
Convergence to Lexicographically Optimal Base in
a (Contra)Polymatroid and Applications to
Densest Subgraph and Tree Packing
Elfarouk Harb !

University of Illinois at Urbana-Champaign

Kent Quanrud !

Purdue University

Chandra Chekuri !

University of Illinois at Urbana-Champaign

Abstract
Boob et al. [1] described an iterative peeling algorithm called Greedy++ for the Densest Subgraph
Problem (DSG) and conjectured that it converges to an optimum solution. Chekuri, Qaunrud and
Torres [2] extended the algorithm to general supermodular density problems (of which DSG is a special
case) and proved that the resulting algorithm Super-Greedy++ (and hence also Greedy++)
converges. In this paper we revisit the convergence proof and provide a different perspective. This
is done via a connection to Fujishige’s quadratic program for finding a lexicographically optimal
base in a (contra) polymatroid [3], and a noisy version of the Frank-Wolfe method from convex
optimization [4, 5]. This gives us a simpler convergence proof, and also shows a stronger property
that Super-Greedy++ converges to the optimal dense decomposition vector, answering a question
raised in Harb et al. [6]. A second contribution of the paper is to understand Thorup’s work on
ideal tree packing and greedy tree packing [7, 8] via the Frank-Wolfe algorithm applied to find a
lexicographically optimum base in the graphic matroid. This yields a simpler and transparent proof.
The two results appear disparate but are unified via Fujishige’s result and convex optimization.

2012 ACM Subject Classification Graph Algorithms

Keywords and phrases Polymatroid, lexicographically optimum base, densest subgraph, tree packing

Digital Object Identifier 10.4230/LIPIcs...

Funding Elfarouk Harb: Supported in part by NSF grant CCF-2028861
Kent Quanrud: Supported in part by NSF grant CCF-2129816
Chandra Chekuri: Supported in part by NSF grants CCF-2028861 and CCF-1910149.

© Licensed under Creative Commons License CC-BY 4.0;
licensed under Creative Commons License CC-BY 4.0

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

ar
X

iv
:2

30
5.

02
98

7v
1

 [
cs

.D
S]

 4
 M

ay
 2

02
3

mailto:eyfmharb@gmail.com
mailto:krq@purdue.edu
mailto:chekuri@illinois.edu
https://doi.org/10.4230/LIPIcs...
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Elfarouk Harb, Kent Quanrud, and Chandra Chekuri XX:1

1 Introduction

In this paper we consider iterative greedy algorithms for two different combinatorial optimization
problems and show that the convergence of these algorithms can be understood by combining
two general tools, one coming from the theory of submodular functions, and the other coming
from convex optimization. This yields simpler proofs via a unified perspective, while also
yielding additional properties that were previously unknown.

Densest subgraph and supermodularity: We start with the initial problem that
motivated this work, namely, the densest subgraph problem (DSG). The input to DSG is
an undirected graph G = (V,E) with m = |E| and n = |V |. The goal is to return a subset
S ⊆ V that maximizes |E(S)|

|S| where E(S) = {uv ∈ E : u, v ∈ S} is the set of edges with
both end points in S. Throughout the paper, we let λ(G) = |E(G)|

|V (G)| denote the density of
graph G(V,E). We treat the unweighted case for simplicity; all the results generalize to
edge-weighted graphs. Goldberg [9] and Picard and Queyranne [10] showed that DSG can
be efficiently solved via a reduction to the s-t maximum-flow problem.

A different connection that shows polynomial-time solvability of DSG is important to
this paper. Consider a real-valued set function f : 2V → R+ defined over the vertex set
V , where f(S) = |E(S)|. This function is supermodular. A function f is supermodular iff
−f is submodular. A real-valued set function f : 2V → R is submodular iff f(A) + f(B) ≥
f(A ∪ B) + f(A ∩ B) for all A,B ⊆ B. Submodular and supermodular set functions are
fundamental in combinatorial optimization — see [11, 12].

Coming back to DSG, maximizing |E(S)|/|S| is equivalent to finding the largest λ such
that λ|S|−|E(S)| ≥ 0 for all S ⊆ V . This corresponds to minimizing the submodular function
g where g(S) = λ|S| − |E(S)|. A classical result in combinatorial optimization is that the
minimum of a submodular set function can be found in polynomial-time in the value oracle
setting. Thus, DSG can be solved via reduction to submodular set function minimization
and binary search. The preceding connection also motivates the definition of a generalization
of DSG called the densest supermodular set problem (DSS) (see [2]). The input is a non-
negative supermodular function f : 2V → <+, and the goal is to find S ⊆ V that maximizes
f(S)
|S| . DSS is polynomial-time solvable via submodular set function minimization. DSG,

DSS and its variants have several applications in practice, and they are routinely used in
graph and network analysis to find dense clusters or communities. We refer the reader to the
extensive literature on this topic [13, 1, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27].
DSG is also of interest in algorithms via its connection to arboricity and related notions —
see [28, 29] for recent work.

Faster algorithms, Greedy and Greedy++: Although DSG is polynomial-time solvable
via maxflow and submodular function minimization, the corresponding algorithms are not
yet practical for the large graphs that arise in many applications; this is despite the fact
that we now have very fast theoretical algorithms for maxflow and mincost flow [30]. For
this reason there has been considerable interest in faster (approximation) algorithms. More
than 20 years ago Charikar [31] showed that a simple “peeling” algorithm (Greedy) yields
a 1/2-approximation for DSG. An ordering of the vertices as vi1 , vi2 , . . . , vin is computed as
follows: vi1 is a vertex of minimum degree in G (ties broken arbitrarily), vi2 is a minimum
degree vertex in G − vi1 and so on1. After creating the ordering, the algorithm picks the

1 This peeling order is the same as the one used to create the so-called core decomposition of a graph [32]
and the Greedy algorithm itself was suggested by Asahiro et al. [33].

XX:2 Convergence to Lexicographically Optimal Base and Applications

best suffix, in terms of density, among the n-possible suffixes of the ordering. Charikar
also developed a simple exact LP relaxation for DSG. Charikar’s results have been quite
influential. Greedy can be implemented in (near)-linear time and has also been adapted
to other variants. The LP relaxation has also been used in several algorithms that yield a
(1− ε)-approximate solution [34, 35], and has led to a flow-based (1− ε)-approximation [2].
More recently, Boob et al. [1] developed an algorithm called Greedy++ that is based on
combining Greedy with ideas from multiplicative weight updates (MWU); the algorithm
repeatedly applies a simple peeling algorithm with the first iteration coinciding with Greedy
but later iterations depending on a weight vector that is maintained on the vertices — the
formal algorithm is described in a later section. The advantage of the algorithm is its
simplicity, and Boob et al. [1] showed that it has very good empirical performance. Moreover
they conjectured that Greedy++ converges to a (1− ε)-approximation in O(1/ε2) iterations.
Although their strong conjecture is yet unverified, Chekuri et al. [2] proved that Greedy++
converges in O(∆ log |V |

ε2λ(G)) iterations where ∆ is the maximum degree of G.
The convergence proof in [2] is non-trivial. The proof relies crucially in considering

DSS and supermodularity. [2] shows that Greedy and Greedy++ can be generalized to
SuperGreedy and SuperGreedy++ for DSS, and that SuperGreedy++ converges
to a (1− ε)-approximation solution in O(αf/ε2) iterations where αf depends (only) on the
function f .

Dense subgraph decomposition and connections: As we discussed, DSG is a special
case of DSS and hence DSG inherits certain nice structural properties from supermodularity.
One of these is the fact that the vertex set V of every graphG = (V,E) admits a decomposition
into S1, S2, . . . , Sk for some k where S1 is the vertex set of the unique maximal densest
subgraph, S2 is the unique maximal densest subgraph after “contracting” S1, and so on.
This fact is easier to see in the setting of DSS. Here, the fact that S1 is the unique maximal
densest set and this follows from supermodularity; if A and B are optimum dense sets then
so is A ∪B. One can then consider a new supermodular function fS1 : 2V−S1 → R defined
over V − S1 where fS1(A) = f(S1 ∪A)− f(S1) for all A ⊆ V − S1. The new function is also
supermodular. Then S2 is the unique maximal densest set for fS1 . We iterate this process
until we obtain an empty set. The decomposition also allows us to assign a density value λv
to each v ∈ V (which corresponds to the density of the set when v is in the maximal set). We
call this the density vector associated with f . Dense decompositions follow from the theory
of principal partitions of submodular functions [36, 37, 38]. In the context of graphs and
DSG this was rediscovered by Tatti and Gionis who called it the locally-dense decomposition
[39, 40], and gave algorithms for computing it. Subsequently, Danisch et al. [14] applied
the well-known Frank-Wolfe algorithm for constrained convex optimization to a quadratic
program derived from Charikar’s LP relaxation for DSG. More recently, Harb et al. [6]
obtained faster algorithms for computing the dense decomposition in graphs via Charikar’s
LP; they used a different method called FISTA for constrained convex optimization based on
acceleration. Although DSS was not the main focus, [6] also made an important connection
to Fujishige’s result on lexicographically optimal base in polymatroids [3] which elucidated
the work of Danisch et al. on DSG. We describe this next.

Lexicographical optimal base and dense decomposition: We briefly describe Fujishige’s
result [3] and its connection to dense decompositions. Let f : 2V → R+ be a monotone
submodular set function (f(A) ≤ f(B) if A ⊂ B) that is also normalized (f(∅) = 0).
Following Edmonds, the polymatroid associated with f , denote by Pf is the polyhedron
{x ∈ RV | x ≥ 0, x(S) ≤ f(S) ∀S ⊆ V }, where x(S) =

∑
i∈S xi. The base polyhedron

associated with f , denote by Bf = Pf ∩ {x ∈ RV | x(V) = f(V)} obtained by intersecting

Elfarouk Harb, Kent Quanrud, and Chandra Chekuri XX:3

Pf with the equality constraint x(V) = f(V). Each vector x in Bf is called a base. If
f is a monotone normalized supermodular function we consider the contrapolymatroid
Pf = {x ∈ RV | x ≥ 0, x(S) ≥ f(S) ∀S ⊆ V } (the inequalities are reversed), and similarly
Bf is the base contrapolymatroid obtained by intersecting Pf with equality constraint
x(V) = f(V). Fujishige proved that there exists a unique lexicographically minimal
base in any polymatroid, and morover it can found by solving the quadratic program:
min

∑
v x

2
v s.t x ∈ Bf . In the context of supermodular functions, one obtains a similar result;

the quadratic program min
∑
v x

2
v s.t x ∈ Bf where Bf is contrapolymatroid associated with

f has a unique solution. As observed explicity in [6], the lexicographically optimal base
gives the dense decomposition vector for DSS. That is, if x∗ is the optimal solution to the
quadratic program then for each v, x∗v = λv. In particular, as noted in [6], one can apply the
well-known Frank-Wolfe algorithm to the quadratic program and it converges to the dense
decomposition vector. As we will see later, each iteration corresponds to finding a maximum
weight base in a contrapolymatroid which is easy to find via the greedy algorithm.

(Ideal) Tree packings in graphs and the Tutte–Nash-Williams theorem: Our
discussion so far focused on DSG. Now we describe a different problem on graphs and
relevant background. As we said, our goal is to present a unified perspective on these
two problems. The well-known Tutte–Nash-Williams theorem in graph theory (see [11])
establishes a min-max result for the maximum number of edge-disjoint spanning trees in a
multi-graph G. Given an undirected graph G = (V,E), and a partition P of the vertices, let
E(P) denote the number of edges crossing from one partition to another. We say the strength
of a partition is E(P)

|P |−1 . Let T (G) denote all possible spanning trees of G. Let τ∗(G) denote
the maximum number of edge-disjoint spanning trees in G. Then τ∗(G) = minP b E(P)

|P |−1c.
Further, if we define τ(G) to be the maximum fractional packing of spanning trees, then
the floor can be removed and we have τ(G) = minP E(P)

|P |−1 . We note that the graph theoretic
result is a special case of matroid base packing. Tree packings are useful for a number of
applications. In particular, Karger [41] used tree packings and other ideas in his well-known
near-linear randomized algorithm for computing the global minimum cut of a graph. We are
mainly concerned here with Thorup’s work in [7, 8] that was motivated by dynamic mincut
and k-cut problems. He defined the so-called ideal edge loads and ideal tree packing (details
in later section) by recursively decomposing the graph via Tutte–Nash-Williams partitions
[7]. He also proved that a simple iterative greedy tree packing algorithm converges to the
ideal loads [8]. He used the approximate ideal tree packing to obtain new deterministic
algorithms for the k-cut problem, and his approach has been quite influential in a number of
subsequent results [42, 43, 44, 45, 46]. Thorup obtained his tree packing result from first
principles. We ask: is there a connection between ideal tree packing and DSG?

1.1 Contributions of the paper

This paper has two main contributions. The first is a new proof of the convergence of
SuperGreedy++ for DSS. Our proof is based on showing that SuperGreedy++ can
be viewed as a “noisy” or “approximate” variant of the Frank-Wolfe algorithm applied to
the quadratic program defined by Fujishige. The advantage of the new proof is twofold.
First, it shows that SuperGreedy++ not only converges to a (1 − ε)-approximation to
the densest set, but that in fact it converges to the densest decomposition vector. This was
empirically observed in [6] for DSG, and was left as an open problem to resolve. The proof
in [2] on convergence of SuperGreedy++ is based on the MWU method via LPs, and
does not exploit Fujishige’s result which is key to the stronger property that we prove here.

XX:4 Convergence to Lexicographically Optimal Base and Applications

Second, the proof connects two powerful tools directly and at a high-level: Fujishige’s result
on submodular functions, and a standard method for constrained convex optimization.

I Theorem 1. Let b∗ be the dense decomposition vector for a non-negative monotone
supermodular set function f : 2V → R+ where |V | = n. Then, SuperGreedy++ converges
in O(αf/ε2) iterations to a vector b such that ||b− b∗||2 ≤ ε, where αf depends only on f .
For a graph with m edges and n vertices, Greedy++ converges in O(mn2/ε2) iterations
for unweighted multigraphs.

I Remark 2. The new convergence gives a weaker bound than the one in [2] in terms of
convergence to a (1− ε) relative approximation to the maximum density. However, it gives a
strong additive guarantee to the entire dense decomposition vector.

Our second contribution builds on our insights on DSG and DSS, and applies it towards
understanding ideal tree packing and greed tree packing. We connect the ideal tree packing
of Thorup to the dense decomposition associated with the rank function of the underlying
graphic matroid (which is submodular). We then show that greedy tree packing algorithm
can be viewed as the Frank-Wolfe algorithm applied to the quadratic program defined by
Fujishige, and this easily yields a convergence guarantee.

I Theorem 3. Let G = (V,E) be a graph. The ideal edge load vector `∗ : E → R+ for G
is given by the lexicographically minimal base in the polymatroid associated with the rank
function of the graphic matroid of G. The Frank-Wolfe algorithm with step size 1

k+1 , when
applied to the quadratic program for computing the lexicographically minimal base in the
graphic matroid of G, coincides with the greedy tree packing algorithm. For unweighted graphs
on m edges, the generic analysis of Frank-Wolfe method’s convergence shows that greedy
tree packing converges to a load vector ` : E → R+ such that ||`− `∗|| ≤ ε in O(m log(m/ε)

ε2)
iterations. The standard step size algorithm converges in O(mε2) iterations.

I Remark 4. Although the algorithm is the same (greedy tree packing), Thorup’s analysis
guarantees a strongly polynomial-bound even in the capacitated case [8]. However we obtain
a stronger additive guarantee via a generic Frank-Wolfe analysis and our analysis has a 1/ε2
dependence while Thorup’s has a 1/ε3 dependence. We give a more detailed comparison in
Section 5.

Organization: The rest of the paper is devoted to proving the two theorems. The paper
relies on tools from theory of submodular functions and an adaptation of the analysis of
Frank-Wolfe method. We first describe the relevant background and then prove the two
results in separate sections. Due to space constraints, most of the proofs are provided in the
appendix. A future version will discuss additional related work in more detail.

2 Background on Frank-Wolfe algorithm and a variation

Let D ⊆ <d be a compact convex set, and f : D → < be a convex, differentiable function.
Consider the problem of minx∈D f(x). Frank-Wolfe method [4] is a first order method and it
relies on access to a linear minimization oracle, LMO, for f that can answer LMO(w) =
arg min
s∈D

〈s,∇f(w)〉 for any given w ∈ D. In several applications such oracles with fast running

times exist. Given f,D as above, the Frank-Wolfe algorithm is an iterative algorithm that
converges to the minimizer x∗ ∈ D of f . See Algorithm 1. The algorithm starts with a guess
of the minimizer b(0) ∈ D. In each iteration, it finds a direction d(k+1) to move towards
by calling the linear minimization oracle on the current guess b(k). It then moves slightly

Elfarouk Harb, Kent Quanrud, and Chandra Chekuri XX:5

towards that direction using a convex combination to ensure that the new point is in D. The
amount the algorithm moves towards the new direction decreases as k increases signifying
the “confidence” in its current guess as the minimizer.

Algorithm 1 Frank-Wolfe-Original

1: Initialize b(0) ∈ D
2: for k ← 0 to T − 1 do
3: γ ← 2

k+2
4: d(k+1) ← arg min

s∈D
(〈s,∇f(b(k))〉) . Call oracle on b(k)

5: b(k+1) ← (1− γ)b(k) + γd(k+1)

return b(T)

The original convergence analysis for the Frank-Wolfe algorithm is from [4]. Jaggi [5]
gave an elegant and simpler analysis. His analysis characterizes the convergence rate in terms
of the curvature constant Cf of the function f .

I Definition 5. Let D ⊆ <d be a compact convex set, and f : D → < be a convex,
differentiable function. The curvature constant Cf of f is defined as

Cf = sup
x,s∈D,γ∈[0,1],y=x+γ(s−x)

2
γ2 (f(y)− f(x)− 〈y − x,∇f(x)〉).

I Definition 6. Let g : D → < be a differentiable function. Then g is Lipschitz with constant
L if for all x, y ∈ D, ‖g(x)− g(y)‖2 ≤ L ‖x− y‖2.

Let diam(D) = max
x,y∈D

‖x− y‖2 be the diameter of D. One can show that Cf ≤ L·diam(D)2

where L is the Lpischitz constant of ∇f .

I Theorem 7 ([5]). Let D ⊆ <d be a compact convex set, and f : D → < be a convex,
differentiable function with minimizer b∗. Let b(k) denote the guess on the k-th iteration of
the Frank-Wolfe algorithm. Then f(b(k))− f(b∗) ≤ 2Cf

k+2 .

Jaggi’s proof technique can be used to prove the convergence rate of “noisy/approximate”
variants of the Frank-Wolfe algorithm. This motivates the following definition. An ε-
approximate linear minimization oracle is an oracle that for any w ∈ D, returns ŝ such
that 〈ŝ,∇f(w)〉 ≤ 〈s∗,∇f(w)〉 + ε, where s∗ = LMO(w). While an efficient exact linear
minimization oracle exists in some applications, in others one can only ε-approximate it
(using numerical methods or otherwise). Jaggi’s proof technique extends to show that an
approximate linear minimization oracles suffices for convergence as long as the approximation
quality improves with the iterations. Suppose the oracle, in iteration k, provides a δCf

k+2 -
approximate solution where δ > 0 is some fixed constant. The convergence rate will only
deteriorate by a (1 + δ) multiplicative factor. Qualitatively, this says that we can afford to be
inaccurate in computing the Frank-Wolfe direction in early iterations, but the approximation
should approach LMO(b(k)) as k →∞.

Another question of interest is the resilience of the Frank-Wolfe algorithm to changes in
the learning rate γk = 2

k+2 . Indeed, the variants we will look at will require γk = 1
k+1 . As

we will see, Jaggi’s proof can again be adapted to handle this case, with only an O(log k)
multiplicative deterioration in the convergence rate. We state the following theorem whose
proof we defer to the appendix.

XX:6 Convergence to Lexicographically Optimal Base and Applications

I Theorem 8. [Proof in Appendix 7.1] Let D ⊆ <d be a compact convex set, and f : D → <
be a convex, differentiable function with minimizer b∗. Suppose instead of computing d(k+1)

by calling LMO(b(k)) in iteration k, we call a δCf

k+2 -approximate linear minimization oracle,
for some fixed δ > 0. Also, suppose instead of using γk = 2

k+2 , we use γk = 1
k+1 as a step

size. Then f(b(k))− f(b∗) ≤ 2Cf (1+δ)Hk+1
k+1 , where Hn is the n-th Harmonic term.

We refer to the variant of Frank-Wolfe algorithm as described by Theorem 8 as noisy
Frank-Wolfe.

3 Sub and supermodular functions, and dense decompositions

We already defined submodular and supermodular set functions, polymatroids and contrapolymatroids.
We restrict attention to functions satisfying f(∅) = 0 which together with supermodularity
and non-negativity implies monotonocity, that is, f(A) ≤ f(B) for A ⊆ B. An alternative
definition of submodularity is via diminishing marginal values. We let f(v | A) = f(A∪{v})−
f(A) denote the marginal value of v to A. Submodularity is equivalent to f(v | A) ≥ f(v | B)
whenever A ⊆ B and v ∈ V \B; the inequality is reversed for supermodular set functions.
We need the following simple lemma.

I Lemma 9. [Proof in Appendix 7.2] For a submodular function f : 2V → <, the function
g(X) = f(V) − f(V \ X) is supermodular. In particular if f is a normalized monotone
submodular function then g is a normalized monotone supermodular function.

Deletion and contraction, and non-negative summation: Sub and supermodular
functions are closed under a few simple operations. Given f : 2V → R, restricting it to
a subset V ′ corresponds to deleting V \ V ′. Given A ⊂ V , contracting f to A yields the
function g : 2V \A → R where g(X) = g(X ∪A)− g(A). Given two functions f and g we can
take their non-negative sum af + bg where a, b ≥ 0. Monotonicity and normalization is also
preserved under these operations.

3.1 Dense decompositions for submodular and supermodular functions
Following the discussion in the introduction, we are interested in decompositions of supermodular
and submodular functions. Dense decompositions follow from the theory of principal partitions
of submodular functions that have been explored extensively. We refer the reader to Fujishige’s
survey [38] as well as Naraynan’s work [36, 37]. The standard perspective comes from
considering the minimizers of the function fλ for a scalar λ where fλ(S)− λ|S|. As λ varies
from −∞ to ∞ the minimizers change only at a finite number of break points. In this
paper we are interested in the notion of density, in the form of ratios, for non-negative
submodular and supermodular functions. For this reason we follow the notation from recent
work [40, 14, 2, 6] and state lemmas in a convenient form, and provide proofs in the appendix
for the sake of completeness.
Supermodular function dense decomposition: The basic observation is the following.

I Lemma 10. [Proof in Appendix 7.3] Let f : 2V → <+ be a non-negative supermodular
set function. There exists a unique maximal set S ⊆ V that maximizes f(S)

|S| .

The preceding lemma can be used in a simple fashion to derive the following corollary
(this was explicitly noted in [2] for instance).

Elfarouk Harb, Kent Quanrud, and Chandra Chekuri XX:7

I Corollary 11. Let f : 2V → <+ be a non-negative supermodular set function. There is
a unique partition S1, S2, . . . , Sh of V with the following property. Let Vi = V − ∪j<iSj
and let Ai = ∪j<iSi. Then, for each i = 1 to h, Si is the unique maximal densest set for
the function fDi : 2Vi → R+. Moroever, letting λi be the optimum density of fDi , we have
λ1 > λ2 . . . > λh.

Based on the preceding corollary, we can associated with each v ∈ V a value λ(v):
λ(v) = λi where v ∈ Si. See Figure 1 for an example of a dense decomposition of the function
f(S) = |E(S)|.
Dense decomposition for submodular functions: We now discuss submodular functions.
We consider two variants. We start with a basic observation.

I Lemma 12. [Proof in Appendix 7.4] Let f : 2V → <+ be a monotone non-negative
submodular set function such that f(v) > 0 for all v ∈ V . There is a unique minimal set
S ⊆ V that minimizes |V |−|S|

f(V)−f(S) for submodular function f .

Consider the following variant of a decomposition of f . We let S0 = V and find S1 as the
unique minimal set S ⊆ V that minimizes |V |−|S|

f(V)−f(S) . Then we “delete” Ŝ1 = V \ S1, and
find the minimal set S2 ⊆ S1 that minimizes |S1|−|S|

f(S1)−f(S) . In iteration i, we find the unique
minimal set Si ⊂ Si−1 that minimizes |Si−1|−|Si|

f(Si−1)−f(Si) . Notice that Sk ⊂ Sk−1 ⊂ ... ⊂ S1 ⊂ V .
We say the relative density of Ŝi = Si−1 \ Si is λi = |Si−1|−|Si|

f(Si−1)−f(Si) . For u ∈ Ŝi, we say the
density of u is λu = λi. Hence the dense decomposition of f is Ŝ1, ..., Ŝk with densities
λ1, . . . , λk. We refer to this decomposition as the first variant which is based on deletions.

We now describe a second dense decomposition for submodular functions. Let f : 2V → R+
be a monotone submodular function. Consider the supermodular function g : 2V → R+
where g(X) = f(V)− f(V \X) for all X ⊆ V . From Lemma 9, g is monotone supermodular.
We can then apply Corollary 11 to obtain a dense decomposition of g. Let T1, T2, . . . , Tk′ be
the unique decomposition obtained by considering g and let λ̂1, ..., λ̂k′ be the corresponding
densities. Note that this second decomposition is based on contractions.

Not too surprisingly, the two decompositions coincide, as we show in the next theorem.
The main reason to consider them separately is for technical ease in applications where one
or the other view is more natural.

I Theorem 13. [Proof of Appendix 7.5] Let Ŝ1, ..., Ŝk be a dense decomposition (using
deletion variant) of a submodular function f with densities λi, . . . , λk. Let T1, ..., Tk′ be a
dense decomposition (using contraction variant) of the same function with densities λ̂1, ..., λ̂k′ .
We have (i) k′ = k, (ii) Ŝ1, ...Ŝk is exactly T1, ..., Tk, and (iii) λ̂i = 1

λi
for 1 ≤ i ≤ k.

3.2 Fujishige’s results on lexicographically optimal bases
Fujishige [3] gave a polyhedral view of the dense decomposition which is the central ingredient
in our work. He stated his theorem for polymatroids, however, it can be easily generalized to
contrapolymatroids. We restrict attention to the unweighted case for notational ease — [3]
treats the weighted case.

Vectors in Rn can be totally ordered by sorting the coordinates in increasing order and
considering the lexicographical ordering of the two sorted sequences of length n. In the
following, for a, b ∈ Rn we use a ≺ b and a � b to refer to this order. We say that a vector x
in a set D is lexicographically minimum (maximum) if for all y ∈ D we have x � y (y � x).

Fujishige proved the following theorem for polymatroids.

XX:8 Convergence to Lexicographically Optimal Base and Applications

I Theorem 14 ([3]). Let f : 2V → R+ be a monotone submodular function (a polymatroid)
and let Bf be its base polytope. Then there is a unique lexicographically maximum base
b∗ ∈ Bf and for each v ∈ V , b∗v = λv. Moroever, b∗ is the optimum solution to the quadratic
program: min

∑
v x

2
v subject to x ∈ Bf .

The preceding theorem can be generalized to contrapolymatroids in a straight forward
fashion and this was explicitly pointed out in [6]. We paraphrase it to be similar to the
preceding theorem statement.

I Theorem 15. Let f : 2V → R+ be a monotone supermodular function (a contrapolymatroid)
and let Bf be its base polytope. Then there is a unique lexicographically minimum base b∗ ∈ Bf
and for each v ∈ V , b∗v = λv. Moreover, b∗ is the optimum solution to the quadratic program:
min

∑
v x

2
v subject to x ∈ Bf .

3.3 Approximating a lexicographically optimal base using Frank-Wolfe
Consider the convex quadratic program min

∑
v∈V x

2
v subject to x ∈ Bf where Bf is the

base polytope of f (could be submodular of supermodular). We can use the Frank-Wolfe
method to approximately solve this optimization problem. The gradient of the quadratic
function is 2x and it follows that in each iteration, we need to answer the linear minimization
oracle of LMO(w) = arg mins∈Bf

〈s, 2w〉 for w ∈ Bf . This is equivalent to arg mins∈Bf
〈s,w〉,

in other words optimizing a linear objective over the base polytope. Edmonds [47] showed
that the simple greedy algorithm is an O(|V | log |V |) time exact algorithm (assuming O(1)
time oracle access to f).

I Theorem 16. [47] Fix a polymatroid f : 2V → <+. Given w ∈ Bf , sort V = {v1, ..., vn}
in descending order of wi into {s1, ..., sn}. Let Ai = {s1, ..., si} for 1 ≤ i ≤ n with A0 = ∅.
Define s∗i = f(Ai)− f(Ai−1). Then s∗ = arg mins∈Bf

〈s,w〉.

The theorem also holds for supermodular functions but by reversing the order from descending
to ascending order of w and complimenting the set Ai.

I Theorem 17. [47] Fix a contrapolymatroid f : 2V → <+. Given w ∈ Bf , sort V =
{v1, ..., vn} in ascending order of wi into {s1, ..., sn}. Let Ai = {si, ..., sn} for 1 ≤ i ≤ n

with An+1 = ∅. Define s∗i = f(Ai)− f(Ai+1). Then s∗ = arg mins∈Bf
〈s,w〉.

Both algorithms are dominated by the sorting step and thus takes O(|V | log |V |) time.
These simple algorithms imply that the Frank-Wolfe algorithm can be used on the quadratic
program to obtain an approximation to the lexicographically maximum (respectively minimum)
bases of submodular (respectively supermodular) functions. The standard Frank-Wolfe
algorithm would need O(diam(Bf)2

ε2) iterations to converge to a vector b̂ satisfying
∥∥∥b̂− b∗∥∥∥ ≤ ε.

4 Application 1: Convergence of Greedy++ and Super-Greedy++

We begin by describing Greedy++ from [1] and its generlization SuperGreedy++ [2].
Greedy++ is built upon a modification of the peeling idea of Greedy, and applies it over
several iterations. The algorithm initializes a weight/load on each v ∈ V , denoted by w(v), to
0. In each iteration it creates an ordering by peeling the vertices: the next vertex to be chosen
is arg minv(w(v) + degG′(v)) where G′ is the current graph (after removing the previously
peeled vertices). At the end of the iteration, w(v) is increased by the degree of v when it was
peeled in the current iteration. A precise description can be found below. SuperGreedy

Elfarouk Harb, Kent Quanrud, and Chandra Chekuri XX:9

is a natural generalization of Greedy to supermodular functions, and SuperGreedy++
generalizes Greedy++. A formal description of the algorithm is given below.

Algorithm 2 Greedy++(G(V, E), T) [1]
Initialize w(u)← 0 for all u ∈ V
G∗ ← G

for k ← 0 to T − 1 do
G′ ← G

while |G′| > 1 do
u← arg min

u∈G′
(w(u) + degG′(u))

w(u)← w(u) + degG′(u)
G′ ← G′ − {u}
if λ(G′) > λ(G∗) then

G∗ ← G′

return G∗

Algorithm 3 Super-Greedy++(f, T) [2]
Initialize w(u)← 0 for all u ∈ V
S∗ ← V

for k ← 0 to T − 1 do
V ′ ← V

while |V ′| > 1 do
u← arg min

u∈V ′
{w(u)+f(V ′)−f(V ′−u)}

w(u)← w(u) + f(V ′)− f(V ′ − u)
V ′ ← V ′ − u
if f(V ′)

|V ′| >
f(S∗)
|S∗| then

S∗ ← V ′

return S∗

The goal of this section is to prove Theorem 1 on the convergence of SuperGreedy++
and Greedy++ to the lexicographically maximal base.

4.1 Intuition and main technical lemmas

As we saw in Section 3.3, if one applies the Frank-Wolfe algorithm to solve the qaudratic
program min

∑
v∈V x

2
v subject to x ∈ Bf , each iteration corresponds to finding a minimum

weight base of f where the weights are given by the current vector x. Finding a minimum
weight base corresponds to sorting V by x. However, SuperGreedy++ and Greedy++
use a more involved peeling algorithm in each iteration; the peeling is based on the weights
as well as the degrees of the vertices and it is not a static ordering (the degrees change as
peeling proceeds). This is what makes it non-trivial to formally analyze these algorithms.
In [2], the authors used a connection to the multiplicative weight update method via LP
relaxations. Here we rely on the quadratic program and noisy Frank-Wolfe. The high-level
intuition, that originates in [2], is the following. As the algorithm proceeds in iterations, the
weights on the vertices accumulate; recall that the total increase in the weight in the case
of DSG is m = |E|. The degree term, which influences the peeling, is dominant in early
iterations, but its influence on the ordering of the vertices decreases eventually as the weights
of the vertices get larger. It is then plausible to conjecture that the algorithm behaves like
the standard Frank-Wolfe method in the limit. The main question is how to make this
intuition precise. [2] relies on a connection to the MWU method while we use a connection
to noisy Frank-Wolfe.

For this purpose, consider an iteration of Greedy++ and SuperGreedy++. The
algorithm peels based on the current weight vector and the degrees. We isolate and abstract
this peeling algorithm and refer to it as Weighted-Greedy and Weighted-SuperGreedy
respectively, and formally describe them with the weight vector w as a parameter.

XX:10 Convergence to Lexicographically Optimal Base and Applications

Algorithm 4 Weighted-Greedy(G, w)
Input: G(V,E) and w(u) for u ∈ V
G′ ← G

Initialize d̂(u) = 0 for all u ∈ V .
while |G′| > 1 do

u← arg minu∈G′(w(u) + degG′(u))
d̂(u)← degG′(u)
G′ ← G′ − {u}

return d̂

Algorithm 5 Weighted-SuperGreedy(f , w)

Input: Supermodular f : 2V → <+, w(u) for
u ∈ V
V ′ ← V

Initialize d̂(u) = 0 for all u ∈ V .
while |V ′| > 1 do

u← arg min
u∈G′

(w(u) + f(V ′)− f(V ′ − u)

d̂(u)← f(V ′)− f(V ′ − u)
V ′ ← V ′ − u

return d̂

The peeling algorithms also compute a base d̂ ∈ Bf . In the case of graphs and DSG,
d̂(u) is set to the degree of the vertex u when it is peeled. One can alternatively view the
base as an orientation of the edges of E. Define for each edge uv ∈ G two weights xuv, xvu.
We say that x is valid if xuv + xvu = 1 and xuv, xvu ≥ 0 for all {u, v} ∈ E(G). For b ∈ <|V |,
we say x induces b if bu =

∑
v∈δ(u) xuv for all u ∈ V . We say a vector d is an orientation if

there is a valid x that induces it.

I Lemma 18 ([6]). For f(S) = |E(S)|, b ∈ Bf if and only if b is an orientation.

Recall that the Frank-Wolfe algorithm, for a given weight vector w : V → R+, computes
the minimum-weight base b with respect to w since 〈w, b〉 = miny∈Bf

〈w, y〉. It is worth taking
a moment to note that this base (or orientation due to Lemma 18) is easily computable: we
orient each edge integrally (i.e xvu = 1, xuv = 0) from v to u if w(u) ≥ w(v), and the other
way otherwise. A simple exchange argument yields a proof of correctness and is implicit in
many works [14]. This induces an optimal base d∗w with respect to w. Our goal is to compare
how the peeling order created by Weighted-Greedy (and Weighted-SuperGreedy) compares
with the best base. The following two technical lemmas formalize the key idea. The first is
tailored to DSG and the second applies to DSS.

I Lemma 19. [Proof in Appendix 7.6] Let d̂ be the output from Weighted-Greedy(G,w)
and d∗w be the optimal orientation with respect to w. Then 〈w, d̂〉 ≤ 〈w, d∗w〉+

∑
u degG(u)2.

In particular, the additive error does not depend on the weight vector w.

I Lemma 20. [Proof in Appendix 7.7] For a supermodular function f : 2V → <+, let d̂ be
the output from Weighted-SuperGreedy(f, w) (Algorithm 5) and d∗w be the optimal vector
with respect to w as described in Theorem 17. Then 〈w, d̂〉 ≤ 〈w, d∗w〉+ n

∑
u∈V f(u|V − u)2.

In particular, the additive error does not depend on the weight vector w.

4.2 Convergence proof for Greedy++
Why is Lemma 19 crucial? First, observe that the minimizer d∗w of 〈w, d〉 is exactly the same
minimizer as 〈Kw, d〉 for any constant K > 0 (and vice-versa).

I Lemma 21. Let d̂K be the output of Weighted-Greedy(G,Kw). Then 〈w, d̂K〉 ≤
〈w, d∗w〉+

∑
u
degG(u)2

K .

Proof. By Lemma 19,
∑
u∈V Kw(u)d̂K(u) ≤ min

orientation d

(∑
u∈V Kw(u)d(u)

)
+
∑
u degG(u)2.

Dividing by K implies the claim. J

Elfarouk Harb, Kent Quanrud, and Chandra Chekuri XX:11

We are now ready to view Greedy++ as a noisy Frank-Wolfe algorithm. Algorithm 6
shows how Greedy++ could be interpreted.

Algorithm 6 Greedy++(G(V, E))
Input: G = (V,E) and w(u) for u ∈ V
Initialize b(0) ←Weighted-Greedy(G,0) . b(0) is a valid orientation
for k ← 0 to T − 1 do

γ ← 1
k+1

d(k+1) ←Weighted-Greedy(G, (k + 1)b(k))
b(k+1) ← (1− γ)b(k) + γd(k+1)

return b(T)

The algorithm is exactly the same as the one described in Algorithm 2. Indeed, one
can prove that kb(k) is precisely the weights that Greedy++ ends with at round k by
induction. Observe that (k+1)b(k+1) = kb(k) +d(k+1) which is precisely the load as described
in Algorithm 2 (via induction). We note that γ ← 1/(k + 1) is crucial here to ensure we
are taking the average. Lemma 25 in the appendix implies that each peel in Algorithm 2 is
δCf

k+2 -approximate linear minimization oracle. Using Theorem 8, this implies that Greedy++

(as described in Algorithm 2) converges to b∗ in Õ(mn
2

ε2) iterations since δ = O(
∑

u
dG(u)2

m)
and Cf = O(

∑
u dG(u)2). We use the probabilistic method to bound Cf in the Appendix.

Extension to SuperGreedy++: An essentially similar analysis works for SuperGreedy++.
Instead of Lemma 19, we rely on Lemma 20. For technical reasons, the convergence analysis
of SuperGreedy++ is slightly weaker than for Greedy++.

5 Application 2: Greedy Tree Packing interpreted via Frank-Wolfe

Let G = (V,E) be a graph with non-negative edge capacities. The goal of this section
is to view Thorup’s definitions of ideal edge loads and the associated tree packing from
a different perspective, and to derive an alternate convergence analysis of his greedy tree
packing algorithm [7, 8]. In previous work, Chekuri, Quanrud and Xu [43] obtained a different
tree packing based on an LP relaxation for k-cut, and used it in place of ideal tree packing.
Despite this, a proper understanding of Thorup’s ideas was not clear. We address this gap.

We restrict our attention to unweighted multi-graphs throughout this section, and
comment on the capacitated case at the end of the section. Let G = (V,E) be a connected
multi-graph, with n vertices and m edges. Consider the graphic matroidMG(E,F) induced
by G; E is the ground set, and F consists of all sub-forests of G. The bases of the matroid
are precisely the spanning trees of G. Consider the rank function r : 2E → Z+ ofMG. r is
submodular, and it is well-known that for a edge subset X ⊆ E, r(X) = n − κ(X) where
κ(X) is the number of connected components induced by X.

5.1 Thorup’s recursive algorithm as dense decomposition

For consistency with previous notation, we use f to denote the submodular rank function
r. We first describe ideal loads as defined by Thorup. Consider the Tutte–Nash-Williams
partition P for G. Recall that P minimizes the ratio |E(P)|

|P |−1 among all partitions, and this
ratio is τ(G). For each edge e ∈ E(P), assign `∗(e) = 1

τ(G) . Remove the edges in E(P)
to obtain a graph G′ which now consists of several disconnected components. Recursively

XX:12 Convergence to Lexicographically Optimal Base and Applications

compute ideal loads for the edges in each component of G′ (the process stops when G has no
edges).

We claim that Thorup’s recursive decomposition coincides with the dense decomposition
of f (the first variant). To see this, it suffices to see the first step of the dense decomposition.
We find the minimal set S1 ⊆ E that minimizes |E|−|S|

f(E)−f(S) . We let Ŝ1 = E \S1 and assign the
edges in Ŝ1 the density f(E)−f(S)

|E|−|S| . Then, we “delete” Ŝ1. Observe that Ŝ1 = E \S1 is just the
edges crossing the partition P (S1) defined by the κ(S1) connected components spanned by
S1. Also, recall that f(E)−f(S1)

|E|−|S1| = κ(S1)−1
|E\S1| = |P (S1)|−1

E(P (S1)) = 1
τ(G) . Hence, the density assigned

to edges in Ŝ1 is exactly 1
τ(G) by the Tutte–Nash-Williams theorem. The next step is deleting

Ŝ1 = E \ S1, which, as discussed above, are the edges crossing the partition P (S1).
Via induction we prove the following lemma.

I Lemma 22. [Proof in Appendix 7.8] The weights given to the edges by the dense decomposition
algorithm on f coincide with `∗.

5.2 Greedy tree packing converge to ideal relative loads
Thorup considered the following greedy tree packing algorithm. For each edge define a
load `(e) which is initialized to 0. The algorithm proceeds in iterations. In iteration i the
algorithm computes an MST Ti in G with respect to edge weights w(e) = `(e). The load
of each edge e ∈ Ti is increased by 1. Thorup showed that as k →∞, the quantity `(e)/k
converges to `∗(e) for each edge e. His proof is fairly technical. In this section, we present a
different proof of this fact that uses the machinery we have built thus far.

I Lemma 23. The vector `∗ is the lexicographically maximal base of the spanning tree
polytope.

Proof. We showed that Thorup’s algorithm simply runs the dense decomposition on the
graph for the rank function of the graphic matroid induced by G. The bases of the matroid
are the spanning trees of G and hence the base polytope of f is the spanning tree polytope
of G. The dense decomposition gives us the lexicographically maximum base f , and hence
`∗ is the lexicographically maximal base of the spanning tree polytope. J

Hence, `∗ is the unique solution to the quadratic program of minimizing
∑
e `(e)2 subject

to ` ∈ SPT(G) where SPT(G) is the spanning tree base polytope. We can thus apply a
noisy Frank-Wolfe algorithm on the quadratic program to get Algorithm 7.

Algorithm 7 Frank-Wolfe-Greedy-TreePack(G(V, E))
Input: G(V,E)
Initialize l(0)(u) = 1{e ∈ T} for any spanning tree T .
for k ← 0 to T − 1 do

γ ← 1
k+1

d(k+1) ← min
s∈SPT(G)

〈l(k), s〉 . This is the minimum spanning tree with respect to l(k)

l(k+1) ← (1− γ)l(k) + γd(k+1)

return b(T)

The main observation is that this algorithm is exactly the same as the Thorup’s
greedy tree packing! Indeed, observe that (k + 1)`(k+1) ← k`(k) + d(k+1) = k`(k) + 1{e ∈
MST(G, `(k))} where MST(G,w) is a minimum spanning tree of G with respect to edge

Elfarouk Harb, Kent Quanrud, and Chandra Chekuri XX:13

weights w. Since noisy Frank-Wolfe converges, then `(k) converges to `∗(e), and greedy tree
packing converges.

We now establish the convergence guarantee for greedy tree packing. For the spanning
tree polytope of an m edge graph, the curvature constant Cf ≤ 4m because for x, y ∈ Bf ,
2(x− y)T (x− y) =

∑
e∈E(xe − ye)2 ≤ 4m. Plugging this bound into Theorem 8, we get that

after k = O(m log(m/ε)
ε2) iterations, we have

∥∥`(k) − `∗
∥∥ ≤ ε.

Suppose we run the standard Frank-Wolfe algorithm with γ = 2/(k + 2). Then, the
convergence guarantee improves to O(mε2). Note that each iteration still corresponds to
finding an MST in the graph with weights. However, the load vector is no longer a simple
average of the trees taken so far.
Comparison to Thorup’s bound and analysis: Thorup [8] considered ideal tree packings
in capacitated graphs; let c(e) ≥ 1 (via scaling) denote the capacity of edge e. Via [3], one
sees that the optimum solution of the quadratic program

∑
e x

2
e/c(e) subject to x ∈ SP (G)

is the ideal load vector `∗. Greedy tree packing generalizes to the capacitated case easily; in
each iteration we compute the MST with respect to weights w(e) = `(e)c(e). Thorup proved
the following.

I Theorem 24 ([8]). Let G = (V,E) be capacitated graph. Greedy tree packing after
O(m log(mn/ε)

ε3) iterations ouputs a load vector ` such that for each edge e ∈ E, (1− ε)`∗(e) ≤
`(e) ≤ (1 + ε)`∗(e).

We observe that if all capacities are 1 (or identical) then Thorup’s guarantee is that
|`(e)− `∗(e)| ≤ O(ε). For this case, via Frank-Wolfe, we obtain the much stronger guarantee
that ||`− `∗|| ≤ ε which easily implies the per edge condition, however the per edge guarantee
does not imply a guarantee on the norm. Further, in the unweighted case, our iteration
complexity dependence on ε is 1/ε2 while Thorup’s is 1/ε3. Thorup’s guarantee works for the
capacitated case in strongly polynomial number of iterations. We can adapt the Frank-Wolfe
analysis for the capacitated case but it would yield a bound that depends on C =

∑
e c(e)

(in the unweighted case C = m); on the other hand the guarantee provided by Frank-Wolfe
is stronger.

It may seem surprising that the same greedy tree packing algorithm yields different types
of guarantees based on the type of analysis used. We do not have a completely satisfactory
explanation but we point out the following. Thorup’s analysis is a non-trivial refinement of
the standard MWU type analysis of tree packing [48, 49]. See [50] for an excellent survey on
MWU. As already noted in [6], if one use Frank-Wolfe (with γ = 1/(k+ 1)) with the softmax
potential function that is standard in MWU framework, then the resulting algorithm would
also be greedy tree packing. Fujishige’s uses a quadratic objective to guarantee that the
optimum solution is the unique maximal base but in fact any increasing strongly convex
function would suffice. In the context of optimizing a linear function over Bf , due to the
optimality of the greedy algorithm for this, the only thing that determines the base is the
ordering of the elements of V according to the weight vector; the weights themselves do
not matter. Thus, Frank-Wolfe applied to different convex objectives can result in the
same greedy tree/base packing algorithm. However, the specific objective can determine
the guarantee one obtains after a number of iterations. The softmax objective is better
suited for obtaining relative error guarantees while the quadratic objective is better suited
for obtaining additive error guarantees. Thorup’s analysis is more sophisticated due to the
per edge guarantee in the capacitated setting. A unified analysis that explains both the
relative and additive guarantees is desirable and we leave this is an interesting direction for
future research.

XX:14 Convergence to Lexicographically Optimal Base and Applications

References
1 Digvijay Boob, Yu Gao, Richard Peng, Saurabh Sawlani, Charalampos Tsourakakis, Di Wang,

and Junxing Wang. Flowless: Extracting Densest Subgraphs Without Flow Computations,
page 573–583. Association for Computing Machinery, New York, NY, USA, 2020.

2 Chandra Chekuri, Kent Quanrud, and Manuel R. Torres. Densest subgraph: Supermodularity,
iterative peeling, and flow. In Proceedings of the 2022 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1531–1555, 2022.

3 Satoru Fujishige. Lexicographically optimal base of a polymatroid with respect to a weight
vector. Mathematics of Operations Research, 5(2):186–196, 1980.

4 Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval Research
Logistics Quarterly, 3(1-2):95–110, 1956.

5 Martin Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In Sanjoy
Dasgupta and David McAllester, editors, Proceedings of the 30th International Conference on
Machine Learning, number 1 in Proceedings of Machine Learning Research, pages 427–435,
Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR.

6 Elfarouk Harb, Chandra Chekuri, and Kent Quanrud. Faster and scalable algorithms for
densest subgraph and decomposition.

7 Mikkel Thorup. Fully-dynamic min-cut. Combinatorica, 27(1):91–127, 2007. Preliminary
version in Proc. of ACM STOC 2001.

8 Mikkel Thorup. Minimum k-way cuts via deterministic greedy tree packing. In Proceedings of
the fortieth annual ACM symposium on Theory of computing, pages 159–166, 2008.

9 A. V. Goldberg. Finding a maximum density subgraph. Technical Report UCB/CSD-84-171,
EECS Department, University of California, Berkeley, 1984.

10 Jean-Claude Picard and Maurice Queyranne. A network flow solution to some nonlinear 0-1
programming problems, with applications to graph theory. Networks, 12(2):141–159, 1982.

11 Alexander Schrijver et al. Combinatorial optimization: polyhedra and efficiency, volume 24.
Springer, 2003.

12 Satoru Fujishige. Submodular functions and optimization. Elsevier, 2005.
13 Chenhao Ma, Yixiang Fang, Reynold Cheng, Laks V.S. Lakshmanan, Wenjie Zhang, and

Xuemin Lin. Efficient algorithms for densest subgraph discovery on large directed graphs.
In Proceedings of the 2020 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’20, page 1051–1066, New York, NY, USA, 2020. Association for Computing
Machinery.

14 Maximilien Danisch, T.-H. Hubert Chan, and Mauro Sozio. Large scale density-friendly graph
decomposition via convex programming. In Proceedings of the 26th International Conference
on World Wide Web, WWW ’17, page 233–242, Republic and Canton of Geneva, CHE, 2017.
International World Wide Web Conferences Steering Committee.

15 Charalampos Tsourakakis. The k-clique densest subgraph problem. In Proceedings of the
24th International Conference on World Wide Web, WWW ’15, page 1122–1132, Republic
and Canton of Geneva, CHE, 2015. International World Wide Web Conferences Steering
Committee.

16 Bintao Sun, Maximilien Danisch, T-H. Hubert Chan, and Mauro Sozio. Kclist++: A simple
algorithm for finding k-clique densest subgraphs in large graphs. Proc. VLDB Endow.,
13(10):1628–1640, jun 2020.

17 Reid Andersen and Kumar Chellapilla. Finding dense subgraphs with size bounds. In
Konstantin Avrachenkov, Debora Donato, and Nelly Litvak, editors, Algorithms and Models
for the Web-Graph, pages 25–37, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

18 Charalampos Tsourakakis, Francesco Bonchi, Aristides Gionis, Francesco Gullo, and Maria
Tsiarli. Denser than the densest subgraph: Extracting optimal quasi-cliques with quality
guarantees. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’13, page 104–112, New York, NY, USA, 2013. Association
for Computing Machinery.

Elfarouk Harb, Kent Quanrud, and Chandra Chekuri XX:15

19 Alessandro Epasto, Silvio Lattanzi, and Mauro Sozio. Efficient densest subgraph computation
in evolving graphs. In Proceedings of the 24th International Conference on World Wide Web,
WWW ’15, page 300–310, Republic and Canton of Geneva, CHE, 2015. International World
Wide Web Conferences Steering Committee.

20 Andrew McGregor, David Tench, Sofya Vorotnikova, and Hoa T. Vu. Densest subgraph
in dynamic graph streams. In Giuseppe F. Italiano, Giovanni Pighizzini, and Donald T.
Sannella, editors, Mathematical Foundations of Computer Science 2015, pages 472–482, Berlin,
Heidelberg, 2015. Springer Berlin Heidelberg.

21 Polina Rozenshtein, Nikolaj Tatti, and Aristides Gionis. Discovering dynamic communities
in interaction networks. In Toon Calders, Floriana Esposito, Eyke Hüllermeier, and Rosa
Meo, editors, Machine Learning and Knowledge Discovery in Databases, pages 678–693, Berlin,
Heidelberg, 2014. Springer Berlin Heidelberg.

22 Oana Denisa Balalau, Francesco Bonchi, T-H. Hubert Chan, Francesco Gullo, and Mauro
Sozio. Finding subgraphs with maximum total density and limited overlap. In Proceedings of
the Eighth ACM International Conference on Web Search and Data Mining, WSDM ’15, page
379–388, New York, NY, USA, 2015. Association for Computing Machinery.

23 Yuko Kuroki, Atsushi Miyauchi, Junya Honda, and Masashi Sugiyama. Online dense subgraph
discovery via blurred-graph feedback. In ICML, 2020.

24 Albert Angel, Nikos Sarkas, Nick Koudas, and Divesh Srivastava. Dense subgraph maintenance
under streaming edge weight updates for real-time story identification. Proc. VLDB Endow.,
5(6):574–585, feb 2012.

25 Kijung Shin, Tina Eliassi-Rad, and Christos Faloutsos. Corescope: Graph mining using k-core
analysis — patterns, anomalies and algorithms. In 2016 IEEE 16th International Conference
on Data Mining (ICDM), pages 469–478, 2016.

26 Xiangfeng Li, Shenghua Liu, Zifeng Li, Xiaotian Han, Chuan Shi, Bryan Hooi, He Huang, and
Xueqi Cheng. Flowscope: Spotting money laundering based on graphs. In AAAI, 2020.

27 Tommaso Lanciano, Atsushi Miyauchi, Adriano Fazzone, and Francesco Bonchi. A survey on
the densest subgraph problem and its variants, 2023.

28 Saurabh Sawlani and Junxing Wang. Near-optimal fully dynamic densest subgraph. In
Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia
Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 181–193. ACM, 2020.

29 Aleksander B. G. Christiansen, Jacob Holm, Ivor van der Hoog, Eva Rotenberg, and Chris
Schwiegelshohn. Adaptive out-orientations with applications, 2023.

30 Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and
Sushant Sachdeva. Maximum flow and minimum-cost flow in almost-linear time, 2022.

31 Moses Charikar. Greedy approximation algorithms for finding dense components in a graph.
In Klaus Jansen and Samir Khuller, editors, Approximation Algorithms for Combinatorial
Optimization, pages 84–95, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

32 Fragkiskos D Malliaros, Christos Giatsidis, Apostolos N Papadopoulos, and Michalis
Vazirgiannis. The core decomposition of networks: Theory, algorithms and applications.
The VLDB Journal, 29(1):61–92, 2020.

33 Yuichi Asahiro, Kazuo Iwama, Hisao Tamaki, and Takeshi Tokuyama. Greedily finding a
dense subgraph. Journal of Algorithms, 34(2):203–221, 2000.

34 Bahman Bahmani, Ashish Goel, and Kamesh Munagala. Efficient primal-dual graph algorithms
for mapreduce. In International Workshop on Algorithms and Models for the Web-Graph,
pages 59–78. Springer, 2014.

35 Digvijay Boob, Saurabh Sawlani, and Di Wang. Faster width-dependent algorithm for mixed
packing and covering lps. Advances in Neural Information Processing Systems 32 (NIPS 2019),
2019.

36 H Narayanan. The principal lattice of partitions of a submodular function. Linear Algebra
and its Applications, 144:179–216, 1991.

XX:16 Convergence to Lexicographically Optimal Base and Applications

37 Hariharan Narayanan. Submodular functions and electrical networks, volume 54. Elsevier,
1997.

38 Satoru Fujishige. Theory of principal partitions revisited. Research Trends in Combinatorial
Optimization: Bonn 2008, pages 127–162, 2009.

39 Nikolaj Tatti and Aristides Gionis. Density-friendly graph decomposition. In Proceedings of
the 24th International Conference on World Wide Web, pages 1089–1099, 2015.

40 Nikolaj Tatti. Density-friendly graph decomposition. ACM Transactions on Knowledge
Discovery from Data (TKDD), 13(5):1–29, 2019.

41 David R Karger. Minimum cuts in near-linear time. Journal of the ACM (JACM), 47(1):46–76,
2000.

42 Takuro Fukunaga. Computing minimum multiway cuts in hypergraphs from hypertree packings.
In IPCO, pages 15–28. Springer, 2010.

43 Chandra Chekuri, Kent Quanrud, and Chao Xu. Lp relaxation and tree packing for minimum
k-cut. SIAM Journal on Discrete Mathematics, 34(2):1334–1353, 2020.

44 Daniel Lokshtanov, Saket Saurabh, and Vaishali Surianarayanan. A parameterized
approximation scheme for min k-cut. SIAM Journal on Computing, (0):FOCS20–205, 2022.

45 Jason Li. Faster minimum k-cut of a simple graph. In 2019 IEEE 60th Annual Symposium on
Foundations of Computer Science (FOCS), pages 1056–1077. IEEE, 2019.

46 Anupam Gupta, David G Harris, Euiwoong Lee, and Jason Li. Optimal bounds for the k-cut
problem. ACM Journal of the ACM (JACM), 69(1):1–18, 2021.

47 Jack Edmonds. Submodular functions, matroids, and certain polyhedra. In R. Guy,
H. Hanani, N. Sauer, and J. Schönheim, editors, Combinatorial Structures and Their
Applications (Proceedings Calgary International Conference on Combinatorial Structures
and Their Applications, Calgary, Alberta, 1969; R. Guy, H. Hanani, N. Sauer, J. Schönheim,
eds.), New York, 1970. Gordon and Breach.

48 Serge A. Plotkin, David B. Shmoys, and Éva Tardos. Fast approximation algorithms for
fractional packing and covering problems. Mathematics of Operations Research, 20(2):257–301,
1995.

49 N. Young. Randomized rounding without solving the linear program. In ACM-SIAM Symposium
on Discrete Algorithms, 1995.

50 Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a
meta-algorithm and applications. Theory of computing, 8(1):121–164, 2012.

Elfarouk Harb, Kent Quanrud, and Chandra Chekuri XX:17

S1

S1

S2

S1

S2

S3

(a) (b)

(c) (d)

Figure 1 Densest Subgraph Decomposition Example. The densest subgraph S1 is shown in
(b) with blue vertices with density 6/4 = 1.5. We “contract” S1 (the blue vertices) and find the
densest subgraph S2 with density (3 + 1)/3 = 4/3. Finally, we contract S2, and find S3 with density
(0 + 1)/1 = 1.

6 Auxiliary Lemmas

I Lemma 25. For k ≥ 0

∑
u∈V

b(k)(u)d(k+1)(u) ≤
(

min
orientation

−→
d

∑
u∈V

b(k)(u)
−→
d (u)

)
+ δCf
k + 2

Proof. Using Lemma 21 using (k + 1)b(k) as the weights, we have that

∑
u∈V

b(k)(u)d(k+1)(u) ≤
(

min
orientation

−→
d

∑
u∈V

b(k)(u)
−→
d (u)

)
+
∑
u∈V degG(u)2

k + 1

We show in Lemma 26 that Cf ≥ 2m using the probabilistic method, and so for δ =

Θ(
∑

u
degG(u)2

m), we have that∑
u∈V degG(u)2

k + 1 ≤ δCf
k + 2

J

I Lemma 26. Let f(b) =
∑
u b

2
u be the sum of squares of an orientation load vector. Then

2m ≤ Cf ≤ 2
∑
u degG(u)2

Proof. Let D be the set of valid orientations. Then using the definition of Cf and simplifying,
we have that

Cf = sup
x,s∈D,γ∈[0,1]

2
γ2 (f(x+ γ(s− x))− f(x)− 〈γ(s− x), 2x〉) = sup

x,s∈D
2(s− x)T (s− x)

Let x, s ∈ D. Clearly xu, su ≤ degG(u) since they are orientations. So (su − xu)2 ≤
degG(u)2. Summing over u establishes the upper bound.

For the lower bound, we use the probabilistic method. Arbitrarily orient any edge (i, j)
with probability 1/2 towards i and 1/2 towards j. This induces a load b1. Repeat this

XX:18 Convergence to Lexicographically Optimal Base and Applications

independently to induce load b2. Note that for any vertex u, b1u, b2u ∼ Bin(degG(u), 1
2) and

are independent. The variance of b1u−b2u is thus (degG(u)+degG(u))×1/2×1/2 = 1
2degG(u).

Hence, we have that
1
2degG(u) = E

[
(b1u − b2u)2]− E

[
(b1u − b2u)

]2 = E
[
(b1u − b2u)2]

So we have that

E
[
2(b1 − b2)T (b1 − b2)

]
= 2

∑
u∈V

E
[
(b1u − b2u)2] = 2m

So there must be a realization with 2(b1 − b2)T (b1 − b2) at least the expectation value 2m,
and hence the supremum is at least 2m.

J

7 Proofs

7.1 Proof of Theorem 8
Proof. We will note that this proof is slight adaptation of Jaggi’s proof [5], and is included
here for the sake of completeness.

Let d̂(k+1) be the direction returned by the approximate linear minimization oracle in
iteration k. For any γ ∈ [0, 1], from the definition of the curvature constant Cf , we have that

f(b(k+1)) = f(b(k) + γd̂(k+1)) ≤ f(b(k)) + γ〈d̂(k+1) − b(k),∇f(b(k))〉+ γ2

2 Cf (1)

Note that the d̂(k+1) we use is a δCf

k+2 -approximate linear minimization oracle, and hence
〈d̂(k+1),∇f(b(k))〉 ≤ 〈d(k+1),∇f(b(k))〉+ δCf

k+2 . Combining this with (1) and rearranging, we
get

f(b(k+1)) ≤ f(b(k))− γg(b(k)) + γ2

2 Cf (1 + δ) (2)

Where g(b(k)) = 〈d(k+1) − b(k),∇f(b(k))〉. Next, denote h(b(k)) = f(b(k))− f(b∗) for the
primal error. Convexity of f implies that the linearization f(b) + 〈s− b,∇f(b)〉 always lies
below the graph of f . This implies g(b(k)) ≥ h(b(k)). Combining this with (2), we get

f(b(k+1)) ≤ f(b(k))− γh(b(k)) + γ2

2 Cf (1 + δ) (3)

Subtracting f(b∗) from both sides of (3), we get

h(b(k+1)) ≤ (1− γ)h(b(k)) + γ2

2 Cf (1 + δ) (4)

Let C = 1
2Cf (1 + δ) and εk = h(b(k)). Then from (4) we get the recurrence

εk+1 ≤ (1− γ)εk + γ2C (5)

We claim that εk ≤ 4CHk+1
k+1 which implies the theorem. For k = 0, (5) with γ = 1

0+1 implies
ε0+1 ≤ C ≤ 4C. For k ≥ 1, we want the RHS of (5) to satisfy

(1− 1
k + 1)4CHk+1

k + 1 + C

(k + 1)2 ≤
4CHk+2

k + 2

Alternatively, this is the same as 4(k + 2)Hk+1 + k(3k + 4) ≥ 0 after rearranging, which is
satisfied for k ≥ 1. J

Elfarouk Harb, Kent Quanrud, and Chandra Chekuri XX:19

7.2 Proof of Lemma 9
Proof. We will show that h(X) = f(V \X) is submodular for submodular f . This would
imply −f(V \X) is supermodular, and since f(V) is modular, then g is supermodular.

Let A,B ⊆ V . To see why h is submodular, we have the inequalities:

h(A) + h(B) = f(V \A) + f(V \B) ≥ f(V \A ∪ V \B) + f(V \A ∩ V \B)

Note that V \A ∪ V \B = V \ (A ∩B). In addition, V \A ∩ V \B = V \ (A ∪B). Hence

h(A) + h(B) ≥ f(V \ (A ∪B)) + f(V \ (A ∩B)) = h(A ∪B) + h(A ∩B)

J

7.3 Proof of Lemma 10
Proof. Let S1, S2 ⊆ V be maximal sets achieving the maximum λ = f(S)

|S| . Then we have by
supermodularity

f(S1 ∪ S2)
|S1 ∪ S2|

= f(S1 ∪ S2)
|S1|+ |S2| − |S1 ∩ S2|

≥ f(S1) + f(S2)− f(S1 ∩ S2)
|S1|+ |S2| − |S1 ∩ S2|

Note that f(S1 ∩ S2) ≤ λ |S1 ∩ S2| by optimality of λ which implies the continued chain

f(S1 ∪ S2)
|S1 ∪ S2|

≥ f(S1) + f(S2)− λ|S1 ∩ S2|
|S1|+ |S2| − |S1 ∩ S2|

= λ |S1|+ λ |S2| − λ |S1 ∩ S2|
|S1|+ |S2| − |S1 ∩ S2|

= λ

By optimality of λ, f(S1∪S2) = λ |S1 ∪ S2|. By maximality of S1, S2, S1 = S1∪S2 = S2. J

7.4 Proof of Lemma 12
Proof. Let S1, S2 ⊆ V be minimal sets that minimizes the ratio (|V | − |S|)/(f(V)− f(S))
with value λ. Then by supermodularity of g(S) = f(V)− f(S), we have

|V | − |S1 ∩ S2|
f(V)− f(S1 ∩ S2) = |V | − |S1 ∩ S2|

g(S1 ∩ S2) ≤ |V | − |S1 ∩ S2|
g(S1) + g(S2)− g(S1 ∪ S2)

Note that |V |− |S1∩S2| = |V |− |S1|+ |V |− |S2|− |V |+ |S1∪S2|. In addition λg(S1∪S2) ≤
|V | − |S1 ∪ S2| by optimality of λ. Then we get the chain of inequalities

|V | − |S1 ∩ S2|
f(V)− f(S1 ∩ S2) ≤

λg(S1) + λg(S2)− λg(S1 ∪ S2)
g(S1) + g(S2)− g(S1 ∪ S2) = λ

By optimality of λ, (|V | − |S1 ∩ S2|)/(f(V) − f(S1 ∩ S2)) = λ. By minimality of S1, S2,
S1 = S1 ∩ S2 = S2. J

7.5 Proof of Theorem 13
Proof. See Figure 2 throughout this proof. Note that Ŝ1, ..., Ŝk are associated with densities

|V | − |S1|
f(V)− f(S1) <

|S1| − |S2|
f(S1)− f(S2) < ... <

|Sk−1| − |Sk|
f(Sk−1)− f(Sk)

Similarly, T1, ..., Tk′ are associated with densities

f(V)− f(V \ T1)
|T1|

>
f(V \ T1)− f(V \ T1 \ T2)

|T2|
> ... >

f(Tk′)− f(φ)
|Tk′ |

XX:20 Convergence to Lexicographically Optimal Base and Applications

V

S1

S2

Ŝ1

Ŝ2

Sk ...

Figure 2 Contraction based decomposition for a submodular function f . Shown is the Venn-
diagram of S1, ..., Sk and Ŝ1, ..., Ŝk

We prove the claim by induction. Suppose T1, ..., Ti−1 is the same as Ŝ1, ..., Ŝi−1 with
the trivial base case.

First note that Ti ⊆ Si−1 since T1∪...∪Ti−1 = (V \S1)∪(S1\S2)∪...(Si−2\Si−1) = V \Si−1
and the disjointedness of {Tj}. Now observe that by the optimality of Si that

|Si−1| − |Si|
f(Si−1)− f(Si)

≤ |Si−1| − |Si−1 \ Ti|
f(Si−1)− f(Si−1 \ Ti)

= |Ti|
f(Si−1)− f(Si−1 \ Ti)

= |Ti|
f(V \

⋃
j<i Tj)− f(V \

⋃
j≤i Tj)

Conversely, by the optimality of Ti

f(V \
⋃
j<i Tj)− f(V \

⋃
j≤i Tj)

|Ti|
≥
f(V \

⋃
j<i Tj)− f(V \

⋃
j<i Tj \ (Si−1 \ Si))

|Si−1 \ Si|
= f(Si−1)− f(Si)
|Si−1| − |Si|

Hence λi = λ̂i. This also forces Si = Si−1 \ Ti or Ti = Si−1 \ Si = Ŝi. J

7.6 Proof of Lemma 19
Proof. Consider the optimal orientation of the edges d∗w. How does reversing one edge (from
(u, v) to (v, u)) affect the cost of minimization oracle? The out degree of u decreases by 1
and the out degree of v increases by 1, and so the objective function increases by wv − wu.

Suppose Weighted-Greedy++ peels the vertices u1, ..., un in this order. We proceed
by induction. Consider all the “wrongly” oriented edges W (u1) = {(u1, ui) : i > 1, w(u1) >
w(ui)}. These edges increase the objective function from the optimal solution value by∑
v∈W (u)(w(u1) − w(v)). But recall that Weighted-Greedy++ chooses u1 because

w(u1) + degG′(u1) ≤ w(v) + degG′(v) for all v ∈W (u). Which means that

w(u1)− w(v) ≤ degG′(v)− degG′(u1) ≤ degG(v)

Proceeding by induction on u2, ..., un, the “wrongly” oriented edges contribute a total of at
most

∑
u degG(u)2 additive error with respect to the correct orientation d∗w since each vertex

v contributes at most degG(v) from all its neighbors. J

7.7 Proof of Lemma 20
Proof. Suppose Weighted-SuperGreedy++ peels V in the order si1 , ..., sin , and Edmonds’
algorithm peels them in the order s1, ..., sn with w1 ≤ ... ≤ wn. Let Aj = {sij+1 , ..., sin}.

Elfarouk Harb, Kent Quanrud, and Chandra Chekuri XX:21

Edmonds

Greedy

s1 ... sj sj+1 sn−1 sn...

s1 ... sij sij+1 sik = sj sinsik−1

Greedy

Swap
s1 ... sij sik−1 sinsij+1sj

Figure 3 Proof idea of Lemma Lemma 20

Let j be the index of the first disagreement where sj 6= sij . Weighted-SuperGreedy++
chooses sij over sik (k ≥ j) because

w(sij) + f(sij |Aj − sij) ≤ w(sik) + f(sik |Aj − sik)

Which implies by supermodularity

w(sij)− w(sik) ≤ f(sik | V − sik) (6)

Suppose sik = sj , then we will move sij , sij+1 , ..., sik−1 to go after sik = sj in the Weighted-
SuperGreedy++ order. (see Figure 3). Swapping consecutive elements sia , sia+1 in the
Weighted-SuperGreedy++ order changes the inner product cost by

w(sia+1)f(sia+1 |Aa+sia−sia+1)+w(sia)f(sia |Aa+1)−w(sia)f(sia |Aa)−w(sia+1)f(sia+1 |Aa+1)

= w(sia)(f(sia |Aa+1)−f(sia |Aa))−w(sia+1)(f(sia+1 |Aa+1)−f(sia+1 |Aa+sia−sia+1)) (7)

But

f(sia |Aa+1)− f(sia |Aa) = f(Aa+1 + sia)− f(Aa+1)− f(Aa + sia) + f(Aa)

And

f(sia+1 |Aa+1)−f(sia+1 |Aa+sia−sia+1) = f(Aa+1+sia+1)−f(Aa+1)−f(Aa+sia)+f(Aa+sia−sia+1)

= f(Aa)− f(Aa+1)− f(Aa + sia) + f(Aa+1 + sia)

And hence both coefficients of w(sia), w(sia+1) in 7 are equal. Hence by (6)

(7) = (wia − wia+1)(f(sia+1 |Aa+1)− f(sia+1 |Aa+1 + sia)) ≥ −f(sia+1 |V − sia+1)2

Hence, moving all of sij , ..., sik−1 to sik = sj decreases the cost by at most≤ (k−j)f(sik |V)2 ≤
nf(sik |V −sik)2. Summing over all reorderings of the vertices, we see that Edmonds’ ordering
inner product is at most n

∑
u∈V f(u|V − u)2 away from the Weighted-SuperGreedy++

order inner product. For the function f(S) = |E(S)|, the bound from Lemma 19 is better
than the bound of Lemma Lemma 20 by a factor of n. We leave improving the bound for
future work. J

XX:22 Convergence to Lexicographically Optimal Base and Applications

C1, k1 = 3

C2, k2 = 2

C3, k3 = 2

Ct, kt = 1

Figure 4 Blue edges are Si. Red edges are Ŝi. Red and blue edges together are Si−1. The red
edges in component Cq are Eq. Cyan circles inside Cq are components inside Cq after Ŝi is deleted.

7.8 Proof of Lemma 22
Proof. In the i-th iteration, observe that Ŝi = Si−1\Si is just the edges crossing the partition
P (Si) in the graph G′ = G(V, Si−1) remaining from iteration i − 1. Also, f(Si−1)−f(Si)

|Si−1|−|Si| =
κ(Si)−κ(Si−1)
E(P (Si)) . We show that this is the correct value consistent with Thorup’s ideal relative

weights that the edges in Ŝi should be set to.
We proceed inductively on the i-th iteration.
Throughout the proof see Figure 4. Fix G′ = G(V, Si−1). Let the connected components

of G′ be C1, ..., Ct with component Cq having kq connected components after deleting
Ŝi = Si−1 \ Si and contributing edges Eq to the cross edges in Ŝi. Let k =

∑
i ki.

If for some component Cq, we have Eq

kq−1 <
|Si−1|−|Si|

k−1 , then for S′i = Si−1 \ Eq, we have

|Si−1| − |S′i|
κ(Si−1 − κ(S′i))

= |Eq|
kq − 1 <

|Si−1| − |Si|
k − 1

A contradiction to the optimality of Si.

Hence, for all components Cq with kq > 1, Eq

kq−1 ≥
|Si−1|−|Si|

k−1 . But then for S′i = Si ∪Eq,
we have

|Si−1| − |S′i|
κ(S′i)− κ(Si−1) = |Si−1| − |Si| − |Eq|

κ(Si)− κ(Si−1)− kq + 1 ≤
|Si−1| − |Si|

κ(Si)− κ(Si−1)

By optimality of Si, equality must hold.
Hence it must be that if kq > 1 then (k1 − 1)/|Eq| = (k − 1)/|Ŝi|. So the algorithm sets

the correct densities for the edges in Ŝi according to Thorup’s algorithm. J

	1 Introduction
	1.1 Contributions of the paper

	2 Background on Frank-Wolfe algorithm and a variation
	3 Sub and supermodular functions, and dense decompositions
	3.1 Dense decompositions for submodular and supermodular functions
	3.2 Fujishige's results on lexicographically optimal bases
	3.3 Approximating a lexicographically optimal base using Frank-Wolfe

	4 Application 1: Convergence of Greedy++ and Super-Greedy++
	4.1 Intuition and main technical lemmas
	4.2 Convergence proof for Greedy++

	5 Application 2: Greedy Tree Packing interpreted via Frank-Wolfe
	5.1 Thorup's recursive algorithm as dense decomposition
	5.2 Greedy tree packing converge to ideal relative loads

	6 Auxiliary Lemmas
	7 Proofs
	7.1 Proof of Theorem 8
	7.2 Proof of Lemma 9
	7.3 Proof of Lemma 10
	7.4 Proof of Lemma 12
	7.5 Proof of Theorem 13
	7.6 Proof of Lemma 19
	7.7 Proof of Lemma 20
	7.8 Proof of Lemma 22

