Theorem 3. Let
←−
ℓ seq(ỹ1:T ,hθ(x1:T )) =

∑T
t=1

←−
ℓ t(ỹt,hθ(x1:t)). Then,

argmax
θ

Ey1:T |x1:T
log

(
pθ(y1:T | x1:T )

)
= argmin

θ
Eỹ1:T |x1:T

←−
ℓ seq(ỹ1:T ,hθ(x1:T ))

Proof.

argmin
θ

Eỹ1:T |x1:T

←−
ℓ t(ỹ1:T ,hθ(x1:T )) = argmin

θ
Eỹ1:T |x1:T

T∑
t=1

←−
ℓ t(ỹt,hθ(x1:t))

= argmin
θ

T∑
t=1

Eỹ1:T |x1:T

←−
ℓ t(ỹt,hθ(x1:t))

= argmin
θ

T∑
t=1

Eỹt|x1:t

←−
ℓ t(ỹt,hθ(x1:t)) (by Lemma 1)

=argmax
θ

Ey1:T |x1:T
log

(
pθ(y1:T | x1:T )

)
(by Lemma 2)

Theorem 4. argminθ Eỹ1:T ,x1:T

−→
ℓ seq,ψ(y1:T , gθ(x1:T )) = argminθ

∑T
t=1 Ey1:t,x1:tℓt,ϕ(y1:T , gθ(x1:T )).
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Proof. First, note that:
−→
ℓ t,ψ(yt,hθ(x1:t)) = ℓt(yt,Q

⊤
t ψ

−1(gθ(x1:t))) (11)
= ℓϕt,t(yt, gθ(x1:t)), (12)

where ϕ−1
t = ψ−1 ◦Q⊤

t . Thus, ϕt : ∆
C−1 → RC is invertible, and is thus a proper composite loss

[40].

Thus, as shown in Patrini et al. [35]:

argmin
θ

Eỹt,x1:t
ℓϕ,t(yt, gθ(x1:t)) = argmin

θ
Eỹt|x1:t

ℓϕt,t(yt, gθ(x1:t)) (13)

= ϕt(p(ỹt | x1:t)) (property of proper composite losses)

= ψ((Q−1
t )⊤p(ỹt | x1:t))) (14)

= ψ(p(yt | x1:t)) (15)

The above holds for the minimizer at a single time step, not the sequence as a whole. To find the
minimizer of the loss over the entire sequence:

argmin
θ

Ex1:T ,ỹ1:T

−→
ℓ seq,ψ(ỹ1:T , gθ(x1:T )) = argmin

θ
Eỹ1:T |x1:T

−→
ℓ seq,ψ(ỹ1:T , gθ(x1:T )) (16)

= argmin
θ

Eỹ1:T |x1:T

T∑
t=1

−→
ℓ t,ψ(ỹt, gθ(x1:t)) (17)

= argmin
θ

T∑
t=1

Eỹ1:T |x1:T

−→
ℓ t,ψ(ỹt, gθ(x1:t)) (18)

= argmin
θ

T∑
t=1

Eỹt|x1:t

−→
ℓ t,ψ(ỹt, gθ(x1:t)) (19)

= argmin
θ

T∑
t=1

Eỹt|x1:t
ℓt,ϕ(ỹt, gθ(x1:t)) (20)

As the minimizer of the sum will be the function that minimizes each element of the
sum, then argminθ Eỹ1:T ,x1:T

−→
ℓ seq,ψ(y1:T , gθ(x1:T )) = ψ(p(y1:T | x1:T )). Note that the

argminθ
∑T
t=1 Ey1:t,x1:tℓt,ϕ(y1:T , gθ(x1:T )) = ψ(p(y1:T | x1:T )), because the minimizer

of the NLL is the data distribution. Thus, argminθ Eỹ1:T ,x1:T

−→
ℓ seq,ψ(y1:T , gθ(x1:T )) =

argminθ
∑T
t=1 Ey1:t,x1:t

ℓt,ϕ(y1:T , gθ(x1:T )).

B TENOR LEARNING ALGORITHM

We summarize the augmented Lagrangian approach to solving the TENOR objective in Algorithm 1

For all experiments we set λ = 1,c = 1, γ = 2, and η = 2. k and the maximum number of SGD
iterations are set to 15 and 10, respectively. This is to ensure that the total number of epochs is 150,
which is the max number of epochs used for all experiments.

C LIMITATIONS AND FUTURE WORK

Our methods rely on several assumptions to ensure conditional independence between labels across
time (Assumption 3). Though these are standard assumptions in sequential modelling, these assump-
tions could be relaxed in settings where the the joint distribution of a sequence does not factor out
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Algorithm 1 TENOR Learning Algorithm

Input: Noisy Training Dataset D, hyperparameters γ and η
Output: Model θ, Temporal Noise Function ω
c← 1 and λ← 1
for k = 1, 2, 3, ..., do

θk, ωk = argminθ,ω L(θ, ω) ▷ Computed with SGD using the Adam optimizer
λ← λ+ c ∗Rt(θk, ωk) ▷ Update Lagrange multiplier
if k > 0 and Rt(θ

k, ωk) > γRt(θ
k−1, ωk−1) then

c← ηc
else

c← c
end if
if Rt(θk, ωk) == 0 then

break
end if

end for

this way. Existing work in Empirical Risk Minimization (ERM) on highly dependent sequences may
serve as a promising direction [31, 32, 43]. Leveraging these results may help us to also provide
finite-sample guarantees. Though we provide equivalence statements in Theorem 1 and Theorem 2,
we understand the importance of finite-sample guarantees as we are using ERM on a single-draw of
the noisy distribution. Using the equivalences we derive, finite-sample guarantees and excess-risk
bounds may be drawn from existing results.

Another direction to explore is to relax the assumption that all samples have the same unerlying label
noise function. This may be a result of different labellers with different labelling proficiency over
time.

Lastly, we intentionally leave our Definition 1 generalizable to continuous time models. In this work,
we represented Qω as a fully connected feed-forward neural network. In general, however, Qω can
be parameterized however a user sees fit – e.g., as a time-dependent noise function could be with
a Gaussian Process or a neural ODE that can learn dQ

dt and generate Qt across continuous time
1, . . . , T by solving an initial value problem.

D EXPERIMENTAL DETAILS

Dataset Classification Task n d T

eeg_eye [42] Eye Open vs Eye Closed 299 14 50

eeg_sleep [17] Sleep vs Awake 964 7 100

har [41] Walking vs Not Walking 192 9 50

har70 [29] Walking vs Not Walking 444 6 100

synth [describe model in notation] 1,000 50 100

Table 3: Datasets used in the experiments. Classification tasks, number of samples (n), dimensionality at each
time step (d), and sequence length (T ) are shown.

D.1 DATASET DETAILS

Synthetic We generate data for binary and multiclass classification with n = 1000 samples and
d = 50 features over T = 100 time steps. We generate the class labels and obvservations for each
time step using a Hidden Markov Model (HMM). The transition matrix generating the markov chain
is uniform ensuring an equal likelihood of any state at any given time. We corrupted them using
multidimensional (50) Gaussian emissions. The mean of the gaussian for state/class c is set to c
with variance 1.5 (i.e. class 1 has mean 1 and variance 1.5). The high-dimensionality and overlap in
feature-space between classes makes this a sufficiently difficult task, especially under label noise. We
use a batchsize of 256
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HAR from UC Irvine [41] consists of inertial sensor readings of 30 adult subjects performing
activities of daily living. The sensor signals are already preprocessed and a vector of features at each
time step are provided. We apply z-score normalization at the participant-level, then split the dataset
into subsequences of a fixed size 50. We use a batchsize of 64.

HAR70 from UC Irvine [29] consists of inertial sensor readings of 18 elderly subjects performing
activities of daily living. The sensor signals are already preprocessed and a vector of features at each
time step are provided. We apply z-score normalization at the participant-level, then split the dataset
into subsequences of a fixed size 100. We use a batchsize of 256.

EEG SLEEP from Physionet [17] consists of EEG data measured from 197 different whole nights
of sleep observation, including awake periods at the start, end, and intermittently. We apply z-score
normalization at the whole night-level. Then downsample the data to have features and labels each
minute, as EEG data is sampled at 100Hz and labels are sampled at 1Hz. We then split the data into
subsequences of a fixed size 100. We use a batchsize of 512.

EEG EYE from UC Irvine [42] consists of data measured from one continuous participant tasked
with opening and closing their eyes while wearing a headset to measure their EEG data . We apply
z-score normalization for the entire sequence, remove outliers (>5 SD away from mean), and split
into subsequences of a fixed size 50. We use a batchsize of 128.

D.2 SPECIFIC IMPLEMENTATION DETAILS

GRU the GRU r : Rd×Z→ RC×Z produces an output vector such that the output of r(xt, zt−1)
is our model for hθ(x1:t), and a hidden state zt ∈ Z that summarizes x1:t. We use a softmax
activation on the output vector of the GRU to make it a valid parameterization of pθ(yt | x1:t). The
GRU has a single hidden layer with a 32 dimension hidden state.

TENOR TENOR uses an additional fully-connected neural network with 10 hidden layers that
outputs a C ∗ C-dimensional vector to represent each entry of a flattened Q̂t. To ensure the output
of this network is valid for Definition 1, we reshape the prediction to be C × C, apply a row-wise
softmax function, add this to the identity matrix to ensure diagonal dominance, then rescale the rows
to be row-stochastic. These operations are all differentiable, ensuring we can optimize this network
with standard backpropagation.

VolMinNet and VolMinTime We do a similar parameterization for VolMinNet and VolMinTime,
using a set of differentiable weights to represent the entries ofQt rather than a neural network.

Anchor and AnchorTime Patrini et al. [35] show that in practice taking the 97th percentile anchor
points rather than the maximum yield better results, so we use that same approach in our experiments.
They also describe a two-stage approach: 1) estimate the anchor points after a warmup period 2) use
the anchor points to train the classifier with forward corrected loss. We set the warmup period to 25
epochs.

D.3 EXPERIMENTAL PARAMETERS

Given that the learning algorithm only has access to a noisy training dataset and performance is
evaluated on a clean test set, a validation set must be drawn from clean test data or by manually
cleaning the noisy training dataset which may be impractical. This makes hyperparameter tuning
difficult in noisy label learning. As the optimal set of hyperparameters within each could vary for
each method, noise type, amount of noise, and dataset, this represents a difficult task. To be fair
for our experimental evaluations, we use the same set of hyperparameters for experiment, and only
manually set batch size for each dataset.

Each model was trained for 150 epochs using the adam optimizer with default parameters and a
learning rate of 0.01.
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For VolMinNet, VolMinTime, and TENOR we use adam optimizer with default parameters and a
learning rate of 0.01 to optimize each respective Q̂t-estimation technique. λ was set to 1e− 4 for
VolMinNet and VolMinTime for all experiments, based on what was published previously [25] .

D.4 NOISE INJECTION

To the best of our knowledge there are no noisy label time series datasets (i.e.: standardized datasets
with both clean and noisy labels) to evaluate our methods. In line with prior experimental approaches,
we propose a noise injection strategy which assumes some temporal noise function that can give us a
noisy distribution to evaluate from. We deliberately pick a wide variety of noise types, varying the
amount and functional form of time-dependent noise, including static noise setting (uniform noise at
every time, akin to what baseline methods assume), and class-dependent noise structure Fig. 5.

Figure 5: Temporal functions that can be specified using a temporal label noise function Q(t). We present
six examples for binary classification task (from top-left clockwise): time independent, exponential decay
sinusoidal noise, mixed class-dependent noise, linear decay noise, sigmoid increasing noise. Each plot shows the
off-diagonal entries of various parameterized forms of Q(t).
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E COMPLETE RESULTS

E.1 FORWARD VS BACKWARD LOSS

Here we explain some counter-intuitive results observed when comparing the backward sequence
loss and forward sequence loss in static and temporal noise. We can understand this behaviour by
realizing that backward sequence loss requires an explicit matrix-inversion which multiplies into
your uncorrected loss term. This involves an inverse-determinant term that scales the loss at every
time step. Consider the C = 2 setting, the magnitude of this term is controlled by the product of the
off-diagonal entries - i.e: it approaches∞ as the noise for each class in Qt approaches the upper
bound of noise 0.5. This is why in Fig. 2, backward sequence loss performs particularly poorly in
high noise. In the static case, where we averageQt over time, we bound the inverse-determinant at
each time step, therefore controlling these gradients by reducing the effect of any high noise time
steps. In the Mixed noise setting in Fig. 2, we increase the noise in one class while decreasing the
noise in the other over time, so the off-diagonal entries inQt never reach their upper bound at the
same time. As a result this again provides a mechanism to control the inverse-determinant.

We provide complete comparisons of backward sequence loss and forward sequence loss across
varying degrees of noise and all temporal noise functions in Fig. 6.

Figure 6: Comparing performance of models trained with backward sequence loss and forward sequence loss
on synth with varying degrees of temporal label noise using either the true temporal noise function (Temporal)
or the average temporal noise function (Static). Error bars are st. dev. over 10 runs.

0 5 10 15 20 25 30 35 40

% of Noisy Labels

60

70

80

90

100

A
cc

u
ra

cy
%

Time Independent

0 5 10 15 20 25 30 35 40

% of Noisy Labels

60

70

80

90

100

A
cc

u
ra

cy
%

Exponential

0 5 10 15 20 25 30 35 40

% of Noisy Labels

60

70

80

90

100

A
cc

u
ra

cy
%

Sigmoid

0 5 10 15 20 25 30 35 40

% of Noisy Labels

60

70

80

90

100

A
cc

u
ra

cy
%

Sinusoidal

0 5 10 15 20 25 30 35 40

% of Noisy Labels

60

70

80

90

100

A
cc

u
ra

cy
%

Linear

0 5 10 15 20 25 30 35 40

% of Noisy Labels

60

70

80

90

100

A
cc

u
ra

cy
%

Mixed

Uncorrected Forward Backward Temporal Static

21



Under review as a conference paper at ICLR 2024

E.2 REAL TEMPORAL LABEL NOISE

Prior work in the static noisy label literature typically aim to demonstrate the effectiveness of their
methods on a real world noisy dataset, where the noise function is not imposed by the researcher.
The primary dataset used is the Clothing1M dataset [53]. Despite containing real label noise,
Clothing1M is inapplicable in our setting: it is not sequential data and each instance has only one
label. In the spirit of evaluating TENOR on real-world noisy labels, we discovered and experimented
with extrasensory, a noisy-labelled time series dataset [47]. extrasensory includes human
activity data from smartphones and smartwatches collected from 60 users spread across 300,000
minutes of measurements. In contrast to har and har70 (datasets originally used in our paper),
extrasensory has no expert-labelled annotations, all the labels are user-provided and therefore
are highly noisy. Users often misreport falling asleep and waking up, so we expect particularly high
label noise during sleep/awake transitions

In order to identify the label noise in this sequential data, we partition and center the dataset from all
users around sleep/awake transition periods. That is, for a fixed length window of 50, sleep/awake
transitions occur around the t = 25 point. We then train our TENOR objective with the same model
architecture and hyperparameters as above to classify sleep and awake over time. Since there are no
’clean’ labels, we demonstrate that TENOR successfully identifies an interpretable temporal noise
function.

In Fig. 7, we see TENOR predicts there exists higher label noise near sleep/awake transitions (around
t = 25). We hope our work also encourages the community to seek further sources of real temporal
noise.

Figure 7: TENOR-estimated Q̂t for extrasensory. Error bars are st. dev. over 10 runs.
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Figure 8: Comparison of clean test set Accuracy (%) for synth across varying degrees of temporal label noise
comparing all methods. Error bars are st. dev. over 10 runs.
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Figure 9: Comparison of clean test set Accuracy (%) for har across varying degrees of temporal label noise
comparing all methods. Error bars are st. dev. over 10 runs.
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Figure 10: Comparison of clean test set Accuracy (%) for har70 across varying degrees of temporal label
noise comparing all methods. Error bars are st. dev. over 10 runs.

0 5 10 15 20 25 30 35 40

% of Noisy Labels

66

76

86

A
cc

u
ra

cy
%

Time Independent

0 5 10 15 20 25 30 35 40

% of Noisy Labels

66

76

86

A
cc

u
ra

cy
%

Exponential

0 5 10 15 20 25 30 35 40

% of Noisy Labels

66

76

86

A
cc

u
ra

cy
%

Sigmoid

0 5 10 15 20 25 30 35 40

% of Noisy Labels

66

76

86

A
cc

u
ra

cy
%

Sinusoidal

0 5 10 15 20 25 30 35 40

% of Noisy Labels

66

76

86

A
cc

u
ra

cy
%

Linear

0 5 10 15 20 25 30 35 40

% of Noisy Labels

66

76

86

A
cc

u
ra

cy
%

Mixed

Uncorrected Anchor AnchorTime VolMinNet VolMinNetTime TENOR

25



Under review as a conference paper at ICLR 2024

Figure 11: Comparison of clean test set Accuracy (%) for eeg_sleep across varying degrees of temporal
label noise comparing all methods. Error bars are st. dev. over 10 runs.
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Figure 12: Comparison of clean test set Accuracy (%) for eeg_eye across varying degrees of temporal label
noise comparing all methods. Error bars are st. dev. over 10 runs.
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Figure 13: Comparison of noisy function reconstruction Mean Absolute Error (MAE) for synth across varying
degrees of temporal label noise comparing all methods. Error bars are st. dev. over 10 runs.
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Figure 14: Comparison of noisy function reconstruction Mean Absolute Error (MAE) for har across varying
degrees of temporal label noise comparing all methods. Error bars are st. dev. over 10 runs.
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Figure 15: Comparison of noisy function reconstruction Mean Absolute Error (MAE) for har70 across varying
degrees of temporal label noise comparing all methods. Error bars are st. dev. over 10 runs.
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Figure 16: Comparison of noisy function reconstruction Mean Absolute Error (MAE) for eeg_sleep across
varying degrees of temporal label noise comparing all methods. Error bars are st. dev. over 10 runs.
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Figure 17: Comparison of noisy function reconstruction Mean Absolute Error (MAE) for eeg_eye across
varying degrees of temporal label noise comparing all methods. Error bars are st. dev. over 10 runs.
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E.5 CHOICE OF LOSS AND OPTIMIZATION STRATEGY

In our experiments we have slightly different loss terms for TENOR and VolMinTime, with the
former penalizing the Frobenius norm and the latter penalizing the LogDet. We also use a special
augmentation strategy for TENOR, the augmented Lagrangian method. In order to show that these
changes are not what is leading to differences in performance, we compare TENOR to versions
of VolMinTime using both types of losses and the augmented Lagrangian optimization method
(VolMinTime-AL).

Figure 18: Comparison of clean test set Accuracy (%) for synth across varying degrees of temporal label
noise comparing loss functions for VolMinTime. Error bars are st. dev. over 10 runs.
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Figure 19: Comparison of noisy function reconstruction Mean Absolute Error (MAE) for synth across varying
degrees of temporal label noise comparing loss functions for VolMinTime. Error bars are st. dev. over 10 runs.
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Table 4: Comparison of clean test-set Accuracy (%) and MAE of all methods on Class Indepenent and Class
Dependent sinusoidal label noise for a fixed degree of label noise (30%) on har. Dashed line separates Static
and Temporal methods.

Class Independent Class Dependent
Accuracy ↑ MAE ↓ Accuracy ↑ MAE ↓

St
at

ic
Uncorrected 76.0±5.1 – 76.4±3.1 –

Anchor 82.0±3.6 0.15±0.014 84.2±2.2 0.13±0.012
VolMinNet 86.5±6.0 0.13±0.009 92.6±1.9 0.12±0.012

Te
m

po
ra

l AnchorTime 81.5±4.3 0.14±0.013 84.1±2.3 0.13±0.010
VolMinTime 86.0±5.7 0.10±0.015 91.5±2.1 0.08±0.004

TENOR 98.3±0.6 0.03±0.005 98.4±0.7 0.02±0.005

Figure 20: Comparison of clean test set Accuracy (%) for synth across varying degrees of temporal label
noise comparing all methods for 3-class classification. Error bars are st. dev. over 10 runs.
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Figure 21: Comparison of noisy function reconstruction Mean Absolute Error (MAE) for synth across varying
degrees of temporal label noise comparing all methods for 3-class classification. Error bars are st. dev. over 10
runs.
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Figure 22: Comparison of clean test set Accuracy (%) for eeg_sleep across varying degrees of temporal
label noise comparing all methods for 3-class classification. Error bars are st. dev. over 10 runs.
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Figure 23: Comparison of noisy function reconstruction Mean Absolute Error (MAE) for eeg_sleep across
varying degrees of temporal label noise comparing all methods for 3-class classification. Error bars are st. dev.
over 10 runs.
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Figure 24: Comparison of clean test set Accuracy (%) for har across varying degrees of temporal label noise
comparing all methods for 4-class classification. Error bars are st. dev. over 10 runs.
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Figure 25: Comparison of noisy function reconstruction Mean Absolute Error (MAE) for har across varying
degrees of temporal label noise comparing all methods for 4-class classification. Error bars are st. dev. over 10
runs.
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